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Abstract

Mechanical properties of solids bear great significance because of their importance
in various fields of engineering and materials science. Fracture and plasticity are
the two characteristic mechanisms by which materials permanently deform under
external loading. Beside experiments and theoretical model calculation computa-
tional modelling greatly contributes to the understanding of these phenomena. This
dissertation consists of various studies of topics related to these fields.

First, the branching instability of dynamic fracture is studied in a simple lattice
model which describes a brittle material at mesoscopic length-scales. It is shown
that the presence of anisotropy leads to a variation in the fracture pattern and crack
tip velocity oscillations.

The second part of the thesis consists of atomic level computational modelling
of dislocations using molecular dynamics method. Here, the interatomic potential
plays a definite and relevant role. For that reason a semi-empirical, many-body
embedded-atom potential is developed which turns out to be especially suitable for
dislocation studies in fcc crystals, because of the realistic stacking-fault energies it
predicts. Dislocation properties at the atomic level determine the micro-structure
and in turn the plastic properties of materials. The static dislocation core structure
is determined for dissociated dislocations in nickel and compared to analytical cal-
culations. Furthermore, the effective Peierls stress, characterizing the dislocation
mobility, and the variation in the dislocation structure through its motion is inves-
tigated for the screw orientation as a function of the separation distance of par-
tials. Finally, the interaction of a dissociated screw dislocation and a vacancy type
stacking-fault tetrahedron is studied. A wide variety of dislocation processes are
found including bending and jog line formation, depending on the internal structure
of the dislocation, the orientation and position of the defect.
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Chapter 1

Introduction

The mechanical properties of materials have always been under great interest since
ancient times. Historically, in the Stone Age humans used bones, flints and other
stone tools for practical purposes. Later on the processing of metals (melting, weld-
ing, casting, alloying) became a central technological factor of human advance-
ment. Until modern times, progress has been based mainly on phenomenological
and empirical study.

Materials Science [1] on the other hand aims to explain and determine the
macroscopic properties (mechanical, thermal, optical, electrical and magnetic) of
solids by studying their detailed micro-structure. It is a wide and essentially inter-
disciplinary subject including the fields of chemistry, physics, recently even biol-
ogy and the more practically oriented metallurgy and mechanical engineering. The
interdisciplinary character is partially due to the fact that the materials under study
can be very different ranging from pure metals and their alloys, to fibers, ceram-
ics, glasses, polymers and rocks. Furthermore, the subject is wide because of the
several processes involved.

This thesis concerns the study of mechanical properties of materials. The most
elementary mechanical property of solids is elasticity. A sufficiently small loading
applied on a solid causes a reversible deformation. This deformation is generally
described by the strain tensor ��� and the forces acting on the surface of a material
by the stress tensor ��� . All solids are characterized by a regime in which the defor-
mation is proportional to the applied stress, that is where linear elasticity is valid.
In this regime ��� �

�
�����������, where the elastic tensor ����� characterizes the

stiffness of the material in question, with some relations between its elements being
determined by symmetry. It is well-known that the number of independent elastic
constants is three in cubic materials and two in isotropic media, for which one can
use e.g. the shear modulus, �, and the Poisson ratio �.
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2 CHAPTER 1. INTRODUCTION

As one increases the stress of loading, materials can undergo plastic, that is
permanent and irreversible, deformation, at the point signaled by the yield-stress.
By applying further stress the material may suffer fracture, and ultimately break
down. Materials characterized as being ductile undergo extensive plastic deforma-
tion before they break, whereas brittle materials have only limited plastic behaviour
and break shortly after the elastic regime. Extreme examples for these types of be-
haviour would be silicon whisker as an ideal brittle material and pure gold as an
example of ideally ductile material. This categorization is, however, somewhat
vague because the same materials can also undergo brittle-ductile transition.

The material properties described above are characterized by various quanti-
ties: ��� the (yield)-strength describing how much stress the material can sustain
until it deforms plasticly and ���� the (fracture)-toughness, that is the resistance of
the material against crack propagation, i.e. the ability to absorb plastic deforma-
tion. These characterizations can be illustrated by considering for example glasses
and steel, both having high strength but steel having far superior toughness. Frac-
ture and plastic deformation are only the basic behaviours to describe deformation.
There are other more complex behaviours. For example, the time-dependent break-
down, a manifestation of progressive fracture due to cyclic loading, is generally
referred to as fatigue and the slow, time-dependent plastic behaviour which takes
place generally at high temperature is known as creep.

These macroscopic material properties ultimately depend on the atomistic and
micro-scale structure. In crystalline materials, such as metals and alloys, plastic
deformation is realized by the slip of crystallographic planes mediated by motion
of dislocations or less significantly, by twinning of planes. In non-crystalline ma-
terials, such as glasses, the mechanism of plastic deformation takes place due to
viscous behaviour, in which the stress is proportional not to strain but rather to
strain rate �� � �. This is characteristic of liquids, although the viscosity is sev-
eral orders of magnitude larger. These materials are said to be visco-elastic, or
visco-plastic to emphasize the occurrence of plastic deformation.

The present collection of research works concerns two (distinct) areas of me-
chanical and structural properties of materials: (i) brittleness and how it is revealed
through instabilities in crack propagation, (ii) plasticity studied through both stat-
ics and dynamics of dissociated dislocations in metals, and a description of the
corresponding atomistic properties. In addition, the thesis includes the work on the
development of the semi-empirical interatomic potential used in atomistic simula-
tions.

In this thesis we study structural properties of solids by using computer simula-
tions, which can play an integral part in materials research beside the experimental
and theoretical analytical approaches. Simulation can serve as a tool to understand
phenomena unreachable for analytic calculation or experimental observation and
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furthermore they can be used in computer-aided materials design in order to cre-
ate new materials. The growing importance of computer simulation is based on
the increasing demand of materials with exceptional mechanical properties, such
as materials used in micro-electronics, aerospace industry or materials for nuclear
applications. The rapid increase in computer power and the advance in simulation
techniques have made the corresponding numerical computations more efficient
and very large-scale simulations possible.
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Chapter 2

Meso-scale fracture modelling

Fracture phenomena are one of the most studied branches of mechanical engineer-
ing because of their important technological aspects, with the general and main
task in mind of preventing a material from breaking. One of the specific problems
attracting special interest from the physics point of view is related to the dynamic
instabilities observed in crack propagation of brittle materials.

2.1 Dynamical instability in brittle fracture

Continuum elasticity provides a general framework for fracture studies [2, 3]. In
the fracture modelling of continuum elasticity the bulk material is adequately de-
scribed as a continuum elastic medium. On the other hand, the vicinity of the crack
tip is characterized by a diverging stress field, where the crack tip itself represents a
singularity. In this region, the so-called process zone, continuum elastic description
is no longer valid and thus the detailed atomic processes such as bonding between
atoms become relevant. As the crack propagates a large amount of elastic energy,
stored in the bulk material is dissipated. The key quantity in fracture mechanics is
the phenomenological fracture energy �, defined as the energy required to create a
unit area of fracture. In fracture engineering the main task is concentrated in de-
termining the condition for cracks to propagate depending on the geometry of the
system. According to the Griffith criterion, which is generally valid in the case of
very sharp cracks, a crack starts to propagate, when the elastic energy in the bulk
is sufficient for creating two surfaces at the tip. This means that � is at least equal
to the energy of the two unit surfaces created in crack propagation.

From the linear elasticity theory point of view it is expected that the crack prop-
agates in a straight line and its speed � reaches the limiting value of surface elastic
waves ��, also referred to as Rayleigh-velocity. In reality, however, crack motion
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6 CHAPTER 2. MESO-SCALE FRACTURE MODELLING

hardly reaches the theoretical Rayleigh-velocity and it shows several instabilities.
This means that after the crack tip supersedes a critical velocity its propagation
becomes increasingly complex, changing its direction forming rough surfaces and
side cracks and producing radiating energy. In phenomenological terms, this can
be explained as a dependence of the fracture energy � on the crack velocity �, and
depending on that relation, the fracture process can be arbitrarily complex.

An example of dynamic instability was shown by Fineberg and co-workers,
who have experimentally studied crack propagation in polymethylmethacrylate
(PMMA), a glassy and brittle polymer. They found that above a certain criti-
cal threshold, at � � ������ , velocity oscillations appear with a dominant fre-
quency [4, 5]. Additionally, above the critical velocity the crack surface structure
changes, with a monotonic increase of the mean crack velocity. In their measure-
ment, Sharon et al [6, 7] have identified micro-branching as the mechanism for the
dynamic instability above the critical velocity. Near the crack tip side-branches,
so-called daughter cracks are formed and propagate simultaneously with the main
crack. These daughter cracks have a finite lifetime and beyond a certain length
they stop propagating. As the crack velocity increases, the length and the density
of daughter cracks increases accordingly. The typical size of these micro-branches
was found to be in the ���-� mm range with a log-normal distribution. The veloc-
ity of the crack tip shows oscillations correlated to the branching. An interested
reader might find further information on the different instabilities in the review of
Fineberg and Marder [8].

