
Helsinki University of Technology

Publications in Telecommunications Software and Multimedia

Teknillisen korkeakoulun tietoliikenneohjelmistojen ja multimedian julkaisuja

Espoo 2005 TML-A11

EFFICIENT ALGORITHMS FOR OCCLUSION CULLING AND

SHADOWS

Timo Aila

AB TEKNILLINEN KORKEAKOULU
TEKNISKA HÖGSKOLAN
HELSINKI UNIVERSITY OF TECHNOLOGY
TECHNISCHE UNIVERSITÄT HELSINKI
UNIVERSITE DE TECHNOLOGIE D’HELSINKI

1

Helsinki University of Technology
Publications in Telecommunications Software and Multimedia
Teknillisen korkeakoulun tietoliikenneohjelmistojen ja multimedian julkaisuja

Espoo 2005 TML-A11

Efficient Algorithms for Occlusion Culling and Shadows

Timo Aila

Dissertation for the degree of Doctor of Science in Technology to be presented
with due permission of the Department of Computer Science and Engineering,
for public examination and debate in Auditorium AS1 at Helsinki University of
Technology (Espoo, Finland) on the 25th of February, 2005, at 12 noon.

Helsinki University of Technology

Department of Computer Science and Engineering

Telecommunications Software and Multimedia Laboratory

Teknillinen korkeakoulu

Tietotekniikan osasto

Tietoliikenneohjelmistojen ja multimedian laboratorio

Distribution:

Helsinki University of Technology

Telecommunications Software and Multimedia Laboratory

P.O.Box 5400

FIN-02015 HUT

Finland

Tel. +358-9-451 2870

Fax. +358-9-451 5014

http://www.tml.hut.fi/

Available in PDF format at http://lib.hut.fi/Diss/2005/isbn9512274833/

c©Timo Aila

ISBN 951-22-7480-9 (printed version)

ISSN 1456-7911

ISBN 951-22-7483-3 (electronic version)

ISSN 1455-9722

Otamedia Oy

Espoo 2005

ABSTRACT

Author Timo Aila
Title Efficient Algorithms for Occlusion Culling and Shadows

The goal of this research is to develop more efficient techniques for com-
puting the visibility and shadows in real-time rendering of three-dimensional
scenes. Visibility algorithms determine what is visible from a camera,
whereas shadow algorithms solve the same problem from the viewpoint of
a light source.

In rendering, a lot of computational resources are often spent on prim-
itives that are not visible in the final image. One visibility algorithm for
reducing the overhead is occlusion culling, which quickly discards the ob-
jects or primitives that are obstructed from the view by other primitives. A
new method is presented for performing occlusion culling using silhouettes
of meshes instead of triangles. Additionally, modifications are suggested to
occlusion queries in order to reduce their computational overhead.

The performance of currently available graphics hardware depends on
the ordering of input primitives. A new technique, called delay streams,
is proposed as a generic solution to order-dependent problems. The tech-
nique significantly reduces the pixel processing requirements by improving
the efficiency of occlusion culling inside graphics hardware. Addition-
ally, the memory requirements of order-independent transparency algo-
rithms are reduced.

A shadow map is a discretized representation of the scene geometry as
seen by a light source. Typically the discretization causes difficult aliasing
issues, such as jagged shadow boundaries and incorrect self-shadowing. A
novel solution is presented for suppressing all types of aliasing artifacts by
providing the correct sampling points for shadow maps, thus fully aban-
doning the previously used regular structures. Also, a simple technique
is introduced for limiting the shadow map lookups to the pixels that get
projected inside the shadow map.

The fillrate problem of hardware-accelerated shadow volumes is greatly
reduced with a new hierarchical rendering technique. The algorithm per-
forms per-pixel shadow computations only at visible shadow boundaries, and
uses lower resolution shadows for the parts of the screen that are guaranteed
to be either fully lit or fully in shadow.

The proposed techniques are expected to improve the rendering per-
formance in most real-time applications that use 3D graphics, especially in
computer games. More efficient algorithms for occlusion culling and shad-
ows are important steps towards larger, more realistic virtual environments.

UDC 004.925, 004.383.5
Keywords computer graphics, shadow algorithms, occlusion

culling, 3D graphics hardware, order-independent
transparency

EFFICIENT ALGORITHMS FOR OCCLUSION CULLING AND SHADOWS 1

2 EFFICIENT ALGORITHMS FOR OCCLUSION CULLING AND SHADOWS

PREFACE

This research was primarily carried out at the Telecommunications Soft-
ware and Multimedia Laboratory, Helsinki University of Technology, Es-
poo, during 2002–2004. The algorithms used in dPVS were developed at
Hybrid Graphics 2000–2001, and the hardware simulations of delay streams
were done at Bitboys in 2002.

I want to express my gratitude to Prof. Lauri Savioja, my thesis supervi-
sor, for encouragement and for letting me choose the research topic freely.

I would like to thank my co-authors Tomas Akenine-Möller, Jukka Ar-
vo, Samuli Laine, Petri Nordlund, and Ville Miettinen for fruitful col-
laboration, and my colleagues Jaakko Lehtinen, Janne Kontkanen, and
Jussi Räsänen for insightful conversations, and for providing feedback on
early versions of the publications.

Furthermore, I would like to thank the pre-examiners of this thesis, Prof.
Michael McCool and Dr. Kari Pulli for positive feedback and constructive
comments. Thanks to Timo Haanpää for proofreading the thesis.

I am grateful to the organizations that have supported this work fi-
nancially: the Department of Computer Science at Helsinki University of
Technology, ATI Technologies, Tekniikan edistämissäätiö (The Ministry of
Trade and Industry), Tekes (The National Technology Agency), Bitboys,
Hybrid Graphics, Nokia, and Remedy Entertainment.

Finally, I am deeply indebted to Tiina Rekola for love, support, and
patience during my studies.

Otaniemi, Espoo, 20th January 2005

Timo Aila

EFFICIENT ALGORITHMS FOR OCCLUSION CULLING AND SHADOWS 3

4 EFFICIENT ALGORITHMS FOR OCCLUSION CULLING AND SHADOWS

TABLE OF CONTENTS

Abstract 1

Preface 3

Table of Contents 5

List of Publications 7

List of Abbreviations 9

1 Introduction 11
1.1 Scope of This Thesis . 11
1.2 Visibility Algorithms . 12
1.3 Shadow Algorithms . 13
1.4 Relationship of Visibility and Shadow Algorithms 15
1.5 Graphics Hardware . 15
1.6 Organization of the Thesis 16

2 Related Research 17
2.1 Visibility and Occlusion 17

Image-space hierarchies and graphics hardware 17
Occlusion queries . 18
Occlusion culling systems 18
Order-independent transparency 19

2.2 Shadow Volumes . 19
Shadow volume optimizations 20
Generalizations of shadow volumes 22

2.3 Shadow Maps . 22
Resolution mismatch with shadow maps 22
False self-shadowing with shadow maps 23
Generalizations of shadow maps 24

2.4 Hybrid Shadow Algorithms 24
2.5 Shadow Rays . 24

3 Visibility Algorithms 25
3.1 Visible Point Tracking and Conditional Occlusion Queries . 25
3.2 Occlusion Culling Using Silhouettes of Meshes 25

4 Shadow Algorithms 27
4.1 Alias-Free Shadow Maps 27
4.2 Limiting the Number of Shadow Map Lookups 28

Omni-directional light sources and cube maps 28
4.3 Hierarchical Rendering of Shadow Volumes 28

5 Graphics Hardware: Delay Streams 31
5.1 Delayed Occlusion Culling 31

EFFICIENT ALGORITHMS FOR OCCLUSION CULLING AND SHADOWS 5

Utilization of vertex and pixel shaders 32
5.2 Other Applications of Delay Streams 32

6 Main Results of the Thesis and Contributions of the Author 33

Bibliography 35

Errata 41

6 EFFICIENT ALGORITHMS FOR OCCLUSION CULLING AND SHADOWS

LIST OF PUBLICATIONS

This thesis summarizes the following articles and publications, referred to
as [P1]–[P5]:

[P1] T. Aila, V. Miettinen, and P. Nordlund. Delay Streams for Graphics
Hardware. ACM Transactions on Graphics, 22(3):792–800, 2003.

[P2] T. Aila and T. Akenine-Möller. A Hierarchical Shadow Volume
Algorithm. In Graphics Hardware 2004 (Eurographics Symposium
Proceedings), pages 15–23. Eurographics Association, 2004.

[P3] T. Aila and V. Miettinen. dPVS: An Occlusion Culling System for
Massive Dynamic Environments. IEEE Computer Graphics and
Applications, 24(2):86–97, 2004.

[P4] J. Arvo and T. Aila. Optimized Shadow Mapping Using the Stencil
Buffer. Journal of Graphics Tools, 8(3):23–32, 2003.

[P5] T. Aila and S. Laine. Alias-Free Shadow Maps. In Rendering
Techniques 2004 (Eurographics Symposium on Rendering), pages
161–166. Eurographics Association, 2004.

EFFICIENT ALGORITHMS FOR OCCLUSION CULLING AND SHADOWS 7

8 EFFICIENT ALGORITHMS FOR OCCLUSION CULLING AND SHADOWS

LIST OF ABBREVIATIONS

3D Three-dimensional
CPU Central processing unit
GPU Graphics processing unit
ID Identifier
Zmin Minimum depth value of an N ×M pixel tile
Zmax Maximum depth value of an N ×M pixel tile

EFFICIENT ALGORITHMS FOR OCCLUSION CULLING AND SHADOWS 9

10 EFFICIENT ALGORITHMS FOR OCCLUSION CULLING AND SHADOWS

1 INTRODUCTION

This thesis relates to computer graphics and particularly to rendering, which
is the process of synthesizing images from a description of a virtual scene.
The description typically includes at least surfaces of objects, light sources,
and material properties that describe how the surfaces reflect light. Model-
ing is the process of creating this description, and rendering generates the
final image by simulating the behavior of light in the environment.

