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Abstract

The scope of this dissertation is twofold, in the sense that it deals on one hand with
statistical inference and on the other hand with random graphs. Due to inherent
randomness in both areas the scope can also be seen as onefold, which is fur-
ther united methodologically by the attempt to build models of random processes
involved and by simulating their behaviour.

The statistical part of the thesis follows the Bayesian theory of probability,
and applies it to a fault diagnostic setting. This part also contains an exploration
of metrics on probability distributions, in which the introduction of a new met-
ric is one of the main contributions. This new metric is constructed from utili-
ties of the samples instead of the more conventional entropy–based metrics. In
Bayesian methods the simulation of samples from distributions is an integral part
of the analysis. It also becomes the leading principle in the evaluation of the
proposed metrics. This metric is shown to be useful in statistical inference in
some cases where the probabilities are difficult to compute. The problem of un-
computable likelihoods is analysed also from the Bayesian perspective and two
branches emerge: the kernel estimate and the indirect inference.

In the analysis of random graphs the attention is on the small–world prop-
erty, requiring that any two sites in the network are joined by only a short path
with a relatively small average number of connections per site. Again one of the
main tools in analysing complex graphs is by simulation of random dynamics
on the graphs. The first dynamic property that is analysed is the spreading phe-
nomenon. Spreading means the number of unique sites a random walker on the
graphs goes through. This number is shown to have transition points relative to the
small–world control parameter. Apart from the spreading phenomenon the thesis
also studies the self–organised criticality properties through the so called sand-
pile model on the one dimensional small–world networks. In this setting of self–
organised criticality there are interesting behaviours that are absent in the standard
1–dimensional sandpile model. Both the spreading and the sandpile model are
analysed with two forms of disorder: quenched and annealed. The quenched case
corresponds to a simulation setting on an ensemble of random graphs, whereas in
the case of annealed disorder the simulation is performed on a regular graph but
the dynamics also allow random moves to other sites. The annealed form allows
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simpler analytic tools to be used, but the quenched form corresponds more closely
to natural systems. Even though these forms of disorder are different it is shown
that the annealed systems can be made to behave in a qualitatively similar fashion
as the quenched case.
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List of symbols

#(x, A) number of timesx appears in the setA
θ parameter of distributions
κ(x) scaling function
µX distribution of the random variableX
C(x‖y) pairwise cost–function ofx andy
� sample–space of random variables
E{ f (X)} mean value off (X)
F parameter space
K (θ‖x) pairwise cost–function ofθ andx
lcm(m,n) least common multiple ofm andn
Mi,: i th row of the matrixM
M:,i i th column of the matrixM
N(s) distribution of the number of the avalanche of sizes
P{X = x} probability of the eventX = x
Pij (t) transition probability fromi to j of a random walker
Ptr traversal probability of an avalanche
Q(t) average number of unique sites visited by a random walker in timet
� superset of infinite subsets of�
S(x1:m‖y1:n) transformation discrepancy ofx1:m andy1:n
W transition matrix of a random walker
X1:m multi–set of IID random variables{Xi }m

i=1
X,Y, Z random variables on� are written with capital letters
x1:m multi–set of elements{xi }m

i=1
x̄1:m sample mean ofx1:m
x̃1:m sample standard deviation ofx1:m
xα1:m setx1:m repatedα times
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Chapter 1

Introduction

This dissertation is composed of two parts, statistical methods and random graphs,
which have factors in common, namely randomness and statistical models. The
first half of this dissertation deals with statistical inference, which is essentially
an inversion process: there is a set of random observations, and a unifying pat-
tern is sought that fits these observations. This pattern is a statistical model that
describes the probabilities of the events, already observed and the ones yet to be
observed [28, 56]. The statistical models are of great utility in practise where no
phenomenon is truly free from randomness. They become handy in signal pro-
cessing [33], pattern recognition [77], and finance [16]. Within this framework
Lahtinen and Lampinen have analysed a fault diagnostic system for identifying
the status of devices based on counted events [48]. There it was shown how la-
tent, unobservable, states of the system can be identified based on the observations
that do not contain explicit information about them. This is discussed further in
Chapter 2.

Choosing the model, or model selection, can be done in various ways [56].
One is the Bayesian inference, in which the calculus of probability is utilised to
obtain a posterior probability for the models. Posterior meaning the probability
of the models after the Bayes’ rule has been applied using the likelihood of the
observations given the model and the probability of the models prior to using the
observations. The Bayesian statistics is essentially an update process, which can
be thought to begin withnull information and by utilising the observations attains
a more accurate model. This means that all the models are considered equally
likely [8]. There are many more ways to choose the model based on observations
[20].

In Bayesian statistical analysis the calculation of the posterior most often
produces analytically unsurmountable problems. This obstacle can however be
overcome by using numerical methods, namely simulating random samples from
the posterior distribution [73]. The principle of random simulation and inference
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based on them can be utilised in many ways, such as in approximating the poste-
rior integral, and estimating the size of sets of objects meeting a specified criterion
[12]. In Bayesian methodology the use of Markov Chains provides the theoretical
justification and mathematical means for this [27].

When comparing models and their performance, there is a need for a metric.
The examination of one novel metric is a major contribution of this dissertation,
and is dealt in detail in Chapter 3. Perhaps the most common metric of probability
distributions is called the Kullback–Leibler divergence [41], which is based on
the information theory of Shannon [81], which has a connection to the theory
of Kolmogorov complexity [50] and minimum description length principle by
Rissanen [72]. The algorithmic minimum description length principle states that
the predicted optimal model is the one which generates the observed data with the
shortest description in terms of computer programs.

In a great many cases the model intergrals cannot be calculated analytically
and simulational methods must be used [21]. The metrics can also be devised
by simulating random samples from the models, to represent it, and comparing
these with the ones obtained from other models. This alternative metric extends
the metric on samples to a metric on the models, and thus provides perhaps an
intuitive yardstick for statisticians. The metrics may also come to use in Bayesian
analysis when the likelihood of the observations cannot be handily computed, but
when generation of random samples from the model is still feasible. This metric
is the sum of distances between pairs of elements in two sets; with a minimisation
over the possible ways to choose the pairs. When the number of samples goes to
infinity we can consider the resulting limiting value as the distance between two
models [43]. This metric is entirely new in this field, and may be useful when
comparing models in sample spaces which have a natural metric.

There is also a possible application for this: In cases where the likelihood
function of the model is not easily computable, one can perform the model selec-
tion by generating samples from the models, and choosing the model for which
the total distance to the observed data is the smallest. This was originally the topic
of the study of Diggle and Gratton [21]. There has also been a similar proposal
to this effect calledindirect inferenceproposed by Gourieroux [31] in which sam-
ples are generated from the model and a statistic is computed from these, then this
statistic is matched to the one obtained from the data. Lahtinen and Heikkonen
have shown that the use of the metric on sample space will also provide means to
perform the inference [44], which is the main topic of Chapter 4.

—

The second half of the dissertation focuses on the analysis and simulation of
random graphs. A graph is a set of sites and a set of connections between these
sites. The sites of the graph could be people, computers or even power plants, and
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connections between them social acquaintances or electric cables. Graph theory is
a very abundand branch of discrete mathematics, and many famous problems are
associated with graphs, or are reducible to ones involving them. In the modern
world where networks are vital to the functioning of the society and business,
questions of efficiency and vulnerability of networks become important.

During the last few years an overwhelming amount of evidence has been ac-
cumulated about diverse networks showingsmall–worldproperties. This means
that on average an arbitrarily selected site can be reached from another site in
very few steps despite the fact that only relatively small number of connections
are present in the graph [87]. It was noted by Stanley Milgram that it seems to take
6 handshakes to connect between any two people in the world [55]. The internet
has similar characteristics, as most computers there are connected to some very
central server [24]. The documents of WWW are very often connected to some
relating important document, search engine, or collection [2]. The scientist tend
to cooperate with famous scientists [69]. Watts and Strogatz were the first to sug-
gested a simple mathematical model, which reflects the small world phenomenon:
They proposed a regular lattice and then rewired some of the connections to form
long range connections [88]. This model of small–world networks interpolates
between a lattice and the so called Erdős-Rényi random graph [10, 87].

In addition to the interesting static structural properties in these networks,
there is ever growing interest in dynamical processes operating on them. As a
matter of fact it is expected that the underlying network topology should have
a major impact on practically any phenomenon taking place in it. This view is
supported by the recent results on the spectral density of the adjacency matrix of
small world models, which show that these graphs produce a dramatic deviation
from the semi-circle law of random graphs [25]. One can indeed infer a great
deal about a network by performing a random walk on it [84]. For example the
number of sites visited in a given time is a significant indicator of the structure
of the network. This is also calledspreading: over how much area does diffusion
relocate a particle. The spreading phenomenon is the main topic of Chapter 5.
The distribution of the number of visited sites has a transition which was first
analysed by Jasch and Blumen [35]. The inaccuracy in the result of their analysis
was corrected by Lahtinen et al. in [45]. The final result is that the distribution has
the natural exponent of 2, i.e. the distribution has a transition that is proportional
to the size of the area covered squared.

Another dynamic model is called thesandpile model[3]. This describes a
process of loading the site of a given system with a burden, e.g. computational
work for a computer. Eventully there comes a limit to how much load a single
site can carry. When the limit is reached the load is transferred to the neighbours
of that site. The neighbours themselves can also be excessively employed and
the excess will need to travel on to their neighbours. Although this is not quite
a physical model of sandpiles as they present themselves in sandy beaches, but a
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simpler discrete system, it still gives insight to the mechanism of failures of an
electrical power grid for instance [13]. In Chapter 6 the sandpile model on one
dimensional random topology is investigated.

It is also interesting to ask to what extent the dynamical properties of small–
world networks depend on thequenchedcharacter of the disorder, as opposed to
theannealeddisorder, where the connections are not frozen but are rewired during
the time evolution of the system. Such a model with spreading was studied by
Pandit and Amitkar [65], with the focus on the average access time, and Lahtinen
and al. [46] investigated the scaling laws establishing that the annealed model
can be extended into an equivalent model in the quenched setting. This kind of
random walk system seems to bear some resemblance to the idea of the random
walker making Lévy flight type jumps [37, 78, 83]. With the sanpile model a
similar approach is the stochastic sandpiles considered previously by Manna [52].
Both annealed and quenched disorder are present also in the analysis of the one
dimensional sandpiles by Lahtinen et al. [47], in Chapter 6.

—

This thesis is organised so that the next three chapters of the first part concen-
trate on statistical inference, and the second half of the thesis with two chapters
on random graphs and their dynamic properties. Chapter2 gives a general review
of Bayesian statistical inference and its basic formulation. In Chapter3 there is a
treatise on the metrics on probability distributions. Then Chapter4 focuses on the
problem of uncomputable likelihoods. In Chapter 5 the spreading phenomenon
on small–world networks is taken under scrutiny. After defining the basic results
the attention is focused on the dynamics on graphs, i.e. the spreading. Then the
Chapter 6 deals with the self–organised criticality in 1–dimensional small–world
networks.



Chapter 2

Bayesian Statistical inference
with a fault diagnostic
application

Statistical inference is essentially an inversion process: there is a set of random
observations, and a unifying pattern is sought that fits these observations. A sta-
tistical model is the pattern, describing the probabilities of the events, already
observed and the ones yet to be observed. However, the problem is mostly much
more complex than connecting the dots. There are too many models and too few
observations so that no one model alone would explain the observed phenomena.
This dissertation focuses on the Bayesian approach which was applied to a fault
diagnostic system described later in this chapter. It was shown that the latent
states of a device can be identified based on observations which do not have direct
information about the inner states [48]

Here the focus is mainly on Bayesian statistical methods. In Bayesian statis-
tics the conditional probability of different models given the observations is cal-
culated using the rules of probability calculus. This probability of the models is
called the posterior probability. Although Bayes’ formula was discovered early,
its use was scarce and for a long time statistical problems were mainly solved
with other methods [8]. The difficulty lay in the integral that would be needed to
utilise the posterior probability in analytical calculation. Once it was realised that
in practical statistical applications stochastic integrals can be efficiently approxi-
mated by simulation of random samples, all the required integrals could now be
handled by computers [73]. These simulational methods in this context are called
Markov Chain Monte Carlo (MCMC) methods [27]. With the aid of MCMC one
can generate simulated samples from the distributions in the modelling situation
and using the law of large numbers to approximate relevant integrals.

There are many other approches to statistical inference, such as the traditional
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statistical methods [75], neural networks [15] or even game theoretic settings [20],
the model selection is treated as a game between the modeler and an opponent.
These however are more specific cases. Nonetheless, the fundamental nature of
statistical inference is ano free lunch theorem[51]: whatever the base assumptions
are no method can truly outperform any other in general comparison.

In this chapter there is a short primer on Bayesian theory of probability, with
an introduction to the basic Markov Chain Monte Carlo (MCMC) methods and
their convergence tests. These concepts are applied in section2.2 to a fault diag-
nostic system.

2.1 Bayesian inference

In the Bayesian approach each observation is conjectured to have a probability of
occurrence, determined by the model under inspection. When in addition each
model is assigned a probability, one arrives at the foundation of Bayesian statis-
tical inference: based on this information the probability of a model given the
observations is computed using the probability calculus.

A random variableX is a measurable function from a sample space� with a
σ–algebra on� , a super set of the sets of� , and a measureP on thatσ–algebra.
A random variableX also has an associated distribution which is here always
denoted asµX , and thus measureP of events of the random variableX is the in-
tegral over the distributionµX . An indexed sequence of independent and indenti-
cally distributed, IID, random variables is denoted asX1:m = {Xi }m

i=1 on a sample
space� , for which there is a multi-set of sample pointsx1:m, wherexi ∈ � . A
multi–set is a set where duplicates of the same element are possible. The notation
matches the capital lettered random variables with the lowercase sample–sets, and
it is assumed that the multi-setx1:m is exchangable (infinitely so if the set is), i.e.,
P(X1 = x1, . . . , Xm = xm) = P(X1 = xπ(1), . . . , Xm = xπ(m)) ≡ ∏

i P(Xi = xi )

for any permutationπ of {1, . . . ,m}.
For a model, parametrised withθ , given the observationsx1:m the posterior

distribution is:

µ�′(θ |x1:m) ∝ µX|�(x1:m|θ)µ�(θ), (2.1)

whereµX|�(x1:m|θ) is the likelihood andµ�(θ) is the prior. The expression∝
means that the parts are proportional to a multiplicative normalising constant, in
this caseE{µX|�(x1:m|�)}. This term is usually omitted as in practice it is not
needed in comparing models. The common use of the posterior distribution is
to calculate thepredictive distribution, which is the distribution of future events
independent of the parameters:

µX′(x′|x1:m) = E{µX|�(x′|�′)}. (2.2)
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This is an expectation over the posterior�′, thus utilising the posterior distribution
in the predictive distribution of future observations. This particular expectation
cannot most often in practise be computed in an analytical form. In usual situa-
tions this expectation is complex and multi–dimensional that the usual numerical
approximations also fail. Therefore the standard approach is to simulate samples
from the posterior distribution of equation (2.1).

2.1.1 Random sampling of the posterior distribution

The most important tool in Bayesian inference is posterior sampling. This method
allows one to generate random samples distributed according to the posterior dis-
ribution. These samples can then be used to estimate the predictive distribution of
equation (2.2) as a sum overn samples{θ′i }n

i=1:

µX′(x′|x1:m) ≈ 1

n

n∑
i

µX(x
′|θ ′i ). (2.3)

This is called Monte Carlo integration. The integral can thus be replaced by a sum
over a discrete set of properly distributed points [27].

