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Abstract

The scope of this dissertation is twofold, in the sense that it deals on one hand with
statistical inference and on the other hand with random graphs. Due to inherent
randomness in both areas the scope can also be seen as onefold, which is fur-
ther united methodologically by the attempt to build models of random processes
involved and by simulating their behaviour.

The statistical part of the thesis follows the Bayesian theory of probability,
and applies it to a fault diagnostic setting. This part also contains an exploration
of metrics on probability distributions, in which the introduction of a new met-
ric is one of the main contributions. This new metric is constructed from utili-
ties of the samples instead of the more conventional entropy—based metrics. In
Bayesian methods the simulation of samples from distributions is an integral part
of the analysis. It also becomes the leading principle in the evaluation of the
proposed metrics. This metric is shown to be useful in statistical inference in
some cases where the probabilities are difficult to compute. The problem of un-
computable likelihoods is analysed also from the Bayesian perspective and two
branches emerge: the kernel estimate and the indirect inference.

In the analysis of random graphs the attention is on the small-world prop-
erty, requiring that any two sites in the network are joined by only a short path
with a relatively small average number of connections per site. Again one of the
main tools in analysing complex graphs is by simulation of random dynamics
on the graphs. The first dynamic property that is analysed is the spreading phe-
nomenon. Spreading means the number of unique sites a random walker on the
graphs goes through. This number is shown to have transition points relative to the
small-world control parameter. Apart from the spreading phenomenon the thesis
also studies the self-organised criticality properties through the so called sand-
pile model on the one dimensional small-world networks. In this setting of self-
organised criticality there are interesting behaviours that are absent in the standard
1-dimensional sandpile model. Both the spreading and the sandpile model are
analysed with two forms of disorder: quenched and annealed. The quenched case
corresponds to a simulation setting on an ensemble of random graphs, whereas in
the case of annealed disorder the simulation is performed on a regular graph but
the dynamics also allow random moves to other sites. The annealed form allows
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simpler analytic tools to be used, but the quenched form corresponds more closely
to natural systems. Even though these forms of disorder are different it is shown
that the annealed systems can be made to behave in a qualitatively similar fashion
as the quenched case.
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Chapter 1

Introduction

This dissertation is composed of two parts, statistical methods and random graphs,
which have factors in common, namely randomness and statistical models. The
first half of this dissertation deals with statistical inference, which is essentially
an inversion process: there is a set of random observations, and a unifying pat-
tern is sought that fits these observations. This pattern is a statistical model that
describes the probabilities of the events, already observed and the ones yet to be
observed| [28, 56]. The statistical models are of great utility in practise where no
phenomenon is truly free from randomness. They become handy in signal pro-
cessing|[33], pattern recognition [77], and finance [16]. Within this framework
Lahtinen and Lampinen have analysed a fault diagnostic system for identifying
the status of devices based on counted events 48]. There it was shown how la-
tent, unobservable, states of the system can be identified based on the observations
that do not contain explicit information about them. This is discussed further in
Chaptef 2.

Choosing the model, or model selection, can be done in various ways b6].
One is the Bayesian inference, in which the calculus of probability is utilised to
obtain a posterior probability for the models. Posterior meaning the probability
of the models after the Bayes’ rule has been applied using the likelihood of the
observations given the model and the probability of the models prior to using the
observations. The Bayesian statistics is essentially an update process, which can
be thought to begin withull information and by utilising the observations attains
a more accurate model. This means that all the models are considered equally
likely [8]. There are many more ways to choose the model based on observations
[20].

In Bayesian statistical analysis the calculation of the posterior most often
produces analytically unsurmountable problems. This obstacle can however be
overcome by using numerical methods, namely simulating random samples from
the posterior distribution [73]. The principle of random simulation and inference
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based on them can be utilised in many ways, such as in approximating the poste-
rior integral, and estimating the size of sets of objects meeting a specified criterion
[12]. In Bayesian methodology the use of Markov Chains provides the theoretical
justification and mathematical means for this [27].

When comparing models and their performance, there is a need for a metric.
The examination of one novel metric is a major contribution of this dissertation,
and is dealt in detail in Chapidr 3. Perhaps the most common metric of probability
distributions is called the Kullback—Leibler divergence K1], which is based on
the information theory of Shannon [81], which has a connection to the theory
of Kolmogorov complexity [50] and minimum description length principle by
Rissanen [72]. The algorithmic minimum description length principle states that
the predicted optimal model is the one which generates the observed data with the
shortest description in terms of computer programs.

In a great many cases the model intergrals cannot be calculated analytically
and simulational methods must be used [21]. The metrics can also be devised
by simulating random samples from the models, to represent it, and comparing
these with the ones obtained from other models. This alternative metric extends
the metric on samples to a metric on the models, and thus provides perhaps an
intuitive yardstick for statisticians. The metrics may also come to use in Bayesian
analysis when the likelihood of the observations cannot be handily computed, but
when generation of random samples from the model is still feasible. This metric
is the sum of distances between pairs of elements in two sets; with a minimisation
over the possible ways to choose the pairs. When the number of samples goes to
infinity we can consider the resulting limiting value as the distance between two
models [[483]. This metric is entirely new in this field, and may be useful when
comparing models in sample spaces which have a natural metric.

There is also a possible application for this: In cases where the likelihood
function of the model is not easily computable, one can perform the model selec-
tion by generating samples from the models, and choosing the model for which
the total distance to the observed data is the smallest. This was originally the topic
of the study of Diggle and Gratton [21]. There has also been a similar proposal
to this effect calledndirect inferencegproposed by Gourieroux [31] in which sam-
ples are generated from the model and a statistic is computed from these, then this
statistic is matched to the one obtained from the data. Lahtinen and Heikkonen
have shown that the use of the metric on sample space will also provide means to
perform the inference [44], which is the main topic of Chalpter 4.

The second half of the dissertation focuses on the analysis and simulation of
random graphs. A graph is a set of sites and a set of connections between these
sites. The sites of the graph could be people, computers or even power plants, and



connections between them social acquaintances or electric cables. Graph theory is
a very abundand branch of discrete mathematics, and many famous problems are
associated with graphs, or are reducible to ones involving them. In the modern
world where networks are vital to the functioning of the society and business,
guestions of efficiency and vulnerability of networks become important.

During the last few years an overwhelming amount of evidence has been ac-
cumulated about diverse networks showsrgall-worldproperties. This means
that on average an arbitrarily selected site can be reached from another site in
very few steps despite the fact that only relatively small number of connections
are present in the graph [87]. It was noted by Stanley Milgram that it seems to take
6 handshakes to connect between any two people in the world B5]. The internet
has similar characteristics, as most computers there are connected to some very
central server [24]. The documents of WWW are very often connected to some
relating important document, search engine, or collection R]. The scientist tend
to cooperate with famous scientists|[69]. Watts and Strogatz were the first to sug-
gested a simple mathematical model, which reflects the small world phenomenon:
They proposed a regular lattice and then rewired some of the connections to form
long range connections [88]. This model of small-world networks interpolates
between a lattice and the so called &-dRényi random graph [10,/87].

In addition to the interesting static structural properties in these networks,
there is ever growing interest in dynamical processes operating on them. As a
matter of fact it is expected that the underlying network topology should have
a major impact on practically any phenomenon taking place in it. This view is
supported by the recent results on the spectral density of the adjacency matrix of
small world models, which show that these graphs produce a dramatic deviation
from the semi-circle law of random graphs![25]. One can indeed infer a great
deal about a network by performing a random walk on_it B4]. For example the
number of sites visited in a given time is a significant indicator of the structure
of the network. This is also callespreading over how much area does diffusion
relocate a particle. The spreading phenomenon is the main topic of Chapter5.
The distribution of the number of visited sites has a transition which was first
analysed by Jasch and Blumen [35]. The inaccuracy in the result of their analysis
was corrected by Lahtinen et al. lin[45]. The final result is that the distribution has
the natural exponent of 2, i.e. the distribution has a transition that is proportional
to the size of the area covered squared.

Another dynamic model is called theandpile mode3]. This describes a
process of loading the site of a given system with a burden, e.g. computational
work for a computer. Eventully there comes a limit to how much load a single
site can carry. When the limit is reached the load is transferred to the neighbours
of that site. The neighbours themselves can also be excessively employed and
the excess will need to travel on to their neighbours. Although this is not quite
a physical model of sandpiles as they present themselves in sandy beaches, but a
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simpler discrete system, it still gives insight to the mechanism of failures of an
electrical power grid for instance [13]. In Chapér 6 the sandpile model on one
dimensional random topology is investigated.

It is also interesting to ask to what extent the dynamical properties of small—
world networks depend on thguenchedcharacter of the disorder, as opposed to
theannealeddisorder, where the connections are not frozen but are rewired during
the time evolution of the system. Such a model with spreading was studied by
Pandit and Amitkar [65], with the focus on the average access time, and Lahtinen
and al. [46] investigated the scaling laws establishing that the annealed model
can be extended into an equivalent model in the quenched setting. This kind of
random walk system seems to bear some resemblance to the idea of the random
walker making Lévy flight type jumps [37, [78,183]. With the sanpile model a
similar approach is the stochastic sandpiles considered previously by M&hna [
Both annealed and quenched disorder are present also in the analysis of the one
dimensional sandpiles by Lahtinen et al. [47], in Challer 6.

This thesis is organised so that the next three chapters of the first part concen-
trate on statistical inference, and the second half of the thesis with two chapters
on random graphs and their dynamic properties. Chipter?2 gives a general review
of Bayesian statistical inference and its basic formulation. In Chidpter3 there is a
treatise on the metrics on probability distributions. Then Chabter4 focuses on the
problem of uncomputable likelihoods. In Chapter 5 the spreading phenomenon
on small-world networks is taken under scrutiny. After defining the basic results
the attention is focused on the dynamics on graphs, i.e. the spreading. Then the

Chapteib deals with the self-organised criticality in 1-dimensional small-world
networks.



Chapter 2

Bayesian Statistical inference
with a fault diagnostic
application

Statistical inference is essentially an inversion process: there is a set of random
observations, and a unifying pattern is sought that fits these observations. A sta-
tistical model is the pattern, describing the probabilities of the events, already
observed and the ones yet to be observed. However, the problem is mostly much
more complex than connecting the dots. There are too many models and too few
observations so that no one model alone would explain the observed phenomena.
This dissertation focuses on the Bayesian approach which was applied to a fault
diagnostic system described later in this chapter. It was shown that the latent
states of a device can be identified based on observations which do not have direct
information about the inner states|[48]

Here the focus is mainly on Bayesian statistical methods. In Bayesian statis-
tics the conditional probability of different models given the observations is cal-
culated using the rules of probability calculus. This probability of the models is
called the posterior probability. Although Bayes’ formula was discovered early,
its use was scarce and for a long time statistical problems were mainly solved
with other methods [8]. The difficulty lay in the integral that would be needed to
utilise the posterior probability in analytical calculation. Once it was realised that
in practical statistical applications stochastic integrals can be efficiently approxi-
mated by simulation of random samples, all the required integrals could now be
handled by computers [73]. These simulational methods in this context are called
Markov Chain Monte Carlo (MCMC) methods [27]. With the aid of MCMC one
can generate simulated samples from the distributions in the modelling situation
and using the law of large numbers to approximate relevant integrals.

There are many other approches to statistical inference, such as the traditional



6 Bayesian Statistical inference with a fault diagnostic application

statistical methods [F5], neural networks [15] or even game theoretic settings [20],
the model selection is treated as a game between the modeler and an opponent.
These however are more specific cases. Nonetheless, the fundamental nature of
statistical inference iso free lunch theorerpl]: whatever the base assumptions
are no method can truly outperform any other in general comparison.

In this chapter there is a short primer on Bayesian theory of probability, with
an introduction to the basic Markov Chain Monte Carlo (MCMC) methods and
their convergence tests. These concepts are applied in dection2.2 to a fault diag-
nostic system.

2.1 Bayesian inference

In the Bayesian approach each observation is conjectured to have a probability of
occurrence, determined by the model under inspection. When in addition each
model is assigned a probability, one arrives at the foundation of Bayesian statis-
tical inference: based on this information the probability of a model given the
observations is computed using the probability calculus.

A random variableX is a measurable function from a sample spBogith a
o—algebra oD, a super set of the sets Bf and a measure on thato—algebra.
A random variableX also has an associated distribution which is here always
denoted agix, and thus measure of events of the random variabl€ is the in-
tegral over the distributiopx. An indexed sequence of independent and indenti-
cally distributed, 11D, random variables is denotedag, = {X;}", on a sample
spacel), for which there is a multi-set of sample poinis,, wherex; € D. A
multi—set is a set where duplicates of the same element are possible. The notation
matches the capital lettered random variables with the lowercase sample—sets, and
it is assumed that the multi-set, is exchangable (infinitely so if the set is), i.e.,
P(Xl =X1,..., Xm = Xm) = P(Xl = Xz@)s -+ > Xm = Xn(m)) = Hi P(X| = Xi)
for any permutatiorr of {1, ..., m}.

For a model, parametrised with given the observations., the posterior
distributionis:

e (0X1m) o wxjo(Xeml@)ne(8), (2.1)

where ux e (X1:m|6) is thelikelihood and e (0) is the prior. The expressio
means that the parts are proportional to a multiplicative normalising constant, in
this caseE{ux o (X1:m|®)}. This term is usually omitted as in practice it is not
needed in comparing models. The common use of the posterior distribution is
to calculate thepredictive distribution which is the distribution of future events
independent of the parameters:

wx (X [X1:m) = E{uxje(X'|©)}. (2.2)
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This is an expectation over the poster®y thus utilising the posterior distribution

in the predictive distribution of future observations. This particular expectation
cannot most often in practise be computed in an analytical form. In usual situa-
tions this expectation is complex and multi—-dimensional that the usual numerical
approximations also fail. Therefore the standard approach is to simulate samples
from the posterior distribution of equation {.1).

2.1.1 Random sampling of the posterior distribution

The most important tool in Bayesian inference is posterior sampling. This method
allows one to generate random samples distributed according to the posterior dis-
ribution. These samples can then be used to estimate the predictive distribution of
equation[(2.2) as a sum ovessampleg&/}!';:

/ l x / /
i (X Xem) & = S ux (X'16)). (2.3)
i

This is called Monte Carlo integration. The integral can thus be replaced by a sum
over a discrete set of properly distributed points R7].

In the rest of this section the random sampling techniques from a distribu-
tion are discussed. The practical methods of random simulation rely on Markov
chains. A Markov chain is a sequence of random varialfles> X, — ... —

Xm with the property that the elemedy is not dependent on the previous el-
ements excepXi_i. This means thafuy, (X [X1, X2, ..., Xi—1) = fx; (Xi[Xi—1).