There are few, if any, scenes that cannot be satisfactorily rendered if an
unbounded amount of processing time is available. A high-fidelity simu-
lation of indirect illumination currently leads to rendering times of several
hours or days per frame, which can be prohibitive even in movie produc-
tion. Therefore, numerous approximations need to be made for real-time
applications that require rendering of at least 25 frames per second. The
difference in realism is easily observed by comparing almost photorealis-
tic computer-generated feature films against significantly less convincing
computer games. Major shortcomings in real-time applications include
simplistic, plastic-like appearance of materials, the lack of optical effects
such as motion blur and depth of field, and the commonly used light-
ing models that omit not only the indirect illumination but often also the
shadows of direct illumination.

Currently most efforts in rendering research are concentrated in finding
faster methods for producing high-fidelity images, the ultimate goal being
photorealistic real-time rendering. Even if this goal approaches steadily due
to technological advances, the progress can be greatly sped up by develop-
ing algorithms that use the available computational power as efficiently as
possible. This thesis proposes new methods for improving the performance
of the rendering process without compromising image quality.

1.1 Scope of This Thesis

The primary topic of this thesis is improving the performance of shadow gen-
eration from infinitesimal light sources that create perfectly sharp shadow
boundaries. While such light sources do not exist in the real world, they
provide a convenient intermediate step between having no shadows and
computationally more demanding accurate soft shadows from area light
sources. Furthermore, most algorithms for computing soft shadows are
based on the techniques designed for infinitesimal light sources, and thus
inherit their performance and quality characteristics.

The secondary topic of this thesis is visibility algorithms, and in partic-
ular occlusion culling, which quickly identifies the set of rendering prim-
itives that are not obstructed from the view by other primitives. Visibility
and shadow algorithms are semantically similar, as the first one determines
what is visible from a camera while the latter solves the same problem from
the point of view of a light source.

This thesis is based on five publications [P1–P5] that propose new,
more efficient algorithms for occlusion culling and shadows. Figure 1.1

EFFICIENT ALGORITHMS FOR OCCLUSION CULLING AND SHADOWS 11

Spatial databases [P3]
Shadow algorithms

Visibility algorithms

View frustum culling

Backface culling

Occlusion culling [P1,P3]

Shadow rays [P5]

Shadow volumes [P2]

Shadow maps [P4,P5]

Graphics hardware [P1]

Order-independent
transparency [P1]

Figure 1.1: The publications [P1–P5] propose improved algorithms for
shadows and visibility. In general, both visibility and shadow algorithms
use a spatial database for hierarchical processing of the scene, and utilize
graphics hardware for performing a part of the computations.

illustrates the positioning of the publications. The techniques target real-
time applications with moving objects or otherwise time-varying scenes.
In such applications, visibility and shadows need to be updated dynami-
cally to correctly account for changes in the viewing parameters and the
environment.

1.2 Visibility Algorithms

Virtually all real-time rendering systems determine the visible surfaces by
using the Z-buffer algorithm [17]. Unfortunately, Z-buffering has two major
weaknesses. First, it fails to blend semi-transparent surfaces in the correct or-
der unless the application has pre-sorted them. Methods that generalize the
Z-buffer to semi-transparent surfaces are referred to as order-independent
transparency algorithms. The second problem is one of performance: all
primitives of a scene are always processed, even if only a small part of the
scene is visible at a time.

The processing of a scene can be optimized in several ways. View
frustum culling discards primitives that are outside the view frustum. Hi-
erarchical versions [24] avoid performing a separate test for each primitive.
Often planar primitives are visible only from one side, and backface culling
removes primitives that face away from the camera. Occlusion culling com-
plements the other culling methods by quickly removing primitives or entire
objects that are obstructed from the view by other primitives. Figure 1.2
illustrates the efficiency of occlusion culling in a large city environment.

For hierarchical variants of view frustum and occlusion culling the
objects of the scene need to be organized into a hierarchy [77]. This thesis
refers to such spatial data structures as spatial databases. The database is
typically traversed in an approximate front-to-back order to maximize the
efficiency of Z-buffer processing and occlusion culling.

12 EFFICIENT ALGORITHMS FOR OCCLUSION CULLING AND SHADOWS

a) b)

Figure 1.2: The goal of occlusion culling is to minimize the rendering
time of a frame by finding a tight superset of the visible objects as quickly as
possible. The top image shows a third person view of an urban environment
intersected by a view frustum. The bottom row images are wireframe
renderings from the marked viewpoint. a) Without occlusion culling. b)
With occlusion culling enabled. In this case occlusion culling reduces the
rendering workload approximately hundred-fold.

1.3 Shadow Algorithms

Until recently, almost all real-time applications have computed the contri-
bution of a light source according to a grossly simplistic assumption that the
line-of-sight between the point to be shaded and the light source is never
blocked. If this assumption is made, the illumination computations are
trivial, and depend only on the properties of the point and the light source.
However, the presence of shadows is valuable because they reveal infor-
mation about the spatial relationships of objects and increase the level of
realism. Figure 1.3 illustrates one possible ambiguity if shadows are omitted
from a picture.

EFFICIENT ALGORITHMS FOR OCCLUSION CULLING AND SHADOWS 13

a) b) c)

Figure 1.3: Shadows convey valuable information about spatial relation-
ships of objects. Without shadows the two configurations a) and b) would
look identical, c).

The geometric interpretation of shadow generation is simple, and was
already known 500 years ago, as demonstrated in Figure 1.4. Unfortunately,
determining if a light source is visible from a given point may involve a large
number of other objects, and is therefore computationally demanding. The
primary obstacle for including shadows into real-time applications has been
the lack of sufficient computing power. Another, partially overlapping
reason is that most shadow generation algorithms perform a lot of redundant
computations.

Figure 1.4: An early study of shadows from the school of Leonardo da Vinci
(Manuscript Codex Huygens). If one end of a long pen is mounted at the
light source (candle) and the silhouettes of the objects are traced with the
pen, the far end of the pen draws the shadow boundaries to the walls.

14 EFFICIENT ALGORITHMS FOR OCCLUSION CULLING AND SHADOWS

On-chip caches

Vertex Shader

Low Resolution Rasterizer

Early Occlusion Test Zmin,Zmax

x
E

te
rn

al
i

V
de

o
e

M
o

m
ry

Per-pixel Rasterizer

Pixel Shader

Geometry description

Texture, Z, stencil, and
color caches

Primitive Assembly

Figure 1.5: Flowchart of a modern graphics processing unit.

1.4 Relationship of Visibility and Shadow Algorithms

As visibility and shadow algorithms solve the same problem from different
viewpoints, they are generally inter-exchangeable. In fact, some visibility
algorithms have been directly applied to shadow generation [17, 91, 5, 90]
and vice versa [28, 51]. However, shadows need to be computed only for the
parts of surfaces that are visible from the camera. Thus shadow generation
can be optimized by first solving the visibility from the camera, and then
limiting the shadow tests to the visible samples.

Typically the visible samples of the output image are spaced irregularly
when viewed from the light source. The light-space sampling points used
in shadow computations should correspond exactly to these visible samples.
If this requirement is not met, difficult aliasing problems arise because the
results are computed at slightly incorrect positions. Nevertheless, algorithms
that discretize the light space using a regular grid are widely used due to
their simplicity [91].

1.5 Graphics Hardware

Virtually all real-time rendering is performed using specialized graphics
processing units (GPUs). Figure 1.5 shows a simplified flowchart of a mod-
ern GPU. The input typically consists of vertex parameters and connectivity
information. The vertex shader is a programmable unit that computes
the transformed vertex positions, and optionally other attributes such as
non-shadowed direct lighting. The primitive assembly creates triangles by
connecting vertices. The low-resolution rasterizer finds the N ×M pixel
tiles that are at least partially covered by the triangle [42]. The early occlu-
sion test [69] performs tile-specific optimizations. Typically the minimum
(Zmin) [4] and maximum (Zmax) [69] depth values are maintained for each
tile. If the part of the input triangle that overlaps the tile is behind Zmax,
further processing inside the tile can be skipped, and if the triangle is in
front of Zmin, per-pixel depth values do not need to be tested. These opti-

EFFICIENT ALGORITHMS FOR OCCLUSION CULLING AND SHADOWS 15

mizations cannot be applied in certain special cases, e.g., when particular
stencil buffer operations [73] are enabled or when the depth values of the
input triangle are modified by the subsequent units. The per-pixel raster-
izer enumerates the pixels that need to be processed. The pixel shader is a
programmable unit that computes the color, and possibly other attributes
for each pixel. Modern GPUs have a number of vertex and pixel shader
units executing in parallel. In many applications the overall performance is
limited by the number of processed pixels and the related communication
to external video memory.

An important characteristic of a typical GPU is that the input triangles
are not reordered during the pipeline. This greatly simplifies the design but
also causes a number of drawbacks. For example, the efficiency of Zmin and
Zmax optimizations depend on the ordering of the input primitives. Also,
the semi-transparent primitives are rendered incorrectly unless they are
submitted in a strict back-to-front order by the application.

1.6 Organization of the Thesis

This thesis is organized as follows. Chapter 2 gives an overview of the
related research on occlusion culling and shadow algorithms. Chapters 3
and 4 present the new contributions to occlusion culling and shadow algo-
rithms, respectively. The concept of delay streams is explained in Chap-
ter 5. Finally, Chapter 6 provides a summary of the thesis and the author’s
contributions.