In the rest of this section the random sampling techniques from a distribu-
tion are discussed. The practical methods of random simulation rely on Markov
chains. A Markov chain is a sequence of random variablesX1 → X2 → . . . →
Xm with the property that the elementXi is not dependent on the previous el-
ements exceptXi−1. This means thatµXi (xi |x1, x2, . . . , xi−1) = µXi (xi |xi−1).
Thus the Markov property ensures that in order to generate a samplei all that is
needed is the previous sample, which is very useful for efficiently generating a
large number of samples.

2.1.2 Metropolis–Hastings algorithm

The basic method for sampling the parametersθ′i distributed according toµ(�′)
proceeds in steps. When the current state isθ′i then the proposalζ for the next
sample in the sequence is drawn from a transition distributionµZ(ζ |θ ′i ), which is
calledthe Markov kernel. The proposal is accepted with a probabilitya(θ′i , ζ ):

a(θ ′i , ζ ) = min
(
1,
µ�′(ζ |x)
µ�′(θ ′i |x)

µZ(θ
′
i |ζ )

µZ(ζ |θ ′i )
)
. (2.4)

If accepted thenθ′i+1 = ζ . This method is called the Metropolis–Hastings algo-
rithm [28].

The choice of the kernel is decisive when applying the MCMC methods. A
kernel with a too little variance will converge too slowly, as it may take many
steps for the chain to extend over all significantly probable parameters. In turn a
too wide kernel may not accept many proposals.
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2.1.3 Gibbs sampling

An important practical method that is usually tried first is Gibbs sampling [30],
where amultidimensional parameter is sampled one at the time keeping the others
fixed. This can be viewed as a special case of the Metropolis–Hastings algorithm
[28]. For a set of parametersθ1, θ2, . . . , θd eachθi is sampled from the conditional
distribution given the other parametersθ1, θ2, . . . , θi−1, θi+1, . . . , θd and the ob-
servationsx1:m.

Usually the parameterθi given the others can be presented analytically, and
samples from it can be drawn without the need for the proposal–acceptance pro-
cedure. However, often it can be that this conditional distribution is difficult to
define in closed form and then the Metropolis–Hastings step is needed also for the
θi conditional to the other parameters.

The advantage that Gibbs sampling has when compared to the Metropolis–
Hastings method is its faster sampling when the number of parameters is very
large. Whereas the Metrpolis–Hastings method may not easily find an acceptable
proposal, Gibbs sampling searches for a single new parameter at a time, which
speeds the acceptance, but this has the limitation that in some multimodal cases
the Gibbs sampling may not find all the modes. Also when there is need to make a
proposal that has more, or fewer, dimensions than the previously accepted sample,
these methods alone do not quite work. For this purpose there is an extension,
which is studied next.

2.1.4 Reversible jump algorithm

A notable extension to the basic Metropolis–Hastings algorithm is the added abil-
ity to jump between spaces with different dimensions [32]. The method also car-
ries the name Metropolis–Hastings–Green algorithm, or sometimes thereversible
jump MCMC. This algorithm requires an additional latent variableξ drawn from
a distributionµ	(ξ |θ ′i ), which is chosen to balance the scales between the nu-
merator and the denominator of equation (2.4). Assume thatθ ′i is in a subspace
of dimensiond, ξ is in ane–dimensional space, and the next proposalζ is in a
d + e–dimensional subspace. The algorithm needs a functionf that maps a pair
(θ ′, ξ ) to ζ . The acceptance probability becomesaR J(θ

′
i , ζ, ξ) reading as follows:

aR J(θ
′
i , ζ, ξ) = min

(
1,
µ�′(ζ )

µ�′(θ ′i )
µZ(ζ |θ ′i )
µZ(θ

′
i |ζ )

|J(θ ′i , ξ )|
µ	(ξ |θ ′i )

)
, (2.5)

where J(θ ′i , ξ ) is the Jacobian determinant of the functionf . If the dimension
decreases instead of the equation (2.5) one should use the resiprocal form:

aJ R(θ
′
i , ζ, ξ) = min

(
1,
µ�′(ζ )

µ�′(θ ′i )
µZ(ζ |θ ′i )
µZ(θ

′
i |ζ )

µ	(ξ |θ ′i )
|J(θ ′i , ξ )|

)
. (2.6)



2.1 Bayesian inference 9

With these amendments one can apply MCMC simulation for example in approx-
imating the number of kernels in kernel–estimation [54], or selecting the input
variables for a model [85].

2.1.5 Simulation convergence

The problem with the MCMC method is the determination of when there are
enough samples. The simulation usually begins with an initial value which may
be very located in a remote area of the sample space from the are wich contains the
most probable events. The dynamics of the simulation, determined by equation
(2.4), then move the focus into a more probable region of the parameter space.
The identification of the initial period from the stable sequence is almost a sim-
ilar unresolvable problem to the original decision–making process for the model
itself, but many good methods still exist. The first is visual inspection of the
statistics, which turns out to be usually very good for separating any initial burn–
in period, in which the chain moves from the initial value to the main region. Also
the consecutive samples in the chain are not quite independent. For this one can
use the autocorrelations to extract a subset of more independent samples from the
the simulated sequence [60]. Finally, in order to ascertain the convergence of the
chain one general method is the Kolmogorov–Smirnov goodness–of–fit test [73],
which is dealt with at end of this section. There are also many other method to
evaluate the convergence of a chain [73], but the convergence testing in general is
also a difficult problem that cannot be absolutely solved.

Use of the autocorrelation in MCMC

Samples in a sequence that is generated with MCMC methods are usually cor-
related. The immediately consecutive samples are always by the definition of
Markov chains correlated, but usually this correlation extends much further de-
pending on the kernel. The correlation can be radically reduced by choosing a
subset of the actual samples. The autocorrelation time is the average number of
steps in the sequence such that the samples that far apart are almost uncorrelated,
and thus if one were to omit the samples in between the resulting sequence is
uncorrelated. The autocorrelation time is obtained through the normalised auto-
correlation sequence of a sequence of random variables�1:n with lag k, which is
defined as:

ak =
∑k

i=1(θi − θ̄1:n)(θi+k − θ̄1:n)∑n
i=1(θi − θ̄1:n)2

, (2.7)

whereθ̄1:n is the sample mean ofθ1:n. This is an estimate of the covariance of
the i th and the(i + k)th sample divided by an estimate of the variance of thei th
sample.
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From the setθ1:n one can form a subset of samples by taking everytautth step,
with

taut = 1+ 2
n−1∑
i=1

ak. (2.8)

Decimating the samples then guarantees that these reduced samples are correlated
as little as possible [73].

Kolmogorov–Smirnov test

Next there is a discussion on the use of the Kolmogorov–Smirnov goodness–of–
fit test to evaluate the convergence of the chain, i.e., when to stop the simulation.
This test is a general non–parametric method of deciding whether a set comes
from a given distribution. For a given continuous random variable� the KS–
statistic is the maximum empirical deviation of the sample estimate from the true
value of the cumulative probability:

KS = max
i

{∣∣P{� ≤ θi } − #(θi , θ1:n)
n

∣∣}, (2.9)

where #(x, A) is the number of elements inA smaller or equal tox. The null
hypothesis is that theθ1:n are distributed according toµ�. The null hypothesis is
rejected if the KS–statistic is greater than a given toleranceαKS.

For testing of the convergence of an MCMC chain the distributionµ� is re-
placed with another sequence, preferably obtained from a second independent
chain:

KSMCMC = max
i

{∣∣#(θ ′i , θ ′1:m)
m

− #(θi , θ1:n)
n

∣∣}. (2.10)

In practice one can assume that the chain has converged if the value KSMCMC

is not too small or too large. As a rough rule of thumb one could use the relation:
0.1 ≥ KSMCMC ≥ 0.9.

2.2 Application to Fault Diagnostic

In this section Bayesian inference is applied to a fault diagnostic system. It is
assumed that a device under inspection records the total number of some events
in its lifetime. For example, the device can count the number times it has been
turned on etc. Eventually the device will break down and the user brings it for
repair. The goal then is to decide in what way the device is malfunctioning based
on the information gained from these counter values.

The framework in this case is a set of counters, the final value of which is
observed at the end of some period of time. During this time period the process
has changed from the initial state to the final state at an unknown point of time.
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For both the initial and final periods there are an unknown numbers of possible
substates, i.e., event occurrence rates. For instance, a device used by a travelling
businessman can record a different behaviour than that of an office worker.

The estimation task is complicated due to the fact that there is no prior knowl-
edge about the event rates for either intact or faulty devices, hence the event rates
for the states and the state transitions must be modelled simultaneously. Collect-
ing the data during actual operation from a large number of devices causes addi-
tional complication in the model as the devices may not be exactly similar. For
example, in a paper machine both the sensors and the production line hardware
are continuously updated. Similarily in mass production devices, like in portable
computers, the same model may contain various different hardware configura-
tions and operating system versions, possibly affecting the rates of the monitored
events. To account for this variation all the states are modelled as mixtures of pro-
cesses, with an unknown number of substates. The substates are assumed to be
constant during the operation, so that each device has zero or one unknown state
transitions to be estimated.

Counter generation model

The process can be sampled in two ways, so that some of the devices have only
gone through a single state, an intact device, and some have two states, an initially
intact device which has then broken down. There may well be several inner states
in which the device may be as broken or intact, see for example the Figure2.1.

The vector of values ofm counters are denoted byxi ∈ �. The latent, un-
observable, variables determining the states of the process are denoted byz1 ∈
{1, . . . , k1} for the initial state andz2 ∈ {k1 + 1, . . . , k} for the broken state, with
k1 andk2 the number of initial and broken states, respectively. The unobserved
value of the counteri during the initial state of lengthυ is denoted byyi , and the
final observed value during timet is denoted byxi . Each counterx is modelled
as a Poisson process with parametersλ [56]. This means that in a given time
the probability of observing one event measured by the counter is exponentially
distributed, and thus is assumed not dependend on the previous events.

Assuming that there aren counters. There arek = k1 + k2 latent states in
the model, wherek1 is the number of initial states andk2 is the number of broken
states. The matrix of Poisson rates in each of these states isλ ∈ �

k1×k2. The
probabilities of thek1 initial states are denoted byω ∈ �

k1 and the matrix of the
transition probabilities from the initial to broken states byr ∈ �

k1×k2.
The device is initially in one of thek1 intact states,z1, with probabilitiesωz1.

At time υ the counteri will have the valueyi drawn from Poisson distribution
with mean
z1i . Then at timeυ it makes a transition to a broken statez2, of which
there arek2 possibilities, with a probabilityrz1,z2. In this state the counteri is
again generated at a different rate
z2,i . The total value of the counteri is thenxi .
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Estimation of the posterior

In choosing the priors it is assumed that no useful knowledge is attainable about
their form, and thus one should resort to non–informative forms. The prior distri-
butions of the variables are

K1 ∼ Uniform{1, . . . , kmax}
K2 ∼ Uniform{1, . . . , kmax}
� ∼ Dirichlet(1, . . . ,1︸ ︷︷ ︸

k1 times

)

Ri,1:k2 ∼ Dirichlet(1, . . . ,1︸ ︷︷ ︸
k2 times

)


i, j ∼ Gamma(α, β)

Z1 ∼ Bernoulli(ω)

Z2 ∼ Bernoulli(Tz1,1:k2)

ϒ ∼ Uniform[0, t]
Yi ∼ Poisson(υ
z1,i ).

Each state is thus considered equally probable. The weights of the states are
Dirichlet distributed, which again means that all possible combinations ofω1, . . . ,

ωki are equally probable with the restriction that
∑ki

j=1ωj = 1. The Bernoulli
distribution here is a discrete distribution where each of thek values have the
corresponding probabilities in the parameter vector. The�–distribution is cho-
sen as a prior for the Poisson rates because it is a conjugate prior of the Poisson
distribution [28].

The likelihood of the observed counter valuesx1:m when the latent variables
and parameters are given is then:

µX(x|t, υ, λ, z) =
m∏

i=1

Poisson(xi |λz1,iυ + λz2,i (t − υ)). (2.11)

The Poisson rates can sampled using the common Gibbs sampling for Poisson
distributions. These are first sampled for the initial states and then kept fixed
for the sampling of the second state rates. The number of latent states can be
chosen in both cases according to the most likely values based on the MCMC
sampling with reversible jump steps, RJMCMC [32]. The posterior distribution of
the parameters can be estimated with the Metropolis–Hastings–Green algorithm.
Similar approaches for mixture distributions have been studied by Viallefont &
al in [86] for Poisson mixtures and by Marrs in [54] for Gaussian mixtures. A
difference here is that the device has a possible change of state from intact state
to a defective state at an unknown point of time, whereas the methods in the
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references assume that the system has always been in one state of which there are
many choises. The RJMCMC jumps between dimensions are done withSplit–
Merge type reversible jump moves. Here the upper index is used to enumerate
through the data samples, and their latent variables. This is done by repeating the
following steps cyclically where in each step is described the parameters to be
sampled while the others are given:

1. Draw eachλ′i, j , k1 < i ≤ k, from�(α+∑
l :{zl

2=i }(x
l
i −yl

i ), β+
∑

l :{zl
2=i }(t

l −
υ l ).

2. Draw eachri,:, i th row of r , from Dirichlet(A), where A ∈ �
k2 , Aj =

1+ ∑
l I {zl

1 = i ∧ zl
2 = j }, whereI (a) = 1 if a is true and 0 otherwise.

3. Draw eachzi
1 from Bernoulli(B), whereB ∈ �

k1 ,
Bj = ωj

∏
l Poisson(yi

l |υ iλzi
1,l
).

4. Draw eachzi
2 from Bernoulli(C), whereC ∈ �

k2 ,
Cj = ωzi

1
Tzi

1, j

∏
l Poisson(xi

l − yi
l |(t i − υ i )λzi

2,l
).

5. Draw eachυi and yi from their posterior by Metropolis–Hastings proce-
dure.

6. In the Reversible Jump step either decide to try a split or merge a random
kernel (the Poisson rate parameters of some latent state) with probability
1/2.

7. Use the split, or merge, map (see below) to a kernelκ chosen at random.

8. Reallocate the latent stateszi
2 = κ, (or while mergingzi

2 = κ ∨ zi
2 = κ + 1)

by drawing from Bernoulli(D), whereD ∈ �
k2 ,

Dj = ωzi
1
Tzi

1, j

∏
l Poisson(xi

l − yi
l |υ iλzi

2,l
).

9. Accept the split proposal with probability

min{1, µX(x|ζ )
µX(x|θ)

|J|
µZ(z)

}, (2.12)

whereθ represents the distribution of all parameters, andµZ(z) is the re-
allocation probability of the latentz and|J| is the Jacobian determinant of
the split map (see below). In case of merge the acceptance probability is

min{1, µX(x|θ ′)
µX(x|θ)

µZ(z)

|J| }, (2.13)

whereµZ(z) is the reallocation probability of the latentz if splitting from
the new state back to the original with the map whose Jacobian is|J|.
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The steps 1 to 4 follow the Gibbs sampling and the steps 5 is a standard
Metropolis–Hastings jump, whereas the steps 6 to 9 describe the reversible jump.

In full Bayesian analysis no fixed values for any intermediate variables are
estimated, but instead the posterior distribution of the variables is propagated
throughout the analysis. The sequential estimation of the parameters can be justi-
fied by practical reasons: to simplify the analysis and to make the sampling faster.

Reversible jump step

The jump between dimensions here is aSplit–Mergemapping [71]. There are
many other forms this could be done. This has been found functional, along with
a similarbirth–deathmapping [71]. The process is done by randomly choosing
with equal probability either splitting or merging a state. In splitting a state the
average rate of the two new states is preserved:

ω′
1λ

′
1 + ω′

2λ
′
2 = ωλ. (2.14)

The other parameter values are copied from the original one. The new values
for ω1, ω2, λ1 andλ2 are then mapped so that all possible positive values ofλ′1
andλ′2 satisfying equation(2.14) are equally probable. This is the following map,
(λi , ωi ,u, v) �→ (λ′i , λ

′
i+1, ω

′
i , ω

′
i+1), in which the latent statei is split, andu, v ∈

[0,1] are drawn from the uniform distribution:

ω′
i = uωi

ω′
i+1 = (1− u)ωi

λ′i = vλi

λ′i+1 = ωi λi −ω′
i λ

′
i

ω′
i+1

.