Computer simulations have been a useful tool for studying fracture. One way
of modelling dynamic fracture is the large-scale atomistic simulations of the crack
tip using Molecular Dynamics method. Abraham et al [9] have shown the exis-
tence of a dynamical instability at � � ���	�� in a Lennard-Jones solid, where the
instability produced was the change in the direction of the crack tip and oscilla-
tions in its velocity similarly to the experimental results [4]. Gumbsch et al [10]
have studied crack propagation using different interatomic potentials. They found
a terminal velocity well below the Rayleigh threshold, � � ��
�� and branching
instabilities at large loads whose details depend on crystal orientation and viscous
damping. The brittle-ductile nature of fracture processes is also studied for exam-
ple in Ref. [11].

While atomic simulations are limited in size, and especially in simulation time,
mesoscopic simulation can be used as a tool to bridge the gap between the atom-
istic and macroscopic length-scales. In mesoscale simulations the essential physics
is incorporated in a simple model that exhibits the main behaviour. An example of
such simulations is the beam-lattice model used to determine the statistical proper-
ties of cracks in branching instability [12]. The Born-lattice model with Maxwell-
type viscosity was used by Heino and Kaski [13] for modelling the crack branching
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α β

Figure 2.1: The triangular lattice model under mode I loading (left) and The Born-
Maxwell type of force-field shown in a symbolic scheme (right).

phenomena and the effect of disorder characterized in the material parameters. The
same model was used in this thesis and it is described in the following section.

2.2 Lattice model for crack branching

In order to simulate crack propagation and to observe the branching phenomena we
have devised a 2D mesoscopic lattice model. In the lattice model the simulation
describes the system at larger length-scale but at the cost of great simplification.
Here the Born model [14, 15] is adopted as an appropriate lattice model for simu-
lating an elastic medium. In the 2D case considered here mass points are located in
a triangular lattice and a nearest neighbour interaction is defined by the following
Hamiltonian,

	�� �



	
���� � ��� � �����

� 
�

	
���� � ��� � �����

�� (2.1)

Here ���� denotes the fixed unit vector connecting the sites � and � in the undis-
turbed lattice and similarly ���� is the unit vector perpendicular to it. The elastic
interaction between neighbouring sites are described with spring constants 
 and
� representing the longitudinal and angular stiffness. The lattice sites correspond
to the center of a mesoscopic area with a size of about ���� m. The model satis-
fies the conditions of an elastic medium but without the rotational invariance [15].
This is however not very important in the case of the simulation set-up used in
Publication I because of the lack of rotations.

The types of loading undergone by solid samples can be characterized in terms
of different loading modes. For simplicity we use mode I loading, i.e. tearing,
on the system, in which the crack faces are displaced in a direction normal to the



8 CHAPTER 2. MESO-SCALE FRACTURE MODELLING

0 50 100 150 200 250 300
position (arb. units)

5

10

15

20

25

cr
ac

k 
ve

lo
ci

ty
 (

ar
b.

 u
ni

ts
)

Figure 2.2: Fracture pattern in the isotropic Born-Maxwell lattice model (above)
and the velocity oscillations of the crack tip (down). (Publication I.)

fracture line. Constant strain-rate is used in a way that the topmost layer is moved
with constant velocity �� � ���� while the bottom layer is fixed, � � �, see
Fig. (2.1). The bonds connecting the nearest neighbour sites break when the local
strain exceeds a critical value set as a parameter in the model. The irreversible
bond breaking brings non-linearity into the model. Because of the discreteness of
the model the crack can only propagate perpendicular to the bonds. Modulation in
the local material properties, such as disorder and anisotropy, are introduced in the
model by variation of the elastic-spring constants. In the simulations there is an
initial seed for crack introduced by breaking some bonds. The model also includes
dissipative behaviour that is of time-dependent, viscous, Maxwell type. Thus the
model is named as Born-Maxwell model. The implementation of the viscosity
is carried out by distinguishing between displacements and elastic displacements,
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connected by a phenomenological relation, of the following form,

�u��� � �u� � �

�
���� � (2.2)

Correspondingly Eq. (2.1) is modified in a way that displacements �� are replaced
with elastic displacements ���� . The role of dissipation has been previously studied
in Ref. [16] on a square lattice and it was shown that the model can exhibit both
brittle and ductile behaviour depending on the relation between the strain-rate and
dissipation time. The Born-Maxwell model studied in Publication I is observed to
represent the case of brittle fracture. The effect of increasing viscosity is a decrease
of the intensity of branching and the length of daughter cracks.

The fracture pattern is shown in Fig. 2.2 to the isotropic case. Isotropy in
this context means that material properties are equivalent along the three principal
directions. Crack propagation in the isotropic model was studied in Ref. [13]. After
the initial stage on both sides of the main crack so-called daughter cracks appear
symmetrically with a regular period and the crack tip shows velocity oscillations.
As new daughter cracks appear symmetrically at the crack tip, the velocity of the
main crack drops significantly followed by the interval of acceleration and steady
velocity until the next pair of side cracks are formed. The motivation of Publication
I was to study the fracture process in the presence of anisotropy.
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Chapter 3

Dislocations in metals

Dislocations are now known to play a fundamental role in materials science and to
be essential for understanding the strength of crystalline materials. In the follow-
ing, a general overview on dislocations, particularly in face-centered-cubic metals
is presented.

3.1 Dislocations and plastic deformation

Already in the early 20th century, it was recognized that several properties of the
crystalline materials cannot be explained simply from the perfect crystal picture,
which was suggested by X-ray scattering experiments. The pivotal example is
the strength of metals, for which the experimentally observed critical stress for
plastic deformation is several orders of magnitude smaller, � � ����� � �����,
than the estimated theoretical shear stress, as obtained e. g. by Frenkel’s estimate
� � ��	� [17]. Historically the discovery of the modern dislocation concept is
associated to the independent works of Orowan, Polanyi and Taylor in 1934 [18].
It was then understood that a unit slip can be realized by dislocation motion along
a crystallographic plane requiring little stress, in contrast to the slip of the whole
plane, and that this would explain why metals deform easily. The name dislocation
originates from the earlier work of Volterra about certain types of deformations
of elastic continuum materials, some of which are actually dislocations whereas
others are disclinations in the modern terminology. Later, dislocations have been
experimentally observed and since then an immense research has concentrated on
dislocations. For a detailed account of early development in dislocation theory see
Chapter I in Ref. [19].

As referred to in the Introduction it is now widely established that plastic de-
formation in metals is mediated by the motion of dislocations. Perhaps the main

11



12 CHAPTER 3. DISLOCATIONS IN METALS

Figure 3.1: Left figure: Strain-hardening curves for a single Cu crystal divided
into stages I, II and III. Each curve corresponds to a different orientation. Right
figure: Compressive stress-strain relation for polycrystalline Cu and its temperature
dependence. Figures are reproduced from Ref. [20]

motivation underlying dislocation theory has been the problem of work-hardening
(strain-hardening) phenomena, the changes in the stress-strain relation measured
when the material is put under external loading [20]. Throughout the deformation
process several stages can be observed, each characterized by a distinct stress-strain
relation. In single crystals, see Fig. 3.1, Stage I is characterized by a relatively flat
stress-strain curve in which the material is deformed easily. Stage II is signaled by
a sharp and generally universal hardening and in stage III a softening, i.e. dynamic
recovery is observed with a parabolic stress-strain relation. In the theory of work-
hardening [21] the different stages are explained in terms of dislocations. In the
early region dislocations multiply rapidly and can move with easy-glide. Harden-
ing results from dislocation accumulation and pile-ups that effectively block dislo-
cation motion. These processes can depend on crystal orientation, material type,
temperature, or, in polycrystalline material, on the grain size. Generally speak-
ing most of the work done in plastic deformation is dissipated through dislocation
motion and only a small amount is stored in the form of dislocation structure.

Dislocations also play a role in several related phenomena in materials science.
Without giving a complete list, some examples are considered in the following.
��� The dislocation core represents a fast diffusion channel. ���� Melting can be
realized as a dislocation-mediated process [22]. ����� The rate of crystal growth is
significantly increased by the presence of screw dislocations ending at the surface,
which serve as a seed for particle adsorption [23]. ���� In hetero-structures it may
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Figure 3.2: Illustration of a pure screw (left figure) and edge (right figure) dislo-
cation in an ideal continuum elastic media. The dislocation line is denoted with
dashed-line.

be energetically more favorable to form misfit dislocation rather than accommodate
elastic strain. ��� In crack propagation dislocations are emitted from the crack
tip [24].