16 EFFICIENT ALGORITHMS FOR OCCLUSION CULLING AND SHADOWS

2 RELATED RESEARCH

This chapter reviews related work on occlusion culling in dynamic scenes,
and on shadow algorithms that assume point-like light sources creating sharp
shadow boundaries. Techniques for producing soft shadows are discussed
only as extensions of hard shadow algorithms. Several surveys are available
on visibility determination [33, 3, 25] and shadow computation [97, 44, 46].

2.1 Visibility and Occlusion

A number of occlusion culling systems have been proposed for the limited
case of urban environments [94]. These systems reduce the visibility prob-
lem into a two-dimensional sub-problem by assuming that buildings are
essentially boxes with different heights.

Airey et al. [1] and Teller and Séquin [87] propose subdividing the scene
into cells connected by portals. The subdivision is particularly well suited
for indoor scenes, where the cells correspond to rooms and the portals to
doors and windows. Haumont et al. [47] and Lefebvre and Hornus [58]
describe methods for constructing cells and portals automatically from a
scene description.

Several object-space visibility algorithms have been described for static
scenes [33, 25]. Extending these methods to dynamic scenes is challenging,
and thus we concentrate on image-space techniques.

Image-space hierarchies and graphics hardware
Greene and Kass [43] reduce the number of per-pixel depth comparisons
by organizing the depth buffer into a hierarchy. Due to the challenges in
maintaining a full hierarchy in graphics hardware, several simplified designs
have been proposed. Xie and Shantz [99] update the hierarchy only a few
times per frame according to a heuristic. Morein [69] describes an archi-
tecture that incorporates a two-level depth pyramid and adds an occlusion
test stage into the traditional rendering pipeline. In addition to memory
bandwidth optimizations, parts of the incoming triangles can be culled be-
fore rasterization. The early depth rejection works best when the input
primitives arrive in an approximate front-to-back order. Publication [P1]
deals with the issue of order dependency.

An alternative technique for reducing pixel shading work is to render the
scene twice: the first pass constructs the depth buffer and the second applies
shading for the visible pixels [30]. Meißner et al. [67] perform two-pass
visibility driven rasterization by first marking the tiles that are fully hidden
and then skipping the subsequent rasterization to those tiles. PowerVR [75]
captures the geometry of the entire frame, and uses tile-based rendering with
internal buffers. This reduces the memory bandwidth requirements but the
limited amount of video memory makes capturing large scenes impractical.
Occlusion culling is implemented by using on-chip sorting, and thus the
culling efficiency is not affected by the ordering of input primitives.

EFFICIENT ALGORITHMS FOR OCCLUSION CULLING AND SHADOWS 17

PixelFlow [68] and Talisman [88] composite the final image from mul-
tiple layers. Occlusion culling is difficult to address efficiently in these
architectures. SaarCOR [79, 80] determines the visible surfaces using ray
casting [5], and performs occlusion culling implicitly.

Occlusion queries
Greene and Kass [43] represent the scene as an octree [38] that provides
an approximate front-to-back traversal. During the traversal, an occlusion
query is performed for each octree node. If a node is hidden, neither it
nor its children need further processing. Typically a front-to-back traversal
of a spatial database requires hundreds or even thousands of queries every
frame [57, 49]. This imposes unwanted synchronization between the CPU
that traverses the database and the GPU that executes the occlusion queries.

Direct3D [32] and OpenGL [73] are the dominant application pro-
gramming interfaces for real-time rendering. Bartz et al. [9] discuss ex-
tending OpenGL to handle occlusion queries, and the queries are now
implemented in commodity graphics hardware. The present semantics in
Direct3D [32] and OpenGL [27] require returning the number of visible
pixels, and thus the implementations cannot early-exit when the first visible
pixel is found. This results in unnecessarily large pixel processing require-
ments and decreased performance in applications that need only a binary
result.

Bittner et al. [12] reduce the number of occlusion queries by always
rendering the objects that were visible in the previous frame. Occlusion
queries are issued only for the nodes where the previous database traversal
terminated. Furthermore, the result of a query is waited for only if the
node was hidden in the previous frame. Otherwise the result is used during
the next frame. These techniques greatly reduce the number of pixels
processed by the queries and the synchronization issues between the CPU
and the GPU.

In occlusion culling, the word conservative refers to an approximation
that never causes rendering artifacts. Zhang et al. [100] note that an oc-
clusion query can be split into two sub-tests: one for coverage and one for
depth. The result of an occlusion query is conservatively correct, as long
as the coverage test is performed at full resolution. Their lower resolu-
tion depth test uses a depth estimation buffer, which stores a conservative
Zmax for a tile of pixels.

Occlusion culling systems
Zhang et al. [100] classify a subset of objects as prominent occluders during
a preprocessing stage. The occluders are then used for culling other objects
at runtime. Although the results are convincing, the static occluder classi-
fication may fail to block some lines-of-sight, especially in dynamic scenes,
and the performance degrades.

Klosowski and Silva [56] render an approximation of a static scene using
a fixed budget of resources. They subdivide the scene into convex cells as
a preprocess, and compute a solidity estimate for each cell. At runtime,
the cells are rendered in the order of decreasing importance, so that the
importance of a cell is estimated from the accumulated solidity values of

18 EFFICIENT ALGORITHMS FOR OCCLUSION CULLING AND SHADOWS

the corresponding screen-projection area. A simple extension [57] finds the
rest of the visible objects by using hardware occlusion queries.

Baxter et al. [10] describe a two-GPU occlusion culling system for inter-
active walkthroughs in complex environments. The first GPU generates a
Z-buffer for occlusion culling purposes, and the second GPU performs the
actual rendering once the visible objects have been determined. Govin-
daraju et al. [40] present a three-GPU culling system. The first GPU exe-
cutes occlusion queries for the current frame, and passes the visible objects
to the other two GPUs. The second GPU renders the visible objects, and
the third GPU uses them to generate a Z-buffer for the next frame. In order
to avoid transferring the Z-buffer, the first and third GPUs switch functions
every frame. Impressive results are shown in complex environments. Both
systems increase the latency of rendering a frame, and dynamic updates to
the spatial database are not considered.

Wonka et al. [95] compute the visibility simultaneously from multiple
viewpoints by shrinking the occluders sufficiently. Their results for large
scenes are impressive but the approach does not lend itself easily to dynamic
environments due to the required preprocessing. Publication [P3] describes
a generic occlusion culling system for dynamic scenes.

Order-independent transparency
In order to generalize Z-buffering [17] to semi-transparent surfaces, the A-
buffer algorithm [16, 78, 54] stores all visible surfaces for each pixel. The
final color of a pixel is computed by first sorting the surfaces according
to increasing depth and then blending them from back to front. Alterna-
tively, Painter’s algorithm [70] can be used for ordering the semi-transparent
surfaces.

Mammen [62], Diefenbach [31], and more recently Everitt [34] de-
scribe multi-pass algorithms that peel semi-transparent layers one at a time,
and blend them to the frame buffer. Two depth buffers are used con-
currently for determining the farthest unprocessed semi-transparent surface
for each pixel. The process is repeated until all semi-transparent surfaces
have been blended. Order-independent transparency is computed correctly
since the per-pixel sorting is performed implicitly using selection sort. Wit-
tenbrink [93] proposes performing the peeling operation fully in hardware.
All visible samples of semi-transparent surfaces are first stored into a separate
ring buffer, and then peeled to the frame buffer. Publication [P1] reduces
the memory requirements of Wittenbrink’s approach.

2.2 Shadow Volumes

Shadow volumes [28] define regions of space that are in shadow with respect
to an infinitesimal light source. A shadow volume consists of three parts.
The light cap is the shadow casting object itself, and the dark cap closes
the far end of the shadow volume beyond the attenuation range of the light
source. The side quads that are extruded from the silhouette edges of the
shadow caster connect the two caps into a closed volume. See Figure 2.1
for an illustration.

Several authors [20, 84, 23] have described object-space techniques for
clipping the shadow receivers into lit and shadowed parts. Image-space

EFFICIENT ALGORITHMS FOR OCCLUSION CULLING AND SHADOWS 19

Light
source

Shadow caster
= Light cap

Extruded
side quads

Dark cap

Figure 2.1: A shadow volume consists of a light cap, extruded side quads,
and a dark cap. Together these parts bound a closed volume, which is in
shadow with respect to the light source.

methods [37] avoid the clipping by computing the shadows directly to the
frame buffer. Such algorithms need to determine if a three-dimensional
point p is inside a shadow volume. Let s denote a reference point that is
guaranteed to be outside the shadow volume, and then count how many
times the line segment from s to p enters and exits the shadow volume. If
the number of entry events is larger than the number of exit events, p is
in shadow. Heidmann’s Z-pass method places the reference point at the
camera position [48], and is therefore limited to cases when the viewport is
fully outside shadow volumes.

Figure 2.2 illustrates a robust variant (Z-fail), which sets s to be infinitely
far behind the pixel as seen from the camera [35]. Infinity is a practical
choice because it is never inside a shadow volume. All events along the
line segment need to be counted, and thus the shadow volumes cannot
be clipped to the far plane of the view frustum. Everitt and Kilgard [35]
present two solutions for avoiding the clipping.

In practice, Z-fail shadow volumes are rendered into the stencil
buffer [73] so that hidden pixels of the frontfacing and backfacing trian-
gles decrement and increment the stencil values, respectively [35]. This
creates a shadow mask in the stencil buffer, where values greater than zero
indicate that a pixel is in shadow. Finally, the scene is rendered with full
lighting, and the per-pixel shadow terms are fetched from the stencil buffer.