(2.15)

The Jacobian determinant is then

J = ωiλi

u − 1
. (2.16)

When merging two states, the rate of the new state is solved from the equation
2.14 and the other parameters are copied from one of the two components chosen
at random.

Example

Initially the modelling done in this section was done in cooperation with an indus-
trial corporation, which promised to provide labeled data to be used in the poste-
rior inference and testing. However in the end no such data was provided, and the
functionality of this model can only be shown with a simulations. Nonetheless
it gives a hint that the Poisson parameters can be extracted given that there are



2.2 Application to Fault Diagnostic 15

1 2

63 4 5

BROKEN 1 BROKEN 2

INTACT

Figure 2.1: The state diagram of the example system.

enough counters and that the latent states are sufficiently separated in the param-
eter space.

Take for example the following: the initial, intact, states are labeled as{1,2}
and the final, broken, states are{3,4,5,6}, where the broken states are divided
into two groups, this would present that the device has two different categories
of malfunctions, with the set of states{3,4,5} as one category (class 1) and the
state{6} alone (class 1), see Fig. 2.1. The inital states were equally probable with
Poisson rates and transition matrix:


 =




1 2
2 4
2 8
7 7
9 3
15 15




T =
(

0 1/2 1/4 1/4
1/2 1/4 1/4 0

)
. (2.17)

The simulated data had 25 samples from the initial model, representing intact
devices and 100 samples from the two state model, representing broken devices
(see figure 2.2). The transition time was uniformly distributed.

The parameters of the intact devices were simulated for 1000 rounds and
the parameters of broken devices were simulated for 3000 rounds, with prior
Gamma(α, β) for 
i, j . The convergence of the MCMC simulation was tested
using the Kolmogorov–Smirnov test [73] after a proper subset of the data samples
was selected based on the autocorrelation time to avoid the dependence of con-
secutive samples [60]. The number of the latent states was identified very quickly
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Figure 2.2: Samples of Example 1, intact devices marked with circles, broken class 1
with crosses and broken class 2 with boxes (the axes are the numbers of counters divided
by time).

and the simulation remained very stable on the correct number of states. The es-
timated probabilities, take as the mean of the simulated samples, with the most
likely number of initial states were:


̂ =




1.2 2.0
2.0 4.1
2.0 8.6
7.3 7.2
9.1 3.1
15.6 15.4




(2.18)

The transition probabilities to the first broken class were:

T̂ =
(

0.25 0.47 0.28
0.29 0.49 0.22

)
. (2.19)

In comparison to the true matrix 2.17 it can be seen that the matrices are not
quite the same. This is because some of the observations could be explained as a
transition from the intact state 1 into broken state 1, or as a transition from intact
state 2 into broken state 4, both of which are not possible in the true matrix. This
implies that the transition matrix is not quite identifiable.

The estimated distribution of the initial states was:

ω̂ =
(

0.55
0.45

)
, (2.20)
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Figure 2.3: The true relative values ofυ for the 2–D example compared against the
median estimates with the 90% HPD intervals.

which corresponds sufficiently with the true equal probabilities of the initial states.
The estimated parameters were tested in a simulated classification task for

100 samples from the initial process, representing intact devices, and 500 samples
from the two-state process, representing broken devices. The confusion matrixA,
compared to the 3-Nearest Neighbour classifier is:

A =

 0.92 0.080 0

0.22 0.72 0.064
0.13 0.14 0.75


 A3-NN =


 0.57 0.43 0

0.13 0.85 0.011
0.085 0.64 0.27


 (2.21)

From these matrices one can see that neither method mistakes an intact device
with a broken one in class 2, the first row, but that the Bayesian classifier is much
less likely to confuse an intact device with the broken one in class 1. One could
also use the CART [11] but in cases such as this where the decision border is not
parallel to the counter axes it performs rather poorly with too little data and the
decision tree becomes very large.

The estimation of theυ parameters as the median of the samples for each data
sample is plotted in figure 2.3. The lines are the 90% HPD intervals (Highest
Probability Density intervals) [14]. The uncertainty of the estimates comes from
the facts that the data does not contain direct information of the transition point,
and that there is only one observation related to estimation of each transition point,
and thus the estimates tend to come from the uniform prior. In estimation of the
classification, theυ dependency was marginalised by summing over the estimated
υ values of the simulations. The classification based on maximal probability bor-
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Figure 2.4: On the left is the maximal probability classification borders for the 2-
dimensional example, the values of the counters in unit time, and on the right the 3–
Nearest Neighbour classifier for the same data. The black is the area of intact devices
(class 0) and the gray broken class 1 and white broken class 2.

ders compared with the 3–Nearest Neighbour classifier can be seen in figure2.4.
It can be seen that that the Bayesian model gives a smoother transition between
the classes, as it can be assumed.

2.2.1 Discussion

The two states of the process can be recognised by the final values of the counters
when the dimension (the number of counters) is large. The one–dimensional case
is not identifiable as the observed phenomena can be explained by varying the
distribution of the transition point of which there is no direct information. Also if
there are too few counters and too many latent states the counters may not con-
tain enough information to separate all the inner states. The estimation becomes
more difficult when the transition has occurred close to the end of the total time,
in which case the counters only exhibit behavior of the initial states. In this es-
timation the availability of data for purely intact devices, and presence of more
than one counter to record events, is critical.

The MCMC simulation results of the posterior distribution of the fault diag-
nostic example indicates that the parameters and the latent states can be identified
from the 100 observations. It is also apparent that even when it is not possible
to determine when the device was broken classification can still be done. The
estimation is difficult for those observations for which the transition has occurred
close to the end of the total time, as there has not been enough time for the events
indicating the fault to accumulate. It was also assumed that estimation can be
first done for the intact devices. It is also necessary to have one counter to record
events. Even if the number of counters is very large it does not affect the func-
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tionality of the model, however it may slow down the MCMC simulation.
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Chapter 3

Metrics of probability
distributions

Model selection is naturally also about model comparison, which needs a metric
of some kind on the models, or a goodness–value. A metric is a value between
two elements, whereas a goodness–value is assigned for a single element. The
value of a model could be determined by its usefullness. This chapter introduces
a new metric calledtransformation discrepancy, which thus can also be used in
model selection schemes. Its advantages are that it is based on the natural metrics
on the sample space or utilities of the models.

One value for comparison is the goodness-of-fit of the model to the observa-
tions [56]. Also in use are the entropy based metrics [42], which are based on
Shannon’s information theory[81]. However, the value could be defined from the
usefulness of the model, such as the cost, or benefit gained by the decision based
on it. This thesis presents a totally new kind of a metric calledtransformation
discrepancywhich essentially extends a metric on the samples to cover the distri-
butions [43]. In applications such as clustering or image analysis one often needs
a measure of similarity between sets, an image being also a set of sorts for which
a similarity measures can be used [68]. Also Bennett et al. have a treatise on the
framework of Kolmogorov complexity as such a measure [7]. In this chapter is
presented a new metric based on a metric on the sample space.

When speaking about any objects a measure of difference gives the means of
comparing them. This is equally true for locations in space, weights of items, and
probability distributions. Formally such a measure is called a metric. A metric
has three mathematical characteristics [74]:

Definition 1 A metric is a binary functionδ(·, ·) such that

1. (Positivity)∀x, y : δ(x, y) ≥ 0 andδ(x, y) = 0 iff x = y.

2. (Symmetry)∀x, y : δ(x, y) = δ(y, x).
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3. (Triangle inequality)∀x, y, z : δ(x, y)+ δ(y, z) ≥ δ(x, z).

3.1 Information–theoretic metric

A common form of a metric on probability distributions starts with the concept of
information. Information contained in a random variable is a measure of disorder,
or the average number of symbols that are needed to describe the observations [81,
18]. While the minimal code- ength required for the communication of an element
x is undecidable, the logarithm of the probability logµX(x), or the Shannon–Fano
code length, is a useful upper bound [50]. The average of this code–length, and
the measure of information, is calledentropy[81]:

H(µX) = E{logµX(X)}. (3.1)

When comparing a distribution of a random variableX to that of another
random variableY, their Kullback–Leibler discrepancy is the average difference
of their Shannon–Fano code lengths:

K L{µX |µY} = E{logµX(X)− logµY(x)} = H(µX)− E{logµY(X)}. (3.2)

This definition is not symmetric —one gets a different value ifY is compared to
X, but it is zero if and only ifX andY are identically distributed. Of course there
are natural extensions to a symmetric form and thus to a proper metric [42].

3.2 Utility based metrics

Metrics, like the prior, are mostly based on the views of the statistician, and
the environmental constraints which essentially come from the purpose of the
model and the decision based on it. In the previous section this purpose was data
compression, and so also communication, but other applications of the statistical
knowledge pertain. For example the expected return of a gambler, efficiency of a
classifier, accuracy of measurements etc.

The concept of atransformation metricis slightly different from the stand
points of the Kullback–Leiber type metrics. There the transformation refers to
a process of changing the events for which the probability is calculated in one
distribution such that the resulting events would match the probabilities of another
distribution. The following treatise in this section on the transformation metrics
can be illustrated by a physical methaphor: one could think of two clusters of
particles. The energy required for moving the particles is prortional to the distance
moved; naturally the very definition of work. For the two clouds of particles the
metric between them is the minimal energy one would need to move the particles
from one cloud into a configuration reminiscent of the formation in the other. In
this kind of principle starts the building of the transformation metric.
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3.2.1 From utilities to metric

When one can assign utility, or a cost, to each possible event, or there are readily
available means for comparing two events, then this can be used to derive a metric
on sets of events. A metric on distributions can then be obtained at the limit when
the sizes of these sets grow to infinity.

The notation ofF is used in this section for the space of parameters for a
family of functions� × F −→ � . We callF completeif for all x, y ∈ � there
existsθ ∈ F such that,fθ (x) = y.

A utility function U : � −→ � assigns a value to each elementx in the
sample space. Here the reference is to cost–like thinking: the lower the value the
better. From this one can get a pairwise cost, ordiscrepancy C: � × � −→ � of
elementsx andy by a path–integral; the total cost on a shortest path:

C(x‖y) = min
γ (x,y)

∫
γ

dU, (3.3)

whereγ (x, y) is a path connectingx andy. This cost is not quite a metric, as it is
quite possible to have separate itemsx andy, x �= y, such thatC(x‖y) = 0, but
this is not a problem per se, but only an indication that these elements are of equal
value. Of course the cost–functionC(·‖·) may be naturally available directly –a
metric on� for instance. Of courseC need not be the result of a minimisation
process but can be explicitly defined.

Another approach would be to use a cost functionK : F × � −→ � that
measures the cost of different waysa can be transformed into something else
by functions parametrised byθ ∈ F . Then a pairwise cost can be defined as
C(a‖b) := minθ K (θ‖a) such thatfθ (a) = b, and∞ if no suchθ exists.

Once there is such a pairwise utility function, it forms a base for the discrep-
ancy for sets of elements. This discrepancy is the sum of the pair–wise discrep-
ancies of the elements in the two sets. Assuming that the two have equally many
elements, then each element in one set can be matched with one in the other set.
There are many such matching but the one that minimises the total is chosen. The
discrepancy on sets becomes the total sum of the discrepancies of these pairs.

A matchingof x1:m andy1:n is a multi-setRof k pairs ofxα1:m andyβ1:n, such that
each element ofxαi andyβj appears exactly once in some pair, andmα = nβ = k.

We then have a set of source pointsx1:m and targetsy1:n, but we still do not
know which elements inx1:m are mapped to which ones iny1:n. Define thetrans-
formation discrepancy Sof setsx1:m andy1:n:

Definition 2 For multi-sets x1:m and y1:n

S(x1:m‖y1:n) = 1

k
min

R

{ ∑
(xi ,yj )∈R

C(xi ‖yj )
}
, (3.4)
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where R is a k–matching of x1:m and y1:n, with k = lcm(m,n) is the least common
multiple of m and n.

This is the average cost of mapping elements in the setx1:m to elements in the
set y1:n. The minimization problem in equation (3.4) is called theminimal per-
fect bipartite matchingproblem in computational complexity theory which can
be solved in time roughlyO(n3) [17]. One algorithm for this problem is called
theauction algorithm, which represents the situation as an auction: the other set
of points are the bidders and the other are the items on auction. The algorithm
proceeds in steps of bids until the bidder have received the items they want [9].
Another algorithm is called thehungarian algorithm, [9], which is much more
abstarct. In this algorithm sets are marked and unmarked until the algorithm ter-
minates.

Enlargening the setsx1:m and y1:m ad infinitum leads to a pairwise cost for
probability functions. One would not venture far by assuming that probabilities
are defined by infinite sets of samples: as all that can be reasoned about them is
by statistics, and the plausibility of all such statistical inference demands that in
the infinite limit the right conclusion can be reached.

Also there is a connection to communication, the theory of Kolmogorov com-
plexity [50] and minimum description length principle [72]. The algorithmic min-
imum description length principle states that the optimal predictive model is the
one which generates the observed data with the shortest description in terms of
computer programs. The cost of transformation is analogous: the complexity of a
string of symbolsy1:n given anotherx1:m, is the length of the shortest program that
readsx1:m and outputsy1:n. Consider, for instance, the following communication
event: Alice and Bob both have access to a source producing a stringx. Alice
wants to transmit to Bob a stringy, but instead of the string itself she transmits to
Bob the description of the function, which Bob can apply on the stringx to obtain
y. Furthermore Alice might be able to send Bob for each symbolxi individually
a description of the functionfi , which, when applied onxi , would produce the
symbol yi . The average amount of transmitted bits is the averageK ( fi ) over the
transmitted code lengths,K ( fi ), of the functions,fi , during the transaction. If the
sequencey = x, then no bits need be transmitted –Bob already knowsy. Here
S(x1:m‖y1:n) is the total amount of bits transmitted from Alice to Bob.

3.2.2 Extension to integral forms

Next it is shown how the above described discrete minimization process can be
extended into continous models and integral forms. Such a formalism enables a
much more powerful approach for the metric, and understanding of its behaviour.

Thedual is a random transformation between two random variables on� :
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Definition 3 Thedual from X to Y is a random variable� onF conditional to
X such that for all x∈ � :

µX(x) = E{J�(x)−1µY

(
f�(x)

)|x}, (3.5)

whereJ�(x) is the Jacobian determinant of f� at the point x.

The dual exists if for almost allx, µX(x) > 0, there exists a parameterθ
such that fθ (x) = y andµY(y) > 0. The dual is not unique, which is easily
demonstrated: let the sample spaces of both distributions be�, and let the set
of functions be the set of affine transformations on�. If the distributions are
ν(y) = δ(y − y′) andµ(x) = δ(x − x′), then anyδ–function onF assigning
positive probability to a transform of the formθ1y′ +θ2 = x′ is an admissible dual
kernel.

In the case of a discrete sample space the dual is a transition matrix: given
p ∈ �

d andq ∈ �
e with the property

∑
i pi = ∑

j qj = 1, a dual is a matrix
� ∈ �

e×d also with∀i
∑

j φi j = 1 such that

�p = q. (3.6)

The solutions� to the system of equations 3.6, along with the constraints, can
be parametrised byde− (d + e) + 1 parameters (de variables ande + d − 1
independent equations).

The transformation discrepancyS is in fact an average ofC. It is the mean
over a specific dual:

Theorem 1 limm→∞ S(X1:m‖Y1:m)
a.s.−→ s and s< ∞ if and only if there ex-

ists a dual� such thatE{K (�‖X)} = s and for all duals�′: E{C(�‖X)} ≤
E{K (�′‖X)}.