3.2 Geometric and elastic properties

As Nabarro states in his book [17], the concept of dislocation is essentially a ge-
ometric one. Dislocations are line defects of an otherwise perfect crystal whose
strength is characterized by the Burgers vector � [17, 19, 25]. The definition of a
dislocation is either formulated in a continuum elastic medium or in discrete crys-
tals. In the first case the Burgers vector is determined from a line-integral on a
closed path taken on the local strain variation around the dislocation line,

� �

�
��

��
�� � (3.1)

Since in an elastic medium the displacement field is derivable from a potential
field an arbitrary loop integral would give a value of zero, except if it encloses
some singularity. Thus dislocations are topological defects similar to vortexes, and
consequently a dislocation line is closed on itself or ends at a crystal boundary, free
surface or grain boundary. When a dislocation with Burgers vector � dissociates
into other dislocations, with Burgers vector ������ � � ��� , the total Burgers vector
is conserved, � �

�
� �

�
� .

In the case of a discrete lattice the Burgers vector is defined by taking a closed
loop around the dislocation line, at far enough distance from the defect. Start-
ing from the same point a similar loop is taken following the same local steps as
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a1
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S F

(a)

b

S F
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Figure 3.3: Atomic arrangements for (a) � � ������ edge dislocation and (b) perfect
crystal as seen by taking a 2D section of a simple cubic crystal. The circulation
around the dislocation from � to � is marked with bold lines in both system and the
difference defines the Burgers vector. The dislocation core is marked with symbol
� and the dashed line denotes the glide plane. The primitive unit lattice vectors are
��, �� and ��, which goes out of the plane.

previously but assuming that the lattice is an undistorted perfect one. The differ-
ence between the two endpoints in the circulations defines the Burgers vector, see
Fig. 3.3.

The direction for the dislocation line is denoted by �, the sense vector, and
the type of dislocation is determined by the relative orientation of � and �. In the
special cases when � is parallel to � the dislocation is a screw dislocation and when
it is perpendicular it is an edge dislocation. The screw dislocation can have a right
or left handed character when � and � point the same or opposite direction. These
definitions can be given an intuitive meaning. For example an edge dislocation
can be thought to be created by inserting or removing a half plane from a perfect
crystal and relaxing the atoms around. Screw dislocation can be illustrated as the
continuum medium is twisted along a fixed axis. In the general case, however,
dislocations have a mixed character, that is they have a Burgers vector with both a
screw and an edge component, and it is generally named as the acute angle enclosed
by � and �.

Any quantitative treatment of dislocations can be started by considering the
mechanical response, that is the elastic stress and strain field around a dislocation.
In the framework of continuum elasticity the stress and strain field around a perfect
screw and edge dislocation can be analytically determined. The non-zero com-
ponents of the stress and strain tensor around the dislocation decays as � � ���
where � is the distance from the straight dislocation line, and the coefficient of pro-
portionality depends on the geometry and the elastic constants. For example the
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only non-zero component of the stress field around a perfect screw dislocation, as
shown in Fig. 3.2, is simply

��	 �
��

	��
� (3.2)

For a complicated curved dislocation the determination of the stress-field can be
increasingly difficult but the general result is that dislocations produce a long-range
stress field and have a long-ranged mutual interaction. When there are internal
stress fields in the material, mobile dislocations rearrange themselves to effectively
balance the stress field. Reasonably far from the dislocation line the distortion of
the crystal is adequately described by elasticity theory, but when approaching the
dislocation line the continuum elasticity description fails. The dislocation core is
defined as the region of material where the crystal lattice has significant distortions
and is practically of the order of a couple of lattice parameters.

The energy of a dislocation is proportional to the square of the Burgers vector.
For this reason only dislocations with small lattice vectors are stable, as for a dislo-
cation with larger � it is more favorable to dissociate into dislocations with smaller
Burgers vector, with the full Burgers vector conserved, � �

�
� ��. This is formu-

lated in the so-called Frank rule which states that the dissociation of a dislocation
takes place if the condition �� �

�
� �

�
� is satisfied.

As mentioned above, plastic deformation happens primarily through the mo-
tion of dislocations. By applying an appropriate stress component on the plane,
parallel to the glide plane, the dislocation can be moved. The force per unit length
exerted by the stress is given by the Peach-Koehler formula [17],

�

�
� �� � ��� � � (3.3)

where ��� and � are vectors and � is the stress tensor. This means that the dislo-
cation is moved by the external stress resolved on the glide plane and the direction
of the stress is parallel to the Burgers vector.

There are two distinct types of dislocation motion. In glide motion dislocations
move in the plane that contains both the dislocation line and the Burgers vector that
is the glide-plane. Glide motion may require a critical stress, as the bonds in the
core region must be broken and new bonds to be formed, but the motion is ather-
mal and conservative with respect of the number of atoms and lattice sites. In
Figure. 3.3 (a) the dislocation can glide horizontally in the �� direction. Perfect
screw dislocations have no definite glide plane and can exhibit cross-slip, that is the
change of plane of motion. Climb motion is a mechanism in which the dislocation
moves out of its glide plane. Basically it is a diffusion assisted process requiring
the presence of impurities and thermal activation. In the example of the disloca-
tion in Figure 3.3 (a) removal of the atom in the center of the dislocation core, or
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Figure 3.4: Left: conventional unit cell of the fcc lattice with some atoms forming
a ����� plane. Right figure: the stacking sequence of close-packed ����� planes,
in which atoms are imagined as hard balls.

equivalently the addition of a vacancy, represents a vertical motion with a lattice
constant, i.e. a positive climb. Similarly an insertion of an interstitial in the core of
the edge dislocation would move the dislocation in the negative �� direction, thus
producing a negative climb. It is noted that climb motion has relevance in creep
phenomena. Defects capable of easy-glide motion are named glissile and those,
which are not, sessile.

3.3 Dislocations in FCC crystals

Metals with face-centered cubic (fcc) structure include the technologically impor-
tant Al and Ni and the precious metals Au, Ag and Cu. With the exception of Ir,
fcc metals are ductile over a wide temperature range. Especially precious metals
have excellent deformation properties and it is no surprise that they have been the
first metals to be used since ancient times. Al and the precious metals are excellent
conductors. These elements are technological important both in the pure and the
alloyed forms composed with each other, such as CuAu and NiCu, or with other
metals.

3.3.1 Dissociated dislocations

In the fcc lattice structure the conventional unit cell, with lattice parameter �, con-
tains three extra atoms placed on the faces of the cell. Alternatively, the lattice can
be built up by the stacking-sequence of close packed ����� planes, as illustrated
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Figure 3.5: Different types of extended dislocations and defects in the fcc structure;
� � �

� �
������ dissociated screw (a) and edge (b) dislocation, (c) � � �

� �
����� stair-

rod dislocation (d) � � �
� �
������ prismatic loop; (e) � � �

� �
����� Frank loop; (f)

stacking-fault tetrahedron (SFT). Bold lines note dislocations and shaded areas
stacking-faults. The orientation of Burgers vectors are shown, with the exception
of the SFT.

in Fig. 3.4. The standard notation for the Miller indices of planes and direction is
followed in this thesis. The crystal structure, here particularly the fcc, determines
the type of dislocations in the crystal. There are only a limited number of possi-
bilities for the crystal slip direction. From minimum energy criteria the dominant
slip system is the �

� ����	 �����. This means that dislocations move on one of the
four possible ����� planes, following the general principle that the preferred slip
planes are the most densely packed. The actual Burgers vector is one from the six
possibilities of �

� ����	 types. These four planes with the six edges build up the
Thompson tetrahedron [17]. Correspondingly, there are four types of dislocation
that is either edge or ��Æ, when the dislocation line is parallel to ���		 and screw
or ��Æ when the dislocation line is parallel to ����	 direction.

One of the most characteristic aspects of dislocations in fcc crystals is generally
that they dissociate into partials. The concept of partial dislocation was introduced
by Shockley as a dislocation with Burgers vector that is not a lattice vector and thus
not bounded by a perfect crystal but rather a plane defect such as stacking-fault. An
intrinsic stacking-fault is created from a perfect crystal by removing a close packed
plane. For example removing an � plane from the � �� � sequence in Fig. 3.4
and then relaxing the system results in the stacking-sequence � � � . There
are other plane defects such as twinning and extrinsic stacking-faults which are
not studied in this thesis. A typical dislocation dissociation reaction for a perfect
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dislocation, ��, into Shockley partials, �� and ��, of type �
� ���		 is

�

	
�������
 �

�
����	�� 

�

�
��	�����  SF � (3.4)

where SF denotes the intrinsic stacking-fault region connecting the two partials.
The Burgers vectors of partials have magnitude ���� � �

�
��� and usually have

mixed character. For example a perfect edge dislocation dissociates into two ��Æ

partials, and a screw dislocation into two ��Æ partials.
In the simplest description of the dissociated dislocation the partials are as-

sumed to be infinite straight dislocations in an isotropic elastic medium. The equi-
librium distance is computed as the balance between the repulsive elastic forces
and the attraction caused by the positive stacking-fault energy. For a general dislo-
cation of angle !, the separation distance is

�� �
������
��"�

�
	� �
�� �

��
�� 	� ��� 	!