Shadow volumes are quite simple to implement and map well to ras-
terization architectures. Also, the algorithm does not suffer from aliasing
artifacts due to its geometric nature. However, even relatively small objects
often create shadow volumes that cover a large area on the screen. As a
result, the number of processed pixels and the related bandwidth to video
memory becomes a serious performance bottleneck. This fillrate problem
is addressed in publication [P2].

Shadow volume optimizations
Nvidia’s extension [72] allows the application to define the minimum and
maximum depth values for a shadow volume. The entire rasterized shadow
volume has to be inside the defined depth bounds. Then, the rasterization
of the shadow volume can be limited to the pixels whose Z-buffer values are

20 EFFICIENT ALGORITHMS FOR OCCLUSION CULLING AND SHADOWS

Camera
Reference point (s)

Visible samples/pixels (p)

View frustum

+

+

-

-

Shadow volume

Figure 2.2: A robust hardware accelerated version of the shadow volume
algorithm places the non-shadowed reference point to infinitely far behind
the pixel as seen from camera. The entry (+) and exit (−) events are then
counted along the line segment from the reference point to the pixel. All
events must be considered, and thus far clipping of shadow volumes needs
to be disabled.

inside the bounds, as demonstrated in Figure 2.3. Depth bounds testing
is effective when the shadow volume is approximately perpendicular to the
viewing direction. However, with other orientations the bounds may cover
a major part of the scene, and the efficiency degrades. Also, the testing does
not accelerate the rendering of shadowed regions. In some applications,
the bounds can be made tighter by clamping them to the scene geometry,
e.g., walls of a room.

Lengyel [59] defines a scissor rectangle so that rasterization work is
limited to the parts of the screen that are inside the attenuation range of a
light source. Lloyd et al. [60] rasterize shadow volumes only to the regions
of space that contain shadow receivers. They also use occlusion queries to
avoid casting shadows from objects that are entirely in shadow. McGuire
et al. [66] present an algorithm for creating the dark cap with a minimum
number of triangles. The Z-pass algorithm does not need capping unless

Camera

min max

Shadow volume Visible pixels

Figure 2.3: Depth bounds allow an application to define the minimum and
maximum depth values for a shadow volume. The rasterized shadow vol-
ume can affect only the shadow receivers that are inside the depth bounds,
and thus the shadow volume rasterization can be limited to pixels whose
depth values are inside the bounds (marked with light gray).

EFFICIENT ALGORITHMS FOR OCCLUSION CULLING AND SHADOWS 21

the shadow volume intersects the viewport [35], and thus it can be faster to
use Z-fail only for the shadow volumes that may intersect the viewport. A
two-sided stencil test [35] halves the geometry processing requirements of
shadow volumes.

Generalizations of shadow volumes
Bergeron [11] extends shadow volumes to non-closed meshes. Brotman
and Badler [15] compute soft shadows by representing an area light source
using a number of point lights. Nishita and Nakamae [71] and Chin and
Feiner [21] construct separate volumes for the umbra and penumbra, i.e.,
full shadow and partial shadow. Soft shadows are then computed analytically
for pixels inside the penumbra region. Tanaka and Takahashi [86] present
efficient algorithms for culling the objects that do not affect the shadow
term of a given point.

A penumbra wedge [2] is the bounding volume of the penumbra region
defined by a silhouette edge of an occluder. Thus the shadow term of a
point can be affected by an edge only if the point is inside the correspond-
ing wedge. Assarsson and Akenine-Möller [8] use penumbra wedges, and
generate approximate soft shadows in real-time.

2.3 Shadow Maps

Shadow mapping [91, 81] generates a depth buffer from the point of view
of a light source. This image, called a shadow map, is a discretized rep-
resentation of the scene geometry as seen by the light source. A pixel is
in shadow if its projection to the image plane of the light source is behind
the corresponding depth value in the shadow map, Figure 2.4. The funda-
mental caveat is that a regular shadow map does not, in general, contain
information that corresponds to the visible samples of the output image.
This results in aliasing artifacts, such as jagged shadow boundaries and in-
correct self-shadowing. An obvious solution is to increase the shadow map
resolution until the artifacts disappear, but often this results in excessive
memory consumption and high computational requirements. Publication
[P5] presents a novel solution to this problem.

A single shadow map can cover a limited field of view, and multiple
shadow maps are required for omni-directional light sources that are inside
or near the view frustum. Typically the shadow map lookups are performed
for each pixel of the rendered image, even if only a fraction of the pixels
gets projected inside a particular shadow map. For example, the floor of a
room is often represented as a single object; yet only a part of it is generally
affected by a single shadow map. Publication [P4] presents a solution to
this performance issue.

Resolution mismatch with shadow maps
The resolution mismatch between an output image and a shadow map
has been studied by several authors. Brabec and Seidel [13] shrink the
frustum of the light source to tightly enclose the visible part of the view
frustum. Fernando et al. [36] and Arvo [6] divide the shadow map area
adaptively. The resolution of the shadow map is increased in the vicinity of

22 EFFICIENT ALGORITHMS FOR OCCLUSION CULLING AND SHADOWS

a) b)

Figure 2.4: a) A simple scene rendered with shadows. The black dots are
the sampling points. b) The corresponding shadow map is color-coded so
that darker colors are closer to the light source. A sampling point in (a) is
in shadow if its projection to the image plane of the light source is behind
the corresponding shadow map depth value.

depth discontinuities, and in the areas where the resolution of the output
image exceeds the resolution of the shadow map. Sen et al. [82] augment
shadow maps with silhouettes of shadow casting objects. The proposed
implementation is limited to scenes that have low tessellation because only
one silhouette vertex is stored per pixel. In more complex scenes, the
approximation leads to artifacts.

Stamminger and Drettakis [85] generate shadow maps in post-
perspective space, i.e., after the projection to the view frustum. This per-
spective shadow mapping improves the shadow quality in many scenes.
Special treatment is needed to ensure that all shadow casting objects are
taken into account. Wimmer et al. [92] further improve the quality by
performing a perspective transformation in light space. Their method also
avoids singularities and special cases of perspective shadow maps. Martin
and Tan [63] present a rather similar method, which approximates the view
frustum using a trapezoid, and then warps the trapezoid into a shadow map.
Chong and Gortler [22] show how to compute an accurate shadow map
for an arbitrary plane. In addition to a regular shadow map, separate maps
are allocated for a few of the most important planes. A pixel shader then
selects the most appropriate shadow map for each pixel. Concurrently with
publication [P5], Johnson et al. [53] provide the correct sampling points for
shadow maps, and thus solve the resolution issues.

False self-shadowing with shadow maps
False self-shadowing occurs when an illuminated surface appears to reside
behind its own shadow map footprint. The problem is caused primarily
by the limited precision of a discrete shadow map. Williams [91] proposes
adding a constant bias value to the transformed depth value in order to
weaken the coincidence test. Unfortunately, a constant bias factor cannot
handle all situations satisfactorily. The artifacts can be reduced by replacing
the depth of the closest surface either with the depth of the second closest
surface [89] or with the average depth of the two closest surfaces [96, 41].

EFFICIENT ALGORITHMS FOR OCCLUSION CULLING AND SHADOWS 23

Grant [41] suggests storing the plane equations in addition to the depth
values. Hourcade and Nicolas [50] assign each object or primitive a unique
ID, and augment the depth values with the corresponding IDs. Incorrect
self-shadowing is reduced by comparing the IDs instead of depth values.
These techniques help in many cases, but fail when more than one object
or primitive should be represented inside a single shadow map pixel.

Publication [P5] and Johnson et al. [53] significantly reduce self-
shadowing artifacts by using irregular shadow maps.

Generalizations of shadow maps
Deep shadow maps by Lokovic and Veach [61] generalize shadow maps
to semi-transparent surfaces and volumetric effects while also reducing the
aliasing artifacts in off-line rendering. Dachsbacher and Stamminger [29]
augment shadow maps with irradiance values and normal vectors in order
to approximate subsurface scattering.

Reeves et al. [76] and Brabec and Seidel [14] create approximate soft
shadows by blurring the shadow boundaries. Several authors have proposed
shadow map-based methods for approximating the penumbra regions more
accurately [18, 98, 7, 52].

2.4 Hybrid Shadow Algorithms

McCool [64] reconstructs a shadow volume from a shadow map by using an
edge detection algorithm. The resulting shadow volume does not contain
any overlapping volumes, and thus a lot of redundant rasterization work can
be avoided. Due to the discrete resolution of shadow maps and the use of
a heuristic edge detection, robustness issues arise. Govindaraju et al. [39]
use a combination of shadow maps and object-space shadows on a cluster
of PCs to generate hard shadows in complex environments.

Chan and Durand [19] find the boundary pixels of shadow regions by
using a low resolution shadow map. The boundary pixels are then processed
accurately using shadow volumes, while the rest of the pixels are handled
with the shadow map. Classification errors are possible due to the limited
precision of the shadow map. This work was carried out concurrently with
publication [P2], and both are based on the same observation that only the
shadow boundaries need accurate processing. However, the algorithms are
quite different, and in particular, our method does not introduce artifacts.

2.5 Shadow Rays

In ray tracing [90], shadows from infinitesimal light sources are computed
by tracing a shadow ray from the point of interest to the light source. If the
shadow ray is blocked, the point is in shadow. Haines and Greenberg [45]
speed up the intersection tests by exploiting coherence among shadow rays.

Parker et al. [74] render approximate soft shadows by using “soft-edged”
objects and a single shadow ray per pixel. Stochastic ray tracing algo-
rithms [26] compute soft shadows by sampling an area light source using a
large number of shadow rays.