Proof: Assume there is a minimal dual� s.t. E{K (�|X)} = s<∞ but
limm→∞ S(X1:m‖Y1:m)

a.s.−→ s′. If |s′| = ∞, this can only happen if there is
xi ∈ � such thatK (θ |x) = ∞ for all θ , and therefore there can be no� with
E{K (�|X)} < ∞. If on the other hand|s′| < ∞ then there exist sequencesx1:∞
andy1:∞ for which S(x1:m‖y1:m) converges tos. Define a sequence of matchings
R1, R2, . . . such thatRm is the minimal matching for setsx1:m and y1:m. For any
subsetA ⊆ � with P(X ∈ A) > 0 define the subsetsAn = {a ∈ x1:n ∩ A} and
Bn = {b ∈ y1:n|∃a ∈ An : (a,b) ∈ Rn}. TakeTn = {θ |x ∈ An, y ∈ Bn : fθ (x) =
y}. Eventually then setTn must be non-empty. Then by the law of large numbers
Tn/n converges to the probability of a dual�′ of X, andS(X1:m‖Y1:m) converges
to E{K (�′‖X)} = s′, because eachRi is minimals = s′. �

Thus at the limit when the number of samples goes to infinity,S becomes
a metric on the probability distributions with some conditions onK , as will be
shown later. The difference between the Kullback–Leibler distance andS is that
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KL measures the difference between the code lengths of the elements in the sam-
ple space, whileS is the cost that it takes to transform sample sets from one
distribution to another.

3.2.3 Convergence ofS

Next it can be shown that the transformation discrepancy converges with a proper
selection ofC, and also obtaining an average bound. Results of convergence
bounds such as these are quite common in learning theory (see for example [20]),
and here follow similar lines of reasoning. The most significant difference is that
here the set of models, within which the bound is obtained, is the set of all models
represented by finite (or infinite) sets of random samples. Parisi in [66] analysed
the value ofSas the sum of the matching problem with some simplifying assump-
tions on the distribution of the values of termsC(xi |yj ) with different values ofxi

andyj . The results of [66] however do not generalise well.
A restriction on the cost functionC must first be imposed. This restriction

should still cover as many forms ofC as possible. It is here chosen as:

Definition 4 The function C isuniversalif |E{C(X|Y)}| < ∞ for all random
variables X and Y with finite variance.

Using such a cost function it can now be shown that the transformation dis-
crepancySconverges:

Theorem 2 If C is universal andF is complete, then for all IID random variables
X1:∞ and Y1:∞ with finite variance,limm→∞ S(X1:m‖Y1:m)

a.s.−→ s<∞.

Proof: For a completeF there exists a dual�. SinceC is universal
E{K (�|X)} < ∞ and therefore by Theorem 1 limm→∞ S(X1:m‖Y1:m)

a.s.−→ s <
∞. �

Also the same can be now formulated with expectations instead of limiting
values on the sizes of the sets involved:

Theorem 3 If C is universal andF is complete, then for all IID random variables
X1:∞ and Y1:∞ with finite variance there exists a constant c such that for all m
E{|E{S(X1:m‖Y1:m)} − S(X1:m‖Y1:m)|} ≤ c√

m
.

Proof: By Theorem 2Sconverges and therefore by Theorem 1S is an aver-
age over some dual. The value ofS(X1:m‖Y1:m) is a random approximation of the
integralE{C(�|X)} < ∞. By the Koksma-Hlawka inequality [64] we know that
the error will be
E{|E{S(X1:m‖Y1:m)} − S(X1:m‖Y1:m)|} ≤ c√

m
, for somec proportional to the vari-

ation ofC(X|Y). �

Thus we know that the value of the transformation discrepancy entails a ran-
dom error of the order 1/

√
m with regards to the number of samples. This is

analogous to the error of numerical integration with random samples.
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3.2.4 Sas a Similarity Measure

The transformation discrepancy measure can as well be a useful tool in evaluating
the similarity of objects, such as images or documents of text. For this the function
S(·|·) can be treated as a measure of similarity between discrete subsets of the
sample space.

Denote the set of all infinite discrete subsetsx1:∞ of � that satisfies limm→∞∑m
i=1µ(xi ) −→ ∞ for some probability distributionµ with finite variance as�.

When setsx1:∞, y1:∞ ∈ �are such that for all subsets the limiting distributions of
x1:∞ andy1:∞: A ⊂ � : limm→∞ |x1:m∩A|/m = limn→∞ |y1:n∩A|/n (the average
number of elements inA are equal) they are considered equivalent,x1:∞ ∼ y1:∞.

Often such measures of similarity are required to be monotonic; i.e. similarity
of a set does not decrease by taking the union with a third set. Here, however,
there is not quite such a strong relation, and one has to settle for a weaker weighted
form:

Theorem 4 (Weighted monotonicity) If C is universal andF is complete then
for all x1:∞, y1:∞, z1:∞ ∈ �: (m + n)S(x1:m ∪ y1:n‖z1:o) ≤ mS(x1:m‖z1:o) +
nS(y1:n‖z1:o).

Proof: First note thatS(xα1:m‖yβ1:n) = S(x1:m‖y1:n).

(m+ n)S
(
(x1:m ∪ y1:n)o‖zm+n

1:o
) = 1

o

∑
(wi ,zj )∈R1

C(wi‖zj ), (3.7)

whereR1 is the minimal matching of(x1:m ∪ y1:n)o andzm+n
1:o .

mS(xo
1:m‖zm

1:o) =
1

o

∑
(xi ,zj )∈R2

C(xi ‖zj ), (3.8)

whereR2 is the minimal matching ofxo
1:m andzm

1:o.

nS(yo
1:n‖zn

1:o) =
1

o

∑
(yi ,zj )∈R3

C(yi‖zj ), (3.9)

whereR3 is the minimal matching ofyo
1:n andzn

1:o. Adding equations (3.8) and
(3.9) there are the same terms as in (3.7) but summed over a different matching.

∑
(wi ,zj )∈R1

C(wi‖zj ) ≤
∑

(xi ,zj )∈R2

C(xi ‖zj )+
∑

(yi ,zj )∈R3

C(yi‖zj ) (3.10)

=
∑

(wi ,zj )∈R2∪R3

C(wi‖zj ) (3.11)

as the pairingR1 is by definition optimal. �
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The relation in Theorem 4 is an equality when the samples are equivalent.
Easily, if xα1:m = yβ1:n for someα andβ, in which caseR1, R2 andR3 in the proof
of Theorem 4 are the same, but there is a more general result:

Theorem 5 If C is universal andF is complete and x1:∞ ∼ y1:∞ then for all
z1:∞ ∈ �: limm→∞ S(x1:m|z1:n) = limm→∞ S(y1:m|z1:n).

Proof: Let X1:∞ be distributed according to the limiting distribution ofx1:∞.
limm→∞ S(X1:m‖z1:n) = limm→∞ S(x1:m‖z1:n). Then note thaty1:∞ has the same
limiting distribution. �

Finally it can be seen thatS is in fact a metric on the space of probability dis-
tributions, at least on the set where models are represented by sample sequences.

Theorem 6 If C is a metric on� , then S is a metric on�.

Proof: First noting thatS(x1:∞‖y1:∞) is the limiting sum of elementsC(xi ‖yj ).
It can be seen that of the three parts following the Definition1 of a metric of which
the the 3rd property, the triangle inequality, requires the most attention: Assuming
that ∀a,b, c ∈ � : C(a‖b) + C(b‖c) ≥ C(a‖c) it is needed to be shown that
∀x1:∞, y1:∞, z1:∞ ∈ � : S(x1:∞‖y1:∞)+ S(y1:∞‖z1:∞) ≥ S(x1:∞‖z1:∞). For some
m ≥ 1 take finite subsets setsx1:m, y1:m and z1:m. Let the optimal matching of
x1:m andy1:m be R1, of y1:m andz1:m be R2 and ofx1:m andz1:m be R3. Take other
subsetsa1:n ⊆ x1:m, b1:n ⊆ y1:m andc1:n ⊆ z1:m for some 1≤ n ≤ m such that for
all 1 ≤ i ≤ n : (ai ,bi ) ∈ R1, (ai , ci ) ∈ R3 and for 1≤ i ≤ n−1 : (bi , ci+1) ∈ R2

and(bn, c1) ∈ R3. The setsa1:m, b1:m andc1:m can always be found, as the itema1,
for instance, can be chosen. This item will have some pairsb1 andc1, but the pair
of a1 in R2 is not b1 then the loop is continued by adding the itemb2 for which
(a1,b2) is in R2. This process is continued until for somebk the pair(a1,bk) is in
R2, which will inevitably be found as the setsx1:m, y1:m andz1:m were finite. The
sums inS(x1:m‖y1:m), S(x1:m‖z1:m) andS(y1:m‖z1:m) are composed of sums over
such cyclic subsets. Assume by contradiction that

n∑
i=1

C(ai ‖bi )+
n−1∑
i=1

C(bi ‖ci+1)+ C(bn‖c1) <

n∑
i=1

C(ai ‖ci ). (3.12)

However on the left hand side of Equation3.12 it is known that for alli : C(ai ‖bi )+
C(bi ‖ci+1) ≥ C(ai ‖ci+1). Thus for the left-hand-side of Equation 3.12 it applies
that

n∑
i=1

C(ai ‖bi )+
n−1∑
i=1

C(bi ‖ci+1)+C(bn‖c1) ≥
n−1∑
i=1

C(ai ‖ci+1)+C(an‖c1), (3.13)
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which in turn by Equation 3.12 must be less than
∑n

i=1 C(ai ‖ci ). However the
matchingR3, part of which the pairs in the sum

∑n
i=1 C(ai ‖ci ) are, was assumed

optimal. Thus the triangle inequality applies for allm, and then also for the limit
m → ∞. �

3.2.5 Example

These ideas can be illustrated with a simple example. Here a metric form ofS
is chosen, such that for a very simple set of considered distributions this metric
would allow a consistent model selection.

First take a metric in 1 dimensional space, and then apply it to a simple set of
distributions. Let the sample space be the half-space�

+ = {x : x ∈ �, x > 0}.
Take the set of functions as the set of multiplications by scalar:fθ (x) = θx.
Define the cost offθ by

K (θ‖x) = | logθ |, (3.14)

and then a pairwise formC can be derived as explained in the beginning of Section
3.1 resulting to:

C(x‖y) = | log
y

x
|. (3.15)

The identity map f1 will be assigned the minimal discrepancy. This metric is
symmetricC(x‖y) = C(y‖x), and the triangle inequality applies with equality.
For x, y, z ∈ �

+ : x ≤ y ≤ z:

C(x‖y)+ C(y‖z) = | log y
x | + | log z

y |
= log y − log x + log z− log y
= log z

x = C(x‖z).
(3.16)

It can then be shown that the minimal dual can be chosen as a single continu-
ous functionψ : the dual distributionµ�(θ |x) = δ

(
ψ(x) − fθ (x)

)
, for a spesific

functionψ , which is explained below. First note that the matching in equation
(3.4) preserves the order of the elements:

Proposition 1 If x1 ≤ x2 thenψ(x1) ≤ ψ(x2).

Proof: In the following assume thatx1 < x2, and writing y1 = ψ(x1),
y2 = ψ(x2), for a contradiction assume thaty2 < y1. Using the equation (3.16),
one needs to check the following four cases:

i) x1 ≤ y2 < y1 ≤ x2. Looking at the pairs(x1, y1) and (x2, y2) that must
occur in the sum of equation (3.4):

C(x1‖y1)+ C(x2‖y2) (3.17)

= C(x1‖y2)+ C(y2‖y1)+ C(x2‖y1)+ C(y1‖y2) (3.18)

= C(x1‖y2)+ C(x2‖y1)+ 2C(y1‖y2) (3.19)

≥ C(x1‖y2)+ C(x2‖y1). (3.20)
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Therefore, the optimal matching in equation (3.4) cannot contain the pairs(x1, y1)

and(x2, y2).
ii) y2 ≤ x1 < x2 ≤ y1. Then

C(x1‖y1)+ C(x2‖y2) (3.21)

= C(x1‖x2)+ C(x2‖y2)+ C(x2‖x1)+ C(x1‖y1) (3.22)

= C(y1‖x1)+ C(y2‖x2)+ 2C(x1‖x2) (3.23)

≥ C(y1‖x1)+ C(y2‖x2). (3.24)

iii) y2 ≤ x1 ≤ y1 ≤ x2. Then

C(x1‖y1)+ C(x2‖y2) (3.25)

= C(x1‖y1)+ C(x2‖x1)+ C(x1‖y2) (3.26)

= C(x1‖y1)+ C(x2‖y1)+ C(y1‖x1)+ C(x1‖y2) (3.27)

= C(x1‖y2)+ C(x2‖y1)+ 2C(x1‖y1) (3.28)

≥ C(x1‖y2)+ C(x2‖y1). (3.29)

iv) y2 < y1 ≤ x1 then

C(y1‖x1)+ C(x2‖y2) (3.30)

= C(x1‖y1)+ C(x2‖y1)+ C(y1‖y2) (3.31)

= C(x1‖y1)+ C(x2‖x1)+ C(x1‖y1)+ C(y1‖y2) (3.32)

= C(x1‖y2)+ C(x2‖y1)+ 2C(x1‖y1) (3.33)

≥ C(x1‖y2)+ C(x2‖y1). (3.34)

�

As the elements are in the same order, as long as neither distribution contains
atoms, the dual mapping has to be a deterministic function.

Next consider uniform distributions with a parameterθ > 0:

µ(x|θ) =
{ 1

θ
if x ∈ (0, θ]

0 otherwise
. (3.35)

Let X1:∞ have a distributionµ(·|θ) and letY1:∞ have a distributionµ(·|ρ). When
the functions are scalar multiplications, and because the matching is order–preserving
at the limit m −→ ∞ there is a matching defined by a continuous function
ψ(x) = ρ

θ
x, and then

lim
m→∞ S{X1:m‖Y1:m} =

∫ θ

0
µ(u|θ)K (ρ

θ
|u)du (3.36)

=
∫ θ

0

1

θ
| log(

ρ

θ
)|du (3.37)

= | log(
ρ

θ
)|. (3.38)
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This is a proper metric for the considered distributions. Thus the minimal trans-
formation discrepancy estimateρ of θ is consistent. Note that this is the same
as the Kullback–Leibler divergenceK L(X|Y), if θ ≤ ρ, but if θ > ρ then
K L(X|Y) = ∞.

3.2.6 Discussion

In this section a metric on probability distributions based on a metric on the sam-
ple space was introduced. It was shown that this metric can be calculated as a
minimised sum of the pairwise costs of the samples from the two distributions.
Also it was established that with some restrictions on the underlying metric this
sum converges into an expectation of the pairwise cost. This metric can serve in
model selection or classification of random groups. A small example was used to
show some analytic results that can be obtained with this metric.
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Chapter 4

Uncomputable Likelihoods

There are cases where the likelihood termµX(x|θ) in equation (2.1) cannot be
practically computed. Then the inference can still be carried out with a simu-
lational method by sampling elementsy1:n according to the distributionµX and
comparing them to the observationsx1:m. This problem was addressed by Diggle
and Gratton [21], and the termindirect inferencewas advanced by Gourieroux et
al. [31]. In this chapter a new approach is suggested which is based on the metric
considerations of chapter 3 [44].

This problem arises for example when one attempts to infer the generating
dynamics of a moving particle. The dymanics of the particle is defined by a pos-
sibly stochastic system of differential equations. In this system the particle begins
its movement from a random initial point and then follows a distinct trajectory.
Here the motion can be considered to be due to one of many possible models,
of which correct one is sought. However, the dynamical process, which governs
the action of the particle, may not be time–invertible and thus cannot be traced
back to its origin when only the final resting place of the particle is seen. Also the
distribution of the random initial condition may not be propagated analytically to
the final state. The lack of invertibility and the randomness of the system prevents
computing the probability of the observations.

