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Abstract. Spin-polarized density functional theory has been used to study the
properties of vacancies in a graphene sheet and in single-walled carbon nanotubes
(SWNTs). For graphene, we find that the vacancies are magnetic and the symmetry
of the sheet is broken by the distortion of an atom next to the vacancy site. We
also studied vacancies in four armchair SWNTs from (3,3) to (6,6) and six zigzag
SWNTs from (5,0) to (10,0). Our calculations demonstrate that vacancies can
change the electronic structure of SWNTs, converting some metallic nanotubes to
semiconductors and vice versa. Metallic nanotubes with vacancies exhibit ferro-
or ferrimagnetism, whereas some semiconducting nanotubes with vacancies show
an antiferromagnetic order. The magnetic properties depend on chiralities of the
tubes, the configuration of the vacancy and the concentration of the vacancies.
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1. Introduction

It has been verified both by experiments [1]–[3] and by theory [4]–[8] that carbon materials can
exhibit magnetism without impurities. The technological uses of controllable magnetic carbon
systems are extensive, and it is crucial to understand the mechanism in detail. However, the
specific source of the magnetism observed in experiments is still a subject of debate, with several
possible alternatives. Rhombohedral C60 (Rh-C60) exhibits some typical features of ferromagnets
[1, 9]—this has been attributed to vacancy defects and the interplay between these defects and
sp3 hybridization. Peculiar localized states have been found to exist at the zigzag edge of finite
graphite sheets [4, 5] and at the end of zigzag single-walled carbon nanotubes (SWNTs) [10],
and these localized edge states probably induce magnetic polarization. Even for systems with
no under-coordinated carbon atoms, carbon radicals could be the source of magnetism [7]. In
each case, it is necessary to consider whether intrinsic carbon defects are responsible for the
magnetism observed—an aim we pursue in this paper.

During the growth process and under ion irradiation, defects will be introduced in graphite
and carbon nanostructures [11, 12]. Adatom interstitial–vacancy pairs are the dominant defect
species, and it is important to understand their general properties. In this paper, we focus on the
properties of graphite and carbon nanotubes, which are both intrinsically important and good
examples of carbon systems. Recent calculations have shown that the carbon adatom defects on
a graphene sheet and on nanotubes both have a magnetic moment [6, 8]. This is supported by
experiments suggesting the presence of localized spin moments in carbon nanotubes [13, 14],
probably related to dangling bonds on the surface. For nanotubes, studies have shown [8] that the
magnitude of the adatom magnetic moment depends on the radii and chiralities of the nanotubes.
Previous studies of vacancies in carbon nanotubes [15] using the tight-binding method did not
consider spin polarization. To understand how the adatom–vacancy defect pair contributes, in
total, to the magnetism of carbon systems, it is necessary to consider the properties of vacancies
in graphite and carbon nanotubes. This is undertaken in the present work.

2. Methods

The calculations have been performed using the periodic plane wave VASP [16, 17] code,
implementing the spin-polarized density functional theory (DFT) and the generalized gradient
approximation of Perdew et al [18]. We have used projected augmented wave potentials
[19, 20] to describe the core (1s2) electrons, with the 2s2 and 2p2 electrons of carbon considered
as valence electrons. A kinetic energy cutoff of 400 eV is found to converge the total energy
to within 1 meV. Brillouin zone sampling is performed using the k-point generation scheme of
Monkhorst and Pack [21] (the �-point is included). Five k-points for the graphene sheet and
four k-points for the nanotubes were found to be sufficient to obtain an meV convergence of
the total energy. The minima of the total energy were found using a conjugate gradient (CG)
algorithm. All atoms are fully relaxed until the change in energy upon ionic displacement is
below 0.1 meV.

This method has been shown previously to give good accuracy for this type of carbon
system [6].We model graphite as a single graphene sheet, since the weak van derWaals interaction
between layers does not significantly affect intralayer processes. Note that, for bulk graphite,
the present method does give a layer separation within 4% of the experiment, yet the agreement
is fortuitous, since DFT does not reproduce the real interlayer van der Waals interactions [22].
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Figure 1. (a) Atomic structure of the vacancy in the graphene plane; (b) charge
density of the vacancy in the graphene plane (e/Å

3
).