24 EFFICIENT ALGORITHMS FOR OCCLUSION CULLING AND SHADOWS

3 VISIBILITY ALGORITHMS

Publication [P3] describes a general purpose visibility software library for
dynamic scenes. New techniques are proposed for reducing the cost of
occlusion queries, and for performing efficient occlusion culling using
silhouettes of meshes.

3.1 Visible Point Tracking and Conditional Occlusion Queries

An object is visible if there is at least one non-blocked line-of-sight between
the camera and the object. Publication [P3] exploits this observation by
caching the object-space coordinates of an arbitrary visible point between
frames, and by testing the visibility of that point before proceeding with
more involved occlusion queries. Figure 3.1 illustrates the idea of visible
point tracking.

The framework receives the 3D coordinates of some, randomly selected
visible point as feedback from the occlusion culling system. Adding hard-
ware support for this feedback should be worthwhile because in our tests
80–100% of the visible objects were found using visible point tracking, i.e.,
with single-pixel occlusion queries. This greatly reduced the pixel process-
ing requirements of the queries.

Publication [P3] also proposes conditional occlusion queries. Multi-
ple dependent occlusion queries are issued simultaneously, and the latter
queries are executed only if the previous ones pass. This approach re-
duces the amount of synchronization between the spatial database and the
occlusion culling system, thus improving performance.

Figure 3.1: In visible point tracking, an object-space point (black dot) is
cached for each object. After the camera is moved, the visibility of objects
B and D can be proven with a single-pixel occlusion query to their cached
points, whereas objects A and C need further tests.

3.2 Occlusion Culling Using Silhouettes of Meshes

Publication [P3] introduces a fast software-only system that makes occlusion
culling usable in computer games on the heterogeneous PC platform.
According to the game developers using the described system, an important
reason for employing occlusion culling is to make games playable on older
and slower machines, thus widening the potential audience. Hardware-
assisted occlusion queries have become available only recently.

EFFICIENT ALGORITHMS FOR OCCLUSION CULLING AND SHADOWS 25

1.

2.

Figure 3.2: This figure illustrates two ways of determining the pixels that
are covered by a mesh. The first rasterizes the mesh using triangles. The
second reconstructs the depth complexity function from the silhouette edges
of the mesh, and finally converts the depth complexity function to the
coverage mask.

Most occlusion culling methods rasterize the occluding primitives into a
Z-buffer. Publication [P3] exploits the observation of Zhang et al. [100], and
replaces the Z-buffer with a per-pixel coverage mask and a low-resolution
depth estimation buffer. This allows us to develop a specialized coverage
rasterizer, and quickly estimate the depth values of occluders from their
bounding boxes.

Figure 3.2 illustrates a new method for generating the coverage mask. A
polygonal silhouette is first extracted in object space. The silhouette edges
always form closed loops, and mark all potential changes in visibility, i.e.,
visibility events. Visibility events are the first (generalized) derivative of
the depth complexity function, which indicates how many times a pixel is
covered, and thus the function can be reconstructed by integrating the vis-
ibility events. In practice, the reconstruction is implemented by rasterizing
the projected edges using the value +1 for the left edges and −1 for the
right edges. The per-pixel depth complexity values are then accumulated
from left to right for up to 64 pixels in parallel. The resulting peak fillrate
is comparable to the latest GPUs.

The method of reconstructing the coverage mask using silhouettes is
appealing because the average number of silhouette edges in a mesh of n
triangles is typically much lower than n; estimates vary between n0.5 [55]
and n0.8 [65]. Publication [P3] reduces the cost of silhouette extraction
by employing a two-pass method. The first pass caches an intermediate
presentation from the current camera position. Then, the silhouette can
be efficiently extracted from any point inside the bounding radius of the
intermediate presentation. This method allows caching the intermediate
representation between frames, thus amortizing the cost of silhouette ex-
traction over several frames.

26 EFFICIENT ALGORITHMS FOR OCCLUSION CULLING AND SHADOWS

4 SHADOW ALGORITHMS

This chapter outlines the new contributions to the performance and quality
of shadow algorithms. Publication [P5] provides the correct sampling points
for shadow maps, and greatly diminishes aliasing artifacts. Another new
technique [P4] reduces the number of redundant shadow map lookups. The
performance of shadow volumes is improved by using a new hierarchical
rendering technique [P2].

4.1 Alias-Free Shadow Maps

Publication [P5] presents a novel solution to the aliasing problems of shadow
maps. After the visible surfaces have been determined from the point of
view of the camera, the visible samples P (x, y, z) are transformed to the
image plane of the light source, producing sampling points (x′, y′) and the
corresponding light-space depth values z′. Figure 4.1 visualizes the samples
in screen space and on the image plane of the light source. The (x′, y′) are
the optimal sampling points for the shadow map, and exactly correspond
to the intersections of shadow rays and the image plane of the light source.
Thus the method can also be seen as an optimization technique for shadow
rays. Finally, the irregularly spaced points (x′, y′) are used as sampling
points when the scene is rasterized from the light source.

The large empty areas in Figure 4.1b are not visible from the camera,
and thus need no shadow information. The irregular shadow maps never
suffer from jagged shadow boundaries or other resolution-related aliasing
artifacts. Self-shadowing artifacts are also greatly reduced as the only re-
maining source of inaccuracy is the transformation between the coordinate
systems. Unlike earlier methods [91], our bias value does not depend on
the scene or the viewing parameters.

a) b) c)

Figure 4.1: a) A simple scene rendered with shadows. The pixel centers
are marked using black dots. b) The visible samples at pixel centers of
(a) transformed to the image plane of the light source. The irregularly
spaced dots are used as sampling points when the scene is rasterized to
the shadow map. c) The corresponding traditional shadow map is shown
for comparison purposes only. In a traditional shadow map algorithm,
the regularly sampled map (c) would be tested exactly at the sampling
points shown in (b). Clearly, the regular structure of (c) is not suitable for
accurately answering the queries.

EFFICIENT ALGORITHMS FOR OCCLUSION CULLING AND SHADOWS 27

View
frustum

Light frustum

a) b) c)

Figure 4.2: a) A view frustum, a light frustum, and several objects. b) The
regions that are visible from the viewpoint are marked with bold lines. A
brute force algorithm would perform shadow map lookups for these regions.
c) The visible regions that are inside the light frustum, and would thus get
projected inside the corresponding shadow map. Our method processes
exactly these regions.

4.2 Limiting the Number of Shadow Map Lookups

Publication [P4] describes a simple method for limiting the number of
shadow map lookups to the pixels that get projected inside the shadow map.
This is accomplished by using the frustum of the light source as a shadow
volume [28]. In contrast to the original shadow volumes, this volume
contains the parts of the scene that can be lit by the light source. The light
volume is rasterized into the stencil buffer similarly to the stencil buffer-
based shadow volumes [48]. Then, a pixel shader program that performs
the shadow map lookups and per-pixel lighting computations is executed
only for the pixels that are inside the light frustum. Figure 4.2 illustrates
the reduction in pixel processing requirements. The technique is useful
for local light sources, i.e., when the light frustum covers only a part of the
view frustum. Compared to an optimized implementation, 2.3–5.7 times
fewer pixels were processed in our test scenes, and the overall performance
improved by a factor of up to 2.2.

Omni-directional light sources and cube maps
In Publication [P4] we used six shadow maps to model an omni-directional
light source, and performed the lookups separately for each shadow map.
Alternatively, the shadow maps could be represented as a cube map. This
would reduce the number of redundant shadow map lookups in the compar-
ison method and improve its performance. However, this would affect the
results in only one of the tested scenes. Our new method could be adapted
to support cube maps by replacing the light frustum with a bounding volume
that encloses the regions affected by the light source.

4.3 Hierarchical Rendering of Shadow Volumes

Publication [P2] introduces a hierarchical rasterization technique for
shadow volumes. The method reduces the number of processed pixels
by exploiting coherence in shadowed and lit regions, as demonstrated in

28 EFFICIENT ALGORITHMS FOR OCCLUSION CULLING AND SHADOWS

a) b)

c) d)

Figure 4.3: a) Shadows in a simple scene that has one shadow casting
triangle. b) The result of executing the shadow volume algorithm for a
single sampling point per 8 × 8 pixel tile, and then using the result for all
pixels inside the tile. Despite the blocky appearance of shadows, large areas
are correctly classified. c) The tiles that may contain a shadow boundary are
marked with light green. d) The result of executing the per-pixel shadow
volume algorithm for potential boundary tiles (dark gray), and copying the
low-resolution shadows (b) to the rest of the tiles.

Figure 4.3. In order to implement the technique efficiently, hardware mod-
ifications are required. The step that warrants detailed explanation is the
classification to potential boundary tiles.

Shadow volumes are closed by definition, and the triangles defining a
shadow volume indicate all potential transitions between lit and shadowed
regions. Now, consider an arbitrary bounding volume inside a scene. If the
bounding volume is not intersected by any of the shadow volume triangles,
there cannot be shadow boundaries inside the bounding volume, and the
entire bounding volume is either fully lit or fully in shadow. Thus the
entire bounding volume can be classified by executing the shadow volume
algorithm for a single, arbitrarily chosen point inside the bounding vol-
ume. Publication [P2] constructs for each N ×M pixel tile an axis-aligned
bounding box in 3D screen space. The box is defined by the area of N ×M
pixels along with the minimum and maximum depth values inside the tile.
This is a practical choice because the Zmin and Zmax values are already
maintained by the latest GPUs.