Thus the Markov property ensures that in order to generate a saraplthat is
needed is the previous sample, which is very useful for efficiently generating a
large number of samples.

2.1.2 Metropolis—Hastings algorithm

The basic method for sampling the parametdistributed according tp(®')

proceeds in steps. When the current stat¢ then the proposaj for the next
sample in the sequence is drawn from a transition distribytg|6,), which is
calledthe Markov kernelThe proposal is accepted with a probabibiy], ¢):

Her (C1X) MZ(G{K))
e (B/1X) 1z (L1600

If accepted the,;, = ¢. This method is called the Metropolis—Hastings algo-
rithm [28].

The choice of the kernel is decisive when applying the MCMC methods. A
kernel with a too little variance will converge too slowly, as it may take many
steps for the chain to extend over all significantly probable parameters. In turn a
too wide kernel may not accept many proposals.

a4/, ¢) = min(1,

(2.4)
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2.1.3 Gibbs sampling

An important practical method that is usually tried first is Gibbs sampling B0],
where amultidimensional parameter is sampled one at the time keeping the others
fixed. This can be viewed as a special case of the Metropolis—Hastings algorithm
[28]. For a set of parametefg, 6, . . ., 64 eachs; is sampled from the conditional
distribution given the other parametekso,, ..., 6,_1, 6.1, ..., 64 and the ob-
servations.m.

Usually the parametet given the others can be presented analytically, and
samples from it can be drawn without the need for the proposal-acceptance pro-
cedure. However, often it can be that this conditional distribution is difficult to
define in closed form and then the Metropolis—Hastings step is heeded also for the
6; conditional to the other parameters.

The advantage that Gibbs sampling has when compared to the Metropolis—
Hastings method is its faster sampling when the number of parameters is very
large. Whereas the Metrpolis—Hastings method may not easily find an acceptable
proposal, Gibbs sampling searches for a single new parameter at a time, which
speeds the acceptance, but this has the limitation that in some multimodal cases
the Gibbs sampling may not find all the modes. Also when there is need to make a
proposal that has more, or fewer, dimensions than the previously accepted sample,
these methods alone do not quite work. For this purpose there is an extension,
which is studied next.

2.1.4 Reversible jump algorithm

A notable extension to the basic Metropolis—Hastings algorithm is the added abil-
ity to jump between spaces with different dimensions [32]. The method also car-
ries the name Metropolis—Hastings—Green algorithm, or sometimeswaesible
jump MCMC This algorithm requires an additional latent variabldrawn from

a distributionuz (£16/), which is chosen to balance the scales between the nu-
merator and the denominator of equationl(2.4). Assumeghiatin a subspace

of dimensiond, ¢ is in ane—dimensional space, and the next propas# in a

d + e-dimensional subspace. The algorithm needs a fundtititat maps a pair

(0, £) to ¢. The acceptance probability beconags(é/, ¢, &) reading as follows:

(2.5)

pe (&) nz(€16) 13, §)|)
T e (0) nz(610) ns16) "

where J(6/, &) is the Jacobian determinant of the functién If the dimension
decreases instead of the equation] (2.5) one should use the resiprocal form:

aRJ(Qi/v f, E) = mll’] (1

pe (§) nz(£16) ME(SIQ())

) 2.6
pe 0) nz(615) 136, &)| 29

ayr(/,¢,8) = min(l
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With these amendments one can apply MCMC simulation for example in approx-
imating the number of kernels in kernel-estimation [b4], or selecting the input
variables for a model [85].

2.1.5 Simulation convergence

The problem with the MCMC method is the determination of when there are
enough samples. The simulation usually begins with an initial value which may
be very located in aremote area of the sample space from the are wich contains the
most probable events. The dynamics of the simulation, determined by equation
(2.4), then move the focus into a more probable region of the parameter space.
The identification of the initial period from the stable sequence is almost a sim-
ilar unresolvable problem to the original decision—making process for the model
itself, but many good methods still exist. The first is visual inspection of the
statistics, which turns out to be usually very good for separating any initial burn—
in period, in which the chain moves from the initial value to the main region. Also
the consecutive samples in the chain are not quite independent. For this one can
use the autocorrelations to extract a subset of more independent samples from the
the simulated sequence[[60]. Finally, in order to ascertain the convergence of the
chain one general method is the Kolmogorov—Smirnov goodness—ofiit test [73],
which is dealt with at end of this section. There are also many other method to
evaluate the convergence of a chain [73], but the convergence testing in general is
also a difficult problem that cannot be absolutely solved.

Use of the autocorrelation in MCMC

Samples in a sequence that is generated with MCMC methods are usually cor-
related. The immediately consecutive samples are always by the definition of
Markov chains correlated, but usually this correlation extends much further de-
pending on the kernel. The correlation can be radically reduced by choosing a
subset of the actual samples. The autocorrelation time is the average number of
steps in the sequence such that the samples that far apart are almost uncorrelated,
and thus if one were to omit the samples in between the resulting sequence is
uncorrelated. The autocorrelation time is obtained through the normalised auto-
correlation sequence of a sequence of random variahlgsvith lag k, which is
defined as:
30— i) Bk — O1n)
Yy (6 — Orn)?
wherefy., is the sample mean @k.,. This is an estimate of the covariance of

theith and the(i + k)th sample divided by an estimate of the variance ofithe
sample.

ay , 2.7)
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From the seb,., one can form a subset of samples by taking etgtly step,

with
n-1

tu=1+2) ac (2.8)
i=1
Decimating the samples then guarantees that these reduced samples are correlated
as little as possible [73].

Kolmogorov—Smirnov test

Next there is a discussion on the use of the Kolmogorov—-Smirnov goodness—of—
fit test to evaluate the convergence of the chain, i.e., when to stop the simulation.
This test is a general non—parametric method of deciding whether a set comes
from a given distribution. For a given continuous random variabléhe KS—
statistic is the maximum empirical deviation of the sample estimate from the true
value of the cumulative probability:

H6:, 01,
KS = max{|P{© < 6} — #, Oun)
I

|} (2.9)
where #x, A) is the number of elements iA smaller or equal tox. The null
hypothesis is that thé., are distributed according f@s. The null hypothesis is
rejected if the KS—statistic is greater than a given tolerapce
For testing of the convergence of an MCMC chain the distributigris re-
placed with another sequence, preferably obtained from a second independent
chain:
#0010  #Oi, 01n)
m n
In practice one can assume that the chain has converged if the valug KS
is not too small or too large. As a rough rule of thumb one could use the relation:
0.1 > KSycme > 0.9.

2.2 Application to Fault Diagnostic

In this section Bayesian inference is applied to a fault diagnostic system. It is
assumed that a device under inspection records the total number of some events
in its lifetime. For example, the device can count the number times it has been
turned on etc. Eventually the device will break down and the user brings it for
repair. The goal then is to decide in what way the device is malfunctioning based
on the information gained from these counter values.

The framework in this case is a set of counters, the final value of which is
observed at the end of some period of time. During this time period the process
has changed from the initial state to the final state at an unknown point of time.
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For both the initial and final periods there are an unknown numbers of possible
substates, i.e., event occurrence rates. For instance, a device used by a travelling
businessman can record a different behaviour than that of an office worker.

The estimation task is complicated due to the fact that there is no prior knowl-
edge about the event rates for either intact or faulty devices, hence the event rates
for the states and the state transitions must be modelled simultaneously. Collect-
ing the data during actual operation from a large number of devices causes addi-
tional complication in the model as the devices may not be exactly similar. For
example, in a paper machine both the sensors and the production line hardware
are continuously updated. Similarily in mass production devices, like in portable
computers, the same model may contain various different hardware configura-
tions and operating system versions, possibly affecting the rates of the monitored
events. To account for this variation all the states are modelled as mixtures of pro-
cesses, with an unknown number of substates. The substates are assumed to be
constant during the operation, so that each device has zero or one unknown state
transitions to be estimated.

Counter generation model

The process can be sampled in two ways, so that some of the devices have only
gone through a single state, an intact device, and some have two states, an initially
intact device which has then broken down. There may well be several inner states
in which the device may be as broken or intact, see for example the Figure2.1.
The vector of values ofn counters are denoted by € Z. The latent, un-
observable, variables determining the states of the process are denated by
{1, ..., kq} for the initial state and, € {k; + 1, ..., k} for the broken state, with
ki: andk, the number of initial and broken states, respectively. The unobserved
value of the counterr during the initial state of length is denoted byy, and the
final observed value during tinteis denoted bys. Each countex is modelled
as a Poisson process with paramete86]. This means that in a given time
the probability of observing one event measured by the counter is exponentially
distributed, and thus is assumed not dependend on the previous events.
Assuming that there ane counters. There are = k + k, latent states in
the model, wheré; is the number of initial states arkglis the number of broken
states. The matrix of Poisson rates in each of these statesig¥t %, The
probabilities of thek; initial states are denoted ly € R« and the matrix of the
transition probabilities from the initial to broken statesrbg R k2,
The device is initially in one of th intact statesz;, with probabilitiesw,, .
At time v the counteri will have the valuey drawn from Poisson distribution
with meanA,;. Then at timev it makes a transition to a broken stagof which
there arek, possibilities, with a probability;, »,. In this state the counteris
again generated at a different ratg ;. The total value of the counteris thenx.
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Estimation of the posterior

In choosing the priors it is assumed that no useful knowledge is attainable about
their form, and thus one should resort to non—informative forms. The prior distri-
butions of the variables are

Ky ~ Uniform{1, ..., Kmax}
K, ~ Uniform{1, ..., Kmax}
Q ~ Dirichlet(d, ..., 1)
e e’
ki times
Ri.1:k, ~ Dirichlet(l, ..., 1)
e’
ko times
Aij ~ Gammaa, B)
Z, ~ Bernoulli(w)
Z, ~ Bernoulli(T,, 1x,)
T ~ Uniform[0, t]
Y; ~ PoissorivAy, ).

Each state is thus considered equally probable. The weights of the states are
Dirichlet distributed, which again means that all possible combinations of. ,
wy, are equally probable with the restriction t@le wj = 1. The Bernoulli
distribution here is a discrete distribution where each ofkhe&lues have the
corresponding probabilities in the parameter vector. Thdistribution is cho-
sen as a prior for the Poisson rates because it is a conjugate prior of the Poisson
distribution [28].

The likelihood of the observed counter valugs, when the latent variables
and parameters are given is then:

m
ux(X|t, v, A, 2) = ]‘[ POISSOIX; [ Az, iU + Az, (t — V). (2.11)

i=1

The Poisson rates can sampled using the common Gibbs sampling for Poisson
distributions. These are first sampled for the initial states and then kept fixed
for the sampling of the second state rates. The number of latent states can be
chosen in both cases according to the most likely values based on the MCMC
sampling with reversible jump steps, RIMCMC [32]. The posterior distribution of
the parameters can be estimated with the Metropolis—Hastings—Green algorithm.
Similar approaches for mixture distributions have been studied by Viallefont &
al in [8€] for Poisson mixtures and by Marrs in|[54] for Gaussian mixtures. A
difference here is that the device has a possible change of state from intact state
to a defective state at an unknown point of time, whereas the methods in the
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references assume that the system has always been in one state of which there are
many choises. The RIMCMC jumps between dimensions are doneSgyiith
Mergetype reversible jump moves. Here the upper index is used to enumerate
through the data samples, and their latent variables. This is done by repeating the
following steps cyclically where in each step is described the parameters to be
sampled while the others are given:

1. Draweachy ;, ki <i <k fromI(a+3 1 iy 04 =¥, B+ 2y (' =
vh.
2. Draw eachr; ., ith row of r, from Dirichlet(A), where A € Rk2, A =
14+ Y, 1{Z, =i Az, = j}, wherel (a) = 1if ais true and 0 otherwise.
3. Draw ea(:kzil from Bernqulli(B), whereB € R«
Bj = wj [, Poissorty; [v' A ).
4. Draw eacl, from BernoulliC), whereC e Rk2,
Cj = 0, Ty ; 1, Poissorix; — yy[(t' — v')2, ).

5. Draw eachv' andy' from their posterior by Metropolis—Hastings proce-
dure.

6. In the Reversible Jump step either decide to try a split or merge a random
kernel (the Poisson rate parameters of some latent state) with probability
1/2.

7. Use the split, or merge, map (see below) to a ketreHosen at random.

8. Reallocate the latent statBs= «, (or while mergingz, = « Vv z, = « + 1)
by drawing from BernoulliD), whereD € Re,
Dj = w, T, [ ], Poissorix — [V Ag,1)-

9. Accept the split proposal with probability

min{1 pux(x18) 1J]
" ux(X10) nz(2)

1, (2.12)

whereé represents the distribution of all parameters, aacz) is the re-
allocation probability of the laterg and|J| is the Jacobian determinant of
the split map (see below). In case of merge the acceptance probability is

px (X10") pz(2)
pux(x16)  [J]

whereuz () is the reallocation probability of the latentf splitting from
the new state back to the original with the map whose Jacobigh.is

min{1, 1, (2.13)
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The steps 1 to 4 follow the Gibbs sampling and the steps 5 is a standard
Metropolis—Hastings jump, whereas the steps 6 to 9 describe the reversible jump.

In full Bayesian analysis no fixed values for any intermediate variables are
estimated, but instead the posterior distribution of the variables is propagated
throughout the analysis. The sequential estimation of the parameters can be justi-
fied by practical reasons: to simplify the analysis and to make the sampling faster.

Reversible jump step

The jump between dimensions here iSplit—-Mergemapping|[71]. There are
many other forms this could be done. This has been found functional, along with
a similarbirth—deathmapping|[71]. The process is done by randomly choosing
with equal probability either splitting or merging a state. In splitting a state the
average rate of the two new states is preserved:

WAl + oy = wA. (2.14)

The other parameter values are copied from the original one. The new values
for w1, wy, A1 andi, are then mapped so that all possible positive valuey of
andA}, satisfying equation(Z.14) are equally probable. This is the following map,
(Ai, @i, U, v) = (A, Al , @f, @, 1), Inwhich the latent stateis split, andu, v €
[0, 1] are drawn from the uniform distribution:

/

o, = 1-Uo

AR (2.15)
wj hj —wf A

M = T

The Jacobian determinant is then

_ Wi A
S u—-1

(2.16)

When merging two states, the rate of the new state is solved from the equation
and the other parameters are copied from one of the two components chosen
at random.

Example

Initially the modelling done in this section was done in cooperation with an indus-
trial corporation, which promised to provide labeled data to be used in the poste-
rior inference and testing. However in the end no such data was provided, and the
functionality of this model can only be shown with a simulations. Nonetheless

it gives a hint that the Poisson parameters can be extracted given that there are
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INTACT

BROKEN 1 BROKEN 2

Figure 2.1: The state diagram of the example system.

enough counters and that the latent states are sufficiently separated in the param-
eter space.