This kind of estimation of the likelihood function also provides means for a
goodness–of–fit test. Given two sets of samples for which the approximation of
the likelihood can be calculated can be viewed as the probability that they have
the same distribution. Gelman et al. referred to such an approach asrealised
discrepancies[29].

The rest of this chapter is organised as follows. First methods for estimating
the posterior probability of observations, when the exact probability is not practi-
cal to compute, are discussed. At the end of the chapter there are simple artificial
examples in which the methods are applied.
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4.1 The estimation model

The estimation of the likelihood function can be constructed so that for each data
sample from the model, called areplica, a noisy observation is made. The noise
may change the replica a small amount, relative to the metric of the sample space.
When the variance of this added noise is brought to zero, which in this approxima-
tion is required to happen as the number of replicas approaches infinity, naturally
the the approximating likelihood should approach the noisless likelihood.

The model is the same as in Chapter 2 Equation 2.1:

µ�′(θ |x1:m) ∝ µX|�(x1:m|θ)µ�(θ), (4.1)

where the value of the likelihood termµX|�(x1:m|θ) was not possible to be com-
puted, but from which samples can be generated.

The approximating model has additional variables: the latent random variable
Y is distributed identically asX and are conditional to the model parameterθ , and
the observable variableŝX1:m are conditional toY1:n. With this notation the orig-
inal model is discriminated from the approximation. The hierarchical posterior
probability density ofθ , and the replicasY′

1:n, is then:

µ�̂′,Y′
1:n
(θ, y1:n|x1:m, ρ) ∝ µX̂1:m(x1:m|y1:n, ρ) µY(y1:n|θ) µ�(θ). (4.2)

Let us concentrate on the modelling of the right-hand side latent variable like-
lihoodµX̂1:m(x1:m|y1:n, ρ). In the models to follow one should note that the nuis-
sance parameterρ is not usually identifiable by the data, and thus is mostly defined
by its priors.

When modelling the predictive distribution ofX, also the latentY1:n needs to
marginalised. This is done as:

µn
�̂′(θ |x1:m, ρ,M) =

∫
µ�̂′,Y′

1:n
(θ, y1:n|x1:m, ρ,M)dy1 . . . dyn, (4.3)

wheren is superscripted to the left hand side because the dependency on the num-
ber of replicas remains. The integration of the equation can be done efficiently by
MCMC simulation.

4.2 Kernel estimate

Here is presented the first of the two methods suggested by the hierarchy of equa-
tion (4.2). By using the standard method in Bayesian inference the latent variables
are marginalised. In fact, it then becomes evident that this corresponds to the stan-
dard kernel estimate of the likelihood function.

For simplicity setm = n, and X̂1:m are IID and for eachi conditional to a
latent variableyi . In this case the realization of eachYi as individually perturbed
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to produce the observation ofX̂i . From this scheme follows the formula for the
latent variable likelihood:

µX̂(x1:m|y1:n, ρ) =
n∏

i=1

µX̂i
(xi |yi , ρ). (4.4)

When the sample space isd–dimensional, each factor of the product is defined
by a kernel density functionωρ(x) = ω( x

ρ
)/ρd with bandwidthρ. This kernel

function is maximised at zero, and is usually symmetric. One very often uses the
Gaussian kernels of the formω(x) ∝ e−‖x‖2

. Then the latent variable likelihood
gets the form

µX̂(x|y, ρ) = ωρ(x − y). (4.5)

When performing the marginalization of (4.3) overY′ with n MCMC samples
{y1, . . . , yn} one gets

µX̂(x|θ, ρ) =
∫
µX̂(x|y, ρ) µY(y|θ) dy ≈ 1

n

n∑
j=1

ωρ(x − y j ) (4.6)

as an approximation of the likelihood with a kernel estimate with bandwithρ.
The bandwith can be asymptotically chosen as a plug-in estimate:

ρ = c
d+4
√

n
, (4.7)

wherec depends on‖∇2 p(x|θ)‖L2 and the choice of kernel [82]. Whenn goes
to infinity the estimate on the right-hand side of (4.6) approaches the likelihood
µX(x|θ), recovering the original posterior of equation2.1.

4.3 Indirect inference

If one calls as a direct approach the computation ofµX(x|θ), when possible, and
using this knowledge to inferθ , then the alternative, when samples ofX can be
drawn, can be referred to as indirect. Construct a model where allX1:m are con-
ditional to all y1:n, by defining a binding probability densityµX̂1:m(x1:m|y1:n, ρ),
where one assumest thatX̂i are exchangeable, but not independent.

4.3.1 Method of Gourieroux

Gourieroux et al. proposed the first method for this kind of a problem and dubbed
it indirect inference [31]. To start they use the model to generate a set of samples.
For these samples they compute a statistic, and then compare this statistic to the
corresponding statistic of the observations. The best model is chosen by compar-
ing the statistics of the simulations to the statistics to the observations, by a metric
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on the statistics. In this framework the difficulties of the computation of the like-
lihood have always been about marginalization over some latent variables, which
presently can well be solved by MCMC simulation, see for example [73, 60].

In this methodology, in absence of a way to evaluate the functionµX(x|θ), one
uses a simpler model (called theauxiliary model), with a parameterζ ∈ Z. One
assumes that this parameter can be easily estimated asζ̂ (x1:m), which is astatistic
of the observationsx1:m —a measure computed from a set of data values. By
generating a set of random samplesy1:n of Y1:n one then tries to find a parameter
θ that minimises distance of the parameters, relative to some metric onZ. The
Gourieroux et al. defined abinding functionas that closest parameter given the
observations.

In the spirit of what follows we could define a probability in the model (4.2):

µX̂1:m(x1:m|y1:n) = Ne−mδ(ζ̂ (x1:m)|ζ̂ (y1:n)), (4.8)

whereN is a normalizing constant. The multiplierm is in the exponent to make
the probability dependent on the number of samples, which is required for the
posterior probability to converge correctly. One should note that this dependence
is not otherwise present in the formula through the metricδ.

The critisism of this method is firstly: closeness in the metric used in the defi-
nition of the binding function does not imply that the functions behave in a similar
manner. Rather, it might be wiser to use metrics on probability distributions, like
total variance or the Kullback–Leibler divergence, but this would make the evalu-
ation of the distance more complicated. Secondly: in order for this method to be a
useful way of estimatingθ in terms of an easier estimateζ̂ , it should be clear that
the simpler model must then be a sufficient statistic forθ . An analysis of this may
be a difficult task since the likelihood with the model, with parameterθ , is hard
to compute. Also if the binding provides a consistent estimator forθ , it implies
that the space of distributions defined by� has to be a subset of the modelsZ.
However it does not assume a metric on the sample space which may be a benefit.

4.4 Inference with transformations

Another variant of the indirect inference technique, where the problems men-
tioned above are corrected is to utilise a metric on the sample space. In this
method the metric binding function is replaced with a metric on probability dis-
tributions. A practical form, easily computable for sequences of random samples,
is thetransformation discrepancymeasureSof equation3.4.

Basically one would look at the probability of seeing two sets of samples a
given discrepancy apart subject to a hypotesis that they have the same distribution.
Naturally this probability depends on the distribution in question, and the metric
used. Thus it would be hard to say anything properly general, but one can guess
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that a form decreasing with distance is appropriate. In fact one can take what is
given in physics, the exponential of the negative distance, for this distribution:

µ(x1:m|y1:m) ∝ e−mS(x1:m|y1:m). (4.9)

The exponentm is also required to get a dependency on the number of samples.
Without this factor the inference based on this probability would be consistent but
not efficient; the average is correct but it has too wide variance.

A similar approach to the kernel estimate is to marginalise over the latentY1:n
as in section 4.2. When adding an additional multiplier, a weightρ, which now
is proportional tom, on the exponent of the right hand side. of the equation (4.9)
one has

µX̂1:m(x1:m|y1:n, ρ) = Ne−ρS(x1:m|y1:n), (4.10)

whereN is a normalizing constant. With the theory of simulated annealing [1] we
can again recover the original posterior of equation (2.1), as stated in Theorem 7.

Theorem 7
lim
ρ→∞µ�

′(θ |x1:m, ρ) ∝ µX(x1:m|θ) µ�(θ). (4.11)

Proof: Whenρ −→ ∞, µX̂1:m(x1:m|y1:m, ρ) approaches theδ–distribution
such thatδ(x1:m, y1:m) = 0 if x1:m is not the same sequence asy1:m upto the order
of the symbols. Further

∫ ∫
µX̂1:m(x1:m|y1:m, ρ)µY(y1:m|θ) µ�(θ)dy1 . . . dym =

µX(x1:m|θ) µ�(θ). �

A different perspective is to marginalise the latentY1:n to compare different
values ofθ . When the number of replicas is increased, the measureS(x1:m|y1:n)
becomes no longer a random variable. This is the content of the next Theorem8.

Theorem 8 If C is universal andF is complete and Y has finite variance then

lim
n→∞

µ�̂′,Y′
1:n
(θ,Y1:n|x1:m,M)

µY(Y1:n|θ)
a.s.−→ lim

n→∞µ
n
�̂′(θ |x1:m,M). (4.12)

Proof: First, Theorem 3 implies thatS(x1:m|Y1:n) converges almost surely
to some constants < ∞ whenn −→ ∞ andY has finite variance. Then the
expression on the left hand side is a limit of:

µX̂1:m(x1:m|Y1:n, ρ) µ�(θ), (4.13)

which according to its definition in (4.9) depends onn throughS(x1:m|Y1:n) and
thus converges to some valueq by Theorem3. Likewise the right hand side is the
average over the equation (4.13), which by theorem 3 also converges to the same
valueq. �
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Theorem 8 implies that the termµY(y1:n|θ) can be ignored provided that there
are sufficiently many replicas when calculating the posterior marginal (4.3).

The transformation discrepancy can be used to evaluate the posterior goodness–
of–fit posteriorp–value, which here is the probability of observing a larger dis-
crepancy of two sets, which are identically distributed, than the discrepancy of
x1:m and replicas [29]. This as an average:

pval(x1:m) = E{P(S(Z1:m|Y1:n) ≥ S(x1:m|Y1:n))}, (4.14)

where Z1:m and Y1:n are IDD, and the average is also taken over the posterior
distribution of the model parameters. This is the average probability of observing
values ofS larger thatS(x1:m|Y1:n). A p–value close to 0 would imply a good fit:
an unlikely thing to see larger discrepancies than that of the observations. This
can be easily simulated with MCMC by generating samplesθi from the posterior
and for each generatedθi generate two sets of replicasz1:m andy1:n. The posterior
p–value is estimated as the ratio of incidences whereS(z1:m|y1:n) was larger than
S(x1:m|y1:n).

4.4.1 Examples

Uniform distribution

Taking as the first example the simplest: the underlying true model is a uniform
distribution over the real interval[0,1] — a distribution hardly uncomputable but
which is used for the sake of an exeample. Using the three methods discussed,
the kernel model, the transformation model and the Gourieroux model in the suc-
cession is demonstrated that the distribution can be estimated using these indirect
methods.

In the kernel model take the Gaussian kernels, and Scott’s rule for the band-
width: ρ = ỹ1:nn−1/5 [80], whereỹ1:n is the sample standard deviation ofy1:n.

In terms of Gourieroux et al. the Gaussian distribution as the auxiliary model
with the estimated parameters

ζ(x1:n) =
(

x̄1:m
x̃1:m

)
, (4.15)

where x̄ is the sample mean ofx1:m. Under the assumption that the true dis-
tribution is uniform the above mapping does provide sufficient statistics to in-
fer the bounds of the uniform distribution (the parameters of a uniform distribu-
tion given the mean and standard deviation are

(
min(A, B) max(A, B)

)T
, where

A = µx −√
3σx andB = µx +√

3σx).
The measure of the magnitude of the error by the L1-measure of probability

distributions is:

ε =
∫

|ν(u)− ν̂(u)|du, (4.16)
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whereν is the true probability distribution function, andν̂ is the estimate obtained
from the data.

Assume that the lower bound lies in the set{−1,−0.9, . . . ,0.5} and the upper
bound in{0,0.1, . . . ,2.5}, and that a priori all these values are equally probable.
When there arem = 10 observations, one needs to generaten replicas for each of
these 220 different models. The values of the kernel estimate, the transformation
discrepancySestimate, and the Gourieroux estimate, for the exact same observa-
tions x and replicasy on this grid serve for comparison. To obtain statistics the
process for 100 observation sets is repeated. The estimation was trialed with the
L1-measureε in (4.16) of the true distribution against the Bayesian posterior pre-
dictive distribution of equation (2.2). The efficiency of the maximum likelihood
point-estimates: choosing the model maximizing the likeilihood, or its estimate,
is also of interest here.

In Figure 4.1 is plotted the average error as a function of the number of replicas
for each three methods. One should pay attention to the efficiency of the different
methods to use the information in then replicas. It can be seen that the indirect
methods reach the base level of the average error of the Bayesian posterior with
the true likelihood with 20 replicas, and they are more efficient than the kernel
method in utilizing the replicated data. The fact that the kernel goes below the
base line atn = 16 can be accounted for by statistical fluctuations rather than
that the kernel method would be capable of extracting more information than the
true likelihood. This assumption is supported by Figure4.2, where is plotted the
standard deviation of the error. It can be seen that the kernel method is roughly 3
times more volatile than the others.

In Figure 4.3 is plotted the average error for the maximum likelihood esti-
mates, with the true ML–estimate (a uniform distribution on[min(x1:m),max(x1:m)])
as the base line. All the methods are in this sense about equivalent, reaching the
base line aftern = m = 10 replicas, and outperforming after that mainly because
of the finite grid for the parameters: a quantization effect. Also the standard devi-
ations of the maximum likelihood estimates are similar as can be seen from Figure
4.4. Thus these three approximation functions have their extreme values at about
the same location.

The Lorenz system

As the second example is chosen a chaotic system having a strange attractor. A
chaotic system is such that a small perturbation in the location of a particle induces
a large deviation in the future position of the particle. Due to the nature of the
system it becomes untraceable to know where a given particle was before, within
finite accuracy. For this model analytic results are hard to come by and therefore
only the MCMC simulation results are shown.
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Figure 4.1: The average L1-errorε of the posterior predictive densities as a function of
the number of replicasn. The vertical line is the average error when the true likelihood is
used.

2 4 6 8 10 12 14 16 18 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

n

σ(
ε)

kernel
conversion
Gourieroux

Figure 4.2: The standard deviation of the L1-errorε of the posterior predictive densities
as a function of the number of replicasn. The vertical line is the standard deviation of the
error when the true likelihood is used.
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Figure 4.3: The average L1-errorε of the maximum likelihood estimates as a function of
the number of replicasn. The vertical line is the average error of the true ML–estimate.
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Figure 4.4: The standard deviation of the L1-errorε of the maximum likelihood estimates
as a function of the number of replicasn. The vertical line is the standard deviation of the
error for the true ML–estimate.
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The Lorenz attractor [79] is a chaotic system of differential equations:

ż1 = q1(z2 − z1)

ż2 = q2z1 − z2 − z1z3

ż3 = z1z2 − q3z3

, (4.17)

whereq1,q2, andq3 are the model parameters andz1, z2 andz3 are spatial loca-
tions.

The standard choice for the parameters areq1 = 10,q2 = 28 andq3 = 8/3.
The initial value ofz is (0 0 0)T + η, whereη ∼ N(0,10−1) is a Gaussian noise
term. For statistical observation we takem points from a numerical simulation of
T = 104 time steps, sampled at intervals of�t = T/m, but assuming here that
the order of the observed samples is not known, or is not relevant.
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Figure 4.5: Plot of the average posterior estimated paramers for the Lorenz system with
the transformation (◦) and the kernel method (�) as a function ofm. The vertical lines
are the standard deviations of the estimates. The horizontal lines are the true values.

