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Abstract

Magnetism is a phenomenon that has been known for a very long time. Iron,
cobalt, and nickel are known ferromagnetic materials. It is less known, proba-
bly because it is so unexpected, that even carbon can have ferromagnetic be-
haviour. Experimentally this has been confirmed on many occasions within the
last decade. Ferromagnetic behaviour of carbon provides an example of the fact
that magnetism is not well understood at the atomic scale. One of the aims
of this thesis is to study and understand possible sources of ferromagnetism in
carbon systems, thereby creating a possible foundation for the next generation
of ferromagnets.

Carbon itself is a very interesting substance with numerous interesting prop-
erties. In the late 1980s and early 1990s new carbon allotropes were found,
such as fullerenes (bucky balls) and nanotubes (cylinders), next to the old ones
(graphite and diamond). Especially nanotubes have been considered as can-
didates for several future applications. Whatever the fabrication process, all
allotropes of carbon will have intrinsic defects, and in this thesis the role of
these defects in carbon magnetism is investigated in detail.

Studying magnetism requires “state-of-the-art”-methods due to the demand
of high accuracy because energy differences between non-magnetic and mag-
netic cases are usually very small. Ab initio methods are usually the best for
such studies, especially methods based on the density functional theory. Here,
a state-of-art method which is based on the density functional theory and im-
plementing projector augmented waves to model the properties of carbon is used.

Adatoms and vacancies are found to have magnetic moments of 0.5 µB and
1.0 µB, respectively. In practice, however, the high mobility of adatoms on
graphene at room temperature would suggest that many of them recombine
with vacancies or cluster together, destroying their magnetism. Despite the
indications that a barrier to vacancy-interstitial pair recombination exists, effi-
cient recombination seems to be confirmed by He-irradiation experiments. The
magnetic signal was small despite the fact that the amount of defects created by
the He ions is large. Also, the effect of the changing electronic structure on the
magnetic moments of adatoms and vacancies is studied with the help of nan-
otubes. On nanotubes, the magnetism of an adatom decreases because of the
curvature and differences in electronic structures while the magnetic moment of
a vacancy in all but strongly metallic tubes is destroyed.

The experimental demonstration of induced ferromagnetism by proton ir-
radiation on graphite indicates a promising direction for creating a magnetic
carbon system in a controllable way. Simulations indicate that this is due to a
combination of a hydrogen atom trapping at vacancies and pinning of mobile
adatoms, producing magnetic C-H complexes and uncompensated vacancies.
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Chapter 1

Introduction

1.1 Carbon Atom and Hybridization

Carbon is a group IV element in the Periodic Table of the Elements with the
chemical symbol C, its atomic number is six, and atomic weight 12.01 g/mol
[1]. Carbon has four valence electrons in the 2s2p2-configuration and two core
electrons in the 1s-orbital. In order to form bonds, the atoms’ orbitals have to
undergo a hybridization process, and carbon can have (acetylene) sp-, (graphite)
sp2-, and (diamond) sp3-hybridizations while the other group four elements
(Si,Ge, etc.) appear primarily in the sp3-hybridization.

1.1.1 sp-Hybridization and Acetylene

In gas welding, acetylene (C2H2) is one of the two main gases, oxygen (O2) is
the other. In acetylene, carbons undergo a simple sp-hybridization (see Figure
1.1). A quantum mechanical description of the hybridization can be presented

Figure 1.1: sp-hybridization [2].

as a linear combination of atomic orbitals. In the sp-hybridization, sp-orbitals
can be presented as

|spa〉 = C1|2s〉 + C2|2px〉
|spb〉 = C3|2s〉 + C4|2px〉,

(1.1)

where Ci:s are coefficients. These coefficents are determined from the require-
ments, which the orbitals must satisfy, namely 〈spa|spb〉 = δab (orthogonality
and norm). Additionally, |2s〉 and |2px〉 can be presented in terms of |spi〉. The
norm of |2s〉 and |2px〉 equals one. These conditions provide four equations for
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the Ci:s, which are then ⎧⎪⎪⎪⎨
⎪⎪⎪⎩
C1C3 + C2C4 = 0
C2

1 + C2
2 = 1

C2
2 + C2

3 = 1
C2

3 + C2
4 = 1.