However, as long as we avoid interlayer processes, this system provides a very good model for
graphite.

3. Results

3.1. Vacancy on a graphene sheet

Using the Hückel method, Hjort et al [23] suggested that the three symmetric atoms neighbouring
the vacancy on a graphite surface can contribute an extra π electron to the system, which may
give rise to an unpaired spin, i.e. the vacancy would be magnetic. However, previous finite-cluster
DFT calculations for the vacancy in graphene [24, 25] predicted that it undergoes a Jahn–Teller
distortion, breaking the symmetry of the graphene sheet and providing a nonmagnetic solution.

To study the properties of the vacancy, we consider a graphene sheet of 128 atoms with a
single carbon atom removed. We find that the vacancy does undergo a Jahn–Teller distortion
after relaxation, since two of the atoms closest to the vacancy (atoms 1 and 2 in figure 1(a)) move
closer, forming a pentagon-like structure and the final atom (atom 3 in figure 1(a)) is displaced
by 0.18 Å out of the plane. The formation energy (calculated in the same way as in [26]) of the
vacancy was 7.7 eV, which compares well with the experimental value of 7.0 ± 0.5 eV [27] and
with the previous DFT values of 7.6 eV [28] and 7.4 eV [24]. We found that the formation energy
of the 128-atom sheet converged to within 0.02 eV with respect to the system size. Atoms 1 and
2 form an extended C–C bond with a length of 2.02 Å in comparison with the standard length
of 1.42 Å for graphene. The charge density seen in figure 1(b) around the vacancy demonstrates
clearly the increase in density between atoms 1 and 2, indicating the formation of a weak
covalent bond.

The ground state of the vacancy is spin-polarized with a magnetic moment of 1.04µB, and
the spin density is shown in figure 2.After the removal of one atom, each of the three neighbouring
atoms now has one sp2 dangling bond. Formation of the pentagon saturates two of these bonds,
but the remaining unsaturated bond is responsible for the magnetic moment (i.e. the dangling
bond on atom 3 seen in figure 2). In tests with smaller 50- and 98-atom graphene sheets, we found
that, despite size constraints, conditions were still energetically favourable for the formation of
the pentagon and that the vacancy was magnetic.
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Figure 2. Spin density of the vacancy in the graphene plane (e/Å
3
).

Compared with recent DFT calculations of the vacancy by local-density approximation
(LDA) [24, 25], our calculations show some significant differences. Those two studies considered
the vacancy both in a finite, hydrogen-terminated graphene cluster and in a periodic graphene
sheet, with both systems exhibiting a nonmagnetic vacancy. In the periodic calculations [24], the
authors considered a 63-atom unit cell. Our spin-polarized calculations with the 50-atom cell
show that neither the formation energy nor the magnetic moment are converged well for this
system size, indicating that there is significant defect–defect interaction. For the finite cluster
approach, it is more difficult to compare results, but the fact that the authors considered only fixed-
spin systems [24] in the LDA calculations probably restricted their possible solutions. Comparing
the atomic structures of the vacancy, we also find differences. Although all the calculations agree
that a Jahn–Teller distortion occurs, El-Barbary et al [24] report a displacement of atom 3 out
of the plane by about 0.47 Å, which is much larger than the 0.18 Å we observed. However, if we
restrict our system to an equal spin-up and spin-down density solution, we find a nonmagnetic
ground-state about 0.1 eV higher in energy, with an atom 3 displacement of 0.46 Å. This implies
that, although our methods basically agree with previous studies, subtle finite-cluster or fixed-spin
effects were responsible for the nonmagnetic ground state in their calculations.

3.2. Vacancies on nanotubes

Different from the simple sp2 bonds in graphite, the bonds in carbon nanotubes are of sp2–sp3

character, and the hybridization of σ, σ∗, π and π∗ orbitals can be quite large, especially for
small-diameter SWNTs [29]. Thus the magnetic properties of vacancies on SWNTs will be
more complicated, and will have a close relation to the radii and chiralities of the SWNTs.
The concentration of vacancies also affects the properties of nanotubes. Hence, in this paper,
we consider not only different radii and chiralities but also various vacancy concentrations of
some SWNTs as examples.

