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The nuclear spin system of Rh metal has recently been investigated exper-
imentally. No nuclear magnetic ordering was observed in these measure-
ments, in spite of the very low nuclear entropy achieved. To study this sys-
tem theoretically, we have applied the method of exact diagonalization to a 16
spin I=1/2 fcc cluster with both Ruderman-Kittel and dipolar interactions.
In this work, we compare the results of this method with the experimental
data and the high temperature expansion results in the paramagnetic state.
The high temperature expansions agree with the experimental data down to
1 nK, while the exact diagonalisation results are less accurate.

1. INTRODUCTION

The physical properties of a magnetic system in the paramagnetic state
are often used experimentally to extract knowledge about the system, e.g.
the magnitude and sign of the spin-spin interactions. This is especially the
case for nuclear magnets, where reaching the magnetically ordered state is
extremely difficult. The work presented in this paper deals with the ther-
modynamic properties of the I = 1/2 Rh nuclear spin system, which was
recently cooled to a temperature below 100 pK without observation of or-
dering 1, although the mean-field ordering temperature has been estimated
to 1.5 nK 2. The methods used for this study are applicable also for other
spin systems.

Much effort has been put into studies of the thermodynamical prop-
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erties of spin systems close to the ordering temperature, Tc, to reveal the
universal properties of phase transitions 3. A powerful method that includes
the effects of quantum mechanics is the (1/T ) high-temperature expansion
(HTE) of the partition function, as deviced by van Vleck 4. However, HTE
has the drawback that it diverges for high values of β ≡ 1/T . If there is an
inherent frustration in the system, the divergence typically happens above
Tc. Nevertheless, HTE is the standard choice for describing nuclear spin
systems at T � Tc. One way of removing the divergences of the HTE is
by using Padé approximants, which we will describe later in this paper. A
thorough review on the theory of nuclear spin systems is given by Ref. 2.

In the paramagnetic state close to Tc, the thermodynamics of the spin
system is governed by the (short-range) correlations between the spins. One
way of calculating the effect of short-range correlations is exact numerical
diagonalisation (ED) of small spin clusters. ED was early used to describe
the thermodynamics of the nearest neighbor (nn) s = 1/2 Heisenberg chain
5, and the method has later been used, e.g. for the nn 2D s = 1/2 square
Heisenberg lattice 6, and for an exchange Hamiltonian in the 3D bcc lattice
7. An important difference between ED and HTE is that the former does not
diverge at any temperature. ED does, however, give unphysical results at the
very lowest temperatures, due to the finite size energy gap. Further, phase
transitions to truly long range ordered state are not possible in finite-sized
systems, and only finite-size precursors of ordering can be found 6.

In this paper we obtain information about the thermodynamics of the
Rh nuclear spin system in the paramagnetic state from a combination of HTE
and ED. The validity of the HTE expressions and the Padé approximant
method was checked by performing the calculations on the finite size spin
systems where the exact answer is known from ED. Preliminary ED results
of this work were reported earlier 8. We compare our results with the recent
experimental data, most of which are published in Ref. 1.

2. THE NUCLEAR SPIN HAMILTONIAN

The Hamiltonian for the nuclear spin system in rhodium is given by

H = −γh̄B ·
∑
j

Ij +
1
2

∑
j,k

JjkIj · Ik + Hd + Ha, (1)

where the first term is the Zeeman interaction, the second describes the
conduction-electron mediated isotropic exchange, i.e. Ruderman-Kittel (RK)
interactions, Hd describes the dipolar interaction, and Ha the d-electron me-
diated anisotropic exchange interactions. The anisotropic indirect interac-
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tion can be approximated to be of the same form as the dipolar interaction,
and we may write

Hd + Ha =
1
2

∑
j,k

Djk

[
Ij · Ik − 3(Ij · r̂jk)(Ik · r̂jk)

]
(2)

where Djk = µ0γ
2
eff h̄2/(4πr3

jk) and r̂jk is a unit vector along the line con-
necting spin j and spin k. The effective gyromagnetic ratio for rhodium is
measured as (γeff/γ)2 = 1.4± 0.1 9.