	� �
�
� (3.5)

where � is the shear modulus, � is the Poisson ratio and " � is the intrinsic stacking-
fault energy, see Eq. (10.15.) in Ref. [17]. It follows that � is inversely proportional
to " �, so that materials with high " � such as Al and Ni have a small separation dis-
tance. Depending on the orientation, � increases monotonically from the screw
case ! � � to the edge case ! � ��	. In reality, with the exception of tungsten,
metals are generally anisotropic. Anisotropy can be characterized in terms of the
anisotropy factor � � 	�������� � ���� and it can vary depending on the ma-
terial. For Al it is close to one, indicating a moderate anisotropy but for other fcc
metals the anisotropy can be significant, i.e. � � 	 � �. For a proper description
of dislocations, anisotropic effects need to be taken into account. The case of a
straight dislocation in an anisotropic medium represents a difficult mathematical
problem (see Chapter 13. in Ref. [17]). The calculation of the splitting distance
was carried out by Teutonico [26, 27]. In the anisotropic case, a closed form of
the analytical solution for the separation distance is possible only for special direc-
tions. When the separation distance is large, � � �, i.e. several times the value
of Burgers vector, the description based on linear elasticity, the Volterra disloca-
tion picture, is adequate. However, as separation distance becomes small, the finite
width of the dislocation core needs to be taken into account.

3.3.2 Defect clusters

So far we have considered straight dislocations. There exist defect dislocations
formed by vacancies or self-interstitials. Vacancies and self-interstitials are the
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simplest (point) defects, vacancies being created by removing an atom and self-
interstitials by adding an extra atom in the crystal. At finite temperature a material
necessarily contains impurities as for example the number of thermally activated
vacancies at equilibrium is

# � #
�
 �����$��%& � �������%�� (3.6)

where #
�
 is the total number of atoms, $� is the vacancy formation energy and
�� is the thermal (vibrational) entropy term, see Ref. [28]. Dislocation loops can
be constructed by removing a circular area of a ����� plane and relaxing the atoms
from the crystal. This corresponds to the process of accumulation and coalescence
of vacancies. In this way a vacancy dislocation loop is obtained that bounds a
stacking-fault region inside, because of the missing plane inside the loop. This
type of dislocation loop has a Burgers vector � � �

� ����	. In contrast to the
Shockley partials these are Frank partials that are perpendicular to the plane of the
dislocation loop. Similarly Frank loops can be constructed from interstitials. A
prismatic loop is a dislocation loop that is bounded by an otherwise perfect crystal
in contrast to a Frank loop, and the Burgers vector is in the plane � � �

�����	. On
the other hand, prismatic loops can be created by Frank loops by some un-faulting
mechanism, for example as a result of a moving dislocation. They can be imagined
as straight dislocations bent and reconnected with themselves, see Fig. 3.5.

Stair-rod dislocations are bounded by two stacking-faults on different �����
planes. The configuration can be acute, as shown in Fig. 3.5 or obtuse depending
on the angle between the corresponding planes. A stair-rod dislocation can be
a result of the dislocation reaction of partials on two dissociated dislocations on
different planes. For example in Fig. 3.5 (c) a dissociated screw dislocation on the
������� and ������� plane can form a stair-rod dislocation. Stair-rod dislocations are
sessile and represent a hard-object, so called Lomer-Cottrell lock, on dislocations
moving on both planes it extends.

Stacking-fault tetrahedron (SFT) defects are bounded by four stacking-fault
plane on all ����� planes. These defects can be explained as the six stair-rod
dislocation forming the edges of a perfect tetrahedron. SFT can develop from a
triangular Frank loop.

All of the above is only a short account on the type of several extended disloca-
tions present in fcc crystals. An extensive list of these dislocation defect configura-
tions can be found e.g. in Ref. [29] and a more detailed account of their description
in Ref. [17], Chapter 10.

Experimental evidences show that in different materials different types of de-
fects are dominant. In fcc materials the most common defects are stacking-fault
tetrahedra and in bcc metals they are interstitial loops, depending on the defect
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inducing processes [30]. The typical source of defect formation is either heavy
plastic deformation [31] or irradiation [32]. This gives a strong motivation for
studying defects in nuclear materials, in which a large number of defects formed
through irradiation change the material properties, which on the other hand should
sustain extreme mechanical conditions, such as e.g. high pressure and temperature.

The stability and the destruction processes of the defects described above have
attracted much interest, especially in the context of the experimentally observed
clear bands in deformed materials [33]. Analytic model calculations based on lin-
ear elasticity have been used to study destruction or transformation into different
types of defects. In these processes the stress field or the direct interaction of a
moving dislocation can be an important factor. The interaction process of a glis-
sile dislocation with a perfect or truncated SFT, by using linear elasticity, has been
studied in Ref. [34, 35]. It was shown that the elastic field of the moving dislo-
cation by itself is not enough to transform the defect suggesting that dislocation
reactions might play an important role in SFT destruction.

3.3.3 Stacking-fault energies

Because of the abundance of extended dislocations bounded by stacking-fault re-
gions in FCC metals, stacking-fault energies have an enormous importance. Stacking-
fault energies are very sensitive quantities. For comparison, typical metal surface
energies are of the order of ����, depending on the orientation, while stacking-
fault energies are in the range of " � � �� � 	�������, where for example gold
and copper have low SFE, about " � � �� � 
������ and aluminum and nickel
high ones " � � ��� � ��������.

The easiest way to understand stacking-fault energies in closed-packed crystals
is to consider a central-force, hard-sphere model, where atoms are imagined as
hard balls with attractive force between them. Taking into account first and second
nearest neighbour shells, there is no difference between fcc and hcp structures,
since both have 12 and 6 atoms in the corresponding shells. Beyond, the number
of atoms included in the shells depends whether it is an fcc or hcp structure and
thus one of them is favored energetically. In Publication III we use a cut-off range,
to ensure the hcp-fcc stability and to obtain physically reasonable stacking-fault
energies. A more systematic way of incorporating the stacking-fault energy is
within the tight-binding picture. In this case the higher-order momenta determine
the value of the stacking-fault energy [70, 82].

The concept of generalized stacking-fault energy (GSF) – or gamma surface
– has been introduced by Vitek [83]. The GSF-surface is the energy surface ob-
tained by cutting a perfect crystal into half and displacing two half-bodies along the
cut. When the displacement is ��

�
	�
�

�
���	�, which corresponds to a Shockley



3.3. DISLOCATIONS IN FCC CRYSTALS 21

0     0.25 0.5 0.75 1.0

−0.25

0    

0.25 

0.5  

<110>

<
11

2> b
2 b

3

b
1

Figure 3.6: The generalized stacking-fault energy surface for Ni from the model
potential of Publication III. The coordinated axes are normalized with the factor
�
�
	�	. The Burgers vectors corresponding the dissociation process of a perfect

dislocation �� into partials �� and �� according to Eq. (3.4) are shown.

0.0 0.2 0.4 0.6 0.8 1.0
x/b2

0

100

200

300

400

 γ
(x

) 
(m

J/
m

2 )

Figure 3.7: The GSF energy for Ni from the model potential of Publication III
measured along the �� direction.



22 CHAPTER 3. DISLOCATIONS IN METALS

partial �
� ���		, one obtains the value of intrinsic stacking-fault energy "�. The

importance of the GSF is based on the fact that the atomic restoring force � �'�, as
will be mentioned in the context of Peierls-Nabarro model, can be computed from
the gradient of the GSF as

��'� � �"��� � (3.7)

The GSF-surface reflects the symmetry of the lattice. There are special points, such
as the maximum and the saddle point, that are important for the parametrization and
characterization of the GSF. In particular, the local environment near the origin of
the GSF-surface represents the small shear strain and corresponds to the elastic
limit.

The calculation of generalized stacking-fault energies from the first principles
density functional theory are now available, see e.g. Ref [84]. Lu and Kaxi-
ras [49] have compared certain paths on the GSF-surfaces calculated from density
functional method and EAM, with the general conclusion that EAM-type poten-
tials are capable of describing both the elastic limit and the intrinsic stacking-fault
energy, even though they can overestimate it in intermediate points.

3.4 Effect of crystal structure

In the previous section we dealt with dislocations in an ideal continuum elastic
medium. This approach has its main limitation in the fact that the dislocation core
cannot be described through elasticity theory. In reality the dislocation exists in
a crystal structure and the effect of the lattice periodicity needs to be taken into
account. The simplest model is the Frenkel-Kontorova model [36] in which the
dislocation is modeled as a set of particles coupled by nearest-neighbour elastic
interaction and moving in a periodic potential. However, probably the most suc-
cessful model which takes into account the discreteness of the crystal structure and
describes the core structure and mobility of dislocation, is the so-called Peierls-
Nabarro model.