The hypothesis is that the first parameter is inq1 = {5,6, . . . ,13}, the second
in q2 = {23,24, . . . ,31} and the third inq3 = {1,11

3,1
2
3, . . . ,3

2
3}, each in equal

prior probability. We generaten = 100 samples for each of these 729 cases of
parameters, and evaluate the kernel estimate of the likelihood and the value of
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S for these points. Then one can obtain the Bayesian predictive distribution in
equation (2.2). In case of the kernel method Gaussian kernels can be used and
choosing the bandwidth with Scott’s rule [80]. The method of Gourieroux cannot
be applied here because there is no simple sufficient statistic that is known that
would enable its use.

As an estimate take the average parameters over the posterior probability. In
Figure 4.5 are plotted the averages of the estimates over the data and their stan-
dard deviations for the transformation and kernel estimates as a function of the
number of observationsm, when the number of replicas isn = 100. The system
parameters can be estimated with the observations within reasonable bounds. It
can be seen that the first and the second parameters are unbiased after roughly 50
samples, but the third seems interestingly still biased after 100 samples, which can
be warranted as a property of the system rather than a flaw in the methods. While
the kernel gets on average closer with the third parameter it has a larger variance.

4.4.2 Discussion

In this chapter it was shown that even if the value of the likelihood function cannot
be computed the inference can be carried out by adding a latent layer to the hier-
archy. This lead to two estimates: the kernel estimate and the indirect inference.
The examples demonstrated how this methodology can be applied, and that the
correct model can be selected. The Gourieroux method has its distinct problems
requiring a binding function, which must provide sufficient statistics which in turn
may be difficult to prove as the original model had difficulties in the analysis. The
kernel and the transformation methods are about equal in performance relative to
the number of samples drawn from the likelihood.



44 Uncomputable Likelihoods



Chapter 5

Spreading on random graphs

A graph is said to have the small–world propery if the average distance between
the sites is small compared to the size of the graph and average number of con-
nections in the sites. The distance between two sites is the length of a path that
connects them. Another interesting property of such complex networks is the
distribution of the degree, the number of connections to a given site. Graphs as
associative constructions can serve as models for many kinds of natural systems,
such as social relationships [55] or computer networks [24], and their analysis
sheds light on phenomena like epidemic spreading, data network vulnerability
and collapse of transportation routes. This dissertation provides analysis on these
phenomena, specifically what is later called spreading dynamics [45, 46].

Real–world networks are commonly characterised by a large number of pa-
rameters, but in relation to small–world networks is the average distance between
their sites [63, 70, 22]. It has turned out that there is a rich family of small–
world networks which differ in many other respects. For example, the degree
distribution of the sites is Poissonian for the Watts–Strogatz graphs while many
real-world networks are often scale–free, i.e., they have a power law decay for the
degree distribution. To explain this behaviour models of preferential growth have
been introduced [5, 76]. Thus small–world networks are very interesting graphs
not only because of these properties of distance and degree, but also because they
are simple models that sometimes provide exact solutions [62, 46] and because
they are directly appliable, e.g. in polymer physics [37].

Properties of random graphs can be largely investigated by looking at their
response to dynamic randomness of some sort in simulations. Such simulations
could correspond to performing a random walk in the graph, or passing messages
between random sites. Once that is done simply looking at the statistics one can
categorise the network. There are two different forms of disorder for dynamic
simulation, i.e.,annealedandquenched[67]. In the case of quenched disorder
the graph is generated before the actual dynamic process that is studied, and is
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kept fixed during it. In annealed disorder the connections of the graph are ran-
domly updated during the process. The annealed dynamics can often be elegantly
expressed with stochastic equations of updates, where the next state depends only
on the previous state. Thus the annealed model provides more tools for explicit
analysis than the models of quenched disorder [53, 46].

Also of great importance in the analysis of these graphs is the concept of
mean–field approximation. Mean–field in statistical physics means that the inter-
nal interaction forces are replaced with an external field. Here it means specif-
ically that the randomness of the different realizations of the graphs is replaced
with their corresponding average. This sort of analysis was done on small–world
networks by Newman et al. [61], and for the Barabási model by Fronczak et al.
[26]. Both of these papers analysed the clustering phenomenon, i.e., the behaviour
of the formation of large connected components.

The spreading phenomena in networks are perhaps one of the most direct ex-
amples of dynamical processes reflecting the small–world properties. In direct
spreading of e.g. a disease, the sites of the graph get infected by the rule that in-
fection propagates each time step to all uninfected neighbours of already infected
sites [59]. Then the simplest example of non–trivial dynamics could be that of a
diffusing particle in the network. This in turn is related to the intensively studied
process of random walks in random environments as is evident from the two com-
prehensive volumes by Hughes [34], and ben-Avraham and Havlin [6]. Recently
some related papers have been published on the issue of diffusion in small–world
networks, see for example the study of spectral properties of the Laplacian in
them [57]. In addition Pandit and Amitkar [65] have presented some numerical
and analytic results for the spreading phenomenon being characterised by the av-
erage access time to the sites of the system. Furthermore, Jasch and Blumen [35]
published simulation results for spreading in small–world networks using random
walk dynamics with the main quantity of interest being the average number of dis-
tinct sites visited at a given time. This work was also done independently by the
author, Kertész and Kaski [45], and obtained scaling more accurately than what
was reported by Jasch and Blumen.

The rest of this thesis deals with the concept of random graphs. First in this
chapter there is a cursory view of the models, followed by an analysis of the
spreading phenomenon on small–world networks with quenched and annealed
disorder.

5.1 Models of random graphs

Models of random graphs are usually described by a formation process, e.g. adding
new connections between the sites by a rule which may depend on the previously
added connections [23]. Below there are the three simplest basic models -the
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Figure 5.1: An Erdős–Rényi graph with 100 sites.

Erdős & Rényi, the Watts & Strogatz, and the Barabási networks.

5.1.1 Erdős and Rényi graphs

The Erd̋os and Rényi graph has a distribution on the connections with a fixed
number of sitesn. In this model there is a probabilityp, which is a function ofn,
for an connection to exist between any two verticesi and j [10]. Naturally this
means that on average there are aboutpn2 connections in such a graph.

Erdős and Rényi offered a simple proof for the remarkable phase transition
relative to the valuep in the limit whenn → ∞: when p is very small the graph
is quite obviously very disconnected, but whenp crosses over a threshold a large
component emerges. Meaning that, ifp(n) ≥ (logn + c)/n then the probability
for the graph to be connected is greater than 1−4e−c. The transition thus happens
at a small probabilityp. In figure 5.1 an example of this kind of a graph with 100
sites and 100 connections is shown. In this casep ≈ 0.02.

5.1.2 Small–world graphs

It was observed that, for instance in the case of social networks, the distance of
any two people is remarkably short considering the size and the complexity of the
network. The distance here is marked by the number of acquaintances such that a
person would know someone who then knows someone else ultimately connect-
ing any two persons in the network in such a relationships. The first observation
and a proposal for a simple model archieving this small–world property in a ran-
dom graph was reported by Watts and Strogatz [88]. Their model essentially lays
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Figure 5.2: A Watts–Strogats small–world graph with 100 sites.

out a regular lattice, in which the end–point of any of the connections is rewired
with probability p into a randomly chosen new site. The same effect can also be
archieved by adding some connections between any random sites. The added long
range connections provide a passage that significantly shortens the distances. In
figure 5.2 there is an example of a Watts–Strogatz small–world network with 100
sites, 100 connections and the parameter isp = 0.1. An extension to this consept
was introduced by Kleinberg [39] such that the underlying graphs is any lattice to
which long range connections are added.

5.1.3 Scale–free graphs

In natural systems it is widely observed that there is a distinctive lack of a charac-
teristic degree, i.e., no particular number of connections is dominant. The models
that have such a propery are calledscale freenetworks. This was first taken under
scrutiny by Barabási and Albert [5]. Their proposal was a simple construction of
a growing network, realised by beginning from a small initial graph, and adding
each time step a new site, which is then connected to an older site with a probabil-
ity proportional to the degree of the site to be connected to. This eventually gives
rise to a degree distribution following a power-law behaviour, i.e., the degree has
the relationN(k) ∼ k−γ with some exponentγ , for the number of sitesN(k)
having the degreek. Again in figure 5.3 is an illustration of a scale–free graph of
Barabási–Albert type, where it can be seen that some connections are very highly
connected.
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Figure 5.3: A scale–free graphs with 100 sites.

5.2 Spreading on small-world networks

In this section the dynamical spreading phenomenon is defined and then applied to
small–world networks. It is shown that there are transitions relative to the small–
world parameterp in the distributions of the number of distinct visited sites and
the return probability, i.e., the probability of the walker to return the same site, in
the Watts–Strogatz type graphs.

Spreading imitates in a way the diffusion process of a substrate in a medium.
Here the graph is the medium and the substrate is a random walker. The average
number of unique sites the walker visits in a given time,Q(t), is an indicator to
watch for as is the probability of the walker to return to the initial site in a given
time, P00(t). Note that the choice of the origin is not relevant as the system is
homogenous and any site could be chosen.

For comparison it is known that diffusion in a 1–dimensional lattice follows
the power–law with an exponent of one half:

Q(t) ∼ √
t, (5.1)

For higher dimension, however, the spreading turns out to be linear:

Q(t) ∼ t. (5.2)

In small–world graphsQ(t) shows an interesting crossover from the initial√
t behaviour that is characteristic for the one-dimensional case toQ(t) ∝ t be-

haviour describing the high dimensional or random graph situation [35, 45]. As a
function of p andt , Q(t) has a scaling form:

Q(t) = t1/2κQ(tp
α) (5.3)
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whereκQ is a universal scaling function with the following properties:

κQ(x) ∝
{

const for x � 1√
x for x � 1

(5.4)

It is expected thatα = 2 since in the system there exists a basic length scale
l ∝ 1/p, characteristic of the average distance between sites having long range
connections for which the walker needstl ∝ l 2 steps to sweep through. Thus the
argument of the scaling functionκQ in equation (5.3) should bet/tl [35, 45].

Annealed spreading

Here the analysis is taken from the perspective of a system with annealed disorder.
It is shown that although the system is different the dynamics can be transformed
into a form that accurately corresponds to the dynamics of quenched disorder.

The movement of the random walker is governed by the simple master equa-
tion:

∂t Pi (t) =
∑

j=1,N

Ti j Pi (t) (5.5)

where the continuum time limit has been applied. Instead of discrete time steps,
time here is now a continous variable. HerePi (t) is the probability that the walker
is at sitei at time t andTij is the transition rate from sitei to site j written as
follows

Tij = Wij − δi j (5.6)

whereWij is the transition matrix of the following form:

W = (1− p)W(S) + pW(L). (5.7)

Here the superscripts(S) and(L) refer to short and long range jumps, respectively.
The zeroth row of the short range transition matrixW(S) reads as follows

W(S)
0 · = 1

2k
(0,1, . . . ,1︸ ︷︷ ︸

k times

, 0, . . . ,0︸ ︷︷ ︸
N−2k−1 times

,1, . . . ,1︸ ︷︷ ︸
k times

). (5.8)

A similar equation can written to the long range transition matrixW(L):

W(L)
0 · = 1

N − 2k − 1
(0, . . . ,0︸ ︷︷ ︸
k+1 times

, 1, . . . ,1︸ ︷︷ ︸
N−2k−1 times

,0, . . . ,0︸ ︷︷ ︸
k times

). (5.9)

Then thei th row of the transition matrices is obtained by cyclically shifting the
0th row to the right. MatricesW andT have the Toeplitz form, i.e.,Tij depends
only on the site difference(i − j ). Therefore, the right hand side of equation5.7
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is a convolution which after spatial Fourier transform leads the master equation to
the following form

∂t P̂q(t) = (Ŵq(t)− 1)P̂q(t). (5.10)

With the initial condition
Pi (0) = δ0i (5.11)

the formal solution is as follows

P̂q(t) = exp[
∫ t

0
(Ŵq(u)− 1)du]. (5.12)

This solution can be easily evaluated for the matrixW given in equation (5.7).
Then letFij (t) denote the probability of the random walker visiting sitej at

time t having started from sitei . Then we can write

Pij (t) =
∫ t

0
Fij (u)Pj j (t − u)du, (5.13)

wherePij (t) is the probability for the random walker to move from sitei to site j
at timet . From this we get through the Laplace transform the following equation

F̃i j (z) = P̃i j (z)

P̃j j (z)
. (5.14)

Now let us takeq(t) as the probability of observing a new site, or as thespreading
rate at timet when the random walker started from site 0:

q(t) =
N−1∑
i=0

F0i (t). (5.15)

By taking thereturn probabilities Pii (t) to be the same for alli the equation (5.15)
can be written in the following form

q̃(z) = 1

P̃00(z)

N−1∑
i=0

P̃0i (z) = 1

zP̃00(z)
. (5.16)

Having this, the quantity of interest is the average number of distinct sites
visited, which is obtained by integrating the probability of observing a new site,
q(t), over timet :

Q(t) =
∫ t

0
q(t ′)dt′. (5.17)

Using the above formulation of equation (5.16),Q(t) is obtained by the inverse
Laplace transform of the functioñq(z)/z.
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Spreading simulation

In spite of the strong argument for the scaling exponentα to be most likely 2, Jasch
and Blumen [35] found in their numerical simulations of small–world networks
a valueα = 1.85. In the simulations they had chosenN = 50000 by taking an
average over 500 random walkers for each of the 100 small–world networks and
they variedp in the interval 0.01 ≤ p ≤ 0.1. It was established by the author of
this dissertation, Kertész and Kaski [45] that the intuitiveα = 2 relation is correct
as the limiting value whenN → ∞.

The equation (5.3), as is usual in scaling theory, is valid only asymptotically
and in this case the scaling limit isN → ∞, t → ∞ and p → 0. The scaling
regime can be estimated from the variation of the mean vertex distance� as a
function of p [63], it turns out that the distribution of�k/N, wherek is the degree
of the lattice in the small–world network, has a scaling function with the argu-
mentx = pkN and which is of sigmoidal shape. This curve suggests that one
cannot expect a good scaling for the above mentioned crossover, ifpkN � 100.
Therefore, it seems likely that in [35] the investigated values ofp were not small
enough to assure the proper scaling behaviour (in fact Jasch and Blumen had
pminkN = 1000 which is perhaps not large enough [35]).

For this reason the simulations must be carried out with considerably smaller
values ofp. In order to do so, the system size must be increased as well. A more
proper choice isk = 2, N = 105 and varying thep as p = 10−4,10−3.5,10−3,

10−2.5. In order to estimate the average ofQ(t), 100 realizations and 100 random
walkers per realization results in an adequate statistics, i.e.,pminkN = 20. The
average number of distinct visited sitesQ(t) as functions oft and p, is depicted
in figure 5.4. In this plot it is seen that for the two largest values ofp saturation
of Q(t) has set in.

Figure 5.5 shows a scaling plot of the results onQ(t) whereQ(t)/
√

t is plot-
ted as a function oftpα . The scaling was found to be optimal with the choice
of α = 2. For comparison the same plot withα = 1.85, which is the value
found in [35], is also shown. The results clearly support the simple scaling picture
discussed above, i.e.,α = 2.

Return probability

The return probability stands for the probability of the random walker to return
to the initial site. Also this quantity shows a transition when the parameterp is
varied.

In the case of the small–world graphs the return probabilityPii is independent
of the choice ofi . This is known to decay as 1/

√
t for the p = 0 case while an

exponential decay is expected for largep. A scaling form similar to equation (5.3)
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Figure 5.4: Raw data for the average number of distinct sites visitedQ(t) of the
quenched system as a function of the number of time stepst and the probability val-
ues p = 10−4,10−3.5,10−3,10−2.5 plotted from the lowest to the highest respectively.
For largep the saturation due to the finite sizeN = 105 of the systems starts to become
visible.
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Figure 5.5: Scaling plot of the data of figure 5.4 withα = 2. The inset presents a scaling
with the exponent of the reference [35]α = 1.85.
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Figure 5.6: Simulation results for the mean number of distinct sites visitedQ(t) of the
annealed system for long range jump probabilitiesp = 10−4, 10−3.5, 10−3, and 10−2.5

plotted from the lowest to the highest, respectively. These curves start fromS(0) = 1.
Analytical results, which start fromQ(0) = 0 are also shown.