2.1. Calculation of the interaction parameters

The Ruderman-Kittel parameter R describes the relative magnitudes of
the RK and dipolar interactions, and it is defined as

R =
−
∑

k J0k

µ0h̄
2γ2ρ

, (3)

where ρ is the number density. For rhodium this has been measured to be
RRh = −1.2 ± 0.1 9. The local field is a measure of the strength of the
spin-spin interactions and it is defined by

B2
loc = B2

RK + B2
d =

I(I + 1)
2γ2h̄2

∑
k

J2
0k +

I(I + 1)
γ2h̄2

∑
k

D2
0k, (4)

which has the value Bloc,Rh = 33±2 µT 1. For the nuclear spin systems of Cu
and Ag, the RK interactions were determined through first-principles band
structure calculations 10. In contrast, no band structure calculations have
been performed on rhodium. Thus, an alternative way of determining these is
needed. The RK interaction decreases rapidly with distance, so approximate
values for the nn and next nearest neighbor (nnn) interaction parameters
Jnn and Jnnn can be found by ignoring all higher coupling constants and
satisfying the relations (3) and (4). For rhodium, we get Jnn = 14.9 (h Hz)
and Jnnn = −8.12 (h Hz), where h is Planck’s constant. Also another pair of
solutions exists, but this is not reasonable since for these solutions |Jnn| <
|Jnnn|. The dipolar parameters used in this work were Dnn = 8.63 (h Hz)
and Dnnn = 3.05 (h Hz), which include the anisotropic exchange interactions
through multiplication of the pure dipolar parameters by (γeff/γ)2.

The calculation of Jnn and Jnnn is subject to error because of the cutoff
after next nearest neighbors. This error can be estimated by including the
third nearest neighbor coupling J3 and studying the allowed values of the
three interaction parameters and by requiring the fulfilment of the conditions
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(3) and (4) above. Fig. 1 displays the allowed values of Jnn (solid line) and
Jnnn (dashed line) as a function of J3. The inset shows the less plausible
family of solutions, where |Jnn| < |Jnnn| for most values of J3. As Fig. 1
demonstrates, the values of Jnn, Jnnn and J3 are, in fact, quite uncertain,
even their signs cannot be determined without further assumptions.

If we adopt the loose criterium |Jnn| > |Jnnn| > |J3|, we limit the
parameter space to the two J3 intervals −3.5...−3 (h Hz) and −2...2 (h Hz).
Both solutions give a value of Jnn of 13...16 (h Hz), while the value of Jnnn

varies considerably. The negative J3 interval gives positive values of Jnnn of
12...3 (h Hz), while the interval close to J3 = 0 gives Jnnn = −12...−2 (h Hz).
The latter interval seems more plausible since J1 and J2 have different signs
as seen in Cu and Ag. In this work we have adopted the central value in this
interval, J3 = 0, giving the values of Jnn and Jnnn listed above. This choice
is, in fact, a necessity for the method of exact diagonalization of small spin
clusters, since the system size used in this work does not allow third-nearest
neighbor interaction.

It must be noted that since the number of 3rd nearest neighbors is
as high as 24 compared to 12 nearest and 6 next nearest neighbors, the
contribution of a non-zero J3 to the magnetic properties could be large even
if it were small compared to Jnn and Jnnn. For example, a small negative
value of J3 would frustrate AFM type-I order.

3. HIGH TEMPERATURE EXPANSIONS

We present here the general results of a high temperature expansion of
a system with Zeeman, Heisenberg, and dipolar interactions up to 4th order
in β. A similar high temperature expansion was performed already in 1937
by van Vleck 4. However, our expressions are more general, and we have
thus chosen to present them here.

The high temperature expansion of a system is performed by expanding
the partition function around β = 0

Z = tr {exp(−βH)} ≈ tr {1}
(

1 +
∞∑

n=1

(−β)n

n!
〈Hn〉

)
, (5)

where 〈Hn〉 denotes the unweighted average, tr {Hn} /tr {1}. The logarithm
of Z is expanded as

lnZ =
∞∑

n=0

cn

n!
βn, (6)
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Fig. 1. The allowed values of Jnn (solid line) and Jnnn (dashed line) as
a function of J3. The inset shows the less plausible solution, and the main
figure shows the more likely solution. The dotted lines indicate the condition
|Jnn|, |Jnnn| = |J3|. The bold parts represent the most probable solutions.