(1.2)

Solving Equation (1.2) the result is

|spa〉 =
1√
2

(|2s〉 + |2px〉)

|spb〉 =
1√
2

(|2s〉 − |2px〉) .
(1.3)

The hybridized orbitals’ property is that they are larger in amplitude in one
direction and smaller in the other. The |spa〉 orbital is stronger or elongated
in the positive x-direction while weaker or shrunk in the negative x-direction.
If the nearest neighbor is then in the positive x direction, the overlap between
suitably hybridized orbitals increases, resulting in lower total energies (this is
also called as the σ bond). The remaining two electrons are perpendicular to
the hybrid orbital, and they interact with p-orbitals of the nearest neighbor,
and form a weaker bond known as the π-bond [3] (see Figure 1.2).

Figure 1.2: Schematic presentation of acetylene [4].

1.1.2 sp2-Hybridization and Graphite

Pencils are probably the most commonly used application of graphite, which is
composed of layered networks of hexagons. Layers are easily removed due to
weak van der Waals bonds while the network is harder to break. Each carbon
atom has three nearest neighbors in the plane, and the hybridization process,
called sp2-hybridization, is thus different from the one in acetylene (see Figure
1.3). In the sp2-hybridization, three out of four carbon’s valence electrons are
involved in the mixing of orbitals, and the angle between the three orbitals is
120◦. This means that the hybridized orbitals are in the directions (0,-1,0),
(
√

3/2,1/2,0), and (-
√

3/2,1/2,0). The orbitals are then made as follows:⎧⎪⎪⎨
⎪⎪⎩
|sp2

a〉 = C1|2s〉 +
√

1 − C2
1 |2py〉

|sp2
b〉 = C2|2s〉 +

√
1 − C2

2

[√
3

2 |2px〉 + 1
2 |2py〉

]
|sp2

c〉 = C3|2s〉 +
√

1 − C2
3

[
−

√
3

2 |2px〉 + 1
2 |2py〉

]
.

(1.4)

From orthonormal requirements of |sp2
a〉, |2s〉 and |2p〉, the constants (Ci) can

be solved with results: C1 = C2 = 1/
√

3 and C3 = −1/
√

3. A schematic
presentation of different bonds in graphene (one layer of graphite) is presented
in Figure 1.4
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Figure 1.3: sp2-hybridization [2].

Figure 1.4: Schematic presentation of graphene [4].
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1.1.3 sp3-Hybridization and Diamond

In the sp3-hybridization (see Figure 1.5) the directions of the bonds can be
selected as (1,1,1), (-1,-1,1), (-1,1,-1), and (1,-1,1). The construction of the

Figure 1.5: sp3-hybridization [2].

orbitals is then comparable to the sp- and sp2-hybridizations [3]. Diamond
(Figure 1.6) is the best example of the material having this structure, and it
is the hardest known material and the best heat conductor. It would also be
the best semiconductor material if the doping of diamond was anything but
impossible.

Figure 1.6: Schematic presentation of diamond [4].

In order to make a carbon-carbon bond, one 2s-electron has to be excited
to a 2p-orbital. The energy required to make this transition is roughly 4 eV.
The covalent bonding energy for σ-orbitals (3-4 eV per bond) is larger than
2s-2p energy separation. Also, it is important to note that the directions of
the three wave functions in the sp3-hybridization are freely determined while
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Figure 1.7: TEM images of multi-wall coaxial nanotubes with various inner and
outer diameters, di and do, and numbers of cylindrical shells N: reported by
Iijima using TEM: (a) N=5 do=67 Å,(b) N=2, do=55 Å, and N=7, di = 23 Å,
do=65 Å. [5]

the fourth direction is determined by the orthonormality conditions imposed on
the 2p-orbitals. This fact gives rise to possible sp2-hybridization of a planar
pentagonal (or heptagonal) carbon ring, and sp2+η-hybridization (0 < η < 1),
which is found in fullerenes. It is expected that the sp2+η hybridization has a
higher excitation energy than the symmetric sp2-hybridization because of the
electron-electron repulsion, which occurs in the hybridized orbital [3].