Take for example the following: the initial, intact, states are labelef &2}
and the final, broken, states g 4, 5, 6}, where the broken states are divided
into two groups, this would present that the device has two different categories
of malfunctions, with the set of stat¢8, 4, 5} as one categoryclass 1 and the
state{6} alone €lass ), see FiglZIl. The inital states were equally probable with
Poisson rates and transition matrix:

1 2
2 4
|2 8 (0 12 14 1/4
A=17 7 T_<1/2 /4 1/4 0 ) (2.17)
9 3
15 15

The simulated data had 25 samples from the initial model, representing intact
devices and 100 samples from the two state model, representing broken devices
(see figuré 212). The transition time was uniformly distributed.

The parameters of the intact devices were simulated for 1000 rounds and
the parameters of broken devices were simulated for 3000 rounds, with prior
Gammado, B) for A; ;. The convergence of the MCMC simulation was tested
using the Kolmogorov—Smirnov test [73] after a proper subset of the data samples
was selected based on the autocorrelation time to avoid the dependence of con-
secutive samples [60]. The number of the latent states was identified very quickly
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Figure 2.2: Samples of Example 1, intact devices marked with circles, broken class 1
with crosses and broken class 2 with boxes (the axes are the numbers of counters divided
by time).

and the simulation remained very stable on the correct number of states. The es-
timated probabilities, take as the mean of the simulated samples, with the most
likely number of initial states were:

12 20
20 41
A 20 86
A= 73 72 (2.18)
91 31
156 154
The transition probabilities to the first broken class were:
- 0.25 047 028
T= ( 029 049 022 ) (2.19)

In comparison to the true matrix 2]17 it can be seen that the matrices are not
quite the same. This is because some of the observations could be explained as a
transition from the intact state 1 into broken state 1, or as a transition from intact
state 2 into broken state 4, both of which are not possible in the true matrix. This
implies that the transition matrix is not quite identifiable.

The estimated distribution of the initial states was:

~ <O.55>
o= ,

0.45 (2.20)
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Figure 2.3: The true relative values af for the 2-D example compared against the
median estimates with the 90% HPD intervals.

which corresponds sufficiently with the true equal probabilities of the initial states.

The estimated parameters were tested in a simulated classification task for
100 samples from the initial process, representing intact devices, and 500 samples
from the two-state process, representing broken devices. The confusion matrix
compared to the 3-Nearest Neighbour classifier is:

092 0080 O 057 043 O
A= 022 072 0064 Asnw=1] 0.13 085 0011 (2.21)
0.13 014 Q75 0.085 064 027

From these matrices one can see that neither method mistakes an intact device
with a broken one in class 2, the first row, but that the Bayesian classifier is much
less likely to confuse an intact device with the broken one in class 1. One could
also use the CART [11] but in cases such as this where the decision border is not
parallel to the counter axes it performs rather poorly with too little data and the
decision tree becomes very large.

The estimation of the parameters as the median of the samples for each data
sample is plotted in figure 2.3. The lines are the 90% HPD intenkighgest
Probability Density intervals[14]. The uncertainty of the estimates comes from
the facts that the data does not contain direct information of the transition point,
and that there is only one observation related to estimation of each transition point,
and thus the estimates tend to come from the uniform prior. In estimation of the
classification, the dependency was marginalised by summing over the estimated
v values of the simulations. The classification based on maximal probability bor-
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Figure 2.4: On the left is the maximal probability classification borders for the 2-
dimensional example, the values of the counters in unit time, and on the right the 3—
Nearest Neighbour classifier for the same data. The black is the area of intact devices
(class 0) and the gray broken class 1 and white broken class 2.

ders compared with the 3—Nearest Neighbour classifier can be seen iffigure2.4.
It can be seen that that the Bayesian model gives a smoother transition between
the classes, as it can be assumed.

2.2.1 Discussion

The two states of the process can be recognised by the final values of the counters
when the dimension (the number of counters) is large. The one—dimensional case
is not identifiable as the observed phenomena can be explained by varying the
distribution of the transition point of which there is no direct information. Also if
there are too few counters and too many latent states the counters may not con-
tain enough information to separate all the inner states. The estimation becomes
more difficult when the transition has occurred close to the end of the total time,
in which case the counters only exhibit behavior of the initial states. In this es-
timation the availability of data for purely intact devices, and presence of more
than one counter to record events, is critical.

The MCMC simulation results of the posterior distribution of the fault diag-
nostic example indicates that the parameters and the latent states can be identified
from the 100 observations. It is also apparent that even when it is not possible
to determine when the device was broken classification can still be done. The
estimation is difficult for those observations for which the transition has occurred
close to the end of the total time, as there has not been enough time for the events
indicating the fault to accumulate. It was also assumed that estimation can be
first done for the intact devices. It is also hecessary to have one counter to record
events. Even if the number of counters is very large it does not affect the func-
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tionality of the model, however it may slow down the MCMC simulation.
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Chapter 3

Metrics of probability
distributions

Model selection is naturally also about model comparison, which needs a metric
of some kind on the models, or a goodness—value. A metric is a value between
two elements, whereas a goodness—value is assigned for a single element. The
value of a model could be determined by its usefullness. This chapter introduces
a new metric calledransformation discrepang¢ywhich thus can also be used in
model selection schemes. Its advantages are that it is based on the natural metrics
on the sample space or utilities of the models.

One value for comparison is the goodness-of-fit of the model to the observa-
tions [56]. Also in use are the entropy based metrics [42], which are based on
Shannon’s information theory[81]. However, the value could be defined from the
usefulness of the model, such as the cost, or benefit gained by the decision based
on it. This thesis presents a totally new kind of a metric catladsformation
discrepancywhich essentially extends a metric on the samples to cover the distri-
butions [483]. In applications such as clustering or image analysis one often needs
a measure of similarity between sets, an image being also a set of sorts for which
a similarity measures can be used [68]. Also Bennett et al. have a treatise on the
framework of Kolmogorov complexity as such a measure [7]. In this chapter is
presented a new metric based on a metric on the sample space.

When speaking about any objects a measure of difference gives the means of
comparing them. This is equally true for locations in space, weights of items, and
probability distributions. Formally such a measure is called a metric. A metric
has three mathematical characteristics [74]:

Definition 1 A metric is a binary functiod (-, -) such that
1. (Positivity)Vx, y : (X, y) > 0ands(x,y) = 0iff x = y.
2. (Symmetry¥x, y : §(X,y) = 8(Y, X).
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3. (Triangle inequality¥x, y, z: 8(X, y) + é(y, 2) = 8(X, 2).

3.1 Information—theoretic metric

A common form of a metric on probability distributions starts with the concept of
information. Information contained in a random variable is a measure of disorder,
or the average number of symbols that are needed to describe the obsei8ations [
18]. While the minimal code- ength required for the communication of an element
X is undecidable, the logarithm of the probability lag(x), or the Shannon—Fano
code length, is a useful upper bound [50]. The average of this code—length, and
the measure of information, is calleditropy81]:

H(ux) = E{log ux(X)}. 3.1)

When comparing a distribution of a random variatdeto that of another
random variabley, their Kullback—Leibler discrepancy is the average difference
of their Shannon—Fano code lengths:

KL{nxluy} = Eflog ux(X) —log uy (x)} = H(ux) — Efloguy (X)}.  (3.2)

This definition is not symmetric —one gets a different valu¥ i compared to
X, but itis zero if and only ifX andY are identically distributed. Of course there
are natural extensions to a symmetric form and thus to a proper metric @2].

3.2 Utility based metrics

Metrics, like the prior, are mostly based on the views of the statistician, and
the environmental constraints which essentially come from the purpose of the
model and the decision based on it. In the previous section this purpose was data
compression, and so also communication, but other applications of the statistical
knowledge pertain. For example the expected return of a gambler, efficiency of a
classifier, accuracy of measurements etc.

The concept of daransformation metrids slightly different from the stand
points of the Kullback—-Leiber type metrics. There the transformation refers to
a process of changing the events for which the probability is calculated in one
distribution such that the resulting events would match the probabilities of another
distribution. The following treatise in this section on the transformation metrics
can be illustrated by a physical methaphor: one could think of two clusters of
particles. The energy required for moving the particles is prortional to the distance
moved; naturally the very definition of work. For the two clouds of particles the
metric between them is the minimal energy one would need to move the particles
from one cloud into a configuration reminiscent of the formation in the other. In
this kind of principle starts the building of the transformation metric.
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3.2.1 From utilities to metric

When one can assign utility, or a cost, to each possible event, or there are readily
available means for comparing two events, then this can be used to derive a metric
on sets of events. A metric on distributions can then be obtained at the limit when
the sizes of these sets grow to infinity.

The notation ofF is used in this section for the space of parameters for a
family of functionsD x F — . We call F completef for all x, y € D there
existsé € F such that,fy(x) = .

A utility function U : D — R assigns a value to each elemenin the
sample space. Here the reference is to cost-like thinking: the lower the value the
better. From this one can get a pairwise costliscrepancy C D x D — R of
elementx andy by a path—integral; the total cost on a shortest path:

C(xlly) = min / du, (3.3)
’ Y

wherey (X, y) is a path connecting andy. This cost is not quite a metric, asitis
quite possible to have separate itexnandy, x # vy, such thalC(x|ly) = 0, but

this is not a problem per se, but only an indication that these elements are of equal
value. Of course the cost—functi@-|-) may be naturally available directly —a
metric onD for instance. Of cours€ need not be the result of a minimisation
process but can be explicitly defined.

Another approach would be to use a cost function F x D — R that
measures the cost of different wagiscan be transformed into something else
by functions parametrised by € F. Then a pairwise cost can be defined as
C(allb) := min, K(0]a) such thatf,(a) = b, andoo if no suché exists.

Once there is such a pairwise utility function, it forms a base for the discrep-
ancy for sets of elements. This discrepancy is the sum of the pair-wise discrep-
ancies of the elements in the two sets. Assuming that the two have equally many
elements, then each element in one set can be matched with one in the other set.
There are many such matching but the one that minimises the total is chosen. The
discrepancy on sets becomes the total sum of the discrepancies of these pairs.

A matchingof x;..,, andy;., is a multi-setR of k pairs ofx, andyfn, such that
each element of* and yjﬂ appears exactly once in some pair, amgd = ng = k.

We then have a set of source poimtsg, and targetsy,.,, but we still do not
know which elements im,.,, are mapped to which ones ja,. Define thetrans-
formation discrepancy 8f setsx,.,, andyi.n:

Definition 2 For multi-sets x,m and V.,

1 .
Soamlys) = 2minf Y Coalyp ). (3.4)
(Xi,yj)eR



24 Metrics of probability distributions

where R is a k—matching of.x and y.,, with k = lcm(m, n) is the least common
multiple of m and n.

This is the average cost of mapping elements in thegsgto elements in the
sety;n. The minimization problem in equation_(B.4) is called theimal per-

fect bipartite matchingoroblem in computational complexity theory which can
be solved in time roughly(n®) [17]. One algorithm for this problem is called

the auction algorithm which represents the situation as an auction: the other set
of points are the bidders and the other are the items on auction. The algorithm
proceeds in steps of bids until the bidder have received the items they_want P].
Another algorithm is called thaungarian algorithm €], which is much more
abstarct. In this algorithm sets are marked and unmarked until the algorithm ter-
minates.

Enlargening the sets.,, and y;., ad infinitum leads to a pairwise cost for
probability functions. One would not venture far by assuming that probabilities
are defined by infinite sets of samples: as all that can be reasoned about them is
by statistics, and the plausibility of all such statistical inference demands that in
the infinite limit the right conclusion can be reached.

Also there is a connection to communication, the theory of Kolmogorov com-
plexity [50] and minimum description length principle![72]. The algorithmic min-
imum description length principle states that the optimal predictive model is the
one which generates the observed data with the shortest description in terms of
computer programs. The cost of transformation is analogous: the complexity of a
string of symbolsy;., given anothek,.,, is the length of the shortest program that
readsx,.,, and outputsy.,. Consider, for instance, the following communication
event: Alice and Bob both have access to a source producing a striddice
wants to transmit to Bob a string but instead of the string itself she transmits to
Bob the description of the function, which Bob can apply on the stxitmobtain
y. Furthermore Alice might be able to send Bob for each symbioldividually
a description of the functiorf;, which, when applied on;, would produce the
symboly;. The average amount of transmitted bits is the avekag) over the
transmitted code length& ( f;), of the functions,f;, during the transaction. If the
sequence/ = X, then no bits need be transmitted —Bob already kngwslere
S(X1.mllYn) is the total amount of bits transmitted from Alice to Bob.

3.2.2 Extension to integral forms

Next it is shown how the above described discrete minimization process can be

extended into continous models and integral forms. Such a formalism enables a

much more powerful approach for the metric, and understanding of its behaviour.
Thedualis a random transformation between two random variableB:on
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Definition 3 Thedualfrom X to Y is a random variabl® on F conditional to
X such that for all xe D

pux(X) = E{J@(X)*lMY(f@(X))lx}, (3.5)
whereJg (X) is the Jacobian determinant of, &t the point x.

The dual exists if for almost alk, ux(x) > 0, there exists a parameteér
such thatfy(x) = y and uy(y) > 0. The dual is not unique, which is easily
demonstrated: let the sample spaces of both distributionR, nd let the set
of functions be the set of affine transformations Ien If the distributions are
v(y) = §(y — y) andu(X) = §(x — X'), then anys—function onF assigning
positive probability to a transform of the foréyy’ 46, = X’ is an admissible dual
kernel.

In the case of a discrete sample space the dual is a transition matrix: given
p € RY andq € R® with the property>", pi = > =1, adualis a matrix
® € R also withVi }_; ¢ = 1 such that

dp =q. (3.6)

The solutions® to the system of equatiofis B.6, along with the constraints, can
be parametrised bgie — (d + e) + 1 parametersde variables ance +d — 1
independent equations).

The transformation discrepan&is in fact an average df. It is the mean
over a specific dual:

Theorem 1 liMm- o S(XemllYim) —> s and s < oo if and only if there ex-
ists a dual® such thatE{K (®]|X)} = s and for all duals®: E{C(O|X)} <
E{K(@'[|X)}.