Carbon nanotubes are formed by the seamless rolling of graphite sheets over themselves [30].
The structure of a nanotube is usually characterized by the chiral vector (n,m). Tubes designated
by (n,0) and (n,n) are termed ‘zigzag’ and ‘armchair’ tubes, respectively. The properties of
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Figure 3. Vacancy structures on the armchair SWNT: (a) unreconstructed
structure, (b) ground state—‘perpendicular’ configuration, (c) metastable state
of the (5,5) and (6,6) tubes—‘parallel’ configuration, (d) metastable state of the
(3,3) and (4,4) tubes—‘parallel’ configuration.

carbon nanotubes have a close relation to the chiralities. For example, if n − m is divisible by
3, the tube is a metal, otherwise it is semiconducting. Four armchair SWNTs (3,3), (4,4), (5,5)
and (6,6) and six zigzag SWNTs (5,0), (6,0), (7,0), (8,0), (9,0) and (10,0) are studied here. The
supercells were constructed with adequate empty space in the radial direction of the tubes to
avoid interaction between adjacent tubes. Periodical boundary conditions are applied in the axial
direction. There is only one vacancy in the unit cell, and different vacancy concentrations are
simulated by using different lengths of the unit cells along the axial direction of the tubes. To avoid
confusion, the term linear density of vacancies will be used instead of the term concentration
in the following discussion. A small segment length means high linear density. The length of
the unit cell is represented by the number of carbon rings in the corresponding perfect SWNT.
Each carbon ring on the perfect (n,0) SWNT and (n,n) SWNT consists of 2n and 4n atoms
respectively. The minimal length is six rings for the zigzag tubes and five rings for most of the
armchair tubes.

Different from graphite, the three two-coordinated atoms surrounding the unreconstructed
vacancy on the wall of the SWNT can be classified into two groups. For armchair SWNTs,
atoms B and C in figure 3(a) are equivalent. For zigzag SWNTs, atoms B and C in figure 4(a) are
equivalent. Note that the energy landscape for different vacancy configurations is quite complex,
and several metastable states exist [31] during the creation and migration processes. We find that
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Figure 4. Vacancy structures on the zigzag SWNT: (a) unreconstructed
structure, (b) ground state—‘perpendicular’ configuration, (c) one metastable
state—‘parallel’ configuration, (d) one metastable state of the (5,0) and (10,0)
tubes—‘3db’ configuration.

just removing a carbon atom and relaxing with CG technique could not always result in the true
ground state of the vacancy. Therefore, for all the ten SWNTs studied, several configurations
have to be considered.

For the armchair SWNTs, the ground state of the vacancy is as shown in figure 3(b). The
new bond A–C in the pentagon is in the range 1.52–1.57 Å. The possible metastable state is
one where atoms B and C form a bond. For the (3,3) and (4,4) tubes, the length of the bond
B–C is 1.69 and 1.76 Å, respectively (see figure 3(d)). However, for the (5,5) and (6,6) tubes,
the distance between atoms B and C is 2.20 Å (see figure 3(c)), and the interaction between
them is very weak. For the six zigzag SWNTs, the ground state of the vacancy is as shown in
figure 4(b), with the new bond B–C in the range 1.45–1.55 Å. One possible metastable state
is shown in figure 4(c), where atoms A and B form a bond with the bond length ranging from
1.64 to 1.72 Å. For the (5,0) and (10,0) tubes, there is another possible metastable state as
shown in figure 4(d), where the three dangling bonds remain. In fact, direct CG minimization
from the unreconstructed vacancy structure will result in the structure shown in figure 4(d) for
the (5,0) and (10,0) tubes and the structure shown in figure 4(b) for the other zigzag tubes
from (6,0) to (9,0). According to the direction of the new bond in the pentagon relative to
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Table 1. Properties of 5-ring armchair SWNTs with vacancies of different
configurations.

Magnetic
Nanotube Configuration EF (eV) Class moments (µB)

(3,3) Perpendicular 4.4 Semiconductor 0.0
Parallel 5.2 Metal 1.0

(4,4) Perpendicular 5.3 Semiconductor 0.0
Parallel 6.2 Metal 1.0

(5,5) Perpendicular 5.6 Metal 0.6
Parallel 7.1 Semiconductor 0.0

(6,6) Perpendicular 5.9 Semiconductor 0.0 (0.4)a

(metal)a

Parallel 7.3 Semiconductor 0.0

a 4-ring (6,6) tube.