A tile may contain a shadow boundary if at least one shadow volume
triangle intersects with the bounding box of the tile. This classification is

EFFICIENT ALGORITHMS FOR OCCLUSION CULLING AND SHADOWS 29

complete after the entire shadow volume has been processed, and thus
the application needs to mark the beginning and end of each shadow
volume. The low-resolution shadows are computed simultaneously with
the tile classification. Once the classification is finished, the second stage
of the algorithm performs per-pixel shadow volume computations for the
boundary tiles, and copies the low-resolution shadows to the rest of the
tiles. In order to reduce the amount of data written to the stencil buffer, a
two-level stencil buffer is proposed. An alternative implementation could
employ some kind of tile-based compression of the stencil buffer.

In our test scenes, 2.8–11.5 times fewer pixels were processed compared
to a state-of-the-art hardware method [72]. The related accesses to external
memory were reduced by a factor of 2.4–17.1. As a result, the fillrate
problem of shadow volumes was significantly reduced.

30 EFFICIENT ALGORITHMS FOR OCCLUSION CULLING AND SHADOWS

5 GRAPHICS HARDWARE: DELAY STREAMS

The delay stream architecture [P1] extends traditional stream processing
methods, as illustrated in Figure 5.1. The execution units A and B are
connected using two data paths: one immediate and one delayed. The
immediate analysis is executed before a data element is pushed to the
delay unit, which is typically implemented as a ring buffer in external
memory. By the time the element arrives to unit B, the analysis has been
performed for a large number of subsequent elements. Therefore unit B
can use information about data elements that were submitted after the
element it currently processes. This ability to break causal relationships is
the fundamental property of delay streams.

5.1 Delayed Occlusion Culling

The delay stream architecture can be used for occlusion culling, as dis-
cussed in publication [P1]. The units in Figure 5.1 are placed so that
the early occlusion test in Figure 1.5 is embedded into unit A. Unit A
builds conservative low-resolution Zmin and Zmax buffers without consult-
ing external memory. Unit B performs another occlusion test by using the
low-resolution buffers that have been augmented by a substantial number
of triangles that were submitted after the current triangle.

In commonly used benchmark scenes, the resulting depth complexity
was reduced to within 30% of the theoretical optimum by using a 2MB
ring buffer. This confirms that the ordering of the input triangles affects
the efficiency of delayed occlusion culling only weakly. Compared to the
commonly used early occlusion test [69], 1.8–4.0 times fewer pixels were
rendered using delayed occlusion culling. The communication to external
video memory was reduced almost proportionally. In many applications
the overall performance is limited by pixel processing resources, and thus
delayed occlusion culling is expected to improve the frame rate significantly.

A BDelay

Analysis (immediate)

input output

Figure 5.1: The delay stream architecture contains two paths from exe-
cution unit A to unit B, one goes through a delay and the other one is
immediate. Once a data element emerges from the delay, the analysis path
has already gathered a substantial amount of data about elements that were
submitted after the current element.

EFFICIENT ALGORITHMS FOR OCCLUSION CULLING AND SHADOWS 31

Utilization of vertex and pixel shaders
Publication [P1] also mentions that a delay stream between vertex and
pixel shaders should improve their utilization. Unfortunately, we were not
able to measure this effect because it would have required full chip-level
simulations, and not all components were available. Recently Sheaffer et
al. [83] introduced a simulation framework for graphics architectures, and
as a test case they provided statistics about vertex and pixel shader utilization
of a hypothetical GPU in the game Return to Castle Wolfenstein: Enemy
Territory. Their results show that with modest buffering the vertex shaders
are idle when pixel shaders are busy and vice versa. The drastically increased
buffering capacity provided by a delay stream should improve the utilization
considerably.

An alternative solution would be to use the same physical units for vertex
and pixel shading, and perform load balancing dynamically. This would
provide high shader utilization with a smaller amount of buffering. Such
an approach is a viable alternative, as the instruction sets of the shaders are
likely to become identical.

5.2 Other Applications of Delay Streams

Publication [P1] explains two other uses of delay streams: order-
independent transparency and discontinuity edge detection for adaptive
antialiasing. The latter is outside the scope of this thesis, and is thus not
reviewed here. A hardware implementation [93] of depth peeling [62, 34]
is an efficient method for computing order-independent transparency. Its
primary problems are the required amount of external memory and the
related data transfers. The memory consumption was reduced by a factor
of 7.0–16.3 when a delay stream was used.

The hierarchical shadow volume algorithm (Section 4.3) can be imple-
mented in a single rendering pass by employing a delay stream [P2]. This
variant has two advantages over the two-pass implementation: only a single
geometry pass is required and pixel shaders can be kept busy by pipelining
the processing of multiple shadow volumes.

32 EFFICIENT ALGORITHMS FOR OCCLUSION CULLING AND SHADOWS

6 MAIN RESULTS OF THE THESIS AND CONTRIBUTIONS OF THE AUTHOR

None of the publications [P1–P5] have previously formed a part of another
thesis. The main results of this thesis and the author’s contributions can be
summarized as follows.

Publication [P1]
Delay streams are introduced as a general hardware solution to order-
dependent problems. The idea is applied to occlusion culling, order-
independent transparency, and discontinuity edge detection. Significant
performance improvements are shown in all three application areas.

The author and Mr. Petri Nordlund formulated the initial concept of
delay streams for the purposes of occlusion culling. The author carried out
the design, testing, and documentation of the delayed occlusion culling
(Section 3) and order-independent transparency (Section 4). Mr. Ville
Miettinen offered insightful feedback on the two sections, and designed
and documented the algorithm for detecting discontinuity edges (Section 5).
The rest of the paper was written by the author and Mr. Miettinen in equal
proportions.

Publication [P2]
A hierarchical rendering technique is presented as a solution to the well-
known fillrate problem of shadow volumes. The algorithm executes in two
stages. First, low-resolution shadows are computed and the corresponding
8 × 8 pixel tiles are classified to be either fully lit, fully in shadow, or
intersected by a shadow boundary. In the second pass, per-pixel rasterization
is performed only to the boundary tiles. As a result, the number of processed
pixels was reduced by up to over 90%. Two implementations are outlined
along with new optimizations, such as a hierarchical stencil buffer. The
most efficient variant uses a delay stream [P1], which allows single-pass
execution.

The author and Dr. Tomas Akenine-Möller designed and implemented
the algorithm in tight collaboration, and thus the new scientific contribution
is divided equally. The author wrote 60% of the text.

Publication [P3]
Both existing and new algorithms are combined into a framework that per-
forms efficient occlusion culling in dynamic environments without prepro-
cessing. Novel algorithms are presented for performing occlusion culling
using silhouettes of meshes, silhouette extraction, adaptive occluder selec-
tion, and for reducing the cost of occlusion queries.

The author and Mr. Ville Miettinen designed and implemented the
whole system together, and it is therefore difficult to single out individual
contributions. However, Mr. Miettinen had primary responsibility of the dy-
namic spatial database, and the author was primarily responsible for the vis-
ibility solver and silhouette rasterization. The author wrote half of the text.

EFFICIENT ALGORITHMS FOR OCCLUSION CULLING AND SHADOWS 33

Publication [P4]
This article introduces a method for reducing the number of shadow map
lookups by utilizing techniques related to shadow volumes. As a result,
almost an optimal amount of per-pixel shadow computations is performed,
and the resulting frame rate increased up to 2.2 times in the used test scenes.

Mr. Jukka Arvo made the observation that shadow map lookups can be
implemented as a part of deferred shading on currently available graphics
hardware. The author utilized this observation for bounding the parts of
the scene that can be affected by a shadow map by using a light frustum and
the stencil buffer, and also wrote 90% of the text. Mr. Arvo implemented
the described algorithm.

Publication [P5]
This article abandons the regular structure of shadow maps. The visible
samples are first transformed from screen space to the image plane of a light
source. The transformed points are then used as sampling points when the
geometry is rasterized into the shadow map. This provides optimal sampling
points for shadow maps, and matches the result of tracing a shadow ray
from each visible sample to the light source. As a result, all resolution
issues of shadow maps are eliminated. Incorrect self-shadowing is also
greatly reduced, and semi-transparent shadow casters and receivers can be
supported.

The author invented the original idea and wrote the paper. The hierar-
chical rasterization algorithm was designed by Mr. Samuli Laine, who was
also responsible for the programming work.

34 EFFICIENT ALGORITHMS FOR OCCLUSION CULLING AND SHADOWS

BIBLIOGRAPHY

[1] John Airey, John Rohlf, and Fredrick P. Brooks. Towards Image Realism with
Interactive Update Rates in Complex Virtual Building Environments. Com-
puter Graphics (1990 Symposium on Interactive 3D Graphics), 24(2):141–
150, 1990.

[2] Tomas Akenine-Möller and Ulf Assarsson. Approximate Soft Shadows on
Arbitrary Surfaces using Penumbra Wedges. In Proceedings of the 13th Euro-
graphics Workshop on Rendering, pages 297–305. Eurographics Association,
2002.

[3] Tomas Akenine-Möller and Eric Haines. Real-Time Rendering, 2nd edition.
A.K. Peters Ltd., 2002.

[4] Tomas Akenine-Möller and Jacob Ström. Graphics for the Masses: A Hard-
ware Rasterization Architecture for Mobile Phones. ACM Transactions on
Graphics, 22(3):801–808, 2003.

[5] Arthur Appel. Some Techniques for Shading Machine Renderings of Solids.
In AFIPS Conference Proceedings, volume 32, pages 37–45, 1968.

[6] Jukka Arvo. Tiled Shadow Maps. In Proceedings of Computer Graphics
International, pages 240–247. IEEE Computer Society, 2004.

[7] Jukka Arvo, Mika Hirvikorpi, and Joonas Tyystjärvi. Approximate Soft Shad-
ows with an Image-Space Flood-Fill Algorithm. Computer Graphics Forum,
23(3):271–279, 2004.