3.4.1 Core structure

In the Peierls-Nabarro model the dislocation structure is described by a continuous
disregistry function (�'� – or its derivative, i.e. the misfit function )�'� – rather
than by a localized dislocation )�'� � Æ�*� '�� as used in a continuum elasticity
description. The main assumption of the model is that the dislocation is charac-
terized by two relevant energy terms. The first one is the elastic energy due to a
finite density of dislocations and is essentially a volume energy term. The second
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energy term is the so-called misfit energy which results from the generally non-
linear atomic interactions in the glide plane where the dislocation extends. This
is characterized by the the nonlinear restoring force ��'�, which in the simplest
form can be approximated as a sinusoidal function. Assuming that at equilibrium
the stresses arising from the two terms are equal one obtains the Peierls-Nabarro
integro-differential equation, which for a single dislocation reads as follows

+

	�

� 	�

��

�

'� '�
�(�'��

�'�
�'� � ��(�'�� � (3.8)

Here + is an appropriate elastic constant, the pre-logarithmic energy factor and
the boundary conditions are (���� � � and (���� � �. In the general case
����'�� and ��'� are vectors with two components and � a tensor quantity. On
the other hand in the 1D case with a sinusoidal restoring force, with amplitude
�
�� and � �'� � �
�� ����	�'��

��, Eq. (3.8) can be solved analytically with a
remarkably simple solution,

(�'� �
�

�
�����

�
'

,

�

�

	
� (3.9)

where , � +��
��
��. This well-known formula, first formulated by Peierls,
is not only used in the context of the Peierls-Nabarro model but is also applied
in interpreting simulation and experimental results. It shows that the singularity,
present in the continuum elastic description, is eliminated from the dislocation core
and at large distances the elastic field agrees with the result of elasticity theory.

3.4.2 Peierls stress

The Peierls-Nabarro model can be used for calculating the mobility of a disloca-
tion, due to the lattice resistance acting through the Peierls stress. The Peierls stress
is defined as the minimum stress required to move athermally a straight dislocation
in an otherwise perfect crystal. It is derived by assuming that a dislocation, charac-
terized by the disregistry function calculated from Eq. (3.8), experiences a variation
in the misfit energy - �'� through its motion in ' direction. In this case the misfit
energy is calculated at discrete lattice points on the glide plane. The Peierls stress
is then obtained from the maximum force per unit length as

�� �
�

�

���� ��'- �'�

����

��

� (3.10)

In the case of fcc metals this definition is satisfactory but there are more compli-
cated Peierls potentials, for example in the case of �� ����� screw dislocations in bcc
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Figure 3.8: Experimental values for Peierls-Nabarro stress, �� from Ref. [37]
measured in units of shear modulus, ���., as a function of distance between glide
planes relative to the Burgers vector /�� for several materials.

crystals which show a definite asymmetry and consequently two different Peierls
stresses depending on the glide direction. The calculation of Peierls, corrected by
Nabarro, leads to the value of the Peierls-Nabarro stress as follows

�� �
	�

�� � �����
�,��� � (3.11)

Qualitatively Eq. (3.11) shows that the barrier for dislocation motion is exponen-
tially decaying on the core width and can be very small compared to the stress
required for a crystal slip in a perfect crystal.

It should be noted that the Peierls-Nabarro-model is ambiguous in the sense
that it uses both a continuous and discrete description. While the dislocation struc-
ture is determined for a continuous function, for the calculation of Peierls stress a
discrete summation is used. Furthermore in the original calculation the dislocation
structure is assumed to be fixed and internal relaxation is not taken into account.
The critical stress has been a research subject over several decades and different
estimates have been obtained starting from different assumptions which lead to a
dominant term in the critical stress �� � �����	�,��� as in Huntington [38] or
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�� � �����
�,��� as in the original treatment. A comparison of these estimates
with experimental data is in the review paper by Nabarro [39].

There is extensive literature concerning the Peierls-Nabarro model. Without
trying to be complete, here we give some recent developments. Recently, Joós and
Duesbery [40] have re-examined the classical Peierls-Nabarro equation and have
shown that its validity can be extended to the case of narrow dislocation cores.
Schoeck has used a variational principle [41, 42, 43, 44, 45], with parametrized
functions for both the disregistry function, the Peierls-Nabarro solution ansatz and
the generalized stacking-fault energy, to carry out a 2-dimensional study which
takes into account anisotropic effects and the relaxation of the dislocation struc-
ture. This approach has been applied to both perfect and dissociated dislocations.
It was shown that by taking into account the core effects the separation distance
in dissociated dislocation leads to a correction compared to the elastic theory [42].
Some of the effects studied in the analytic calculations are re-examined in Publica-
tion V. Mryasov et al [46, 47] have also been using a similar variational method,
with generalized stacking-fault energies, but with a different parametrization of the
disregistry function. Bulatov and Kaxiras proposed a semi-discretized version of
the model [48] in which the disregistry function is approximated by step-functions
positioned around atoms. This model has been applied to both dislocation struc-
tures [49] and to study the effect of vacancies on dislocation mobility [50]. A fully
discretized version of the model was developed by Ohsawa et al [37], in which
the elastic interaction is logarithmic instead of the inverse function of the classical
Peierls-Nabarro model in Eq.(3.9). Finally, the Peierls-Nabarro concept has been
extended to non-planar dislocations [51].

The Peierls stress depends strongly on the crystal structure. For fcc crystals it
is very small, whereas its value increases when moving to bcc metals and cova-
lent crystals, see Fig. 3.8. The experimental determination of the Peierls stress can
be made either from flow stress measurements which signals the onset of plastic
deformation and thus the point at which dislocations start being mobile. Alterna-
tively, � is determined via the kink-pair formation energy, from the Bordoni-peak
in internal friction measurements [52].

These arguments concern the zero temperature case for straight dislocations.
At finite temperature dislocation motion is easier due to the motion of thermally
activated kink-pair formation. Kinks are short dislocation segments that connect
other dislocation segments lying in a different Peierls potential. The mechanism
of dislocation motion by kink-pair formation is summarized in the following, see
Fig. 3.9. At the beginning the originally straight dislocation is under the action of
external stress which is not large enough to move the dislocation out of the Peierls
valley. Because of thermal activation, it is possible for a kink-pair to develop, and
move to the neighbouring Peierls valley. When the kink-pair is fully developed



26 CHAPTER 3. DISLOCATIONS IN METALS

Ep

1

2

3

Figure 3.9: Motion by kink-pair formation, according to the following stages: (1)
the dislocation is initially confined in a local Peierls valley (dashed line), (2) due
to thermal activation a kink-pair gets through the energy barrier (continuous line),
(3) the developed double-kink can now move in the directions of the arrows.

it can move along the valley with very little lattice resistance, characterized by
the second-order Peierls stress which is much smaller than the first-order Peierls
stress. When the kinks run along the whole dislocation, it means that a dislocation
has moved a distance ��.

In fcc materials there is a contradiction between the Peierls stress values ob-
tained from the onset of plastic deformation and internal friction measurements.
For example, Benoit et al. [53] have found that in fcc Al and Cu the mobility of
dislocations remains high at low temperature as compared to the estimates based
on the Peierls stress from the kink-pair formation energy in the Bordoni peak of
internal-friction measurement. A mechanism based on the internal structure was
proposed to resolve the paradox. When the separation distance � is an integer mul-
tiple of the periodicity of the Peierls potential ��, the dislocation needs to surmount
the Peierls stress for a partial but on the other hand when � is a half-integer multiple
of the period � � the required stress can be close to zero, as one partial can aid the
motion of the other one. For a special half-integer case � � ���� � Schoeck [54]
has shown that the effective stress can be significantly smaller, though not zero.
In the Volterra dislocation picture, when the dislocation is modeled as the coupled
motion of two partials, this effect has been validated by Schoeck and Püschl [55].
In Publication V the question of the effective stress of a dissociated dislocation is
addressed and studied with atomistic simulation.



Chapter 4

Atomistic level materials
simulation

Traditionally, Materials Science research relies primarily on experiments and the-
oretical model calculations, some of which have been presented in the previous
chapter. Recently also computer simulations have contributed to the field, rep-
resenting a third way of approach to scientific investigation. In this chapter the
simulation method used in the thesis is reviewed.

4.1 Overview of modelling at different length-scales

The description of materials greatly depends on the relevant length-scales. The be-
haviour of a cluster of atoms can be fundamentally different from that of a macro-
scopic piece of material. Different natural length-scales can be defined by study-
ing particular aspects of the material in question. With increasing length-scale, the
modelling involves coarse-graining, in which properly chosen degrees of freedoms
are effectively integrated out, while keeping some of the essential, relevant prop-
erties. Recently the ambitious project of multi-scale modelling attempts to unify
different levels of modelling [56].