10
−4

10
−2

10
0

10
2

10
0

10
1

pt

Q
(t

)/
t1/

2

Figure 5.7: Scaled spreading (Q(t)/
√

t) of the annealed system against the scaled time
(pt) for long range jump probabilitiesp = 10−4, 10−3.5, 10−3, and 10−2.5 plotted from
the lowest to the highest, respectively.
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Figure 5.8: Raw data for the return probabilityP00 of the quenched system. Thep values
are the same as for figure 5.4, now increasing from top to bottom. The whole time interval
was binned by 100 bins of equal sizes on the logarithmic scale.

should be also valid forPii , which Scala et al. have shown in [76]:

Pii (t) = t−1/2κP(tp
α), (5.18)

whereκP(x) is a rapidly decaying scaling function with the limitκP(x) = const.
for x � 1. However, the argument ofκP should be the same as in equation (5.3).
Also Jespersen et. al [36] gives a form for the scaling of the return probability and
report that sometimes the transition occurs earlier thann ∼ p−2.

In order to get an even higher accuracy for the results there are 10 times more
runs for the averages. In order to minimise the effect due to the finite size of the
samples, i.e., then → ∞ limit of 1/N is subtracted from the measured values.
Figure 5.8 shows the raw data of the return probabilityP00 and Figure 5.9 the
scaling plots. Again, it can be seen that the scaling with the intuitively expected
α = 2 is superior to the one obtained by Jasch and Blumen [35]. Figure 5.10
shows a plot of the return probabily of the annealed model having a very similar
form as in the quenched case. The corresponding scaling plots are shown in figure
5.11. From this figure it is apparent that the quenched system obeys the scaling
extremely well.

5.2.1 Self–consistent model

It was noted earlier that the model of annealed disorder is independent of the
previous history of the walker and has a different scaling exponent. However, the
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Figure 5.9: Scaling plot of the data of figure 5.8 usingα = 2. For minimizing the finite
size effects the asymptotic value 1/N = 10−5 was subtracted fromP00. For compari-
son, the inset shows the scaling plot with theα = 1.85, which was the exponent of the
reference [35].
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Figure 5.10: Simulation results for the return probability for long range jump probabil-
ities p = 10−4, 10−3.5, 10−3, and 10−2.5 (uneven line). The smooth curves show the
results of the analytical theory.
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Figure 5.11: Scaled return probabilities against scaled time for long range jump proba-
bilities p = 10−4, 10−3.5, 10−3, and 10−2.5.

exponent can be transformed to correspond to the quenched case when the new
transition is made dependent on the history. Then the crossover is shifted such
thatα = 2 as in the case of quenched disorder.

Since the scaling of the transition occurs in the quenched system later (as
∼ p2t) we replaced the multiplierp of W(L) in equation (5.7) withp · q(t) to
simulate the situation where the random walker has a probability of making a
long range leap only when visiting a previously unseen site. Now the transition
matrix reads as follows:

W = (1− p)W(S) + p · q(t)W(L). (5.19)

This then means that the corresponding master equation cannot be solved explic-
itly but it can still be estimated to arbitrary accuracy with iteration. In figure5.12
it is shown that the resulting time dependent behaviour of the random walk spread-
ing for our self-consistent model and simulated quenched system are very similar.
Apart from the short times the agreement between these results seem to be quite
good. Figure 5.13 presents again the scaling of the data in figure5.12, indicating
that the scaling is proper, but different from the quenched case.

Figure 5.13 shows the scaling plot withα = 2 for the self-consistent model.
Apart from early times the scaling seems to hold once again. Hence it can be
concluded that the numerical results justify the choice of the equation (5.19). This
reflects the fact that in the quenched model a 1–dimensional random walk has to
be carried out between two long jumps.
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Figure 5.12: Results for the spreading as a function of time of the self–consistent an-
nealed model obtained from the analytical theory (solid line) and from the quenched sim-
ulations (dashed line) for long range jump probabilityp = 10−4, 10−3.5, 10−3, and
10−2.5.
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Figure 5.13: Scaled spreading of the self-consistent annealed modelQ(t)/
√

t against
scaled timep2t for long range jump probabilitiesp = 10−4, 10−3.5, 10−3, and 10−2.5.
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5.3 Discussion

In this chapter the basic models of random graphs were discussed: the Erdős
& Rényi, the Watts & Strogatz, and the Barabási networks. The attention was
focused on the spreading on the Watts–Strogatz type networks. It was established
that the distribution of the number of visited sites has a transition with the power–
law exponentα = 2. Also the distributions of the number of visited sites and
the return probabilities with annealed disorder was shown to have qualitatively
similar properties as with the case of quenched disorder. However, in order to
make the transition to have the same exponent the transition probabilities of the
annealed walker had to be made time dependent.
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Chapter 6

Self-organised criticality

Another dynamical system of wide current interest is the model of sandpiles [3].
Although this model is a considerable simplification of the corresponding natural
phenomenon, it is expected to provide some insight to similar events in various
systems, like the breakdown of an electrical power grid and the collapse of com-
munication networks. The original model assumes a regular lattice of sites with
capacity to hold “grains”. When the load of grains at a single site exceeds a prede-
fined limit then part of the load is transferred to its neighbours, which in turn may
overflow and thus initiate a cascade process, i.e. an avalanche. In this thesis the
sandpile model in one dimensional small–world networks is shown to have many
interesting non–trivial properties. The distributions of the key characteristics of
the system have transitions similar to the spreading dynamics, that are explainable
through some kind of a competition of two mechanisms [47].

The term which often appears in the context of sandpiles is referred to asself–
organised criticality. Self–organisationmeans that the system attains through a
dynamic process some form without outside input. In the case of the model of
sandpiles this form is that all sizes of the avalanches occur.Criticality in turn
refers to a characteristic of the system to make a transition from one form to
some other completely different form. Critical phenomena are analogous to phase
transitions in materials experiencing a change of conditions, such as temperature.

The sandpile model has been investigated in many kinds of graph topologies,
including those of small–world networks, but in higher than one dimensions. The
reason why 1–dimensional systems are not generally considered interesting is that
Bak, Tang and Wiesenfeld have shown that there is no self–organised criticality [4,
38], which means that avalanches of all sizes occur. Recently however, Kulkarni
et al. [40] have investigated the activity of specific sites on small-world networks
with the Bak–Sneppen model, which is a model similar to the sandpile model
with self–organised criticality. In the case of a 2–dimensional sandpile model
with random long range connections, i.e. a system with the small–world property,
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Arcangelis and Herrmann [19] have demonstrated that for the distributionN(s)
of the avalanche sizes an approximative scaling relation of the following form
holds: sN(s) ∼ κ(sp0.65±0.1), wherep is the small-world parameter andκ is the
scaling function. Also Moreno et al. [58] have analysed the Bak–Sneppen model
but on the scale-free networks of Barabási and Albert [5], and they have found
that the model approximately obeys the mean field exponential lawN(s) ∼ s−3/2

and that the scale-free model lacks a critical threshold. In addition, Lee et al. [49]
have presented an analysis of the sandpile model on scale–free networks, proving
a relationship between the distributions of size and duration of an avalanche, and
the power–law exponent of the graph connectivity. In a recent study by Lahtinen
et al. [47] showed that despite the fact that the orginal 1–dimensional sandpile
model does not exhibit self–organised criticality, this property does appear when
the long range connections of the small–world network are added.

In this chapter the possible effect of long range connections in a 1–dimensional
network topology on self-organised criticality is investigated. In this model the
long range connections are formed in two alternative ways. In the first way each
long range connection is formed temporarily by choosing a distant site for the
grain to jump randomly and independently of previous jumps. This is calledan-
neleaddisorder. In the second way a fixed graph topology with randomly chosen
long range connections are generated before the process is started. This is called
quencheddisorder. In both of these cases an avalanche has local as well as global
character, being in competition.

6.1 Model

The 1-dimensional sandpile model can be considered as a linear chain ofm sites
or bins that are numbered 1, . . . ,m, as depicted in Figure6.1. In the beginning of
the process the chain is considered empty and the process is started by dropping
grains randomly to the sites of the system. If the number of grains in a site exceeds
2 an avalancheis initiated by toppling grains from it. In each toppling a site
i having more than 2 grains is chosen at random and then 2 of its grains are
moved to the immediate neighboursi − 1 andi + 1, provided that 1< i < m.
If on the other handi = 1 or i = m one grain is removed from that site and
at the same time from the system altogether and another grain is moved to the
neighbour 2 orm− 1, respectively (see Figure6.1). This corresponds to a system
which is open from both ends. In addition to these basic moves of grains, long
range jumps are introduced by using two different policies. On one hand the
long range connections are generated before the process such that from each site
i a single permanent connection is created to another sitej ∈ {1, . . . , i − 2, i +
2, . . . ,m} randomly with probabilityp. Then if during the process the sitei being
toppled has such a connection, one more grain is moved fromi to j . This policy
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ii−1 i+1 ......1 m...j

Figure 6.1: An illustration of possible single grain topplings in our sandpile model. There
are two kinds of short range jumps (solid arrows), i.e. those in the middle and those in the
open ends of the system being removed from the system. The long range jump (dashed
arrow) occurs with probabilityp.

is calledquenched randomnessand it essentially corresponds to a sandpile model
on a Watts–Strogatz type random graph, where a few random connections have
been added to an otherwise regular lattice [88]. On the other hand long range
temporary connections can be added dynamically during the process such that in
each toppling with probabilityp one grain is moved to a randomly chosen site
j ∈ {1, . . . , i − 2, i + 2, . . . ,m}. This policy is calledannealed randomness, and
it can be related to the stochastic sandpiles considered previously by Manna [52].

6.1.1 System without long range connections

First the situation in which no long range moves of grains are possible, i.e.p = 0,
is scrutinised. In this case the system becomes strictly one dimensional and there
is no distinction between the quenched and annealed distorder. Thus the system
does not show self–organised criticality as already noted by Bak et al. [4, 38].
However, since this system is open from both ends, rather than only from one
end, it reacts differently to grain-additions than the traditional sand-pile model
[3]. In this system when a grain is dropped in the middle of a string ofn critical
sites, i.e. sites with 2 grains each, the resulting avalanche will have sizes = n (i.e.
the number of sites toppled). A grain is added to sitei , counting from the left end
of the string of critical sites, with sitei = 1 being the first critical site. Once the
avalanche is completed the sites of the critical string remain critical except one
site, with only one grain, located at the pointn − i + 1. Now the duration of the
avalanche, denoted byt , can be expressed as follows

t = in − i (i − 1), 1 ≤ i ≤ n. (6.1)

The solutions of this Diophantine equation are determined by the possible integer
values oft , n, andi . With the fact thats = n this equation can be written for the
avalanche sizes as functions of timet and locationi :

s(t, i ) = t/ i + i − 1. (6.2)
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For this set of functions the envelope function can be determined through differ-
entiation with respect toi , resulting in the following equation

senv(t) = 2
√

t − 1, (6.3)

which is also the lower bound for the avalanche sizes for the given timet .
When the system withp = 0 is simulated for a sufficiently long time all

the sites will be filled with two grains except for one site, called here as gap, at
location r that has only one grain. Now the avalanche sizes given t depends
on the location of the gapr . From the above described process it can be seen
that the gapr appears randomly with equal probability at locations{0, . . . ,m},
where zero implies that there is no gap in the system.R denotes random variable
corresponding to the avalanche size andS the random variable of the gap location,
respectively. The probability of the random variableSgivenr is as follows

P{S= s|r } = r

m
δ(s− r )+ (1− r

m
)δ(s− (m− r )). (6.4)

In this formula the first term describes the probability of dropping a grain to the
area of sizes = r , left from the gap, and the second term correspondingly to the
area right from the gap. Here it is assumed that the system size is large enough to
ignore the unit size of the gap. When the joint probabilityP{S = s, R = r } =
P{S = s|r }P{R = r } is marginalised overR, the probability of an avalanche of
sizes is obtained:

P{S= s} =
m∑

r=0

P{S= s|r }P{R = r } = 1

m+ 1
(

s

m
+(1−m− s

m
)) = 2s

m(m+ 1)
.

(6.5)
From this equation it can be seen that the avalanche size distribution is linear ins,
and thus the system does not exhibit self–organised criticality.

Let us then consider the distribution of the avalanche duration, which turns
out to be quite complex. However, forp = 0 the average avalanche duration of
given size can be determined. From equation (6.1) it can be seen that the possible
values ofi for given t are the integer divisors oft . Then the distribution of the
random variableT of the avalanche duration isP{T = t |t ≤ m} ∼ ν(t) where
ν(t) is the number of integer divisors oft , provided thatt ≤ m. On the other hand
if t > m the distribution falls because in equation (6.1)i andn are limited from
above. With these limitation the avalanche duration has the following maximum
value tmax = mi′ − i ′(i ′ − 1), with i ′ = �m

2  (i.e. rounded up to the nearest
integer) such that aftertmax the distribution is zero. Now the average duration of
an avalanche of a given sizes is obtained from the equation (6.1) as follows

〈t〉 = E{T |s} = s−1 ∑s
i=1[is − i (i − 1)] = s−1 ∑s

i=1[i (s+ 1)− i 2]
= s−1[1

2(s
2 + s)(s + 1)− 1

6(2s3 + 3s2 + s)
= 1

6s2 + 1
2s+ 1

3,

(6.6)
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which indicates quadratic and linear dependence on the avalanche size. It is ev-
ident, however, that for realistic avalanche sizess the quadratic dependence is
dominating.

6.1.2 System with long range connections

When a system has long range connections, i.e.p > 0, the avalanche dynamics
has both local and global character. In this the connections to the two nearest
neighbours, like in a system without long range connections, give rise to the local
avalanches. In turn the long range connections give rise to two phenomena, on
one hand by removing grains from the local avalanche and on the other hand by
facilitating an initiation of another local avalanche at the other end of the long
range connection. The grain removal causes the local avalanche to relax and thus
halt quicker, i.e. damping down the avalanche activity, while the long range jumps
tend to increase the avalanche activity, i.e. nucleating new local avalanches. Thus
these two processes are competing.

In this system whenp is varied, we can expect that there is a transition in the
distribution of the avalanche duration. The avalanche loses momentum after long
range jumps take effect, which should happen afterp−1 trials for an occurrence of
a long range jump. Therefore in the annealed case the number of trials is equal to
the number of time steps and thus the distribution of the duration has a transition
at t̂ :

t̂ ∝ p−1. (6.7)

In the quenched case, however, the number of trials is proportional to the size of
the local avalanche. The transition in the size distribution of a quenched system,
denoted now bȳs, is thus

s̄ ∝ p−1. (6.8)

From equations (6.2) and (6.3) it is apparent that the the corresponding transition
in the annealed case for the avalanche size has a power–law relation:

ŝ ∝ p−α, (6.9)

where the exponent12 ≤ α ≤ 1. When p > 0 it can be expected that due
to increased probability of grains reaching the ends of the chain and leaving the
system, there will be fewer grains contributing to avalanches. This in turn will
reduce the size of uniform strings of critical sites i.e. sites with 2 grains, thus
reducing the size of local avalanches. Since the local avalanches are smaller one
could expect the size of the global avalanche for given duration to follow closer
equation (6.3), which when combined with equation (6.7) would suggestα = 1/2.
Furthermore, combining the dominant relation between the avalanche duration
and avalanche size indicated in equation (6.6) i.e.〈t〉 ∼ s2, and the relation in
equation (6.7), i.e.,̂t ∝ p−1, lends also some support toα = 1/2. This result
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seems analogous to the relation obtained in [46], indicating that the transition to
self–organised criticality in the quenched system takes place slower than in the
annealed system.