Table 2. Properties of 6-ring zigzag SWNTs with vacancies of different
configurations.

Magnetic
Nanotube Configuration EF (eV) Class moments (µB)

Perpendicular 4.6 Semiconductor 0.0
(5,0)a Parallel 5.1 Semiconductor 0.0b

3db 6.0 Semiconductor 0.0b

(6,0) Perpendicular 5.0 Metal 0.3
Parallel 5.8 Metal 0.9

(7,0) Perpendicular 5.2 Semiconductor 0.0
Parallel 6.3 Metal 0.8

(8,0) Perpendicular 5.3 Semiconductor 0.0
Parallel 6.5 Metal 0.8

(9,0) Perpendicular 5.4 Semiconductor 0.0
Parallel 6.4 Metal 1.0
Perpendicular 5.5 Semiconductor 0.0

(10,0) Parallel 6.7 Metal 0.9
3db 7.4 Metal 1.9

a 8-ring (5,0) tube.
b Antiferromagnetic.

the axis of the tube, we define the configuration in figures 3(b) and 4(b) as ‘perpendicular’,
whereas those in figures 3(c), (d) and 4(c) as ‘parallel’ configurations. The configuration in
figure 4(d) is defined as ‘3db’(three dangling bonds). Detailed information on each configuration
of all the tubes is given in tables 1 and 2.

3.2.1. Armchair nanotubes. For the 5-ring armchair SWNTs, only the ‘parallel’ configurations
on the (3,3) tube (denoted as ‘parallel’ (3,3) below) and the (4,4) tube and the ‘perpendicular’
configurations on the (5,5) tube (denoted as ‘perpendicular’ (5,5) below) exhibit magnetism,
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Figure 5. (a) Magnetization profile as a function of the integration radius Ri

around the two-coordinated atom, and (b) isosurface of the magnetization density
from a direction normal to the axis of the tube at 0.01µB Å−3 on the 5-ring (4,4)
SWNT with vacancy of ‘parallel’ configuration.

with magnetic moments of 1.0, 1.0 and 0.6µB, respectively. After testing with unit cells
of different lengths ranging from 5 to 8 rings, we find that magnetic properties of
the ‘parallel’ (3,3) and ‘parallel’ (4,4) tubes are independent of linear density of the
vacancies. The interaction between the spins in adjacent supercells is very small—the
magnetic moments are highly localized. This can be seen from figure 5(a), which gives
the distribution of magnetization around the two-coordinated atom A on the 5-ring (4,4)
tube displayed in figure 3(d). The magnetization around one atom placed at R0 is
calculated as

M(Ri) =
∫

�Ri

[n↑(r − R0) − n↓(r − R0)] dr,

where �Ri
is a sphere of radius Ri and n↑ and n↓ are the charge densities for the spin-up and

spin-down electrons, respectively. In figure 5(a), the magnetization has saturated for Ri = 3 Å.
The spin polarization beyond this range is very small. This radius is much less than the minimal
length of the unit cells that we use for the (4,4) tube. Figure 5(b) depicts the isosurface of the
magnetization density �n(r) on the 5-ring (4,4) tube from the side, where the magnetization
density is defined as �n(r) = n↑(r) − n↓(r). The distribution of the magnetization around the
two-coordinated atom resembles an unsaturated σ dangling bond. From figures 5(a) and (b), we
can conclude that it is mainly the unpaired σ electron that contributes to the magnetic moment.
The distribution of the magnetization is very similar to that of the 128-atom graphene sheet
(cf figures 2 and 5(b)). It appears that chirality has no influence on the magnetic properties of the
‘parallel’ (3,3) and ‘parallel’ (4,4) tubes. This is due to the special atomic structures around the
vacancies. On these two tubes, the two-coordinated carbon atom A and its two nearest-neighbour
atoms, D and E, as well as the two next-neighbour atoms in the same hexagon, F and G, are nearly
coplanar (see figure 3(d)). The local curvature at atom A is almost 0, and the hybridization of the
σ and π orbitals is very small. The π-electron network on the wall of the (3,3) and (4,4) tubes
has been hardly disturbed by the σ-electron spin polarization. This explains the localization of
the magnetic moments.