1.1.4 Nanotubes

Carbon nanotubes were discovered by Iijima in 1991 (see Figure 1.7 [5]). They
are essentially single sheets of graphite (graphene) rolled into a cylinder. If
there are nanotubes inside each other, these are called multi-wall nanotubes.
The diameter of a single-wall nanotube is less than few hundred ångströms
while the length scale is in the micrometer range.

The three most common methods to synthesize nanotubes are arc discharge,
chemical vapour deposition (CVD), and laser ablation (vaporization). In the
arc discharge method two graphite rods, which are a few millimeters apart,
are connected to a power supply. Carbon atoms are vaporized into a plasma
and nanotubes are formed at the rod connected to the negative electrode where
30 to 90% of the carbon consumed is converted to nanotubes. The single-
walled nanotubes produced have diameters between 0.6-1.4 nm while multi-wall
nanotubes’ inner tube have diameter in range 1-3 nm and outer tube’s diameter
is approximately 10 nm. The tubes are short and they appear in random sizes
and directions, which means that lot of purification is needed. With the arc
discharge method single- and multi-wall nanotubes are easily produced, and
they have few structural defects. In the CVD method, a substrate is placed in
an oven, which is heated up to 600 ◦C and carbon bearing gas such as methane is
slowly added. As the gas decomposes, carbon atoms are free and recombine into
nanotubes. Typical yield is between 20-100%. Tubes are long with diameters
of 0.6-4 nm in single-wall and 10-240 nm in multi-wall nanotubes. The CVD
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Figure 1.8: Chirality vector. The nanotubes having chirality vector marked with
a green ball are metals in the sense of zone-folding. The rest are semiconductors.
[7]

method is the best candidate for industrial purposes since the process is the
easiest to scale up and simple. Single-wall nanotube’s diameter can be controlled
and resulting tubes are relatively pure. Most of the produced nanotubes are,
however, multi-walled and riddled with defects. In the laser ablation method,
graphite is heated with intense laser pulses. A pulsing lasergenerates carbon
gas, from which the nanotubes are formed with up to 70 % yields. Single-wall
tube bundles are long, 5-20 microns, and individual diameter varies between 1-2
nanometers. The diameter control is good and there are few defects. Synthesis
of multi-wall nanotubes with this method is not too attractive since it is too
expensive [3, 6].

The electronic structure of a nanotube depends on how it is rolled, and is
designated by a pair of letters (n,m), which is also called the chirality vector.
The meaning of these letters can be explained with the help of Figure 1.8.
The chirality vector starts at (0,0) and ends at (n,m). Then combining the
starting point and the end point we have a tube that we wanted. If the tube
is designated as (n,0), the tube is called a zigzag nanotube. If the tube is of
the form (n,n), the tube is an armchair nanotube. The rest in between are
called achiral nanotubes. The determination of whether a tube is a metallic or
semiconducting, is as follows: if n − m is divisible by 3, the tube is metallic;
otherwise it is semiconducting. This can be understood in terms of zone folding
and analogy to graphite - the degenerate π and π∗ bands (the asterisk stands
for antibonding; usually not occupied, above the Fermi-level) in the graphite
Brillouin zone are folded into the Γ point in a nanotube [8, 9, 10, 11]. However,
this type of description does not take into account the effect of curvature. Due
to the curvature of the nanotube, the π∗ and σ∗ orbitals hybridize, and thus a
small gap opens in zigzag nanotubes. This effect is the strongest in nanotubes,
which have radius less than that of C60 [3].