K. I. Juntunen, K. Lefmann, T. A. Knuuttila, and J. T. Tuoriniemi

where the coefficients cn are called cumulants. For the Hamiltonian (1),
〈H〉 = 0, whence the first few cumulants become

c0 = N ln(2I + 1) (7)
c1 = 0 (8)

c2 =
〈
H2
〉

(9)

c3 = −
〈
H3
〉

(10)

c4 =
〈
H4
〉
− 3

〈
H2
〉2

. (11)

The thermodynamical quantities of the system are obtained from this ex-
pansion using

S =
∂

∂T
(kBT lnZ) = kB

∞∑
n=0

cn(1− n)
n!

βn (12)

χ = µ0kBT
∂2 lnZ

∂B2
= µ0

∞∑
n=1

βn−1

n!
∂2cn

∂B2
(13)

p =
kBT

Iγh̄N

∂ lnZ

∂B
=

1
Iγh̄N

∞∑
n=1

βn−1

n!
∂cn

∂B
. (14)

where χ is the real part of the longitudinal susceptibility and p = 〈Iz〉/I is
the polarization.

3.1. Second order terms

In the well known second order HTE expression, all cross terms between
the three terms in the interaction vanish:〈

H2
〉

=
〈
H2

z

〉
+
〈
H2

RK

〉
+
〈
H2

d

〉
. (15)

The first term is 〈
H2

z

〉
= CkBB2, (16)

where C = Nγ2h̄2I(I + 1)/(3kB) is the Curie constant. This is the term
giving the high temperature free spin behavior, like the Curie susceptibility
χ0 = µ0C/T . The remaining part of (15) describes the spin-spin correlation,
which gives the first non-trivial contribution to the zero field entropy.〈

H2
RK

〉
+
〈
H2

d

〉
= CkBB2

loc, (17)

where the local field Bloc was defined in Eq. (4).
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3.2. Third order terms

The complete third order HTE expression is〈
H3
〉

= 3
〈
H2

z (HRK + Hd)
〉

+
〈
(HRK + Hd)3

〉
. (18)

Here

3
〈
H2

z (HRK + Hd)
〉

= −3Ck2
BB2Θ, (19)

where the Curie-Weiss temperature Θ is defined by

Θ = − 1
3kB

I(I + 1)
∑
k

(
J0k + D0k(1− 3 cos2 θ0k)

)
=

1
3kB

I(I + 1)µ0γ
2
eff h̄2ρ(Reff + L−D), (20)

where θjk is the angle between r̂jk and B, Reff = Rγ2/γ2
eff , L = 1/3 is

the Lorentz factor, and D is the demagnetization factor of the sample in the
direction of the magnetic field. The second term in the third order expression
is

〈
(HRK + Hd)3

〉
=

I2(I + 1)2

12
N
∑
k

(
−J3

0k + 3J0kD
2
0k + 2D3

0k

)
(21)

+
I3(I + 1)3

9
N
∑
kl

[
J0kJ0lJkl − 3J0kD0lDkl(1− 3t20lk)

+ D0kD0lDkl[− 2 + 3(t20kl + t20lk + t2k0l) + 9t0klt0lktk0l]
]
,

where tjkl = cos(φjkl), and φjkl is the angle between the vectors r̂jk and r̂lk.
Here the first line is the higher order correction to the two-spin correlations,
and the last two lines come from three-spin correlations, which depend on
the lattice geometry.

The susceptibility calculated from the third order HTE is, in fact, a
series expansion of the Curie-Weiss-law 4,

χCW = µ0
C

T −Θ
. (22)

3.3. Fourth order terms

The fourth order term is written as
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〈
H4
〉

=
〈
H4

z

〉
+
〈
(HRK + Hd)4

〉
+
〈
6H2

z (HRK + Hd)2
〉

, (23)

where the last term is an abbreviation of the 6 different permutations of its
constituents; the terms do not commute. Here we present only the magnetic
field dependent parts of the fourth order term. The full 4th order term will
be given in Ref. 11. The term containing four Zeeman interactions is

〈
H4

z

〉
= CkBγ2h̄2B4

[
NI(I + 1)− (2I2 + 2I + 1)/5

]
. (24)

This term represents the second non-zero contribution to the free spin mag-
netization: the second non-zero term in a series expansion of the Brillouin
function.