The magnetic property of ‘perpendicular’ armchair SWNT depends on the chirality of the
tube and the linear density of the vacancies. Only the 5-ring (5,5) tube and the 4-ring (6,6) tube
exhibit magnetic moments of 0.6 and 0.4µB, respectively. For longer (5,5) and (6,6) tubes, no
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(a)

(b)

(c)

Figure 6. (a) ‘Perpendicular’ vacancy structure on the (6,0) SWNT. The
isosurfaces of the magnetization density at (b) 0.04µB Å−3 and (c) 0.0027µB Å−3

from the side view of the 10-ring (6,0) SWNT.

magnetic moment was observed. Both the σ electron of the dangling bond and the π electrons
have contributed to the magnetic polarization.

3.2.2. Zigzag nanotubes. The ground state of the vacancy on the zigzag SWNT, the
‘perpendicular’configuration, is nonmagnetic, except for the (6,0) tube. The magnetic property of
the ‘perpendicular’ (6,0) tube depends on the linear density of vacancies. The magnetic moments
of the 6-ring, the 8-ring and the 10-ring ‘perpendicular’ (6,0) tubes are 0.3, 0.7 and 0.5µB,
respectively. Figure 6(b) depicts the isosurface of the magnetization density on the 10-ring (6,0)
tube at a density value of 0.04µB Å−3 from the side. The spin polarization comes from both
the σ and π electrons. There is some hybridization between the σ and π orbitals around the
two-coordinated atom A. Since the π electrons on the SWNT are delocalized, the magnetization
of the (6,0) tube with vacancies is also delocalized. This explains the dependence of magnetic
properties of the (6,0) tube on the linear density of the vacancies. Figure 6(c) shows the isosurface
of the magnetization density at the density value of 0.0027µB Å−3 for the 10-ring tube. We can
see that spin-polarized π electrons are distributed along the whole tube. The local magnetic
moment at atom A is 0.27µB, and the remaining 0.24µB magnetic moment arises from these π

electrons. The local magnetic moments at atom A are 0.15 and 0.25µB for the 6- and 8-ring (6,0)
tubes, respectively. It seems that the local magnetic moment at atom A has a saturation value
of about 0.27µB.

The ‘parallel’ metastable state is magnetic for all the zigzag SWNTs from (5,0) to (10,0).
However, the (5,0) tube is antiferromagnetic, i.e. the positive and negative magnetizations reside
on different atoms and the net magnetic moment of the unit cell is zero. The other tubes exhibit
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(a) (b) (c)

Figure 7. (a) ‘3db’ vacancy structure on the (5,0) SWNT. The isosurfaces of the
magnetization density at 0.009µB Å−3 (b) and −0.004µB Å−3 (c) on the 8-ring
(5,0) SWNT.

ferromagnetism with magnetic moment around 1.0µB. By analysing the distribution of the
magnetization density, we found that the magnetic properties of the ‘parallel’ tubes from (6,0)
to (10,0) are very similar to that of the ‘parallel’ (4,4) tube. It is mainly the unpaired σ electron
that contributes to the magnetic moment and the magnetization is highly localized.