At the microscopic length-scale – at atomistic level – the material is governed
by the laws of quantum mechanics. Whether one uses the Schrödinger equation
or the relativistic Dirac equation, the full quantum mechanical solution, even for
a small number of particles, is practically unreachable. The Born-Oppenheimer
approximation, based on the decoupling of the wave-function for the nucleus and
electrons, represents a significant reduction of the general problem, to the sub-
problem of the nuclei, the electronic degrees of freedom being solved for fixed nu-
clei. The introduction of density-functional theory (DFT) has represented a break-

27
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through in calculation of electronic structure of materials. In the density functional
theory the quantum mechanical problem is concentrated on the determination of a
single electronic density function )��� rather than the atomic wave-functions. Once
the electronic density function is known the properties of the system are uniquely
defined. Density functional methods are directly capable of high precision ab initio
calculation of certain ground state properties, lattice parameter, cohesive, surface,
stacking-fault energies. In its current state DFT can describe for example disloca-
tion cores in silicon with high accuracy.

The next step in coarse-graining is the atomic-scale simulation by using the
Molecular Dynamics (MD) method with a number of atoms ranging from sev-
eral thousands to millions. In the MD method the electronic degrees of freedom
are eliminated, which leads to a reduced problem of the classical equations of the
motion for the atoms, namely for the nuclei. The quantum mechanical nature is
represented by the interatomic potential. Typical length scales of the MD method
are of the order of ���������m and it operates in the pico-second timescale. The
MD method is ideal for investigating the atomistic aspects of dislocations, such
as core structure, extended dislocations and individual defect-dislocation interac-
tion. The applicability of MD to study large systems is demonstrated for instance
in the study of the interaction and dislocation reactions of two dissociated disloca-
tions [57] and dislocation processes in a nanocrystalline materials [58], where the
MD method was used with parallel computation for simulating a system consisting
of several million particles. MD methods can give insight into short-ranged atom-
istic processes but when increasing length-scales they are ultimately limited due to
computational requirements.

In the next level of coarse-graining i.e. in the mesoscopic range of descrip-
tion, from �m to ����m, several methods have been developed for micro-structure
and dislocation modelling. One of them is the Kinetic Monte-Carlo [59] method,
which utilizes parameters obtained from atomistic calculations such as energy bar-
riers for dislocation motion and kink-pair formation energy, is capable of modelling
the ����m length-scale and second time-scale. At this mesoscopic level of coarse
graining one also considers Dislocation Dynamics (DD) which is a general term
for modelling large-scale evolution of dislocation structure and in which disloca-
tion segments are interacting with long-range elastic fields and forces are calcu-
lated from the Peach-Koehler formula, [60, 61]. The challenges for this method is
the representation of short-ranged interactions. Furthermore, there are phase-field
models for the collective motion of dislocations [62, 63], which have recently been
gaining popularity.

Finally the macroscopic description of deformation of material relies on con-
tinuum elastic medium description, the most common numerical method being the
Finite Element Method [64] for the description of elastic medium. Plastic prop-
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erties are incorporated by constitutive equations that phenomenologically connect
the relation between stress and strain of the systems under deformation.

4.2 Many-body potentials in the MD method

The Molecular Dynamics method studies a model system by solving numerically
its equations of motion. Therefore the interatomic potential describing the mate-
rial in question is crucial. The earliest interatomic potentials studied have been the
Morse and Lennard-Jones pair-potentials, the latter originally developed for noble
gases [65]. Later on, other potentials based on sophisticated calculations, such as
the Dagens potential [66] derived from pseudo-potential theory have been devel-
oped. Still, pair-potentials have serious drawbacks, even at a practical level, which
question their usefulness. A first problem concerns the elastic constants: by using
pair-potentials the “Cauchy-relation” between the ��� and ��� elastic constants,
��� � ���, is forced, which often contradicts experimental facts. The other and
even more significant disadvantage of pair-potentials is that they are not capable of
reproducing the basic properties of metallic bonding. In pair-potentials the bonding
between two atoms does not depend on the environment whereas in reality bonding
does depend on the position and number of neighbouring atoms. This problem of
metallic cohesion manifests itself for example in the incorrect description of the
surface energy, as pair-potentials would wrongly predict an outward relaxation and
furthermore fail to account for the correct vacancy formation energy.

Since the 80’s, a number of many-body potentials have appeared and replaced
conventional pair-potentials in computational materials research when using MD
simulations. Even though different many-body potentials have been developed
from different physical approaches, the general expression for the cohesive energy
of a mono-atomic material takes the following form,
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The cohesion energy of the crystal consists of two terms, the first one is the usual
central-force pair-potential term and the second one is dependent on the particular
local environment of the atoms. Both the pair-potential function 0����� and the
density function (����� depend solely on the magnitude of the distance of atoms �
and � and not the orientation.

From different physical pictures different types of many-body functions have
been developed which nevertheless have the same energy form. Among the vari-
ous potentials, we mention the Effective Medium Theory (EMT) potential [67], the
glue potential [68], and furthermore the Finnis-Sinclair (FS) and Embedded Atom
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Method (EAM) potentials, which are used and dealt with in more detail in Publi-
cations II-VI. Generally most of these many-body potentials, with the exception of
EMT in which theoretically all parameters can be obtained from ab initio calcula-
tions, are semi-empirical in nature. This means that although the general derivation
is based on DFT, the actual parameters are determined by fitting to experimental
data.

The idea behind the Finnis-Sinclair potential [69] is based on the second-
moment approximation in the tight-binding potential scheme [70]. From the second-
moment approximation it follows that the functional form of the many-body term
in the total energy expression, Eq. (4.1), is explicitly a square-root function,

� �)�� � �
�
)� � (4.2)

This means that the embedding function scales with the coordination number as
� � �

# , whereas for the pair-potentials � � # , so that the strength of the
bonding scales with the coordination number as ��

�
# . Originally this poten-

tial was developed for bcc transition metals: one of the particular parametriza-
tion of the Finnis-Sinclair potential has been developed by Sutton and Chen [71]
(SC-potential) for studying metallic clusters of both fcc and bcc materials and al-
loys [72]. It has been used to study dislocations in Publication VI.

The EAM potential was developed by Baskes, Daw and Foiles [73, 74, 75].
The physical principles behind the EAM model rely on the concept of jellium, a
continuous electron density with a uniform neutralizing background charge. In
the EAM it is assumed that the total cohesive energy is expressed in terms of em-
bedding energy, that is the energy of an atom placed in the jellium created by
neighbouring atoms. In this context the density in Eq. (4.1) can be interpreted as
the electronic charge density, and the pair-potential as a Coulomb interaction term.
Mathematically and conceptually the EAM formalism can be derived from density
functional theory [76]. One of the reasons behind the success and popularity of
the EAM potentials is their flexibility. Being semi-empirical in nature, the form
of the cohesion energy is based on physical principles but the parametrization of
the functions are determined by fitting to experimental material parameters or pa-
rameters determined from ab initio calculations. The embedding function � �)��
is usually determined indirectly, typically from the equation of state, that is the
pressure-volume relation of the metal. EAM potentials are most suitable for close-
packed materials with s p bonding and almost filled or empty d bands. There has
been some attempt to extend EAM to covalent bonding materials [77]. For a review
of EAM potentials and their applications see the review of Ref. [78]

There are a wealth of realizations of potential forms depending on which phe-
nomenon is modeled. Usually there are some basic properties, such as the binding
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energy, lattice and elastic constants and equation of state which are fitted. Param-
eters not used in the fitting are determined from the potential and compared to
experimental data to validate the correctness of the potential. These might include
surface properties, vacancy and interstitial formation energy, phonon spectra, crys-
tal phase stability diagrams, stacking-fault energies, etc. It is also possible to use
not an exact but rather a weighted, optimized fitting for wide range of parameters
depending on their importance [79].

The EAM potential developed by Chantasiriwan and Miltsten incorporates
elastic moduli up to the third order [80, 81]. Higher order elastic moduli can be im-
portant in case of large distortion of the crystal, present for example in dislocation
cores. However, the original form of these potentials is not suitable for disloca-
tion studies and needs to be corrected because of the negative stacking-fault energy
predicted. This problem is addressed and studied in Publication II.

4.3 MD simulation techniques

4.3.1 Equations of motion

The classical Molecular Dynamics method is one of the earliest and still commonly
used methods of atomistic simulations. The set of equations of motion for a classi-
cal mechanical systems of # interacting particles reads as follows,
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���
�1��� � ���

$��� � �� with � � �� � � � � # � (4.3)

where $��� is the total cohesive energy. The interatomic potential is determined
from physical principles and by using the many body force-field of Eq. (4.1), the
force �� on atom � is explicitly
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From the computational point of view many-body potentials do not represent a
significant increase in computational time compared to pair-potentials, since the
total energy and forces are calculated using two cycles instead of one. In order
to reduce the computational time, especially in the case of complicated functional
forms of the energy expression, efficient table look-up methods are used [85]. Most
of the basic techniques are now standard text-book methods and details can be
found for example in Refs. [65, 86].
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The integration of the equations of motion are carried out using a stable inte-
gration scheme that is often the velocity-Verlet algorithm,
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The atomic positions, at time-step ��� are calculated starting from the positions,
velocities and forces (accelerations) at time �. Then the forces are calculated from
Eq. (4.4) at time ���. Finally the velocities at ��� are calculated using both
the forces (accelerations) at time � and ���.