Proof: Assume there is a minimal du@l s.t. E{K (®|X)} = s < oo but
liMmo co S(XumllYom) —> §. If |S] = oo, this can only happen if there is
Xi € D such thatk (6|x) = oo for all 8, and therefore there can be @owith
E{K(®|X)} < oco. If on the other hands| < oo then there exist sequencrs,,
andyi.., for which S(x1.m|ly1m) converges te. Define a sequence of matchings
Ri, Ry, ... such thatR, is the minimal matching for sets.,, andy,..,,. For any
subsetA C D with P(X € A) > 0 define the subsetd, = {a € x;., N A} and
B,={bevyndac A :(@b) e R} TakeT, = {0|x € A,y € By: fy(X) =
y}. Eventually then set, must be non-empty. Then by the law of large numbers
Tn/Nn converges to the probability of a dudl of X, and S(X1.m| Y1.m) converges
to E{K(®’|| X)} = ¢, because eacR is minimals = O

Thus at the limit when the number of samples goes to infirftygecomes
a metric on the probability distributions with some conditionskonas will be
shown later. The difference between the Kullback—Leibler distancesaadhat
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KL measures the difference between the code lengths of the elements in the sam-
ple space, whileS is the cost that it takes to transform sample sets from one
distribution to another.

3.2.3 Convergence 05

Next it can be shown that the transformation discrepancy converges with a proper
selection ofC, and also obtaining an average bound. Results of convergence
bounds such as these are quite common in learning theory (see for exatnple R0]),
and here follow similar lines of reasoning. The most significant difference is that
here the set of models, within which the bound is obtained, is the set of all models
represented by finite (or infinite) sets of random samples. Parisilin 66] analysed
the value ofSas the sum of the matching problem with some simplifying assump-
tions on the distribution of the values of ter@sx | y;) with different values ok
andy;. The results of [66] however do not generalise well.

A restriction on the cost functio@ must first be imposed. This restriction
should still cover as many forms @f as possible. It is here chosen as:

Definition 4 The function C iauniversalif |[E{C(X]Y)}| < oo for all random
variables X and Y with finite variance.

Using such a cost function it can now be shown that the transformation dis-
crepancysS converges:

Theorem 2 If C is universal andF is complete, then for all 11D random variables
X1.00 @Nd Y. With finite variance)imm_ « S(Ximll Yom) —> S < 0o.

Proof: For a completef there exists a duab. SinceC is universal
E{K(®|X)} < oo and therefore by Theore 1 I oo S(X1.m | Y1m) 2% s <
0. O
Also the same can be now formulated with expectations instead of limiting
values on the sizes of the sets involved:

Theorem 3 If C is universal andF is complete, then for all IID random variables
X1.00 and Y., With finite variance there exists a constant ¢ such that for all m

E{E{S(XmllYem)} — S(XzmlYem) [} = .

Proof: By Theoreni S converges and therefore by Theotdi@ ik an aver-
age over some dual. The value 8fX1.m| Y1.m) is @ random approximation of the
integralE{C(®|X)} < oo. By the Koksma-Hlawka inequality [64] we know that
the error will be
E{|E{S(XzmlYzm)} — S(Xml Yzm)|} < \/Lm for somec proportional to the vari-
ation of C(X]Y). O

Thus we know that the value of the transformation discrepancy entails a ran-

dom error of the order /A/m with regards to the number of samples. This is
analogous to the error of numerical integration with random samples.
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3.2.4 Sas a Similarity Measure

The transformation discrepancy measure can as well be a useful tool in evaluating
the similarity of objects, such as images or documents of text. For this the function
S(:|-) can be treated as a measure of similarity between discrete subsets of the
sample space.

Denote the set of all infinite discrete subsrtsg, of D that satisfies lim_,

Zi”;l u(x) —> oo for some probability distributiop with finite variance a$§.
When setX1..., V1.0 € S are such that for all subsets the limiting distributions of
X100 ANAY1.00: A C I liMms oo [XemN A/ M =1lim_  |YL.nNA|/n (the average
number of elements iA are equal) they are considered equivaleg, ~ Y1.o0.

Often such measures of similarity are required to be monotonic; i.e. similarity
of a set does not decrease by taking the union with a third set. Here, however,
there is not quite such a strong relation, and one has to settle for a weaker weighted
form:

Theorem 4 (Weighted monotonicity) If C is universal arfl is complete then
for all X100 YLicos 210 € S: (m + n)S(Xl:m U Y1:n||21:o) = mS(X1:m||21:o) +
ns(yl:n”Zl:o)-

Proof: First note thaS(&, [lYs ) = S(Xzm|l Yan)-
1
(m+mS(OaumUyn)’lZis") =< > Clwillz), (3.7)
(wi,zj)eRy

whereR; is the minimal matching ofx.m U y1.n)° andzl:".

1
Mzl == Y Cxilz), (3.8)
0
(%i,z))eRy
whereR; is the minimal matching of? ,, andzy,.
1
NSz =< Y. Cuillz), (3.9)
(¥i.Zj)eRs

where R; is the minimal matching off,, andz] . Adding equationd(318) and
(3.9) there are the same terms a$ in|(3.7) but summed over a different matching.

Y. Cwilz)< Y Cxllz)+ Y Cwilz) (3.10)

(wi,zj)eRy (Xi,Z))ERy (¥i.z)€eRs

= ) Cwwlz) (311

(wi,zj)eRUR3

as the pairingR, is by definition optimal. O
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The relation in Theoreml4 is an equality when the samples are equivalent.
Easily, ifx¢, =y~ for somex andg, in which caseR;, R, and Rs in the proof
of Theoreni 4 are the same, but there is a more general result:

Theorem 5 If C is universal andf is complete and%, ~ VYi..o then for all
Z1.00 € S: Iimm—>oo S(Xlzmlzl:n) = Iimm—>oo S(yl:mlzl:n)-

Proof: Let X1.., be distributed according to the limiting distribution>ef,,.
Mmoo S(XemllZen) = liMms s S(XemllZen). Then note thayy.,, has the same
limiting distribution. O
Finally it can be seen th&is in fact a metric on the space of probability dis-
tributions, at least on the set where models are represented by sample sequences.

Theorem 6 If C is a metric onD, then S is a metric of.

Proof: First noting thatS(xy. || Y1:00) IS the limiting sum of elementS (x| y; ).
It can be seen that of the three parts following the Defirifion1 of a metric of which
the the & property, the triangle inequality, requires the most attention: Assuming
thatva,b,c € D : C(a|b) + C(b|lc) > C(ajc) it is needed to be shown that
Vxlzoo, Y1005 Z1:00 € S: S(Xlzoo”yl:oo) + S(yl:oo”Zl:oo) = S(Xl:oo”Zl:oo)- For some
m > 1 take finite subsets sexs, Y1.m andz.m. Let the optimal matching of
X1.m andyy.m, be Ry, of y1.m andzy., be R, and ofx,., andz,., be R;. Take other
subsetsy.n € X1m, bin € Yim andcy, € z1.y, for some 1< n < m such that for
all<i<sn:(@@,bh)eR,(@,¢) e Rgandforl<i<n—-1:(b,cy1) e R
and(by, ¢;) € Rs. The setsy.m, by.m andcy., can always be found, as the item
for instance, can be chosen. This item will have some fmaadc,, but the pair
of a; in R is notb; then the loop is continued by adding the itéprfor which
(a1, bp) isin R,. This process is continued until for sorethe pair(ag, by) is in
R>, which will inevitably be found as the sexsn,, y1.m andz.,, were finite. The
sums iNS(XymllYim), S(X:mllZem) and S(yi.mllzi.m) are composed of sums over
such cyclic subsets. Assume by contradiction that

n n—-1 n
Y C(@lb) + Y Cbiliciya) + Clbnllc) < Y Clalici). (3.12)
i=1 i=1 i=1

However on the left hand side of Equation3.12 it is known that far al (g || b )+
C(billci;1) = C(a|Ici+1). Thus for the left-hand-side of Equation3.12 it applies
that

n—-1 n-1

Y C@lb)+Y_ Cilicii)+Clbnlicy) = Y C@lig 1) +Canlicr), (3.13)

i=1 i=1 i=1
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which in turn by Equation-3.12 must be less tHaji_, C(ai|lci). However the
matchingRs, part of which the pairs in the suﬁi”:1 C(aj|lc) are, was assumed
optimal. Thus the triangle inequality applies for @) and then also for the limit
m — oo. [l

3.2.5 Example

These ideas can be illustrated with a simple example. Here a metric fo8n of
is chosen, such that for a very simple set of considered distributions this metric
would allow a consistent model selection.

First take a metric in 1 dimensional space, and then apply it to a simple set of
distributions. Let the sample space be the half-spice- {x : x € R, x > 0}.
Take the set of functions as the set of multiplications by scafax) = 6x.
Define the cost offy by

K| x) = |logd]|, (3.14)

and then a pairwise fori@ can be derived as explained in the beginning of Section
resulting to:

Cxlly) = llog 2. (3.15)

The identity mapf; will be assigned the minimal discrepancy. This metric is
symmetricC(x|ly) = C(y||x), and the triangle inequality applies with equality.
Forx,y,ze Rt :x <y <z

Cxlly) +C(ylla) =logy|+ |log?|
=logy —logx +logz —logy (3.16)
=log % = C(x|2).

It can then be shown that the minimal dual can be chosen as a single continu-
ous functionyr: the dual distributionug (6]X) = 5(:/f(x) — fg(X)), for a spesific
function ¢, which is explained below. First note that the matching in equation
(3.4) preserves the order of the elements:

Proposition 1 If Xx; < X, theny (X)) < ¥ (X2).

Proof: In the following assume that, < X,, and writingy; = ¥ (X1),
Yo = ¥ (Xp), for a contradiction assume thgt < y;. Using the equatiorn (3.16),
one needs to check the following four cases:
i) X1 < Yo < y1 < X. Looking at the pairgx, y1) and (Xp, ¥») that must
occur in the sum of equation (3.4):

C(x1lly1) + C(x2lly2) (3.17)
= C(X1lly2) + C(Y2lly1) + C(X2lly1) + C(y1llY2) (3.18)
= C(x1lly2) + C(X2lly1) + 2C(y1lly2) (3.19)

> C(X1|ly2) + C(X2lly1)- (3.20)
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Therefore, the optimal matching in equation3.4) cannot contain theEaing )
and(xz, y2).
i) Y2 < X1 < X < y1. Then

C(x1llyn) + C(xz2lly2) (3.21)
= C(X1lIx2) + C(X2llY2) + C(X2lIX1) + C(X1|ly1) (3.22)
= C(y1lx1) + C(y2llX2) + 2C (X1 [[X2) (3.23)
> C(y1lIx1) + C(y2lX2). (3.24)

i) Y2 < X1 < y1 < Xp. Then
C(x1llyn) + C(xzlly2) (3.25)
= C(x¢llyn) + C(XalIX1) + C(Xally2) (3.26)
= C(x1llyr) + C(%2llyn) + C(y1lIx1) + C(xally2) (3.27)
= C(Xxully2) + C(Xellyr) +2C(xally1) (3.28)
> C(X1]ly2) + C(X2llyw). (3.29)

iV) Yo < y1 < Xq then

C(y1lx1) + C(x2lly2) (3.30)
= C(x1llyr) + CXallyn) + C(Yally2) (3.31)
= C(Xullyr) + Cxellx1) + C(Xallyr) + C(yally2) (3.32)
= C(Xxully2) + C(Xellyr) +2C(Xally1) (3.33)
> C(X1]ly2) + C(X2llyw). (3.34)
O

As the elements are in the same order, as long as neither distribution contains
atoms, the dual mapping has to be a deterministic function.
Next consider uniform distributions with a parametes 0:

1 if x € (0,0]

n(x|6) = { 4

0 otherwise (3.35)

Let X1.., have a distribution«(-|¢) and letY,., have a distributioni(-|p). When

the functions are scalar multiplications, and because the matching is order—preserving
at the limitm — oo there is a matching defined by a continuous function

¥ (X) = £x, and then

]
im S(Xum | Yam} = f RO &1 du (3.36)
m—o00 0
0 1 /0
:/0 5|Iog(5)|du (3.37)

= | |og(§)|. (3.38)
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This is a proper metric for the considered distributions. Thus the minimal trans-
formation discrepancy estimageof 6 is consistent. Note that this is the same
as the Kullback-Leibler divergenc€ L (X|Y), if 6 < p, butif 6 > p then
KL(X|Y) = cc.

3.2.6 Discussion

In this section a metric on probability distributions based on a metric on the sam-
ple space was introduced. It was shown that this metric can be calculated as a
minimised sum of the pairwise costs of the samples from the two distributions.
Also it was established that with some restrictions on the underlying metric this
sum converges into an expectation of the pairwise cost. This metric can serve in
model selection or classification of random groups. A small example was used to
show some analytic results that can be obtained with this metric.
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Chapter 4

Uncomputable Likelihoods

There are cases where the likelihood tem(x|0) in equation [[ZIl) cannot be
practically computed. Then the inference can still be carried out with a simu-
lational method by sampling elemengs, according to the distributiopy and
comparing them to the observatiors,. This problem was addressed by Diggle
and Gratton|[21], and the terindirect inferencewvas advanced by Gourieroux et

al. [31]. In this chapter a new approach is suggested which is based on the metric
considerations of chapter 3 [44].

This problem arises for example when one attempts to infer the generating
dynamics of a moving particle. The dymanics of the particle is defined by a pos-
sibly stochastic system of differential equations. In this system the particle begins
its movement from a random initial point and then follows a distinct trajectory.
Here the motion can be considered to be due to one of many possible models,
of which correct one is sought. However, the dynamical process, which governs
the action of the particle, may not be time—invertible and thus cannot be traced
back to its origin when only the final resting place of the particle is seen. Also the
distribution of the random initial condition may not be propagated analytically to
the final state. The lack of invertibility and the randomness of the system prevents
computing the probability of the observations.

This kind of estimation of the likelihood function also provides means for a
goodness—of-fit test. Given two sets of samples for which the approximation of
the likelihood can be calculated can be viewed as the probability that they have
the same distribution. Gelman et al. referred to such an approactabsed
discrepancieq29].

The rest of this chapter is organised as follows. First methods for estimating
the posterior probability of observations, when the exact probability is not practi-
cal to compute, are discussed. At the end of the chapter there are simple artificial
examples in which the methods are applied.
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4.1 The estimation model

The estimation of the likelihood function can be constructed so that for each data
sample from the model, calledraplica, a noisy observation is made. The noise
may change the replica a small amount, relative to the metric of the sample space.
When the variance of this added noise is brought to zero, which in this approxima-
tion is required to happen as the number of replicas approaches infinity, naturally
the the approximating likelihood should approach the noisless likelihood.

The model is the same as in Chapfler 2 Equdiioh 2.1:

e (0X1m) < wxje(Xeml@)ue(8), (4.1)

where the value of the likelihood terpye (X1.m|0) was not possible to be com-
puted, but from which samples can be generated.

The approximating model has additional variables: the latent random variable
Y is distributed identically aX and are conditional to the model parameteand
the observable variableé,., are conditional tdr;.,. With this notation the orig-
inal model is discriminated from the approximation. The hierarchical posterior
probability density ob, and the replica¥].,, is then:

Méryy (0 YinlXem, p) o g, (XemlYan. £) iy (Yanl6) pe (6). (4.2)

Let us concentrate on the modelling of the right-hand side latent variable like-
lihood KLy, Xtm| Yin, £). In the models to follow one should note that the nuis-
sance parameteris not usually identifiable by the data, and thus is mostly defined
by its priors.