As for the ‘parallel’ (5,0) tube, the (5,0) tube having the ‘3db’ vacancy also exhibits
antiferromagnetism. In this paper, we use the ‘3db’ (5,0) tube as an example to describe the
antiferromagnetism. For shorter ‘3db’ (5,0) tubes, such as the 6-ring tube, despite the fact that
the magnetization density distribution still shows an antiferromagnetic order, the local magnetic
moment is very low, two orders of magnitude lower when compared with the 8-ring tube. Hence,
the 6-ring ‘3db’ (5,0) tube may be considered to be nonmagnetic. Figure 7(b) shows the iso-
surface of magnetization density at the density value of 0.009µB Å−3 on the 8-ring (5,0) tube.
The positive magnetization comes mainly from the σ electrons of the two dangling bonds. A
large part of the positive magnetization accumulates around atoms B and C in figure 7. The
contribution of π electrons to positive magnetization is negligible. The local magnetic moments
at atoms B and C are both 0.14µB. At atom A, the magnetization is negative and its distribution
is similar to that shown in figure 6(b) for the (6,0) tube. However, the local magnetic moment
at atom A is −0.07µB, which is only a small fraction of the total negative magnetization. The
remaining negative magnetization (more than −0.21µB) belongs to the π electrons on the wall
of the tube, as seen from figure 7(c). π-Electron spin polarization plays an important role in
the magnetization. This implies that the magnetic properties of the (5,0) tube may have a close
relation to the linear density of the vacancies. In fact, for both the 10-ring and the 12-ring (5,0)
tubes, the magnitudes of local magnetic moments at atoms A, B and C became −0.14, 0.28 and
0.28µB, respectively. It seems that the local magnetic moments at these three atoms have reached
their saturation values for the 10-ring tube. The positive magnetization of the ‘parallel’ (5,0) tube
comes mainly from the σ electron of the dangling bond, whereas the negative one comes entirely
from the π electrons.

The (10,0) tube with ‘3db’ vacancy exhibits something like ferrimagnetism, with a net
magnetic moment of 1.9µB. Figures 8(a) and (b) show the isosurfaces of the magnetization

New Journal of Physics 6 (2004) 68 (http://www.njp.org/)

http://www.njp.org/


11 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

(a) (b)

Figure 8. The isosurfaces of the magnetization density at 0.003µB Å−3 (a)
and −0.003µB Å−3 (b) on the 6-ring (10,0) SWNT with vacancy of ‘3db’
configuration.

densities at the density values of 0.003 and −0.003µB Å−3, respectively. Positive magnetization
comes both from the σ electrons of the dangling bonds of atoms B and C and from the π electrons.
Negative magnetization arises both from the σ electrons of the dangling bonds of atom A and
from the π electrons. Atoms B and C only contribute to the positive magnetization, whereas atom
A contributes to both the negative (see figure 8(b)) and positive magnetizations (see figure 8(a)).
The local magnetic moments at atoms A, B and C are −0.10, 0.40 and 0.40µB, respectively. The
adjacent atoms on the wall of the perfect nanotube belong to different sublattices. Comparing
figures 8(a) and (b), we can see that the positive and negative magnetizations of the π electrons
reside on different sublattices. The magnitudes of these magnetization on different sublattices
are different. Therefore this tube has a ferrimagnetic structure.

4. Discussion

Armchair SWNTs are predicted to be metallic and this has been verified by experiments and first-
principles calculations [32]–[34]. A simple graphene sheet model predicts that zigzag SWNTs
with indices (3m,0) would be metallic, where m is an integer. However, previous experiments
[32] have shown that (9,0), (12,0) and (15,0) SWNTs have small energy gaps. Ouyang et al [32]
has generalized that the energy gaps of the (3m,0) zigzag tubes would scale as R−2, where R is the
tube radius. Thus these zigzag tubes are, in fact, small-gap semiconductors and are not metallic.
This is consistent with theoretical calculations [29, 35, 36]. However, calculations based on local
density functional theory showed that the (6,0) SWNT is metallic [29, 33]. Recent calculations
have also predicted the metallic character of the (5,0) tube [33, 34]. We have calculated the band
structures of the 10 SWNTs studied and found that the perfect (3,3), (4,4), (5,5), (6,6), (5,0)
and (6,0) tubes are metallic, whereas the (7,0), (8,0), (9,0) and (10,0) tubes are semiconductors.
The energy gap of the (9,0) tube was calculated to be 0.16 eV, which is in agreement with the
value of 0.17 eV obtained by Blase et al [29] and compares well with the experimental value of
0.08 eV [32].

Furthermore, we calculated the electronic structures of the SWNTs having vacancies.
The results are given in tables 1 and 2. Vacancies can convert both metallic nanotubes into
semiconductors and semiconducting ones into metals. For most of the SWNTs, the electronic
properties are strongly dependent on the vacancy configuration. Only the (5,0) and (6,0) tubes are
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Figure 9. The band structures for the 5-ring (5,5) SWNT with vacancy of
‘perpendicular’ configuration (a) and the 6-ring (10,0) SWNT with vacancy of
‘3db’ configuration (b) (EF = 0).

always semiconducting and metallic, respectively. We conclude also that only metallic SWNTs
with vacancies could exhibit ferromagnetism or ferrimagnetism.