The terms with two Zeeman interactions and two spin-spin interactions
are 〈

6H2
z (HRK + Hd)2

〉
(25)

= CkBB2I(I + 1)
[
NI(I + 1)

∑
k

J2
0k −

∑
k

J2
0k

+
4
3
I(I + 1)

∑
kl

J0kJ0l

+
4
5
(8I2 + 8I − 1)

∑
k

J0kD0k(1− 3 cos2 θ0k)

+
8
3
I(I + 1)

∑
kl

JklD0k(1− 3 cos2 θ0k)

+ 2NI(I + 1)
∑
k

D2
0k −

1
5

∑
k

D2
0k(2 + 9 cos2 θ0k)

− 4
5
I(I + 1)

∑
k

D2
0k(1− 3 cos2 θ0k)

+
4
3
I(I + 1)

∑
kl

D0kD0l(1− 3 cos2 θ0k − 3 cos2 θ0l

+9tk0l cos θ0k cos θ0l)
]
.

The terms in Eqs. (24 and 25) proportional to N2 contribute to the expansion
only by cancelling the term −3

〈
H2
〉2 in the expression for c4, thus leaving

the cumulant proportional to N .
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3.4. Padé approximants

The Padé approximant method is often used to extend the region of
validity of a series expansion, e.g. a HTE 12. The central idea behind these
approximants is to find a rational fraction, whose series expansion equals
the original series. One choice for the Padé approximant for the 3rd order
HTE of the entropy (our zero field entropy) is the (1,2) expansion

1− Sred ≈
1− 2

3
c3
c2

β

1− 2
3

c3
c2

β + c2
2 ln 2N β2

. (26)

and (1,3) expansion for the 5th order HTE for entropy (our high field en-
tropy),

Sred ≈
c2

2 ln 2
β2

1 + (bS + 2
3

c3
c2

)β

1 + bSβ + (−1
4

c4
c2
− 2

3
c3
c2

bS)β2
, (27)

where

bS =
1
15

c5
c2
− 1

6
c3c4
c22

4
9

(
c3
c2

)2
− 1

4
c4
c2

. (28)

The Padé approximants for the HTE of all other thermodynamical quantities
can be found in a similar way. We have chosen to use the set of approximants,
with which the best fit to the exact ED data was achieved. We have used
the (1,2) expansion for polarization (here I = 1/2),

p ≈
1
2γh̄βB

[
1 + (kBΘ + bp)β

]
1 + bpβ +

[
−kBΘbp + (γ4h̄4B4/8− c4/N)/(3γ2h̄2B2)

]
β2

, (29)

where

bp = − kBΘ
3γ2h̄2B2

7/8γ4h̄4B4 + c4/N

(kBΘ)2 + (γ4h̄4B4/8− c4/N)/(3γ2h̄2B2)
. (30)

We also use a (0,2) expansion for susceptibility,

χ ≈
1
4µ0γ

2h̄2ρβ

1− kBΘβ +
[
(kBΘ)2 + (γ4h̄4B4/8 + c4/N)/(3γ2h̄2B2)

]
β2

. (31)
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4. EXACT DIAGONALIZATION

The exact numerical diagonalisations were performed using the software
package RLexact 13. The spin Hamiltonian is made translationally invariant
by applying periodic boundary conditions and broken up into block-diagonal
matrices by explicit use of the symmetries of the Hamiltonian, as described
in Ref. 14. The usual method for diagonalizing spin Hamiltonians is the
Lanczos algorithm 15, which yields the extreme eigenvalues and eigenvectors
of the spin system. However, for high-temperature thermodynamics it is
necessary to obtain the full energy spectrum, whence direct matrix diago-
nalization methods were used. This limited the system size to N = 16, a
size where the full fcc symmetry can be used. The next higher system size
would be N = 32 16, which is prohibitively large with matrix dimensions ex-
ceeding 107. Because of the dipolar couplings, the magnetisation along the
field direction is not a good quantum number, in contrast to pure Heisenberg
systems. All in all, the largest matrix dimension is 4156. A complete calcu-
lation for each field value involved diagonalization of three matrices of this
size. The computation time on a 500 MHz Pentium II PC was 21 hours per
matrix, but for most of the calculations a faster IBM SP computer has been
used. The output of the program was for each eigenstate, |φj〉, the energy,
Ej , and the magnetisation along the field direction, mi =