[8] Ulf Assarsson and Tomas Akenine-Möller. A Geometry-Based Soft Shadow
Volume Algorithm using Graphics Hardware. ACM Transactions on Graph-
ics, 22(3):511–520, 2003.

[9] Dirk Bartz, Michael Meißner, and Tobias Hüttner. Extending Graphics
Hardware for Occlusion Queries in OpenGL. In Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS workshop on Graphics hardware, pages 97–
104. ACM Press, 1998.

[10] William Baxter, Avneesh Sud, Naga Govindaraju, and Dinesh Manocha.
GigaWalk: Interactive Walkthrough of Complex Environments. In Pro-
ceedings of the 13th Eurographics workshop on Rendering, pages 203–214.
Eurographics Association, 2002.

[11] Philippe Bergeron. A General Version of Crow’s Shadow Volumes. IEEE
Computer Graphics and Applications, 6(9):17–28, 1986.

[12] Jirí Bittner, Michael Wimmer, Harald Piringer, and Werner Purgathofer.
Coherent Hierarchical Culling: Hardware Occlusion Queries Made Useful.
Computer Graphics Forum, 23(3):615–624, 2004.

[13] Stefan Brabec and Hans-Peter Seidel. Practical Shadow Mapping. Journal
of Graphics Tools, 7(4):9–18, 2002.

[14] Stefan Brabec and Hans-Peter Seidel. Single Sample Soft Shadows using
Depth Maps. In Graphics Interface 2002, pages 219–228, 2002.

[15] Lynne Brotman and Norman Badler. Generating Soft Shadows with a Depth
Buffer Algorithm. IEEE Computer Graphics and Applications, 4(10):5–12,
1984.

EFFICIENT ALGORITHMS FOR OCCLUSION CULLING AND SHADOWS 35

[16] Loren Carpenter. The A -buffer, An Antialiased Hidden Surface Method. In
Computer Graphics (Proceedings of ACM SIGGRAPH 84), pages 103–108.
ACM, 1984.

[17] Edwin Catmull. A Subdivision Algorithm for Computer Display of Curved
Surfaces. PhD thesis, University of Utah, 1974.

[18] Eric Chan and Frédo Durand. Rendering fake soft shadows with smoothies.
In Proceedings of the Eurographics Symposium on Rendering, pages 208–
218. Eurographics Association, 2003.

[19] Eric Chan and Frédo Durand. An Efficient Hybrid Shadow Rendering
Algorithm. In Proceedings of the Eurographics Symposium on Rendering,
pages 185–195. Eurographics Association, 2004.

[20] Norman Chin and Steven Feiner. Near real-time shadow generation using
BSP trees. In Computer Graphics (Proceedings of ACM SIGGRAPH 89),
pages 99–106. ACM, 1989.

[21] Norman Chin and Steven Feiner. Fast Object-Precision Shadow Generation
for Area Light Source using BSP Trees. In Proceedings of the 1992 symposium
on Interactive 3D graphics, pages 21–30. ACM Press, 1992.

[22] Hamilton Chong and Steven Gortler. A Lixel for every Pixel. In Proceedings
of the Eurographics Symposium on Rendering, pages 167–172. Eurographics
Association, 2004.

[23] Yiorgos Chrysanthou and Mel Slater. Shadow volume BSP trees for compu-
tation of shadows in dynamic scenes. In Proceedings of the 1995 symposium
on Interactive 3D graphics, pages 45–50. ACM Press, 1995.

[24] James Clark. Hierarchical Geometric Model for Visible Surface Algorithms.
Communications of ACM, 19(10):547–554, 1976.

[25] Daniel Cohen-Or, Yiorgos Chrysanthou, Claudio Silva, and Frédo Durand.
A Survey of Visibility for Walkthrough Applications. IEEE Transactions on
Visualization and Computer Graphics, 9(3):412–431, 2003.

[26] Robert L. Cook, Thomas Porter, and Loren Carpenter. Distributed Ray
Tracing. In Computer Graphics (Proceedings of ACM SIGGRAPH 84),
pages 137–145. ACM, 1984.

[27] Matt Craighead. NV_occlusion_query specifica-
tion. http://www.nvidia.com/dev_content/nvopenglspecs/-
GL_NV_occlusion_query.txt, 2002.

[28] Frank Crow. Shadow Algorithms for Computer Graphics. In Computer
Graphics (Proceedings of ACM SIGGRAPH 77), pages 242–248. ACM,
1977.

[29] Carsten Dachsbacher and Marc Stamminger. Translucent Shadow Maps.
In Proceedings of Eurographics Symposium on Rendering, pages 197–201.
Eurographics Association, 2003.

[30] Michael Deering, Stephanie Winner, Bic Schediwy, Chris Duffy, and Neil
Hunt. The Triangle Processor and Normal Vector Shader: A VLSI System for
High Performance Graphics. In Computer Graphics (Proceedings of ACM
SIGGRAPH 88), pages 21–30. ACM, 1988.

[31] Paul Diefenbach. Pipeline Rendering: Interaction and Realism Through
Hardware-based Multi-Pass Rendering. PhD thesis, University of Pennsylva-
nia, 1996.

[32] DirectX. Microsoft DirectX SDK Documentation.
http://www.microsoft.com/directx, 2004.

36 EFFICIENT ALGORITHMS FOR OCCLUSION CULLING AND SHADOWS

[33] Frédo Durand. 3D Visibility: Analytical Study and Applications. PhD thesis,
Université Grenoble I - Joseph Fourier Sciences et Géographie, 1999.

[34] Cass Everitt. Interactive Order-Independent Transparency.
http://developer.nvidia.com, 2001.

[35] Cass Everitt and Mark Kilgard. Practical and Robust Stenciled Shadow
Volumes for Hardware-Accelerated Rendering. http://developer.nvidia.com,
2002.

[36] Randima Fernando, Sebastian Fernandez, Kavita Bala, and Donald P. Green-
berg. Adaptive Shadow Maps. In Proceedings of ACM SIGGRAPH 2001,
pages 387–390. ACM Press, 2001.

[37] Henry Fuchs, Jack Goldfeather, Jeff P. Hultquist, Susan Spach, John D.
Austin, Frederick P. Brooks, John G. Eyles, and John Poulton. Fast spheres,
shadows, textures, transparencies, and image enhancements in pixel-planes.
In Computer Graphics (Proceedings of ACM SIGGRAPH 85), pages 111–
120. ACM, 1985.

[38] Andrew Glassner. Space subdivision for fast ray tracing. IEEE Computer
Graphics and Applications, 4(10):15–22, 1984.

[39] Naga K. Govindaraju, Brandon Lloyd, Sung-Eui Yoon, Avneesh Sud, and Di-
nesh Manocha. Interactive Shadow Generation in Complex Environments.
ACM Transactions on Graphics, 22(3):501–510, 2003.

[40] Naga K. Govindaraju, Avneesh Sud, Sung-Eui Yoon, and Dinesh Manocha.
Interactive Visibility Culling in Complex Environments using Occlusion-
Switches. In Proceedings of the 2003 symposium on Interactive 3D graphics,
pages 103–112. ACM Press, 2003.

[41] Charles Grant. Visibility Algorithms in Image Synthesis. PhD thesis, Uni-
versity of California, 1992.

[42] Ned Greene and Pat Hanrahan. Method and apparatus for occlusion culling
in graphics systems. US patent 6480205, 2002.

[43] Ned Greene and Michael Kass. Hierarchical Z-Buffer Visibility. In Proceed-
ings of ACM SIGGRAPH 93, pages 231–240. ACM Press, 1993.

[44] Eric Haines and Tomas Möller. Real-Time Shadows. In Proceeding of Game
Developers Conference, pages 335–352, 2001.

[45] Eric A. Haines and Donald P. Greenberg. The Light Buffer: A Ray Tracer
Shadow Testing Accelerator. IEEE Computer Graphics and Applications,
6(9):6–16, 1986.

[46] Jean-Marc Hasenfratz, Marc Lapierre, Nicolas Holzschuch, and François
Sillion. A Survey of Real-Time Soft Shadows Algorithms. Computer Graphics
Forum, 22(4), 2003.

[47] Denis Haumont, Olivier Debeir, and François Sillion. Volumetric Cell-and-
Portal Generation. Computer Graphics Forum, 22(3), 2003.

[48] Tim Heidmann. Real Shadows, Real Time. Iris Universe, 18:28–31, 1991.

[49] Karl Hillesland, Brian Salomon, Anselmo Lastra, and Dinesh Manocha.
Fast and Simple Occlusion Culling using Hardware-Based Depth Queries.
Technical Report TR02-039, UNC Chapel Hill, 2002.

[50] J. C. Hourcade and A. Nicolas. Algorithms for Antialiased Cast Shadows.
Computer Graphics, 9(3):259–265, 1985.

EFFICIENT ALGORITHMS FOR OCCLUSION CULLING AND SHADOWS 37

[51] Thomas Hudson, Dinesh Manocha, Jonathan Cohen, Ming Lin, Kenneth
Hoff, and Hansong Zhang. Accelerated Occlusion Culling Using Shadow
Frusta. In Proceesings of ACM Symposium on Computational Geometry,
pages 1–10, 1997.

[52] Bjarke Jakobsen, Niels Christensen, Bent Larsen, and Kim Petersen. Bound-
ary Correct Real-Time Soft Shadows. In Proceedings of Computer Graphics
International, pages 232–239. IEEE Computer Society, 2004.

[53] Gregory S. Johnson, William R. Mark, and Christopher A. Burns. The
Irregular Z-Buffer and its Application to Shadow Mapping. Technical report,
The University of Texas at Austin, Department of Computer Sciences, April
2004.