6.2 Simulation results

Now we turn our attention is turned to computational studies, and first describe
the simulation set–up. In computer simulations one usually faces the problems
of finite system size and sufficiency of the statistics in relation to the available
computing time and the speed of computers. In small discrete systems their dis-
crete characteristics, such as saturation effects, are always distinctly visible in the
statistics of the simulations. Thus one wants to increase the system size in or-
der to better correspond to an infinite system at the thermodynamic limit. As a
compromise the system sizes here are chosen asm = 100,316,1000, for both
the annealed and quenched systems. In the quenched case for the probability
parameterp a number of values between zero and one are chosen as follows:
log10 p = 0,−1/8,−2/8,−3/8, . . . ,−4. The annealed case has a similar set of
p–values ranging from log10 p = 0 to log10 p = −5. For eachp–value a sufficient
number of time steps are used such that for the annealed system we had at least
1000 avalanches per simulation run, and, for reasons of longer computational time
involved, the quenched system was simulated such that at least 100 avalanches per
simulation runs occur. For sufficient statistics results were obtained as averages
over 100 runs using different random number sequences for both the annealed and
quenched cases.

Figure 6.2 (a) shows the histograms of the avalanche sizesN(s) in the an-
nealed system of sizem = 1000 for 41 different values ofp. For small values of
p the avalanche size distributionN(s) grows first monotonically to reach a maxi-
mum after which it decreases. Whenp increases the maximum moves to smaller
s-values more or less linearly in the logarithmic scale. This implies that there is a
power law dependency of the maximum ofN(s) vs. p. In Figure 6.2 (b) are the
corresponding histograms of the quenched case. Here the behaviour seems quite
similar to the annealed case but now the maximum is less distinct and it seems to
move slower as a function ofp than in the annealed case. This in turn indicates
that in the quenched case the power law exponent is smaller than in the annealed
case.

Next the power law behaviour of the avalanche size distribution is investigated
in more detail, by using the same scaling approach as de Arcangelis and Herrmann
[19]. Here it is assumed thatN(s) scales as follows:

sN(s) = κ(sp−α), (6.10)

whereκ is the scaling function, andα is the scaling exponent. In Figure6.3 is
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Figure 6.2: Histograms of the avalanche sizes in systems of size 1000 for different values
of p. The left figure (a) is the annealed case, and the right (b) is the quenched.

plotted logsN(s) as a function of logp1/2s for the annealed system in order to test
whether the scaling conjecture with the exponentα = 1/2 is valid, as indicated
above (see equation (6.9) and related discussion). This exponent is different from
the one obtained by de Arcangelis and Herrmann [19], i.e., whenp → 1 the
exponentα ≈ 3/2. As the scaling reflects the turning point on the distribution
the saturation of the histograms has been cut out. This cut has been done in such
a way that whenp = 0 the 200 last values ofs are not plotted, and for each
step of decreasingp–value 10 more points have been removed from the plot. As
is evident from this figure, for large avalanche sizess there seems to be data
collapse and the scaling seems to hold thus confirming the analysis in Section
6.1. There does not appear to be a good data collapse for the small avalanches,
but the intermediate avalanche sizes show a decreasing tendency following an
approximate relation

N(s) ∼ s−3/2, (6.11)

which is the power law behaviour found for the standard sandpile model in higher
dimensions (≥ 2) [3]. This can be seen best in the inset of Figure 6.3 for the
case ofp = 1, corresponding to the curve with the highest point at logs = 0 and
decreasing the fastest for the group of curves.

In the quenched system there is a scaling with an exponent twice as large,
i.e. α = 1 seems to hold better, as evident in figure 6.4. The small values of
p ≤ 10−1 have been omitted, as the scaling holds in the limits −→ ∞ and
the finite size of the system prevents the avalanches with these smallp–values
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Figure 6.3: Scaled histograms of the size of the annealed avalanches in the system of size
1000. In the insert are the unscaled plots. Whens = 1 the values ofp decreases from the
highest line,p = 1, to the lowest,p = 10−5.

from reaching the turning point before the saturation takes place. This scaling
for large p–values is in accordance with the equation (6.8), thus confirming our
analysis for the quenched system, discussed above. As pointed out earlier the
overall behaviour ofN(s) in the annealed and the quenched systems are similar,
as is evident by comparing the inserts of Figure 6.3 and Figure 6.4, respectively.
This similarity extends also to the scaling ofN(s) for intermediate avalanche
sizes, i.e. the equation (6.11) with the power law exponent 3/2 holds also in the
quenched system and is most evident forp = 1 curve in Figure6.4.

Next the probability of an avalanche to go through the entire system is con-
sidered. This probability is called thetraversal probabilityand is denoted here
by Ptr . This quantity can be simply estimated by using the ratio of occurrences
of the maximal avalanches to the number of all observed avalanches. First the
p = 0 case must be investigated in which the annealed and quenched system
are the same. For three different system sizesm = 100,316,1000, we obtain
from equation (6.5) that logPtr = −3.92,−5.07,−6.22, respectively. As for
p �= 0 Figure 6.5 shows the traversal probability estimates both for the annealed
and quenched systems and for three different system sizes. The quenched system
behaves qualitatively similarily with the annealed system, but suffers from more
noisy data. Thus there is first an increase due the increased probability of the
avalanche crossing a single gap (a site with only one grain), then it remains con-
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Figure 6.4: Scaled histograms of the size of the quenched avalanches in the system of
size 1000. The insert shows the unscaled plots. Only values ofp> 10−1 are included.
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Figure 6.5: Traversal probabilities, where circles stand for the system sizem = 100,
squares form = 316 and diamonds form = 1000. The empty symbols stand for the
annealed system, and the filled ones correspond to the quenched case.

stant, or decreases slightly, until increasing again whenp approaches unity. The
behaviour for the intermediatep–values is explained as a regime where the local
avalanche relaxation, discussed above in section6.1, is more dominant. The final
increase inPtr for increasingp is explained by the increase in the number of local
avalanches. Both the annealed and the quenched systems show a tendency ofPtr
to decrease as the system size increases.

Next we look at thefilling factor, which characterizes the amount of grains
that can be added to the system without starting avalanches. This stands for the
inverse of the density of grains in the system and can be expressed as follows

g = 1− ρ

2m
, (6.12)

whereρ is the number of grains in the system. In Figure 6.6 one can see that
the filling factor〈g〉 averaged over separate runs and avalanches increases withp,
at an approximate rate proportional topβ . It is evident from these log-log plots
that for quite a wide range ofp-values and independently of the system size the
power–law exponents turn out to beβ = 0.60 andβ = 0.90 for the annealed
and quenched cases, respectively. On the other hand whenp is very small,g
converges to1

2m which for increasing system sizem approaches zero and makes
the curves collapse to single lines with which the power–law fits coincide. Also it
is worth noting that with both systems the filling factor seems to converges to 1/e
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Figure 6.6: The average filling–factor, where circles stand for the system sizem = 100,
squares form = 316, and diamonds form = 1000. The empty symbols correspond to the
annealed system, and the filled ones to the quenched case. The dashed line represents the
power law of the annealed systemg ∼ p0.60 and the solid line the one of the quenched
caseg ∼ p0.90.

when p approaches 1.

Finally we examine the distribution of the duration of avalanches is examined,
and the numerical results are depicted in Figure6.7. Panel (a) shows the results for
the annealed system forp ∈ [10−5,1] and in panel (b) for the quenched system
for p ∈ [10−3,1]. When p = 1 the two systems behave in a similar manner, as
they also do for very small values ofp, i.e. in the annealed case forp = 10−5 and
in the quenched case forp = 10−3. For the intermediate p-values the avalanches
in the quenched system are sometimes almost twice as long as the avalanches in
the annealed case. In both cases the behaviour of the duration distributions are so
complex that they do not seem to conform to any simple scaling law. The reason
why the duration distribution for the quenched avalanches have much longer tails
is caused by formation of loops of fixed connections, such that some part of the
grains will always return to the same location.
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Figure 6.7: Histograms of the avalanche durations with systems of size 1000 for different
values ofp. In (a) are the results for the annealed system and in (b) for the quenched
system. In (b) the curve with lnp = 0 is similar in shape with the corresponding (lnp =
0) curve in (a), albeit only partly visible in the plot.
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6.3 Discussion

In this section an extension to the 1-dimensional sandpile model was examined
analytically and with simulations for two alternative forms of small–world ran-
domness: annealed and quenched. It was shown that the avalanche size distribu-
tion exhibits non-trivial transition from non–critical regime of small avalanches
to the critical regime of large avalanches. This behaviour can be explained by a
competition between two mechanisms: the avalanche nucleation and local relax-
ation. At higher dimensions (≥ 2), however, the self–organised criticality cannot
be explained by the competition of these two mechanisms, primarily due to the
lack of a sufficiently compact local neighbourhood. This happens because the
local avalanches have more space for expansion and the long range jumps do
not provide commensurate relaxation to significantly dampen them. An approx-
imate scaling was established for the avalanche size distribution as a function of
the small–world parameterp. The competition between the two mechanisms is
most evident in the behaviour of the traversal probability, such that for smallp–
values the local relaxation mechanism dominates while forp approaching unity
avalanche nucleation becomes more dominant. In addition it was found that the
filling factor or the density of grains in the system shows power–law behaviour
as a function of long range connection probability both for the annealed and the
quenched systems converging unexplainably to 1/e at p = 1, but with different
exponents.
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Chapter 7

Conclusions

This thesis dealt on two topics, statistical inference and random graph simula-
tions. In statistical inference the main contribution was the introduction of a new
metric on probability distributions namely the transformation discrepancy. This
discrepancy measure was applied in a modelling setting calledindirect inference,
where the likelihood function was not computable. With random graphs the focus
was on their dynamical properties, and in such setting the two kinds of disorder,
annealedandquenched.

In Chapter 2 the basic concepts of Bayesian statistical analysis were reviewed
and applied to an example of a fault diagnostics system. It was demonstrated that
it is possible to estimate the parameters and states of Poisson mixture processes
containing a transition between states at unknown time using the Reversible Jump
MCMC method. The estimation becomes more difficult when the transition has
occurred close to the end of the total time, in which case the counted events of the
device only exhibit behaviour of the initial states. In this estimation the availability
of data for purely intact devices, and presence of more than one counter to record
events, is critical.

In Chapter 3 it was shown that in modelling problems the models can be ef-
fectively compared andipso factoselected by a discrepancy measure determined
as the sum of pairwise costs. This leads to a metric measure on sample sets,
which are sample sequences drawn at random from the models under considera-
tion. The convergence of this measure is also guaranteed under proper assump-
tions concerning the underlying cost function of the individual pairs of elements.
This metric was then applied in Chapter 4 to compute the posterior probability in
cases where the likelihood functions are difficult to compute. The analytic and
experimental studies show that the transformation method based on information
theoretic foundations is a valid addition to the field of Bayesian modelling.

Both the transformation and the kernel estimates make an approximation of
the principle assumption that points close in space to each other are also close in
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probability. When one is interested in the probability of a given sample the kernel
estimate is almost the only choice, but when the problem is about model selec-
tion the transformation metric can be utilised. It turns out that the transformation
method does improve the estimate, at least in the examples, from the kernel es-
timate with the expense of more computational time required. This method also
removes the problem of choosing the kernel and the bandwidth, but by adding
one parameter of its own, and using more computational time, which may in time
critical cases mean that the kernel method must be used.

In Chapter 5 of this thesis we looked at random graph models of small–world
networks, and their dynamic behaviour with the spreading phenomenon of random
walks. It was shown that for sufficiently small probabilities of long range links the
proper scaling variable for the average number of distinct sites visited by a ran-
dom walker and also for the return probability isnp2, i.e., the natural power–law
exponentα = 2 holds for the small–world networks. Also it was established that
the annealed random walk model with rarely occuring long range jumps reflects
some aspects of the dynamics in quenched small–world networks. In the simplest
case, with time independent transition probabilities, the model can be solved ana-
lytically. However, as expected, only qualitative agreement between the quenched
and the annealed models can be observed. With properly chosen time-dependent
transition probabilities even the proper crossover exponentα = 2, or p−2 depen-
dence is obtained. Thus the random walker spreading in a quenched system can
be estimated by an annealed model.

In Chapter 6 an extension to the 1-dimensional sandpile model was inves-
tigated analytically and with computer simulations for two alternative forms of
small–world randomness: annealed and quenched. It was shown that the avalanche
size distribution exhibits a non-trivial transition from a non–critical regime of
small avalanches to the critical regime of large avalanches. This behaviour is
caused by a competition between two mechanisms: the avalanche nucleation and
local relaxation. However, in higher dimensions, the self–organised criticality
cannot be explained by the competition of these two mechanisms, primarily due
to the lack of a sufficiently compact local neighbourhood topology.

In this study we have also established an approximative scaling of the avalanche
size distribution as a function of the probability of long range linksp. The compe-
tition between the two mechanisms turned out to be most evident in the behaviour
of the traversal probability, such that for smallp–values the local relaxation mech-
anism dominates while forp approaching unity avalanche nucleation becomes
more dominant. In addition, it was found that the filling factor, or the density of
grains in the system, shows power–law behaviour as a function of long range link
probability (p) both for the annealed and the quenched systems converging unex-
plainably to 1/e at p = 1, but with different exponents. The duration distribution
of avalanches was also studied and it was found that avalanches in the quenched
system are longer living and in both cases so complex that there was no simple
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scaling law behaviour.
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Chapter 8

Publications

This monograph is based on the following articles:

1. Reversible jump MCMC for two–state multivariate Poisson mixtures[48],
written with prof. Jouko Lampinen and published inKybernetika, vol. 39,
3, p. 307–315, 2003. This article contains the information presented in
section 2.2. In this paper the contribution of the author of this thesis was the
development of the model, doing the simulations and analysing the results.

2. Transformation Discrepancy[43], has the introduction of the transforma-
tion metric of chapter 3. This paper will be submitted for publication, with
the author of this thesis as the sole author.

3. Inference over uncomputable likelihoods[44], also to be submitted for pub-
lication. In this article the author and Dr. Jukka Heikkonen applied the
conversion metric to the problem of uncomputable likelihoods as explained
in section 4. In this paper the contribution of the author of this thesis was
the derivation of the theory and its analysis.

4. Scaling of random spreading in small world networks[45], published in
Physical Review E, vol. 64, p. 057105(3), 2001, and written in collabo-
ration with cooperation with prof. János Kertész and prof. Kimmo Kaski.
In this paper the inaccuracies of publication by Jasch and Blumen [35] was
corrected as explained in section 5. Here the contribution of the author of
this thesis consisted of, jointly with the other authors, developing the an-
alytical theory, and then on his own building up the simulations and the
analysis.

5. Random spreading phenomena in annealed small world networks[46], pub-
lished inPhysica A, vol. 311/3-4, p. 571–580, 2002, and also written in
collaboration with prof. János Kertész and prof. Kimmo Kaski. Here anal-
ysis of annealed random graphs was introduced and used for analysing the
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spreading dynamics as a continuation of the previous study (published in
Physical Review E). This is contained at the end of the section5. Here the
contribution of the author of this thesis consistet of doing the simulations,
and the analysing all the results.

6. Sandpiles on Watts–Strogatz type small–worlds[47], accepted for publica-
tion in Physica A, 2004, and written again together with prof. János Kertész
and prof. Kimmo Kaski. This paper analyses the effect of the small–world
topology on the self–organising sandpile model in one dimension. This is
presented in section 6. The author of this dissertation introduced the model
of sandpiles to the small–world networks, did the analytical theory, simu-
lated the models and analysed the results.
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