It is predicted that peculiar localized states exist at the edges of H-terminated graphitic
ribbons [4, 37]. These edge states originate from the π orbitals of the carbon atoms. If the edges
are zigzag, these edge states produce a flat band at the Fermi level. The presence of the flat
band leads to electron–electron interactions, which in turn lead to magnetic polarization with
moments localized at the zigzag edges [4, 37, 38]. It is the π electrons that contribute to this
magnetic polarization. The vacancy on the SWNT acts like a zigzag edge. We expect that peculiar
edge states may exist around the vacancies in the magnetic SWNTs having vacancies, and some
flat bands may also appear at the Fermi level. However, because of the curvature of the SWNT,
hybridization of the σ and π orbitals and the presence of the dangling bonds at the vacancies, such
characteristics may not be evident. Vacancy concentration also influences the appearance and
flatness of the flat band, similar to the influence of width of the zigzag graphene ribbons on the flat
band [37, 39]. As examples, figure 9 shows the band structures of the 5-ring ‘perpendicular’ (5,5)
and the 6-ring ‘3db’ (10,0) tubes. For the ‘3db’ (5,0) tube, a flat band appears near the Fermi level
(at −0.07 eV for the 8-ring tube, setting EF = 0.0). The band is almost dispersionless along the
whole �–X direction. This flat band is nearly degenerate, i.e. the splitting between the spin-up
and spin-down branches is very small. The tubes with flat bands are those where π electrons play
an important role in the magnetic polarization. These observations suggest that the generalized
flat-band theory of magnetism [40] may partly explain the origin of magnetic polarization on the
SWNTs having vacancies.

Scanning tunneling microscopy (STM) is an important tool to study vacancies on graphite
and nanotubes [41]–[44]. It has been predicted that the vacancy could result in a sharp increase
in the local density of states (LDOS) near the Fermi level (EF ) on atoms closest to the vacancy
[43, 44]. We also investigated the LDOS of one nonmagnetic tube and one magnetic tube, as
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Figure 10. (a) LDOS on four adjacent atoms far away from the vacancy and (b)
three atoms surrounding the vacancy for the 6-ring (7,0) SWNT having vacancy
of ‘perpendicular’ configuration (EF = 0).
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Figure 11. LDOS on four adjacent atoms far away from the vacancy (a) and
the LDOS on the three atoms surrounding the vacancy (b) for the 6-ring (10,0)
SWNT with vacancy of ‘3db’ configuration. Positive and negative LDOSs are for
the spin-up and the spin-down electrons, respectively (EF = 0).

shown in figure 10 for the 6-ring ‘perpendicular’ (7,0) tube and in figure 11 for the 6-ring ‘3db’
(10,0) tube. Figures 10(b) and 11(b) show the LDOS on the three atoms surrounding the vacancy,
whereas figures 10(a) and 11(a) show the LDOS on four adjacent atoms (one atom is bonded
to the other three atoms) far away from the vacancy. For the (7,0) tube, the LDOS has a sharp
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increase just above EF . For the (10,0) tube, there are also sharp increases in LDOS near EF for
both the spin-up and the spin-down electrons. Such sharp increases in LDOS are absent near EF

for atoms far away from the vacancy and, hence, the vacancy will result in a protrusion in the
STM image (assuming imaging with small bias).

5. Summary

In conclusion, we have calculated the magnetic properties of single vacancies in a graphene sheet
and ten small-diameter SWNTs using first-principles methods. The dependence of the magnetic
properties on the chiralities of the tubes, configuration of the vacancy and vacancy concentrations
has been demonstrated. A vacancy can change the electronic structure of the nanotube—a
vacancy can convert both metallic nanotubes into semiconductors and semiconducting ones
to metals. If the nanotube is metallic after the introduction of a vacancy, the nanotube will be
ferromagnetic or ferrimagnetic. Semiconducting (5,0) tubes with certain kinds of vacancies can
exhibit antiferromagnetism.
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