When modelling the predictive distribution of, also the laten¥,., needs to
marginalised. This is done as:

Mz),(elxl;m, P, M) = /M®/>Y:[:n(0, y1:n|X1:m, P, M) dyl e dYn, (43)

wheren is superscripted to the left hand side because the dependency on the num-
ber of replicas remains. The integration of the equation can be done efficiently by
MCMC simulation.

4.2 Kernel estimate

Here is presented the first of the two methods suggested by the hierarchy of equa-
tion (4.2). By using the standard method in Bayesian inference the latent variables
are marginalised. In fact, it then becomes evident that this corresponds to the stan-
dard kernel estimate of the likelihood function.

For simplicity setm = n, andXy., are 11D and for each conditional to a
latent variabley,. In this case the realization of eathas individually perturbed
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to produce the observation ®f. From this scheme follows the formula for the
latent variable likelihood:

n
g (Xz:m|Yin, p) = H“Xi XiYi, p). (4.4)
i=1
When the sample spacedsdimensional, each factor of the product is defined
by akernel density functiom,(x) = w(%)/,od with bandwidthp. This kernel
function is maximised at zero, and is usually symmetric. One very often uses the
Gaussian kernels of the form(x) o« e XI*, Then the latent variable likelihood
gets the form
ng (XY, p) = @, (X = Y). (4.5)

When performing the marginalization ¢f (#.3) ovét with n MCMC samples
{y%, ..., y"} one gets

1< .
g (X[0, p) = /mxw, P) v (¥10) dy~ =3 S w,(x — y)) (4.6)
j=1

as an approximation of the likelihood with a kernel estimate with bandwith
The bandwith can be asymptotically chosen as a plug-in estimate:
c

P:T%,

wherec depends orVZp(x|0)| ., and the choice of kernel [82]. Whengoes
to infinity the estimate on the right-hand side [of]@4.6) approaches the likelihood
ux(x]0), recovering the original posterior of equafion2.1.

(4.7)

4.3 Indirect inference

If one calls as a direct approach the computatiopafx|6), when possible, and
using this knowledge to infe#, then the alternative, when samples>ofcan be
drawn, can be referred to as indirect. Construct a model whepg.glare con-
ditional to all y1.n, by defining a binding probability densi%l:m(x1:m|y1:n, 0),

where one assumest thét are exchangeable, but not independent.

4.3.1 Method of Gourieroux

Gourieroux et al. proposed the first method for this kind of a problem and dubbed
it indirect inference| [31]. To start they use the model to generate a set of samples.
For these samples they compute a statistic, and then compare this statistic to the
corresponding statistic of the observations. The best model is chosen by compar-
ing the statistics of the simulations to the statistics to the observations, by a metric
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on the statistics. In this framework the difficulties of the computation of the like-
lihood have always been about marginalization over some latent variables, which
presently can well be solved by MCMC simulation, see for example [i3, 60].

In this methodology, in absence of a way to evaluate the fungki@r|6), one
uses a simpler model (called thexiliary mode), with a parametet € Z. One
assumes that this parameter can be easily estimatgel;ag), which is astatistic
of the observations,., —a measure computed from a set of data values. By
generating a set of random samples of Y1, one then tries to find a parameter
6 that minimises distance of the parameters, relative to some metrit drhe
Gourieroux et al. defined linding functionas that closest parameter given the
observations.

In the spirit of what follows we could define a probability in the model @.2):

M, (Xt:m|Y1n) = N e_m‘s({(xlzm)w()/lzn))’ (4.8)

whereN is a normalizing constant. The multiplien is in the exponent to make
the probability dependent on the number of samples, which is required for the
posterior probability to converge correctly. One should note that this dependence
is not otherwise present in the formula through the métric

The critisism of this method is firstly: closeness in the metric used in the defi-
nition of the binding function does not imply that the functions behave in a similar
manner. Rather, it might be wiser to use metrics on probability distributions, like
total variance or the Kullback—Leibler divergence, but this would make the evalu-
ation of the distance more complicated. Secondly: in order for this method to be a
useful way of estimating in terms of an easier estimatgit should be clear that
the simpler model must then be a sufficient statisticzfoAn analysis of this may
be a difficult task since the likelihood with the model, with paramétes hard
to compute. Also if the binding provides a consistent estimatop for implies
that the space of distributions defined ®yhas to be a subset of the modé&ls
However it does not assume a metric on the sample space which may be a benefit.

4.4 |Inference with transformations

Another variant of the indirect inference technique, where the problems men-
tioned above are corrected is to utilise a metric on the sample space. In this
method the metric binding function is replaced with a metric on probability dis-
tributions. A practical form, easily computable for sequences of random samples,
is thetransformation discrepancsneasuresS of equatioii3 4.

Basically one would look at the probability of seeing two sets of samples a
given discrepancy apart subject to a hypotesis that they have the same distribution.
Naturally this probability depends on the distribution in question, and the metric
used. Thus it would be hard to say anything properly general, but one can guess
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that a form decreasing with distance is appropriate. In fact one can take what is
given in physics, the exponential of the negative distance, for this distribution:

M(Xlzm|yl:m) X e_mS(XLm‘ylzm)- (49)

The exponenm is also required to get a dependency on the number of samples.
Without this factor the inference based on this probability would be consistent but
not efficient; the average is correct but it has too wide variance.

A similar approach to the kernel estimate is to marginalise over the lgtgnt
as in sectiof 4]2. When adding an additional multiplier, a weighthich now
is proportional tan, on the exponent of the right hand side. of the equdiioh @.9)
one has

15, Xm|Yan, p) = Nem#Stambin), (4.10)

whereN is a normalizing constant. With the theory of simulated annealing [L] we
can again recover the original posterior of equafiod @.1), as stated in ThEelorem 7.

Theorem 7
p|Lmoo e (0Xem, ) o px (Xeml0) ne (). (4.11)

Proof: Whenp — o0, K%y XtmlY1m, £) approaches thé—distribution
such that (x;.m, Y1m) = 0 if X1.;m is not the same sequenceyas, upto the order
of the symbols. Furthef [ 1z (Xim|Yim, )ity (Yiml0) e () dYs ... dym =
pux (Xzml0) e (). 0
A different perspective is to marginalise the latéhy to compare different
values off. When the number of replicas is increased, the meaS0gg,|y1.n)
becomes no longer a random variable. This is the content of the next Théorem8.

Theorem 8 If C is universal andf is complete and Y has finite variance then

M:/ 4 (9’ Yli |Xlt ) M)
lim i ? T T A iy 0 0 xgm, M), (4.12)
ooy (Yanl6) noe 16

Proof: First, Theorenid3 implies tha®(x;.m|Y1.n) converges almost surely
to some constart < oo whenn — oo andY has finite variance. Then the
expression on the left hand side is a limit of:

Ky XemlYin, 0) e (0), (4.13)

which according to its definition i (4.9) depends mithrough S(X;.m|Y1.n) and

thus converges to some valgdy TheorerhB. Likewise the right hand side is the
average over the equatidn (4.13), which by thedrem 3 also converges to the same
valueq. d
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Theoreni B implies that the terpy, (y1.n|6) can be ignored provided that there
are sufficiently many replicas when calculating the posterior marginal @.3).

The transformation discrepancy can be used to evaluate the posterior goodness—
of—fit posterior p—value, which here is the probability of observing a larger dis-
crepancy of two sets, which are identically distributed, than the discrepancy of
X1.m and replicas [29]. This as an average:

pval(xl:m) = E{P(S(Zl:lel:n) = S(Xl:m|Y1:n))}’ (414)

where Z,., and Y., are IDD, and the average is also taken over the posterior
distribution of the model parameters. This is the average probability of observing
values ofSlarger thatS(x.m|Y1n). A p—value close to 0 would imply a good fit:

an unlikely thing to see larger discrepancies than that of the observations. This
can be easily simulated with MCMC by generating samglé®m the posterior

and for each generatedgenerate two sets of replicas,, andy,.,. The posterior
p—value is estimated as the ratio of incidences wigmn|y..n) was larger than

S(Xl:mlyl:n)-

4.4.1 Examples
Uniform distribution

Taking as the first example the simplest: the underlying true model is a uniform
distribution over the real intervg0, 1] — a distribution hardly uncomputable but
which is used for the sake of an exeample. Using the three methods discussed,
the kernel model, the transformation model and the Gourieroux model in the suc-
cession is demonstrated that the distribution can be estimated using these indirect
methods.

In the kernel model take the Gaussian kernels, and Scott’s rule for the band-
width: p = ¥1.,n~Y/° [80], wherey., is the sample standard deviationygf,.

In terms of Gourieroux et al. the Gaussian distribution as the auxiliary model
with the estimated parameters

coun = (3. (4.15)
1:m

where X is the sample mean of.,,. Under the assumption that the true dis-
tribution is uniform the above mapping does provide sufficient statistics to in-
fer the bounds of the uniform distribution (the parameters of a uniform distribu-
tion given the mean and standard deviation(and-n(A, B) max(A, B))T, where
A = 11y — /3oy andB = iy + /30y).

The measure of the magnitude of the error by thenkeasure of probability
distributions is:

&= / |[v(u) — D(u)| du, (4.16)
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wherev is the true probability distribution function, arids the estimate obtained
from the data.

Assume that the lower bound lies in the &etl, —0.9, ..., 0.5} and the upper
bound in{0, 0.1, ..., 2.5}, and that a priori all these values are equally probable.
When there aren = 10 observations, one needs to genenateplicas for each of
these 220 different models. The values of the kernel estimate, the transformation
discrepancys estimate, and the Gourieroux estimate, for the exact same observa-
tions x and replicasy on this grid serve for comparison. To obtain statistics the
process for 100 observation sets is repeated. The estimation was trialed with the
L;-measure: in (4.16) of the true distribution against the Bayesian posterior pre-
dictive distribution of equatiori(2l2). The efficiency of the maximum likelihood
point-estimates: choosing the model maximizing the likeilihood, or its estimate,
is also of interest here.

In Figurd 4.1 is plotted the average error as a function of the number of replicas
for each three methods. One should pay attention to the efficiency of the different
methods to use the information in thereplicas. It can be seen that the indirect
methods reach the base level of the average error of the Bayesian posterior with
the true likelihood with 20 replicas, and they are more efficient than the kernel
method in utilizing the replicated data. The fact that the kernel goes below the
base line ah = 16 can be accounted for by statistical fluctuations rather than
that the kernel method would be capable of extracting more information than the
true likelihood. This assumption is supported by Fidure 4.2, where is plotted the
standard deviation of the error. It can be seen that the kernel method is roughly 3
times more volatile than the others.

In Figure[4.B is plotted the average error for the maximum likelihood esti-
mates, with the true ML—estimate (a uniform distributionmmn(x.m), Max(X.m)1)
as the base line. All the methods are in this sense about equivalent, reaching the
base line aften = m = 10 replicas, and outperforming after that mainly because
of the finite grid for the parameters: a quantization effect. Also the standard devi-
ations of the maximum likelihood estimates are similar as can be seen from Figure
[4.4. Thus these three approximation functions have their extreme values at about
the same location.

The Lorenz system

As the second example is chosen a chaotic system having a strange attractor. A
chaotic system is such that a small perturbation in the location of a particle induces
a large deviation in the future position of the particle. Due to the nature of the
system it becomes untraceable to know where a given particle was before, within
finite accuracy. For this model analytic results are hard to come by and therefore
only the MCMC simulation results are shown.
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Figure 4.1: The average L-errore of the posterior predictive densities as a function of
the number of replicas. The vertical line is the average error when the true likelihood is
used.
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Figure 4.2: The standard deviation of thejterrore of the posterior predictive densities
as a function of the number of replicasThe vertical line is the standard deviation of the
error when the true likelihood is used.
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Figure 4.3: The average L-errore of the maximum likelihood estimates as a function of
the number of replicas. The vertical line is the average error of the true ML—estimate.
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Figure 4.4: The standard deviation of the terrore of the maximum likelihood estimates

as a function of the number of replicasThe vertical line is the standard deviation of the
error for the true ML—estimate.
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The Lorenz attractor [79] is a chaotic system of differential equations:

2= (22— 71)
Zp =Wz — 2 — 1173 , (4.17)
Z3 = 212 — O3Z3

whereq,, ¢», andgs are the model parameters andz, andz; are spatial loca-
tions.

The standard choice for the parametersgre: 10, g, = 28 andgz = 8/3.
The initial value ofzis (0 0 0" + », wheren ~ N(0, 107!) is a Gaussian noise
term. For statistical observation we takepoints from a numerical simulation of
T = 10* time steps, sampled at intervals &f = T/m, but assuming here that
the order of the observed samples is not known, or is not relevant.
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Figure 4.5: Plot of the average posterior estimated paramers for the Lorenz system with
the transformationd) and the kernel methodl) as a function om. The vertical lines
are the standard deviations of the estimates. The horizontal lines are the true values.

The hypothesis is that the first parameter igiig= {5, 6, ..., 13}, the second
in gz = {23, 24, ..., 31} and the third ings = {1, 13, 1%, ..., 3%}, each in equal
prior probability. We generate = 100 samples for each of these 729 cases of
parameters, and evaluate the kernel estimate of the likelihood and the value of
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S for these points. Then one can obtain the Bayesian predictive distribution in
equation[(2.R). In case of the kernel method Gaussian kernels can be used and
choosing the bandwidth with Scott’s rule![80]. The method of Gourieroux cannot
be applied here because there is no simple sufficient statistic that is known that
would enable its use.

As an estimate take the average parameters over the posterior probability. In
Figure[4.5 are plotted the averages of the estimates over the data and their stan-
dard deviations for the transformation and kernel estimates as a function of the
number of observations, when the number of replicasis= 100. The system
parameters can be estimated with the observations within reasonable bounds. It
can be seen that the first and the second parameters are unbiased after roughly 50
samples, but the third seems interestingly still biased after 100 samples, which can
be warranted as a property of the system rather than a flaw in the methods. While
the kernel gets on average closer with the third parameter it has a larger variance.