∑
i〈φj |sz

i |φj〉.
In the calculations we have aimed at using the values of Jnn, Jnnn, Dnn,

and Dnnn calculated for Rh. However, since for each spin there are only 3
different nnn in the N = 16 cluster, as compared to 6 in the infinite system,
we must adjust the nnn couplings. A mean-field like approach would be
to multiply Jnnn and Dnnn by 2, which would cause the RK parameter R
and the Curie-Weiss temperature, Θ, to remain unchanged. This, however,
would cause wrong values of the HTE already in the 2nd order term, as the
interactions occur squared in Bloc. To reach the correct value of Bloc, we
hence multiply only with

√
2 8.

In the pure nearest neighbor Heisenberg N = 16 system with peri-
odic boundary conditions, the energy gap between the (5 times degenerate)
ground state and the lowest excited state has the value Jnn. However, the
dipolar interaction lifts the ground state degeneracy to form a series of ex-
cited states which resemble a continuum. In the present work, the gap from
the (non-degenerate) ground state to the first excited level (doubly degener-
ate) is 1.5 (h Hz) with a further gap of 6 (h Hz) to the second lowest excited
state(s). In general, the splitting between the lowest levels is of the order
2-4 (h Hz), which corresponds to 0.1-0.2 (kB nK). We could thus expect our
exact diagonalisations not to show finite-size artefacts down to temperatures
above ∼ 0.2 nK.
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The general results of the HTE from the previous section were applied
to the N = 16 system with periodic boundary conditions. These calculations
were checked against the ED results directly, since tr {Hn} =

∑
j En

j can be
calculated directly. In all cases, the relative agreement was better than 10−3.

5. RESULTS AND DISCUSSION

In this chapter we present results for the ED, HTE and Padé approxi-
mant calculations on Rh. The results are compared with experimental data;
the experimental details of obtaining the data can be found in Ref. 1. The
HTE for the finite size system is included in the figures in order to give an
idea of how the HTE deviates from the behavior of an exact solution, and it
also gives a reference, down to which temperatures the HTE for the infinite
system is reliable. Also, compared to the HTE for the infinite system, it
demonstrates to which extent the ED suffers from finite size effects.

In calculating the HTE results, the total high temperature expansions
have been included up to third order and the B2-dependent terms up to 4th
order. For the study of the system in high fields, we have included the B4-
dependent terms of the fifth order expression. The rhodium sample used in
the measurements had a demagnetization factor D = 0.08 in the direction of
the external field, and this value has been used in the corresponding infinite
lattice HTE calculations.

In calculating the sums with RK interactions, cutoff after nnn of the
RK interaction was assumed. The sums in Eqs. (4), (21) and (25) containing
dipolar interactions were extended far enough to assure convergence. Surface
effects were assumed to be negligible.

5.1. High field entropy

At high magnetic fields, the polarization of a spin system is proportional
to the area of the NMR peak, which can be directly measured. The reduced
entropy of the nuclear spin system is calculated from nuclear polarization
using the combinatoric relation 2

Sred = 1− S/(kBN ln 2)

=
[
(1 + p) ln(1 + p) + (1− p) ln(1− p)

]
/(2 ln 2) (32)

for I = 1/2. This relation is exact for an infinite system of non-interacting
spins. Fig. 2 shows the reduced entropy of the Rh nuclear spin system as a
function of polarization at a field of ≈ 320 µT, which was the experimentally
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used field value for Rh. The figure shows the free spin results, the results
of ED, HTE, and Padé on an N = 16 cluster, and HTE and Padé results
for the infinite lattice. The entropy and polarization for the HTE have
been calculated by using Eqs. (12) and (14) for a specific temperature and
then eliminating the temperature. As seen in Fig. 2, the high field entropy
of the ED system agrees well with that of the free-spin system. This is
remarkable, since the ED system is neither infinite nor contains free spins.
The maximum deviation between the two is approximately 0.1%. Also the
HTE’s of both the finite and the infinite system agree with the free spin
expression up to p ≈ 0.5, and the respective Padé expressions agree up to
p ≈ 0.6. As Sred → 1 as p → 1, we can verify the free spin result as a very
good approximation for all values of p. Thus, the frequent use of Eq. (32)
by experimentalists is well justified. Further, this result shows clearly the
weakness of the HTE at high polarizations (low temperatures). the region
of validity of the HTE.