For constant temperature simulations a Nosé-Hoover thermostat has been used
in the present work coupled with the Verlet integration algorithm. The relaxation
of the system is carried out by including a simple damping method, i.e. one sets
� � �, when � � � 3 �, meaning that the force acting on the particle is opposite to
its velocity. In order to obtain accurate relaxed configuration an annealing method
is used with alternating constant temperature and damping regimes.

4.3.2 Simulation set-up and boundary conditions

The orientation of the simulation cell we have used for studying dislocations in fcc
metals corresponds to the natural geometry of the dislocation and its glide plane,
i.e. we have chosen ����	, ���		, ����	 as principal axes. In this way the dislo-
cation line, and the glide direction is along the axis ����	 and ���		 depending on
the type of dislocation.

Boundary conditions play a key role in simulations of dislocations. A tradi-
tional way to approach the problem is to use fixed boundary conditions. Namely,
while periodic boundary conditions are applied along the dislocation line, atoms
in some planes or shells at or near the boundaries are kept fixed. The presence of
fixed atoms represents the bulk crystal. This type of boundary condition has the ef-
fect that the wall of fixed atoms exerts an image force on dislocations, analogously
to classical electrodynamics. From text-book calculations the image force per unit
length is long-ranged as it depends inversely on the distance, ��� � ���, and for
a fixed boundary it is repulsive. In case of a free surface a similar attractive force
appears. In order to minimize the effect described above flexible boundaries con-
ditions [87] have been developed which can correct the effect of fixed boundaries
on the dislocation properties and make it possible to carry out simulations with
smaller system sizes.

Periodic boundary conditions are widely used in all areas of computer simula-
tions to model an infinite sized material. Full periodic boundary conditions for a
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Figure 4.1: Schematic representation of different types of boundary conditions: (a)
Fixed boundary conditions, (b) full periodic boundary conditions with quadrupole
dislocation arrangement, (c) dislocation array type of boundary conditions.

dislocation represent a special problem as it is required that the net Burgers vector
of the simulation cell should be zero, because it would correspond to an infinite
energy of the system. The actual realization of the model system is either a dipole
or quadrupole.

The third type of boundary condition uses a single dislocation and periodic
boundary conditions both along the dislocation line and the glide direction whereas
in the third direction the boundary is semi-free, that is atoms can freely move in
the surface plane, but are fixed in the third direction. This is the so-called periodic
array of dislocation boundary condition, because the model system corresponds
to an infinite array of dislocations. This type of boundary condition has been
used by Baskes and Daw [78] and has recently become popular in simulations
for dislocation-obstacle interaction. Several properties of this type of boundary
condition, static and dynamical ones, have been recently reviewed by Osetsky and
Bacon [88].

4.3.3 Visualization and defect identification

There are several methods for identification and visualization of dislocations and
other lattice defects. One of the most conventional methods of visualization is
based on the potential energy. Since in the dislocation core the lattice structure is
highly distorted, atoms in that region have a significantly higher potential energy
than in the undisturbed perfect crystal. Then by setting an energy barrier one can
separate the dislocation core from other parts of the crystal. An alternative method
is based on the geometry of the local atomic configuration, i.e. on how many atoms
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are placed inside the first neighbour shell. Using the central symmetry parame-
ter it is possible to identify both dislocations and stacking-faults which have low
energy [89].

When the glide plane and the dislocation orientation is known, the measure-
ment from the strain field can lead to an accurate determination of the dislocation
position. The disregistry function is measured from atomistic calculations as the
difference between atomic displacement above and below the plane that contains
the dislocation, ��'� � �

	�'� � �
��'�, measured perpendicularly to the dis-

location line. From the measured disregistry function, using fitting to a simple
analytical form such as for example Eq. (3.9), the position of the dislocation can
be determined.

4.4 Previous MD studies of dislocation properties

Computer simulations have long been used for studying the structure of disloca-
tions. Several studies concentrated on the perfect dislocation splitting into Shock-
ley partials [90, 91, 92, 93, 94, 95]. These studies include the determination of
internal structure of the dissociated dislocation through the disregistry function,
the separation distance and core width and its comparison with the theoretical
estimates based on elasticity theory and the Peierls-Nabarro model. As related
phenomena the role of dislocations in diffusion [90, 91, 95] and cross-slip pro-
cesses [92, 93] have also been investigated.

Additionally, MD simulations have been used to compute the mobility of dislo-
cations in different materials and several methods for determining the Peierls stress
have been employed. The simplest method is to move the dislocation by applying
either shear strain or shear stress resolved on the glide plane. The point at which
the dislocation starts to move gives the value of the critical resolved shear stress
(CRSS) which is the minimum stress to move a dislocation over a lattice constant.
At zero temperature case this is identified with the Peierls stress [93, 94]. In a
simulation set-up with fixed boundary conditions the dislocation can be moved by
shear strain, but in contrast to the previous case, the dislocation will move to a
new equilibrium position rather than keep its motion, because of the presence of
image forces due to the fixed boundaries. From the assumption that the image
force is linear, the Peierls stress can be determined, see e.g. Ref. [95]. This method
has been used in Publications IV and V. It is also possible to estimate �� in an
approximative way, by a static method similar to the Peierls-Nabarro model. An
atomic configuration is generated corresponding to the dislocation disregistry pro-
file translated along the glide direction and the energy of the configuration, - �'�
is measured. From the variation of the energy the maximum stress, using Eq. (3.10)
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is determined, see Ref. [96].
Recently, the interaction process of a moving dislocation with defect clusters

studied by MD simulations has attracted much interest. The main advantage of nu-
merical simulations, compared to analytical calculations, is the ability to treat core-
core interactions realistically. Studies of this kind concern defects formed both by
interstitials [97] and vacancies, for which an important example is the interaction of
a vacancy type SFT with glissile dislocations in fcc crystals. While previous works
concentrated on the processes of SFT and edge dislocation intersection [98, 99], in
Publication VI the properties of the interaction with a dissociated screw dislocation
are studied.
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Chapter 5

Summary of results

This chapter contains an overview of the main results of this thesis both concerning
the instability in brittle fracture and those concerning the dissociated dislocations
in fcc structure, together with a description of their static or dynamics properties.

5.1 Crack branching instability

Publication I deals with the study of anisotropy in the Born-Maxwell fracture
model illustrated in Chapter. 2. The anisotropy was introduced in the model by
modifying the elastic parameters 
 and � either in a symmetric or along a diago-
nal direction with respect to the main crack line and it is characterized by a single
parameter %. The effect of anisotropy was studied in two respects, the fracture pat-
tern formation and the power spectra of the crack tip velocity. In the symmetrical
anisotropy case the branching shows a dependence on the anisotropy parameter,
such that increasing % leads to an increase in the spatial period of daughter cracks.
Near the isotropic case, when % � �, the branching phenomenon can be under-
stood through scaling concepts. As the velocity of the crack increases, due to its
dependence on %, the spatial period of daughter cracks increases but the frequency
of oscillations remains the same. In case of stronger anisotropy the branching
shows a more complex behaviour. In the diagonal case the reflection symmetry is
broken and there are two different side-branch structures on the two sides of the
main crack. The changes in the fracture pattern is show in Fig. 5.1. Concerning
the power spectrum of the crack tip velocity, in the symmetrical anisotropy case
the frequency depends monotonically but not trivially on %. In the diagonal case
the main frequency is dictated by the side, which has a longer period, whereas the
other side only gives rise to minor effect.

Despite the limits of the present mesoscale model, the main features of crack
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Figure 5.1: From top to bottom: fracture patterns in a isotropic system, in a system
with symmetrical isotropy, and with diagonal isotropy (from Publication I).

branching phenomenon is modeled reasonably well. In fact, while the general
structure of the model is motivated by experimental facts, the model itself does not
correspond to any particular material.

5.2 Interatomic potential

When looking for a reliable interatomic potential, the detailed features of the ma-
terial under investigation have to be taken into account, since they have a relevant
role. In Publication II by using the atomistic Molecular Dynamics method the dis-
sociation process of an edge dislocation splitting into two partials is investigated.
It was found that the boundary conditions may sensitively affect the dislocation
structure. The main observation was, however, that the inter-atomic potential de-
veloped by Chantasiriwan and Milstein [81] provides a negative intrinsic stacking-
fault energy and incorrectly favors the hcp over the fcc structure. This means that
dissociated dislocations would be unstable and no equilibrium separation would
be achieved. Thus the potential in its original form is not suitable for dissociated
dislocation studies. The potential has otherwise excellent elastic properties, as it
incorporates elastic moduli up to third order, and predicts correctly the bcc-fcc
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phase stability. In order to resolve the problem of the negative stacking-fault, in
Publication II a correction to the potential was suggested based on changing the
cut-off range, and reiterating the fitting of parameters until a positive stacking-fault
energy is obtained.