4.4.2 Discussion

In this chapter it was shown that even if the value of the likelihood function cannot
be computed the inference can be carried out by adding a latent layer to the hier-
archy. This lead to two estimates: the kernel estimate and the indirect inference.
The examples demonstrated how this methodology can be applied, and that the
correct model can be selected. The Gourieroux method has its distinct problems
requiring a binding function, which must provide sufficient statistics which in turn
may be difficult to prove as the original model had difficulties in the analysis. The
kernel and the transformation methods are about equal in performance relative to
the number of samples drawn from the likelihood.
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Chapter 5

Spreading on random graphs

A graph is said to have the small-world propery if the average distance between
the sites is small compared to the size of the graph and average number of con-
nections in the sites. The distance between two sites is the length of a path that
connects them. Another interesting property of such complex networks is the
distribution of the degree, the number of connections to a given site. Graphs as
associative constructions can serve as models for many kinds of natural systems,
such as social relationships [55] or computer netwarks [24], and their analysis
sheds light on phenomena like epidemic spreading, data network vulnerability
and collapse of transportation routes. This dissertation provides analysis on these
phenomena, specifically what is later called spreading dynamics 45, 46].

Real-world networks are commonly characterised by a large number of pa-
rameters, but in relation to small-world networks is the average distance between
their sites |[63, 70, 22]. It has turned out that there is a rich family of small-
world networks which differ in many other respects. For example, the degree
distribution of the sites is Poissonian for the Watts—Strogatz graphs while many
real-world networks are often scale—free, i.e., they have a power law decay for the
degree distribution. To explain this behaviour models of preferential growth have
been introduced [%, ¥6]. Thus small-world networks are very interesting graphs
not only because of these properties of distance and degree, but also because they
are simple models that sometimes provide exact solutions |62, 46] and because
they are directly appliable, e.g. in polymer physics B7].

Properties of random graphs can be largely investigated by looking at their
response to dynamic randomness of some sort in simulations. Such simulations
could correspond to performing a random walk in the graph, or passing messages
between random sites. Once that is done simply looking at the statistics one can
categorise the network. There are two different forms of disorder for dynamic
simulation, i.e.,annealedand quenched67]. In the case of quenched disorder
the graph is generated before the actual dynamic process that is studied, and is
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kept fixed during it. In annealed disorder the connections of the graph are ran-
domly updated during the process. The annealed dynamics can often be elegantly
expressed with stochastic equations of updates, where the next state depends only
on the previous state. Thus the annealed model provides more tools for explicit
analysis than the models of quenched disorder B3, 46].

Also of great importance in the analysis of these graphs is the concept of
mean—field approximatiorMean—field in statistical physics means that the inter-
nal interaction forces are replaced with an external field. Here it means specif-
ically that the randomness of the different realizations of the graphs is replaced
with their corresponding average. This sort of analysis was done on small-world
networks by Newman et al._[61], and for the Barabasi model by Fronczak et al.
[2€]. Both of these papers analysed the clustering phenomenon, i.e., the behaviour
of the formation of large connected components.

The spreading phenomena in networks are perhaps one of the most direct ex-
amples of dynamical processes reflecting the small-world properties. In direct
spreading of e.g. a disease, the sites of the graph get infected by the rule that in-
fection propagates each time step to all uninfected neighbours of already infected
sites [59]. Then the simplest example of non—trivial dynamics could be that of a
diffusing patrticle in the network. This in turn is related to the intensively studied
process of random walks in random environments as is evident from the two com-
prehensive volumes by Hugheés|[34], and ben-Avraham and Havlin [6]. Recently
some related papers have been published on the issue of diffusion in small-world
networks, see for example the study of spectral properties of the Laplacian in
them [57]. In addition Pandit and Amitkar [65] have presented some numerical
and analytic results for the spreading phenomenon being characterised by the av-
erage access time to the sites of the system. Furthermore, Jasch and Blumen B5]
published simulation results for spreading in small-world networks using random
walk dynamics with the main quantity of interest being the average number of dis-
tinct sites visited at a given time. This work was also done independently by the
author, Kertész and Kaski [45], and obtained scaling more accurately than what
was reported by Jasch and Blumen.

The rest of this thesis deals with the concept of random graphs. First in this
chapter there is a cursory view of the models, followed by an analysis of the
spreading phenomenon on small-world networks with quenched and annealed
disorder.

5.1 Models of random graphs

Models of random graphs are usually described by a formation process, e.g. adding
new connections between the sites by a rule which may depend on the previously
added connections _[23]. Below there are the three simplest basic models -the
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Figure 5.1: An Erdés—Rényi graph with 100 sites.

Erdds & Rényi, the Watts & Strogatz, and the Barabasi networks.

5.1.1 Erdds and Rényi graphs

The Erdds and Rényi graph has a distribution on the connections with a fixed
number of sites. In this model there is a probability, which is a function oh,
for an connection to exist between any two verticesd j [L0]. Naturally this
means that on average there are aljmitconnections in such a graph.

Erddés and Rényi offered a simple proof for the remarkable phase transition
relative to the value in the limit whenn — oco: whenp is very small the graph
is quite obviously very disconnected, but wherrosses over a threshold a large
component emerges. Meaning thatpiih) > (logn + c)/n then the probability
for the graph to be connected is greater thandE ©. The transition thus happens
at a small probabilityp. In figures.1 an example of this kind of a graph with 100
sites and 100 connections is shown. In this case 0.02.

5.1.2 Small-world graphs

It was observed that, for instance in the case of social networks, the distance of
any two people is remarkably short considering the size and the complexity of the
network. The distance here is marked by the number of acquaintances such that a
person would know someone who then knows someone else ultimately connect-
ing any two persons in the network in such a relationships. The first observation
and a proposal for a simple model archieving this small-world property in a ran-
dom graph was reported by Watts and Strogatz [88]. Their model essentially lays
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Figure 5.2: A Watts—Strogats small-world graph with 100 sites.

out a regular lattice, in which the end—point of any of the connections is rewired
with probability p into a randomly chosen new site. The same effect can also be
archieved by adding some connections between any random sites. The added long
range connections provide a passage that significantly shortens the distances. In
figure[5.2 there is an example of a Watts—Strogatz small-world network with 100
sites, 100 connections and the parametgr is 0.1. An extension to this consept

was introduced by Kleinberg [39] such that the underlying graphs is any lattice to
which long range connections are added.

5.1.3 Scale—free graphs

In natural systems it is widely observed that there is a distinctive lack of a charac-
teristic degree, i.e., no particular number of connections is dominant. The models
that have such a propery are callhle freenetworks. This was first taken under
scrutiny by Barabasi and Albert [5]. Their proposal was a simple construction of
a growing network, realised by beginning from a small initial graph, and adding
each time step a new site, which is then connected to an older site with a probabil-
ity proportional to the degree of the site to be connected to. This eventually gives
rise to a degree distribution following a power-law behaviour, i.e., the degree has
the relationN(k) ~ k= with some exponeny, for the number of sitedN (k)
having the degrek. Again in figurd’5.B is an illustration of a scale—free graph of
Barabasi—Albert type, where it can be seen that some connections are very highly
connected.
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Figure 5.3: A scale—free graphs with 100 sites.

5.2 Spreading on small-world networks

In this section the dynamical spreading phenomenon is defined and then applied to
small-world networks. It is shown that there are transitions relative to the small—
world parameterp in the distributions of the number of distinct visited sites and
the return probability, i.e., the probability of the walker to return the same site, in
the Watts—Strogatz type graphs.

Spreading imitates in a way the diffusion process of a substrate in a medium.
Here the graph is the medium and the substrate is a random walker. The average
number of unique sites the walker visits in a given tir@g}), is an indicator to
watch for as is the probability of the walker to return to the initial site in a given
time, Pyo(t). Note that the choice of the origin is not relevant as the system is
homogenous and any site could be chosen.

For comparison it is known that diffusion in a 1-dimensional lattice follows
the power—law with an exponent of one half:

Q(t) ~ Wi, (5.1)
For higher dimension, however, the spreading turns out to be linear:
Q(t) ~t. (5.2)

In small-world graph€Q(t) shows an interesting crossover from the initial
J/t behaviour that is characteristic for the one-dimensional cas(tp o t be-
haviour describing the high dimensional or random graph situation B5, 45]. As a
function of p andt, Q(t) has a scaling form:

Q(t) = tY%kq(tp*) (5.3)
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wherekq is a universal scaling function with the following properties:

const for x«1

KQ(X) (074 { ﬁ for x > 1 (54)

It is expected thatr = 2 since in the system there exists a basic length scale

| o« 1/p, characteristic of the average distance between sites having long range
connections for which the walker nees« 12 steps to sweep through. Thus the
argument of the scaling functiog, in equation[(5.3) should bt [35,145].

Annealed spreading

Here the analysis is taken from the perspective of a system with annealed disorder.
It is shown that although the system is different the dynamics can be transformed
into a form that accurately corresponds to the dynamics of quenched disorder.
The movement of the random walker is governed by the simple master equa-
tion:
aPM =) TR® (5.5)
j=1LN
where the continuum time limit has been applied. Instead of discrete time steps,
time here is now a continous variable. HE€) is the probability that the walker
is at sitei at timet and T is the transition rate from siteto site j written as
follows
Tij = W — §; (5.6)

whereW,; is the transition matrix of the following form:
W=1-pW®S + pw®h, (5.7)

Here the superscript$s) and(L) refer to short and long range jumps, respectively.
The zeroth row of the short range transition maWi® reads as follows

1
W =-0,1...,1, 0,...,0 ,1,...,1). (5.8)
kLT s s
k times N-2k—1times ktimes

A similar equation can written to the long range transition matix:

Wb = ,...,0, 1,...,1 ,0,...,0). (5.9)
—— —— ——

k+1 times N—2k—1 times k times

N-2k-1

Then theit" row of the transition matrices is obtained by cyclically shifting the
0" row to the right. MatricesV and T have the Toeplitz form, i.eT; depends
only on the site differencé — j). Therefore, the right hand side of equalion5.7
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is a convolution which after spatial Fourier transform leads the master equation to
the following form
dPy(t) = (Wy(t) — )Py(1). (5.10)

With the initial condition
P (0) = doi (5.11)

the formal solution is as follows
t
Py(t) = exp[/ (W, (u) — Ddu]. (5.12)
0
This solution can be easily evaluated for the matkbgiven in equation §17).

Then letF; (t) denote the probability of the random walker visiting sjtat
timet having started from site Then we can write

t
P,j (t) = / Fij (U)ij (t — u)du, (513)
0

whereP; (1) is the probability for the random walker to move from site site j
at timet. From this we get through the Laplace transform the following equation

P; (Z).
Pij (2)

Fij(2 = (5.14)

Now let us takey(t) as the probability of observing a new site, or assheading
rate at timet when the random walker started from site O:

N—-1
qt) = > Foi(b). (5.15)
i=0

By taking thereturn probabilities P(t) to be the same for allthe equatiori (5.15)
can be written in the following form

1 N—1 ~
4(2) = = i(2) = 5.16
| Poo(2) ; ’ ZPoo(2) 519

Having this, the quantity of interest is the average number of distinct sites
visited, which is obtained by integrating the probability of observing a new site,
q(t), over timet:

t
Q(t) = /0 q(t)Hdt’. (5.17)

Using the above formulation of equatidn (5.1)t) is obtained by the inverse
Laplace transform of the functiod(z)/z.
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Spreading simulation

In spite of the strong argument for the scaling exporeaiatbe most likely 2, Jasch

and Blumenl[35] found in their numerical simulations of small-world networks
a valuea = 1.85. In the simulations they had chosBin= 50000 by taking an
average over 500 random walkers for each of the 100 small-world networks and
they variedp in the interval 001 < p < 0.1. It was established by the author of
this dissertation, Kertész and Kaskil[45] that the intuitive- 2 relation is correct

as the limiting value wheiN — oo.

The equation[{5]3), as is usual in scaling theory, is valid only asymptotically
and in this case the scaling limit 8 — oco,t — oo andp — 0. The scaling
regime can be estimated from the variation of the mean vertex distansea
function of p [63], it turns out that the distribution @k/N, wherek is the degree
of the lattice in the small-world network, has a scaling function with the argu-
mentx = pkN and which is of sigmoidal shape. This curve suggests that one
cannot expect a good scaling for the above mentioned crossoydeNf> 100.
Therefore, it seems likely that in_|35] the investigated valuep afere not small
enough to assure the proper scaling behaviour (in fact Jasch and Blumen had
Pmink N = 1000 which is perhaps not large enough [35]).

For this reason the simulations must be carried out with considerably smaller
values ofp. In order to do so, the system size must be increased as well. A more
proper choice i = 2, N = 1(® and varying thep asp = 104, 10735, 1073,
10-2°. In order to estimate the average@ft), 100 realizations and 100 random
walkers per realization results in an adequate statistics,phgkN = 20. The
average number of distinct visited sit€gt) as functions ot and p, is depicted
in figure[5.4. In this plot it is seen that for the two largest valuep shturation
of Q(t) has set in.

Figure[5.5 shows a scaling plot of the results@(t) whereQ(t) /+/t is plot-
ted as a function ofp*. The scaling was found to be optimal with the choice
of « = 2. For comparison the same plot with = 1.85, which is the value
found in [35], is also shown. The results clearly support the simple scaling picture
discussed above, i.e,= 2.

Return probability

The return probability stands for the probability of the random walker to return
to the initial site. Also this quantity shows a transition when the paranmetsr
varied.

In the case of the small-world graphs the return probabilitis independent
of the choice of. This is known to decay as/J/t for the p = 0 case while an
exponential decay is expected for langeA scaling form similar to equatidn 8.3)
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Figure 5.4: Raw data for the average number of distinct sites visiad) of the
guenched system as a function of the number of time dtepwd the probability val-
uesp = 1074107351073, 10-2° plotted from the lowest to the highest respectively.
For largep the saturation due to the finite siké = 10° of the systems starts to become
visible.
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Figure 5.5: Scaling plot of the data of figufe 5.4 with= 2. The inset presents a scaling
with the exponent of the reference [3b}= 1.85.
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10

Figure 5.6: Simulation results for the mean number of distinct sites vistggth of the
annealed system for long range jump probabilifles: 104, 1073°, 103, and 10°%°

plotted from the lowest to the highest, respectively. These curves startS@m= 1.
Analytical results, which start fror®(0) = 0 are also shown.

Q12

Figure 5.7: Scaled spreadingd(t)/+/t) of the annealed system against the scaled time

(pt) for long range jump probabilitiep = 10~4, 10-3°, 103, and 1025 plotted from
the lowest to the highest, respectively.
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Figure 5.8: Raw data for the return probabilifgyg of the quenched system. Tipevalues
are the same as for figure 5.4, now increasing from top to bottom. The whole time interval
was binned by 100 bins of equal sizes on the logarithmic scale.

should be also valid foR; , which Scala et al. have shown inl[76]:
Pi (t) = t™2cp(tp™), (5.18)

wherexp(x) is a rapidly decaying scaling function with the limg(x) = const.

for x <« 1. However, the argument @b should be the same as in equationl(5.3).
Also Jespersen et. al [36] gives a form for the scaling of the return probability and
report that sometimes the transition occurs earlier thanp 2.