5.2. Zero field entropy

Figure 3 shows the zero field entropy of the Rh spin system as a function
of temperature. As the figure demonstrates, all methods accurately describe
the entropy of the real system in the paramagnetic state above ≈ 5 nK.
In the figure it is seen that the HTE for the infinite lattice agrees well
with the experimental data before it diverges at ≈ 2 nK, whereas the Padé
approximant agrees down to ≈ 1 nK and shows no divergence. The Padé
approximant for the finite-size system agrees with the ED result down to ≈ 2
nK, and deviates considerably from it only below ≈ 0.5 nK. The HTE for
the finite size system is monotonic on the scale of this figure, and it deviates
at a similar temperature than the HTE for the infinite system.

The reason for the difference between the HTE’s lies in the magnitude
of the third order term of HTE at zero field: the infinite system has

〈
H3
〉

=
15000N(h Hz)3, whereas the finite-size system has

〈
H3
〉

= 1200N(h Hz)3,
and the pure Heisenberg nnn model has

〈
H3
〉

= −300N(h Hz)3. A positive
value of

〈
H3
〉

indicates that frustration is present in the system, while a
negative value indicates the absence of it. At temperatures below ≈ 5 nK,
the ED system has a lower entropy per spin than the infinite system. This is
due to the fact that the long range dipolar forces increase entropy, as can be
deduced by considering the above magnitudes of

〈
H3
〉

for different models.
At temperatures below 1 nK, the experimental points show much higher

entropies than any of the calculational approaches. The reason for this is not
understood, but the high experimental entropy value goes well along with
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Fig. 2. Reduced entropy vs. polarization for Rh nuclei in an external field
B ≈ 320 µT. Solid line is the ED result, and the almost invisible dashed
line under it is the free-spin entropy from Eq. (32). The dotted line is the
HTE result for the finite-size system, and the dashed line is the HTE for
the infinite system. The dash-dotted line is the Padé approximant for the
HTE of the finite size system and the solid line with triangles is the same
for infinite lattice HTE. The HTEs include the B4 dependent terms up to
fifth order, the B2 dependent terms up to fourth order, and the total terms
up to third order.
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Fig. 3. Reduced entropy vs. nuclear temperature in zero field shown in a
log-log plot. The dots represent the experimental data.

the absence of order in the system.

5.3. Polarization–temperature relation

In nuclear magnetism experiments, the temperature of the spin system
may be measured directly only by the elaborate way of using the second law
of thermodynamics, by a) measuring the initial entropy Si in magnetic field
b) applying a known heat pulse ∆Q in zero magnetic field and c) measuring
the final entropy Sf in magnetic field. Then T = ∆Q/(Sf − Si), since the
field changes are performed adiabatically 1. The entropy is calculated from
polarization measurements at high fields using Eq. (32). A practical way
of determining the temperature is to use a measurement of the high field
polarization and then convert this to the corresponding temperature after a
subsequent adiabatic demagnetisation to zero field. A second order expan-
sion of both high-field and zero field entropy would give p2 = (bT )−2, while
a more accurate semiempirical formula has been applied 17:

|1/p| = 1 + b|T |, (33)

where b = 2kB/(γh̄Bloc) = 0.94 nK−1 for rhodium.
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In Fig. 4, the ED, HTE and Padé results for high field 1/p as a func-
tion of low field temperature are shown, and the results are compared with
experimental data. For the HTE and ED results, the temperatures have
been calculated by first finding the entropy corresponding to the high field
polarization, using Eq. (32), and then finding the temperature on the zero
field entropy curve, in Fig. 3, with the same entropy value. In the figure, the
HTE for the infinite system ends at approximately 2 nK, where the HTE
entropy has a minimum, see Fig. 3.

The ED and HTE for the infinite lattice have slightly different local
fields, because for the ED system there exists nnn cutoff for the dipolar
interaction. Since the relationship between p and T is sensitive to the local
field, the 1/p vs. T results for ED and the HTE for the infinite system do
not agree even at high temperatures. However, the difference is small, and
all results in Fig. 4 have approximately the same slope, but different offsets,
at high temperatures. Due to the scatter in the data, it is difficult to judge
which one of the infinite lattice HTE or the semiempirical straight line best
describes the experimental data at high temperatures.