[54] Norman Jouppi and Chun-Fa Chang. Z3: An Economical Hardware Tech-
nique for High-Quality Antialiasing and Transparency. In Proceedings of
the 1999 Eurographics/SIGGRAPH workshop on Graphics hardware, pages
85–93. ACM Press, 1999.

[55] Lutz Kettner and Emo Welzl. Contour Edge Analysis for Polyhedron Pro-
jections. In Geometric Modeling: Theory and Practice, pages 379–394.
Springer, 1997.

[56] James T. Klosowski and Claudio T. Silva. The Priorized-Layered Projection
Algorithm for Visible Set Estimation. IEEE Transactions on Visualization
and Computer Graphics, 6(2):108–123, 2000.

[57] James T. Klosowski and Claudio T. Silva. Efficient Conservative Visibility
Culling Using the Priorized-Layered Projection Algorithm. IEEE Transac-
tions on Visualization and Computer Graphics, 7(4):365–379, 2001.

[58] Sylvain Lefebvre and Samuel Hornus. Automatic Cell-and-portal Decompo-
sition. Technical report, INRIA Rhône-Alpes, July 2003.

[59] Eric Lengyel. The Mechanics of Robust Stencil Shadows.
http://www.gamasutra.com, October 2002.

[60] Brandon Lloyd, Jeremy Wendt, Naga Govindaraju, and Dinesh Manocha.
CC Shadow Volumes. In Proceedings of the Eurographics Symposium on
Rendering, pages 197–205. Eurographics Association, 2004.

[61] Tom Lokovic and Eric Veach. Deep Shadow Maps. In Proceedings of ACM
SIGGRAPH 2000, pages 385–392. ACM Press, 2000.

[62] Abraham Mammen. Transparency and Antialiasing Algorithms Implemented
with the Virtual Pixel Maps Technique. IEEE Computer Graphics and
Applications, 9(4):43–55, 1989.

[63] Tobias Martin and Tiow-Seng Tan. Anti-aliasing and Continuity with Trape-
zoidal Shadow Maps. In Proceedings of the Eurographics Symposium on
Rendering, pages 153–160. Eurographics Association, 2004.

[64] Michael D. McCool. Shadow Volume Reconstruction from Depth Maps.
ACM Transactions on Graphics, 19(1):1–26, 2000.

[65] Morgan McGuire. Observations on Silhouette Sizes. Journal of Graphics
Tools, 9(1):1–12, 2004.

[66] Morgan McGuire, John F. Hugues, Kevin Egan, Mark Kilgard, and Cass
Everitt. Fast, Practical and Robust Shadows. Technical Report CS03-19,
Brown University, October 2003.

[67] Michael Meißner, Dirk Bartz, Richard Günther, and Wolfgang Straßer. Vis-
ibility Driven Rasterization. Computer Graphics Forum, 20(4):283–294,
2001.

38 EFFICIENT ALGORITHMS FOR OCCLUSION CULLING AND SHADOWS

[68] Steven Molnar, John Eyles, and John Poulton. PixelFlow: High-Speed
Rendering Using Image Composition. In Computer Graphics (Proceedings
of ACM SIGGRAPH 92), pages 231–240. ACM, 1992.

[69] Steve Morein. ATI Radeon HyperZ Technology. In Workshop on Graph-
ics Hardware, Hot3D Proceedings. ACM SIGGRAPH/Eurographics, ACM
Press, 2000.

[70] M. Newell, R. Newell, and T. Sancha. A Solution to the Hidden Surface
Problem. In Proceedings of the ACM 1972 National Conference, pages
443–450, 1972.

[71] Tomoyuki Nishita and Eihachiro Nakamae. Half-Tone Representation of
3-D Objects Illuminated by Area Sources or Polyhedron Sources. In IEEE
Computer Software and Application Conference, pages 237–242. IEEE,
1983.

[72] NVIDIA. NVIDIA GeForceFX 5900 GPUs: UltraShadow Technology.
http://www.nvidia.com, 2003.

[73] Dave Schreiner OpenGL Architecture Review Board. OpenGL Refer-
ence Manual: The Official Reference Document to OpenGL, Version 1.2.
Addison-Wesley, 1999.

[74] Steven Parker, Peter Shirley, and Brian Smits. Single Sample Soft Shadows.
Technical report, University of Utah, UUCS-98-019, October 1998.

[75] PowerVR. PowerVR White Paper: 3D Graphical Processing.
http://www.powervr.com, 2000.

[76] William T. Reeves, David H. Salesin, and Robert L. Cook. Rendering
Antialiased Shadows with Depth Maps. In Computer Graphics (Proceedings
of ACM SIGGRAPH 87), pages 283–291. ACM, 1987.

[77] Hanan Samet. The Design and Analysis of Spatial Data Structures. Addison-
Wesley, 1990.

[78] Andreas Schilling and Wolfgang Straßer. EXACT: Algorithm and Hardware
Architecture for an Improved A-buffer. In Proceedings of ACM SIGGRAPH
93, pages 85–92. ACM Press, 1993.

[79] Jörg Schmittler, Ingo Wald, and Philipp Slusallek. SaarCOR: A Hard-
ware Achitecture for Ray Tracing. In Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics Hardware, pages 27–
36. ACM Press, 2002.

[80] Jörg Schmittler, Sven Woop, Daniel Wagner, Wolfgang Paul, and Philipp
Slusallek. Realtime Ray Tracing of Dynamic Scenes on an FPGA Chip. In
Proceedings of Graphics Hardware. ACM Press, 2004.

[81] Mark Segal, Carl Korobkin, Rolf van Widenfelt, Jim Foran, and Paul Hae-
berli. Fast Shadows and Lighting Effects Using Texture Mapping. In Com-
puter Graphics (Proceedings of ACM SIGGRAPH 92), pages 249–252. ACM,
1992.

[82] Pradeep Sen, Make Cammarano, and Pat Hanrahan. Shadow Silhouette
Maps. ACM Transactions on Graphics, 22(3):521–526, 2003.

[83] Jeremy Sheaffer, David Luebke, and Kevin Skadron. A Flexible Simulation
Framework for Graphics Architectures. In Proceedings of Graphics Hard-
ware, pages 85–94. Eurographics Association, 2004.

[84] Mel Slater. A Comparison of Three Shadow Volume Algorithms. The Visual
Computer, 9(1):25–38, 1992.

EFFICIENT ALGORITHMS FOR OCCLUSION CULLING AND SHADOWS 39

[85] Marc Stamminger and George Drettakis. Perspective Shadow Maps. ACM
Transactions on Graphics, 21(3):557–562, 2002.

[86] Toshimitsu Tanaka and Tokiichiro Takahashi. Fast Analytic Shading and
Shadowing for Area Light Sources. Computer Graphics Forum, 16(3):231–
240, 1997.

[87] Seth Teller and Carlo Séquin. Visibility Preprocessing for Interactive Walk-
throughs. In Thomas W. Sederberg, editor, Computer Graphics (Proceedings
of SIGGRAPH 91), pages 61–69. ACM, 1991.

[88] Jay Torborg and James T. Kajiya. Talisman: Commodity Realtime 3D Graph-
ics for the PC. In Proceedings of ACM SIGGRAPH 96, pages 353–363. ACM
Press, 1996.

[89] Yulan Wang and Steven Molnar. Second-Depth Shadow Mapping. Technical
report, The University of North Carolina at Chapel Hill, 1994.

[90] Turner Whitted. An Improved Illumination Model for Shaded Display.
Communications of the ACM, 23(6):343–349, 1980.

[91] Lance Williams. Casting Curved Shadows on Curved Surfaces. In Computer
Graphics (Proceedings of ACM SIGGRAPH 78), pages 270–274. ACM,
1978.

[92] Michael Wimmer, Daniel Scherzer, and Werner Purgathofer. Light Space
Perspective Shadow Maps. In Proceedings of the Eurographics Symposium
on Rendering, pages 143–151. Eurographics Association, 2004.

[93] Craig M. Wittenbrink. R-buffer: A Pointerless A-buffer Hardware Architec-
ture. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS workshop
on Graphics hardware, pages 73–80. ACM Press, 2001.

[94] Peter Wonka. Occlusion Culling for Real-Time Rendering of Urban Envi-
ronments. PhD thesis, Institute of Computer Graphics, Vienna University of
Technology, 2001.

[95] Peter Wonka, Michael Wimmer, and François Sillion. Instant Visibility.
Computer Graphics Forum, 20(3), 2001.

[96] Andrew Woo. The Shadow Depth Map Revisited. Graphics Gems III, pages
338–342, 1992.

[97] Andrew Woo, Pierre Poulin, and Alain Fournier. A Survey of Shadow Algo-
rithms. IEEE Computer Graphics and Applications, 10(6):13–32, 1990.

[98] Chris Wyman and Charles Hansen. Penumbra maps: Approximate soft
shadows in real-time. In Proceedings of the Eurographics Symposium on
Rendering, pages 202–207. Eurographics Association, 2003.

[99] Feng Xie and Michael Shantz. Adaptive Hierarchical Visibility in a Tiled Ar-
chitecture. In Proceedings of the 1999 Eurographics/SIGGRAPH workshop
on Graphics hardware, pages 75–84. ACM Press, 1999.

[100] Hansong Zhang, Dinesh Manocha, Thomas Hudson, and Kenneth E. Hoff.
Visibility Culling Using Hierarchical Occlusion Maps. In Proceedings of
ACM SIGGRAPH 97, pages 77–88. ACM Press, 1997.

40 EFFICIENT ALGORITHMS FOR OCCLUSION CULLING AND SHADOWS