In order to get an even higher accuracy for the results there are 10 times more
runs for the averages. In order to minimise the effect due to the finite size of the
samples, i.e., thea — oo limit of 1/N is subtracted from the measured values.
Figure[5.8 shows the raw data of the return probabiRfy and Figurd 519 the
scaling plots. Again, it can be seen that the scaling with the intuitively expected
a = 2 is superior to the one obtained by Jasch and Blumen B5]. Figuré 5.10
shows a plot of the return probabily of the annealed model having a very similar
form as in the quenched case. The corresponding scaling plots are shown in figure
B.11. From this figure it is apparent that the quenched system obeys the scaling
extremely well.

5.2.1 Self—consistent model

It was noted earlier that the model of annealed disorder is independent of the
previous history of the walker and has a different scaling exponent. However, the
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Figure 5.9: Scaling plot of the data of figufe 8.8 using= 2. For minimizing the finite
size effects the asymptotic valu¢gN = 10~5 was subtracted fronPyy. For compari-
son, the inset shows the scaling plot with the= 1.85, which was the exponent of the
reference/[35].

Figure 5.10: Simulation results for the return probability for long range jump probabil-
ities p = 1074, 10735, 103, and 10%° (uneven line). The smooth curves show the
results of the analytical theory.
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10

pt

Figure 5.11: Scaled return probabilities against scaled time for long range jump proba-
bilities p = 104, 10735, 1073, and 1025,

exponent can be transformed to correspond to the quenched case when the new
transition is made dependent on the history. Then the crossover is shifted such
thata = 2 as in the case of quenched disorder.

Since the scaling of the transition occurs in the quenched system later (as
~ p’t) we replaced the multipliep of W in equation [[5J7) withp - q(t) to
simulate the situation where the random walker has a probability of making a
long range leap only when visiting a previously unseen site. Now the transition
matrix reads as follows:

W=(1-pW®S +p-qtyw®. (5.19)

This then means that the corresponding master equation cannot be solved explic-
itly but it can still be estimated to arbitrary accuracy with iteration. In figurg5.12
itis shown that the resulting time dependent behaviour of the random walk spread-
ing for our self-consistent model and simulated quenched system are very similar.
Apart from the short times the agreement between these results seem to be quite
good. Figuré 5.13 presents again the scaling of the data in ffiguie 5.12, indicating
that the scaling is proper, but different from the quenched case.

Figure[5.1B shows the scaling plot with= 2 for the self-consistent model.
Apart from early times the scaling seems to hold once again. Hence it can be
concluded that the numerical results justify the choice of the equafioh 6.19). This
reflects the fact that in the quenched model a 1-dimensional random walk has to
be carried out between two long jumps.
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Figure 5.12: Results for the spreading as a function of time of the self-consistent an-

nealed model obtained from the analytical theory (solid line) and from the quenched sim-
ulations (dashed line) for long range jump probability= 10—4, 10-3° 103, and
10725,
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Figure 5.13: Scaled spreading of the self-consistent annealed mQd®l/ +/t against
scaled timep?t for long range jump probabilitiep = 10~4, 10-3°, 103, and 1025,
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5.3 Discussion

In this chapter the basic models of random graphs were discussed: tw Erd

& Rényi, the Watts & Strogatz, and the Barabasi networks. The attention was
focused on the spreading on the Watts—Strogatz type networks. It was established
that the distribution of the number of visited sites has a transition with the power—
law exponenty = 2. Also the distributions of the number of visited sites and
the return probabilities with annealed disorder was shown to have qualitatively
similar properties as with the case of quenched disorder. However, in order to
make the transition to have the same exponent the transition probabilities of the
annealed walker had to be made time dependent.
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Chapter 6

Self-organised criticality

Another dynamical system of wide current interest is the model of sandpiles B].
Although this model is a considerable simplification of the corresponding natural
phenomenon, it is expected to provide some insight to similar events in various
systems, like the breakdown of an electrical power grid and the collapse of com-
munication networks. The original model assumes a regular lattice of sites with
capacity to hold “grains”. When the load of grains at a single site exceeds a prede-
fined limit then part of the load is transferred to its neighbours, which in turn may
overflow and thus initiate a cascade process, i.e. an avalanche. In this thesis the
sandpile model in one dimensional small-world networks is shown to have many
interesting non-trivial properties. The distributions of the key characteristics of
the system have transitions similar to the spreading dynamics, that are explainable
through some kind of a competition of two mechanisms @7].

The term which often appears in the context of sandpiles is referredcstfas
organised criticality Self—organisatiormeans that the system attains through a
dynamic process some form without outside input. In the case of the model of
sandpiles this form is that all sizes of the avalanches oc€uiticality in turn
refers to a characteristic of the system to make a transition from one form to
some other completely different form. Critical phenomena are analogous to phase
transitions in materials experiencing a change of conditions, such as temperature.

The sandpile model has been investigated in many kinds of graph topologies,
including those of small-world networks, but in higher than one dimensions. The
reason why 1-dimensional systems are not generally considered interesting is that
Bak, Tang and Wiesenfeld have shown that there is no self-organised criticality #,
38], which means that avalanches of all sizes occur. Recently however, Kulkarni
et al. [40] have investigated the activity of specific sites on small-world networks
with the Bak—Sneppen model, which is a model similar to the sandpile model
with self-organised criticality. In the case of a 2—dimensional sandpile model
with random long range connections, i.e. a system with the small-world property,
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Arcangelis and Herrmann [19] have demonstrated that for the distribdtien

of the avalanche size an approximative scaling relation of the following form
holds: sN(s) ~ k (sp85t01), wherep is the small-world parameter andis the
scaling function. Also Moreno et al. |58] have analysed the Bak—Sneppen model
but on the scale-free networks of Barabasi and Albert p], and they have found
that the model approximately obeys the mean field exponentiaNigay ~ s3/2

and that the scale-free model lacks a critical threshold. In addition, Leelel al. B9]
have presented an analysis of the sandpile model on scale—free networks, proving
a relationship between the distributions of size and duration of an avalanche, and
the power—law exponent of the graph connectivity. In a recent study by Lahtinen
et al. [47] showed that despite the fact that the orginal 1-dimensional sandpile
model does not exhibit self-organised criticality, this property does appear when
the long range connections of the small-world network are added.

In this chapter the possible effect of long range connections in a 1-dimensional
network topology on self-organised criticality is investigated. In this model the
long range connections are formed in two alternative ways. In the first way each
long range connection is formed temporarily by choosing a distant site for the
grain to jump randomly and independently of previous jumps. This is calted
neleaddisorder. In the second way a fixed graph topology with randomly chosen
long range connections are generated before the process is started. This is called
guenchedlisorder. In both of these cases an avalanche has local as well as global
character, being in competition.

6.1 Model

The 1-dimensional sandpile model can be considered as a linear chaisitefs

or bins that are numbered 1 ., m, as depicted in Figufe.1. In the beginning of

the process the chain is considered empty and the process is started by dropping
grains randomly to the sites of the system. If the number of grains in a site exceeds
2 anavalancheis initiated bytoppling grains from it. In each toppling a site

i having more than 2 grains is chosen at random and then 2 of its grains are
moved to the immediate neighbours- 1 andi + 1, provided that 1< i < m.

If on the other hand = 1 ori = m one grain is removed from that site and

at the same time from the system altogether and another grain is moved to the
neighbour 2 om — 1, respectively (see Figure6.1). This corresponds to a system
which is open from both ends. In addition to these basic moves of grains, long
range jumps are introduced by using two different policies. On one hand the
long range connections are generated before the process such that from each site
i a single permanent connection is created to anotherj sitgl,...,i — 2,i +

2, ..., m} randomly with probabilityp. Then if during the process the sitbeing
toppled has such a connection, one more grain is movedifrianj. This policy
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Figure 6.1: An illustration of possible single grain topplings in our sandpile model. There
are two kinds of short range jumps (solid arrows), i.e. those in the middle and those in the
open ends of the system being removed from the system. The long range jump (dashed
arrow) occurs with probability.

is calledguenched randomnessd it essentially corresponds to a sandpile model
on a Watts—Strogatz type random graph, where a few random connections have
been added to an otherwise regular lattice [88]. On the other hand long range
temporary connections can be added dynamically during the process such that in
each toppling with probabilityp one grain is moved to a randomly chosen site
jefl,...,i—2i+2,...,m}. This policy is callecannealed randomnesand

it can be related to the stochastic sandpiles considered previously by &hna [

6.1.1 System without long range connections

First the situation in which no long range moves of grains are possiblg €0,

is scrutinised. In this case the system becomes strictly one dimensional and there
is no distinction between the quenched and annealed distorder. Thus the system
does not show self-organised criticality as already noted by Bak et al.| @, 38].
However, since this system is open from both ends, rather than only from one
end, it reacts differently to grain-additions than the traditional sand-pile model
[3]. In this system when a grain is dropped in the middle of a string ofitical

sites, i.e. sites with 2 grains each, the resulting avalanche will have size(i.e.

the number of sites toppled). A grain is added to siunting from the left end

of the string of critical sites, with site = 1 being the first critical site. Once the
avalanche is completed the sites of the critical string remain critical except one
site, with only one grain, located at the pomt- i + 1. Now the duration of the
avalanche, denoted ltycan be expressed as follows

t=in—-i{ —1), 1<i <n. (6.1)

The solutions of this Diophantine equation are determined by the possible integer
values oft, n, andi. With the fact thas = n this equation can be written for the
avalanche size as functions of timé and location :

stt,i)=t/i +i — 1. (6.2)
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For this set of functions the envelope function can be determined through differ-
entiation with respect tp, resulting in the following equation

Sen(t) =2V1 -1, (6.3)

which is also the lower bound for the avalanche sizer the given timet.

When the system witlp = 0 is simulated for a sufficiently long time all
the sites will be filled with two grains except for one site, called here as gap, at
locationr that has only one grain. Now the avalanche szgivent depends
on the location of the gap. From the above described process it can be seen
that the gap appears randomly with equal probability at locatidfs. .., m},
where zero implies that there is no gap in the systBdenotes random variable
corresponding to the avalanche size &ttle random variable of the gap location,
respectively. The probability of the random varialgivenr is as follows

P{S=g|r} = %S(S—I’)—i-(l—:—n)(S(S—(m—r)). (6.4)

In this formula the first term describes the probability of dropping a grain to the
area of sizes =r, left from the gap, and the second term correspondingly to the
area right from the gap. Here it is assumed that the system size is large enough to
ignore the unit size of the gap. When the joint probabiftys = s, R =r} =
P{S = sIr}P{R = r} is marginalised oveR, the probability of an avalanche of
sizes is obtained:
m 1 s m—s 2s

P{S=s} = Z;P{S_ SNPR =1} = == (- (1-—m)) = D"

(6.5)
From this equation it can be seen that the avalanche size distribution is lirgar in
and thus the system does not exhibit self-organised criticality.

Let us then consider the distribution of the avalanche duration, which turns
out to be quite complex. However, far = 0 the average avalanche duration of
given size can be determined. From equafiod (6.1) it can be seen that the possible
values ofi for givent are the integer divisors daf Then the distribution of the
random variablel of the avalanche duration B{T = t|t < m} ~ v(t) where
v(t) is the number of integer divisors tfprovided that < m. On the other hand
if t > mthe distribution falls because in equatibn@.Bndn are limited from
above. With these limitation the avalanche duration has the following maximum
valuetnax = mi’ —i’'(i’ — 1), with i’ = (r—g] (i.e. rounded up to the nearest
integer) such that afteg,,x the distribution is zero. Now the average duration of
an avalanche of a given sigds obtained from the equatidn_.1) as follows

)y =E{T|s} =s1Y7 lis—i(i—D]l=s1>">,li(s+1)—i?
=s (S +9)(5+ 1) — 325+ 3% +5) (6.6)
=3 g5+
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which indicates quadratic and linear dependence on the avalanche size. It is ev-
ident, however, that for realistic avalanche sizethe quadratic dependence is
dominating.

6.1.2 System with long range connections

When a system has long range connections,p.e- 0, the avalanche dynamics

has both local and global character. In this the connections to the two nearest
neighbours, like in a system without long range connections, give rise to the local
avalanches. In turn the long range connections give rise to two phenomena, on
one hand by removing grains from the local avalanche and on the other hand by
facilitating an initiation of another local avalanche at the other end of the long
range connection. The grain removal causes the local avalanche to relax and thus
halt quicker, i.e. damping down the avalanche activity, while the long range jumps
tend to increase the avalanche activity, i.e. nucleating new local avalanches. Thus
these two processes are competing.

In this system wherm is varied, we can expect that there is a transition in the
distribution of the avalanche duration. The avalanche loses momentum after long
range jumps take effect, which should happen gftértrials for an occurrence of
a long range jump. Therefore in the annealed case the number of trials is equal to
the number of time steps and thus the distribution of the duration has a transition
atf:

focpt (6.7)
In the quenched case, however, the number of trials is proportional to the size of
the local avalanche. The transition in the size distribution of a quenched system,
denoted now by, is thus

sx p L. (6.8)

From equationd(612) and (6.3) it is apparent that the the corresponding transition
in the annealed case for the avalanche size has a power—law relation:

s p°, (6.9)

where the exponer% < a < 1. Whenp > 0 it can be expected that due

to increased probability of grains reaching the ends of the chain and leaving the
system, there will be fewer grains contributing to avalanches. This in turn will
reduce the size of uniform strings of critical sites i.e. sites with 2 grains, thus
reducing the size of local avalanches. Since the local avalanches are smaller one
could expect the size of the global avalanche for given duration to follow closer
equation[(6.8), which when combined with equation] (6.7) would suggest./2.
Furthermore, combining the dominant relation between the avalanche duration
and avalanche size indicated in equation] (6.6) {t¢.~ s?, and the relation in
equation[(6.17), i.ef o« p~1, lends also some support éo= 1/2. This result



66 Self-organised criticality

seems analogous to the relation obtained_in {6], indicating that the transition to
self-organised criticality in the quenched system takes place slower than in the
annealed system.

6.2 Simulation results

Now we turn our attention is turned to computational studies, and first describe
the simulation set—up. In computer simulations one usually faces the problems
of finite system size and sufficiency of the statistics in relation to the available
computing time and the speed of computers. In small discrete systems their dis-
crete characteristics, such as saturation effects, are always distinctly visible in the
statistics of the simulations. Thus one wants to increase the system size in or-
der to better correspond to an infinite system at the thermodynamic limit. As a
compromise the system sizes here are chosan as 100 316, 1000, for both
the annealed and quenched systems. In the quenched case for the probability
parameterp a number of values between zero and one are chosen as follows:
log,op =0,-1/8,-2/8, -3/8, ..., —4. The annealed case has a similar set of
p—values ranging from lqg p = 0 to log,o p = —5. For eaclp—value a sufficient
number of time steps are used such that for the annealed system we had at least
1000 avalanches per simulation run, and, for reasons of longer computational time
involved, the quenched system was simulated such that at least 100 avalanches per
simulation runs occur. For sufficient statistics results were obtained as averages
over 100 runs using different random number sequences for both the annealed and
guenched cases.