The exact diagonalization result does not support the linear semiem-
pirical formula (33) and does not agree with the experimental data either.
However, the exact diagonalization result is expected to deviate from the
real behavior due to finite-size effects. The HTE for the infinite lattice is
seen to deviate less than the ED result from the semiempirical law. Since, as
basic thermodynamics implies, p → 1 for T → 0, the behavior of the infinite
lattice is obviously much less nonlinear than the behavior of the ED result.
No more information is gained from the Padé approximants which seem to
be of little use for the temperature-polarization relation. Below ∼ 1 nK,
only the semiempirical formula agrees with the data. This fact is related to
the low-temperature discrepancy of the entropy shown in Fig. 3 and cannot
be explained by this work.

5.4. Zero field susceptibility

A standard way of searching for nuclear magnetic ordering is to measure
the static susceptibility, since ordering should produce a noticeable change
in its behavior. Fig. 5 displays the zero field susceptibility vs. the high
field polarization. The ED susceptibility has been calculated using χ =
µ0∆M/∆B for a small ∆B. The ED result is seen to exhibit the same
kind of bending behavior at high polarizations as the experimental data,
even though there is a considerable difference in the magnitudes of these
quantities at high polarizations. Since the nnn parameters are adjusted by
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Fig. 4. Inverse high field polarization vs. nuclear temperature after an adi-
abatic demagnetisation to zero field. Straight solid line is the semiempirical
law (33).

√
2 for the ED, the Curie-Weiss temperature Θ for the ED differs from that

for the infinite lattice, and thus the ED result has a lower susceptibility than
the Curie-Weiss law indicates. At small polarizations the ED and the HTE
for the infinite lattice agree, as they should, but there is a small offset in the
experimental data, which is not understood.

Fig. 6 displays the inverse static susceptibility as a function of temper-
ature. The figure displays the ED result, the HTE for the finite size system
and infinite lattice, and the Curie-Weiss result (22), for which the values
µ0C/V = 1.3 nK, and Θ = −1.18 nK have been used. The experimental
data shown in Figs. 5 and 6 are obtained from different runs.

The Padé approximant is seen to extend the validity of the HTE for the
finite size system considerably in this figure, from ∼ 5 nK to ∼ 1.5 nK. The
infinite lattice result agrees quite well with the experimental data at the low
temperature end; the Padé approximant agrees even down to ≈ 0.5 nK.

6. CONCLUSIONS

We have performed exact diagonalization and high temperature expan-
sion calculations of the entropy, polarization and susceptibility. Our ED and
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HTE results fit in general well to the experimental data at high temperatures.
Further, the HTE for the infinite lattice agrees well with the experimental
data at all temperatures of its validity, except for an offset in the suscepti-
bility, which is most probably of experimental origin. Because of this good
agreement, we conclude that our calculation of the interaction parameters
is a fairly good approximation, even though there is inaccuracy in their de-
termination. The ED method deviates from the real behavior, especially for
the entropy and polarization, at medium and very low temperatures, but
shows the correct general tendencies.

With the Padé approximant method, the divergence of the HTE was
removed and the discrepancies were lowered considerably. This is important
for our work, since the interesting physics of the Rh spin system occurs
at the very low temperature region, where the normal HTE would give no
reasonable results. The Padé approximants for the finite system fit well to
the ED data down to ≈ 1 nK, and therefore we expect the Padé approximant
method to describe also the infinite lattice down to approximately those
temperatures. This is also seen to be in agreement with the experimental
data. At high fields, we believe that at the highest polarizations, the ED
result best describes the real behavior, since it agrees well with the free spin
expression, which is a good approximation at high fields. Also, it is the only
expression that obeys S → 0 as p → 1.

All in all, we seem to have described the Rh nuclear spin system quite
well in the paramagnetic state down to ∼ 1 nK. Since the agreement with
the experimental data is good, the use of our methodology can be expected
to be justified in predicting the thermodynamics also for systems with no
experimental data available. On the basis of our calculations, we cannot state
definitely whether the finite size system shows signs of magnetic ordering at
very low temperatures. Our next task will be to calculate the structure
factors, which will hopefully give some more information on the problem of
the absence of ordering in rhodium.
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