The systematic development of a corrected potential is carried out in Publi-
cation III for four fcc metals: Al, Au, Ni and Cu. The main emphasis is on the
potentials being able to reproduce reasonable stacking-fault energies so that they
can be used in simulations of extended dislocations. To this aim the cut-off of
the interatomic potential was varied. This cut-off changing method was aimed at
getting reasonable stacking-fault energies. It should be noted that a long-ranged
potential is necessary in the EAM scheme to obtain stacking-fault energies as a
short-ranged potential would lead to no difference between the hcp and fcc phases.
For different type potentials more systematic types of fitting are available, such as
that based on the tight-binding model where higher-order terms can be related to
the stacking-fault energy. By repeating the fitting procedure new sets of parameters
were obtained and additionally for two materials the functional form of the pair po-
tential was modified. Several properties of the corrected potential were calculated
to validate the result including the stacking-fault, point-defect and surface ener-
gies as well as phonon spectra. The quality of the above mentioned scheme varies
depending on the specific potential but the general result is good and comparable
to those using similar EAM potentials, despite some trade-offs in cut-off distance
tuning made to obtain the best fit for experimental phonon data. For two materials
the phonon spectra is slightly modified at the boundary of the Wigner-Seitz cell.
The corrected potential for the case of Ni, developed in Publication III, has been
used as the basis for all the subsequent MD simulations in Publication IV, V and
VI.

5.3 Dislocation core structure and Peierls stress

Let us now consider both the static and dynamical properties of dissociated dislo-
cations. The detailed analysis of the static structure of a dissociated �

� ����	 type
dislocation for both edge and screw orientation was presented in Publication IV.
There we chose Ni as the material of interest because it has a relatively small sepa-
ration distance between partials and possibly overlapping core-structure that could
show interesting results. The edge and screw dislocations are qualitatively differ-
ent: in the case of the dissociated edge dislocation the separation distance is large
and the partials can be represented as individual dislocations and a Volterra type
description is appropriate. The dissociated screw dislocation represents an inter-
mediate case where the two partials are still identifiable as individual peaks in the
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Figure 5.2: The misfit function describing the local density of Burgers vector for
��� dissociated edge and ��� dissociated screw dislocation. Solid lines denote the
edge component of the edge and the screw component of the screw dislocation.
Dashed lines denote the screw component of the edge and the edge component of
the screw dislocation. (Publication IV)

misfit function, but their cores are strongly overlapping. This overlap is manifested
for example in the dissociation path, as a reduction of the maximum edge com-
ponent of the Burgers vector, which was observed in several simulation works. A
general observation is that the comparison of the simulation results with those of
model calculations, both for the separation distance given by the elasticity theory
and the core width given by the Peierls model, is fairly adequate. This probably
happens because the partial dislocations have typically a wide dislocation core.
The analytic functional form of the misfit function shows an even better agreement
with numerical results if the non-zero distance from the glide-plane is taken into
account for both the screw and edge dislocation orientation.

A simple estimate of the Peierls stress was provided by applying a strain incre-
ment on the dislocation, in a quasi-static way similarly to Ref. [95]. One qualitative
result is that the edge dislocation has a significantly higher mobility than the screw
one. We also found that the relation between the equilibrium separation distance
and the period of the Peierls potential �� may lead to interesting effects. In the
edge case the partials were found to move in-phase with respect to the underlying
crystal structure felt by the dislocation, as � � �	� �. On the other hand in the case
of screw dislocation they move in opposite phase, � being a half-integer multiple
of ��. This leads to some fluctuations in the separation distance and a decrease in
the effective Peierls stress. The fact that the screw dislocation has a separation dis-
tance about a half-integer multiple of the Peierls potential �� is possibly particular
for the applied potential but this supports the hypothesis that the ratio of separa-
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tion distance and the period of the Peierls potential ��� � bears significance for the
structure of the dislocation.

Motivated by the findings of Publication IV, we were inspired to study a gen-
eralized case of dissociated screw dislocation moving in the Peierls potential by
using extensive and systematic computer simulations which are presented in Pub-
lication V. The basic idea was to investigate a dislocation with varying separation
distance, i.e. where the ratio ��� � can change. Technically, in the simulations this
variation of the separation distance was achieved by changing the external stress,
whereas in reality it is realized by point defects or other impurities modifying the
stacking-fault energy. Here we made a more careful analysis than in Publication
IV by distinguishing between the edge and screw components of the partials in the
dissociated dislocation, which turned out to behave slightly differently concern-
ing already the equilibrium separation distance. When the dislocation moves the
change in internal structure can be characterized by the separation distance and
the core width. The fluctuation of the separation distance is sensitive to the ��� �

ratio, the largest fluctuation being observed in the half-integer case. As for the
core width the fluctuations arise as a result of both the underlying periodic poten-
tial and the internal fluctuation. The effects obtained are similar to analytic model
calculations. The fluctuations in the separation distance are qualitatively similar
to those observed in the model of coupled mass points moving in a periodic po-
tential and the Volterra model of the dissociated dislocation studied by Schoeck
and Püschl [55]. The fluctuations in the core width was studied in the variational
Peierls-Nabarro model [43]. While the changes in the internal structure of the
dislocation represents a rather theoretically oriented question the effective Peierls-
stress bears practical significance related to the dislocation mobility, as explained
in the previous chapters.

The main result of Publication V is about the measurement of the dependence
of the effective Peierls stress on the separation distance. The overall result is that
dislocations with significant core overlap, but with still identifiably partials, show
a measurable variation in the effective Peierls stress. Although the fluctuation of
the effective Peierls stress can be a large factor it is possibly too small to explain
the two orders of magnitude discrepancy in the two estimates of the Peierls stress
alone.

5.4 Dislocation-defect interaction

Following the studies of the properties of dissociated dislocations, in Publication
VI the interaction of a moving dissociated dislocation with a stacking-fault tetrahe-
dron, one of the most common defects in irradiated materials, is investigated. Cur-
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Figure 5.3: A dissociated screw dislocation containing jog line after the interaction
with SFT. The central symmetry parameter is used. Atoms in dislocation core are
denoted with green and in stacking-fault region with blue color.

rently there are only examples of simulation studies concerning the intersection of
an edge dislocation and a SFT [98, 99]. Here the interaction of a dissociated screw
dislocation with a perfect SFT is studied and several aspects of the process are an-
alyzed. These factors include the orientation of the defect, the relative position of
the defect and dissociated screw dislocation and the stacking-fault energy. When
the dislocation intersects the SFT in the middle several times, it can separate the
defect into two parts. On the other hand, when the glide plane coincides with the
base of the SFT, the intersection process shows a variety of dislocation interactions,
jog line formation and bending. These are particularly well observable in the case
of the model system with the low stacking-fault energy. For a SFT with a smaller
size, the critical resolved shear stress for the dissociated dislocation to pass through
the defect is determined and it was observed that this quantity is rather indepen-
dent of both the interatomic potential and the defect orientation. It is shown that
in special cases the screw dislocation can absorb vacancies by jog formation, in
contrast to the previous study [98] where the jog formation was observed only for
truncated SFTs, and possibly destroy the SFT by multiple intersection, similarly to
the findings of experimental studies [100].



Bibliography

[1] W. D. Callister. Materials Science and Engineering: An Introduction. Wiley
and Sons, fifth edition, 2000.

[2] L. B. Freund. Dynamic Fracture Mechanics. Cambridge University Press,
first edition, 1998.

[3] R. W. Hertzberg. Deformation and Fracture Mechanics of Engineering Ma-
terials. Wiley, fourth edition, 1995.

[4] J. Fineberg, S. P. Gross, M. Marder, and H. Swinney. Instability in dynamic
fracture. Phys. Rev. Lett, 67:457, 1991.

[5] J. Fineberg, S. P. Gross, M. Marder, and H. Swinney. Instability in the
propagation of fast cracks. Phys. Rev. B, 45:5146, 1992.

[6] E. Sharon, S. P. Gross, and J. Fineberg. Local crack branching as a mecha-
nism for instability in dynamic fracture. Phys. Rev. Lett., 74:5096, 1995.

[7] E. Sharon and J. Fineberg. Microbranching instability and the dynamic frac-
ture of brittle materials. Phys. Rev. B, 54:7128, 1996.

[8] J. Fineberg and M. Marder. Instability in dynamic fracture. Physics Reports,
313:1, 1999.

[9] F. F. Abraham, D. Brodbeck, R. A. Rafey, and W. E. Rudge. Instability
dynamics of fracture: A computer simulation investigation. Phys. Rev. Lett.,
73:272, 1994.

[10] P. Gumbsch, , S. J. Zhou, and B. L. Holian. Molecular dynamics investiga-
tion of dynamic crack stability. Phys. Rev. B, 55:3445, 1997.

[11] B. L. Holian and R. Ravelo. Fracture simulations using large-scale molecu-
lar dynamics. Phys. Rev. B, 51:11275, 1995.

43



44 BIBLIOGRAPHY
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