Figure[6.2 (a) shows the histograms of the avalanche $izsy in the an-
nealed system of sizm = 1000 for 41 different values gb. For small values of
p the avalanche size distributidxi(s) grows first monotonically to reach a maxi-
mum after which it decreases. Wherincreases the maximum moves to smaller
s-values more or less linearly in the logarithmic scale. This implies that there is a
power law dependency of the maximumMfs) vs. p. In Figurd 6.2 (b) are the
corresponding histograms of the quenched case. Here the behaviour seems quite
similar to the annealed case but now the maximum is less distinct and it seems to
move slower as a function g than in the annealed case. This in turn indicates
that in the quenched case the power law exponent is smaller than in the annealed
case.

Next the power law behaviour of the avalanche size distribution is investigated
in more detail, by using the same scaling approach as de Arcangelis and Herrmann
[1€]. Here it is assumed th&t(s) scales as follows:

SN(S) = k(sp %), (6.10)

wherex is the scaling function, and is the scaling exponent. In Figlreb.3 is



6.2 Simulation results 67

Ins

Ins

Figure 6.2: Histograms of the avalanche sizes in systems of size 1000 for different values
of p. The left figure (a) is the annealed case, and the right (b) is the quenched.

plotted logs N(s) as a function of logr*/?s for the annealed system in order to test
whether the scaling conjecture with the exponent 1/2 is valid, as indicated
above (see equation (6.9) and related discussion). This exponent is different from
the one obtained by de Arcangelis and Herrmanh [19], i.e., wher 1 the
exponente ~ 3/2. As the scaling reflects the turning point on the distribution
the saturation of the histograms has been cut out. This cut has been done in such
a way that whenp = 0 the 200 last values of are not plotted, and for each
step of decreasing—value 10 more points have been removed from the plot. As
is evident from this figure, for large avalanche sizethere seems to be data
collapse and the scaling seems to hold thus confirming the analysis in Section
[6.1. There does not appear to be a good data collapse for the small avalanches,
but the intermediate avalanche sizes show a decreasing tendency following an
approximate relation

N(s) ~ s7¥2, (6.11)

which is the power law behaviour found for the standard sandpile model in higher
dimensions ¥ 2) [3]. This can be seen best in the inset of Fiduré 6.3 for the
case ofp = 1, corresponding to the curve with the highest point assleg0 and
decreasing the fastest for the group of curves.

In the quenched system there is a scaling with an exponent twice as large,
i.e. « = 1 seems to hold better, as evident in figuré 6.4. The small values of
p < 107! have been omitted, as the scaling holds in the lisnit— oo and
the finite size of the system prevents the avalanches with these pmallues
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In sN(s)

Figure 6.3: Scaled histograms of the size of the annealed avalanches in the system of size
1000. In the insert are the unscaled plots. When1 the values op decreases from the
highest line,p = 1, to the lowestp = 10~°.

from reaching the turning point before the saturation takes place. This scaling
for large p—values is in accordance with the equatlonl 6.8), thus confirming our
analysis for the quenched system, discussed above. As pointed out earlier the
overall behaviour oN(s) in the annealed and the quenched systems are similar,
as is evident by comparing the inserts of Fiduré 6.3 and Figure 6.4, respectively.
This similarity extends also to the scaling bf(s) for intermediate avalanche
sizes, i.e. the equation (6]11) with the power law exponggatilds also in the
quenched system and is most evidentfioe 1 curve in Figure6l4.

Next the probability of an avalanche to go through the entire system is con-
sidered. This probability is called theaversal probabilityand is denoted here
by P;. This quantity can be simply estimated by using the ratio of occurrences
of the maximal avalanches to the number of all observed avalanches. First the
p = 0 case must be investigated in which the annealed and quenched system
are the same. For three different system simes= 100, 316 1000, we obtain
from equation[(6b) that lo§, = —3.92 —5.07, —6.22, respectively. As for
p # 0 Figurd®.b shows the traversal probability estimates both for the annealed
and quenched systems and for three different system sizes. The quenched system
behaves qualitatively similarily with the annealed system, but suffers from more
noisy data. Thus there is first an increase due the increased probability of the
avalanche crossing a single gap (a site with only one grain), then it remains con-
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Figure 6.4: Scaled histograms of the size of the quenched avalanches in the system of
size 1000. The insert shows the unscaled plots. Only valups-0l0~! are included.
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Figure 6.5: Traversal probabilities, where circles stand for the systemrmize 100,
squares fom = 316 and diamonds fan = 1000. The empty symbols stand for the
annealed system, and the filled ones correspond to the quenched case.

stant, or decreases slightly, until increasing again whapproaches unity. The
behaviour for the intermediatg—values is explained as a regime where the local
avalanche relaxation, discussed above in section 6.1, is more dominant. The final
increase inP;, for increasingp is explained by the increase in the number of local
avalanches. Both the annealed and the quenched systems show a tendgncy of
to decrease as the system size increases.

Next we look at thdilling factor, which characterizes the amount of grains
that can be added to the system without starting avalanches. This stands for the
inverse of the density of grains in the system and can be expressed as follows

0

_ 6.12
m (6.12)

g= 1
where p is the number of grains in the system. In Figuré 6.6 one can see that
the filling factor(g) averaged over separate runs and avalanches increasgs, with
at an approximate rate proportional pd. It is evident from these log-log plots
that for quite a wide range gf-values and independently of the system size the
power—law exponents turn out to I#e= 0.60 andB = 0.90 for the annealed
and quenched cases, respectively. On the other hand whervery small,g
converges tg—}n which for increasing system size approaches zero and makes
the curves collapse to single lines with which the power—law fits coincide. Also it
is worth noting that with both systems the filling factor seems to converge&eto 1
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Figure 6.6: The average filling—factor, where circles stand for the systemmsize100,

squares fom = 316, and diamonds fan = 1000. The empty symbols correspond to the
annealed system, and the filled ones to the quenched case. The dashed line represents the
power law of the annealed systagn~ p%8° and the solid line the one of the quenched
caseg ~ p%9,

when p approaches 1.

Finally we examine the distribution of the duration of avalanches is examined,
and the numerical results are depicted in Figure6.7. Panel (a) shows the results for
the annealed system fgr € [107°, 1] and in panel (b) for the quenched system
for p € [1073, 1]. Whenp = 1 the two systems behave in a similar manner, as
they also do for very small values of i.e. in the annealed case fpr= 10° and
in the quenched case far= 10-3. For the intermediate p-values the avalanches
in the quenched system are sometimes almost twice as long as the avalanches in
the annealed case. In both cases the behaviour of the duration distributions are so
complex that they do not seem to conform to any simple scaling law. The reason
why the duration distribution for the quenched avalanches have much longer tails
is caused by formation of loops of fixed connections, such that some part of the
grains will always return to the same location.
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Figure 6.7: Histograms of the avalanche durations with systems of size 1000 for different
values ofp. In (a) are the results for the annealed system and in (b) for the quenched
system. In (b) the curve with Ip = 0 is similar in shape with the corresponding fir=

0) curve in (a), albeit only partly visible in the plot.
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6.3 Discussion

In this section an extension to the 1-dimensional sandpile model was examined
analytically and with simulations for two alternative forms of small-world ran-
domness: annealed and quenched. It was shown that the avalanche size distribu-
tion exhibits non-trivial transition from non-—critical regime of small avalanches

to the critical regime of large avalanches. This behaviour can be explained by a
competition between two mechanisms: the avalanche nucleation and local relax-
ation. At higher dimensions>( 2), however, the self-organised criticality cannot

be explained by the competition of these two mechanisms, primarily due to the
lack of a sufficiently compact local neighbourhood. This happens because the
local avalanches have more space for expansion and the long range jumps do
not provide commensurate relaxation to significantly dampen them. An approx-
imate scaling was established for the avalanche size distribution as a function of
the small-world parametgr. The competition between the two mechanisms is
most evident in the behaviour of the traversal probability, such that for gprall
values the local relaxation mechanism dominates whilepfapproaching unity
avalanche nucleation becomes more dominant. In addition it was found that the
filling factor or the density of grains in the system shows power—law behaviour
as a function of long range connection probability both for the annealed and the
guenched systems converging unexplainably /@dt p = 1, but with different
exponents.
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Chapter 7

Conclusions

This thesis dealt on two topics, statistical inference and random graph simula-
tions. In statistical inference the main contribution was the introduction of a new
metric on probability distributions namely the transformation discrepancy. This
discrepancy measure was applied in a modelling setting cialtkabct inference
where the likelihood function was not computable. With random graphs the focus
was on their dynamical properties, and in such setting the two kinds of disorder,
annealedandquenched

In Chaptef2 the basic concepts of Bayesian statistical analysis were reviewed
and applied to an example of a fault diagnostics system. It was demonstrated that
it is possible to estimate the parameters and states of Poisson mixture processes
containing a transition between states at unknown time using the Reversible Jump
MCMC method. The estimation becomes more difficult when the transition has
occurred close to the end of the total time, in which case the counted events of the
device only exhibit behaviour of the initial states. In this estimation the availability
of data for purely intact devices, and presence of more than one counter to record
events, is critical.

In ChaptefB it was shown that in modelling problems the models can be ef-
fectively compared anipso factoselected by a discrepancy measure determined
as the sum of pairwise costs. This leads to a metric measure on sample sets,
which are sample sequences drawn at random from the models under considera-
tion. The convergence of this measure is also guaranteed under proper assump-
tions concerning the underlying cost function of the individual pairs of elements.
This metric was then applied in Chagtér 4 to compute the posterior probability in
cases where the likelihood functions are difficult to compute. The analytic and
experimental studies show that the transformation method based on information
theoretic foundations is a valid addition to the field of Bayesian modelling.

Both the transformation and the kernel estimates make an approximation of
the principle assumption that points close in space to each other are also close in
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probability. When one is interested in the probability of a given sample the kernel
estimate is almost the only choice, but when the problem is about model selec-
tion the transformation metric can be utilised. It turns out that the transformation
method does improve the estimate, at least in the examples, from the kernel es-
timate with the expense of more computational time required. This method also
removes the problem of choosing the kernel and the bandwidth, but by adding
one parameter of its own, and using more computational time, which may in time
critical cases mean that the kernel method must be used.

In Chaptef 5 of this thesis we looked at random graph models of small-world
networks, and their dynamic behaviour with the spreading phenomenon of random
walks. It was shown that for sufficiently small probabilities of long range links the
proper scaling variable for the average number of distinct sites visited by a ran-
dom walker and also for the return probabilityng, i.e., the natural power—law
exponentr = 2 holds for the small-world networks. Also it was established that
the annealed random walk model with rarely occuring long range jumps reflects
some aspects of the dynamics in quenched small-world networks. In the simplest
case, with time independent transition probabilities, the model can be solved ana-
Iytically. However, as expected, only qualitative agreement between the quenched
and the annealed models can be observed. With properly chosen time-dependent
transition probabilities even the proper crossover expoaeat2, or p-? depen-
dence is obtained. Thus the random walker spreading in a quenched system can
be estimated by an annealed model.

In Chaptef 6 an extension to the 1-dimensional sandpile model was inves-
tigated analytically and with computer simulations for two alternative forms of
small-world randomness: annealed and quenched. It was shown that the avalanche
size distribution exhibits a non-trivial transition from a non-—critical regime of
small avalanches to the critical regime of large avalanches. This behaviour is
caused by a competition between two mechanisms: the avalanche nucleation and
local relaxation. However, in higher dimensions, the self-organised criticality
cannot be explained by the competition of these two mechanisms, primarily due
to the lack of a sufficiently compact local neighbourhood topology.

In this study we have also established an approximative scaling of the avalanche
size distribution as a function of the probability of long range lipk§ he compe-
tition between the two mechanisms turned out to be most evident in the behaviour
of the traversal probability, such that for smphvalues the local relaxation mech-
anism dominates while fop approaching unity avalanche nucleation becomes
more dominant. In addition, it was found that the filling factor, or the density of
grains in the system, shows power—law behaviour as a function of long range link
probability (p) both for the annealed and the quenched systems converging unex-
plainably to e at p = 1, but with different exponents. The duration distribution
of avalanches was also studied and it was found that avalanches in the quenched
system are longer living and in both cases so complex that there was no simple
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scaling law behaviour.



78

Conclusions




Chapter 8

Publications

This monograph is based on the following articles:

1.

Reversible jump MCMC for two—state multivariate Poisson mixt4é&ls
written with prof. Jouko Lampinen and publishedKgbernetika vol. 39,
3, p. 307-315, 2003. This article contains the information presented in
sectiorf 2.2. In this paper the contribution of the author of this thesis was the
development of the model, doing the simulations and analysing the results.

. Transformation Discrepancj43], has the introduction of the transforma-

tion metric of chaptdr]3. This paper will be submitted for publication, with
the author of this thesis as the sole author.

. Inference over uncomputable likelihogdé], also to be submitted for pub-

lication. In this article the author and Dr. Jukka Heikkonen applied the
conversion metric to the problem of uncomputable likelihoods as explained
in sectior4. In this paper the contribution of the author of this thesis was
the derivation of the theory and its analysis.

. Scaling of random spreading in small world netwoi%5], published in

Physical Review Evol. 64, p. 057105(3), 2001, and written in collabo-
ration with cooperation with prof. Janos Kertész and prof. Kimmo Kaski.
In this paper the inaccuracies of publication by Jasch and Blumen B5] was
corrected as explained in sectldn 5. Here the contribution of the author of
this thesis consisted of, jointly with the other authors, developing the an-
alytical theory, and then on his own building up the simulations and the
analysis.

. Random spreading phenomena in annealed small world netiakpub-

lished inPhysica Avol. 311/3-4, p. 571-580, 2002, and also written in
collaboration with prof. Janos Kertész and prof. Kimmo Kaski. Here anal-
ysis of annealed random graphs was introduced and used for analysing the
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Publications

spreading dynamics as a continuation of the previous study (published in
Physical Review E). This is contained at the end of the selction5. Here the
contribution of the author of this thesis consistet of doing the simulations,

and the analysing all the results.

. Sandpiles on Watts—Strogatz type small-wo[dd$, accepted for publica-

tion in Physica A2004, and written again together with prof. Janos Kertész
and prof. Kimmo Kaski. This paper analyses the effect of the small-world
topology on the self-organising sandpile model in one dimension. This is
presented in sectidm 6. The author of this dissertation introduced the model
of sandpiles to the small-world networks, did the analytical theory, simu-
lated the models and analysed the results.
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