6



1.2 Intrinsic Magnetism in Carbon Systems

Observations of magnetism in various carbon systems [12, 13, 14] have stimu-
lated much experimental and theoretical research work (Ref. [15] and references
therein) on the magnetic properties of all-carbon systems. The driving force
behind these studies was not only to create technologically important, light,
non-metallic magnets with a Curie point well above room temperature, but also
to understand a fundamental problem: the origin of magnetism in a system,
which traditionally has been thought to show diamagnetic behavior only.

The question, which immediately springs to ones mind is whether magnetism
is an intrinsic property of carbon systems or is due to the presence of mag-
netic impurities (e.g., Fe). The debate was initiated from the appearance of
the two classic papers: in 2000 Kopelevich and coworkers published a paper
[12] with an editor’s note of the controversial nature of the result. In that
work, the authors identified ferromagnetic and superconducting-like magneti-
zation hysteresis loops in highly oriented pyrolytic graphite samples below and
above room temperature. The conclusion was that magnetic impurities were
extremely unlikely. In 2001 Makarova and coworkers [13] reported a discovery
of strong magnetic signals in rhombohedral C60. Their intention was to search
for superconductivity in polymerized C60; however, it appeared that their high-
pressure, high-temperature polymerization process resulted in a magnetically
ordered state. The material exhibited features typical of ferromagnets: sat-
uration magnetization, large hysteresis and attachment to a magnet at room
temperature. A careful analysis carried out in the original [13] and follow-up
works [14, 16, 17] showed that one can exclude magnetic impurities as the origin
of ferromagnetism.

If magnetism is indeed the intrinsic property of all-carbon systems, then the
most important questions to be answered are as follows:

1. What is the atomic structure of the magnetic phase and what is the local
bonding geometry, which gives rise to the net magnetic moment?

The presence of local magnetic moments can explain only the paramag-
netic behavior but not ferromagnetism. Thus, the second question is:

2. How is the macroscopic ferromagnetic state formed and what is the mech-
anism of the long-range order formation?

Because ferromagnetic signals have been detected in various carbon sys-
tems such as graphite [12, 16], polymerized fullerenes [13], and carbon
foam [14], it is highly important to understand:

3. Is the mechanism of magnetic state formation common for all the carbon
systems or is it different for different allotropes?

Finally, if magnetism is not the intrinsic property of all-carbon systems
and it does not originate from magnetic impurities, then another question
arises:

4. Can magnetism result from impurity atoms, which are non-magnetic by
themselves, but due to unusual chemical environment, e.g., due to bonding
to defects in graphitic network, give rise to local magnetic moments?
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As for the first problem, a number of factors are nowadays thought to possi-
bly give rise to the appearance of localized spins and the development of the mag-
netic state in all-carbon systems: defects in the atomic network such as under-
coordinated atoms [18, 19, 20, 21, 22, 23], itinerant ferromagnetism [24, 25] and
negatively-curved sp2-bonded nano-regions in the carbon structures [14, 26].
Among these factors the defect-mediated mechanism appears to be the most
general one because negatively-curved regions can hardly be found in graphite,
and as for the second scenario, although itinerant mechanisms resulting from
strong electron-elecron interactions and the effective dimensionality of the elec-
tron system can give rise to magnetism, direct experimental evidence supporting
such a mechanism is still lacking.

The defect-mediated mechanism has been addressed in a considerable num-
ber of works [18, 19, 20, 21, 22, 23]. Although the details can be different for
different carbon systems (polymeric fullerenes, graphite, nanotubes), the com-
mon feature is the presence of under-coordinated atoms, e.g., vacancies [21, 27],
atoms on the edges of graphitic nano-fragments with dangling bonds either pas-
sivated with hydrogen atoms [22, 23, 28] or free [20, 23]. Structural defects, in
general, give rise to localized electronic states, a local magnetic moment, flat
bands associated with defects and thus to an increase in the density of states
at the Fermi level, and eventually to the development of magnetic ordering.
However, even if this conjecture is correct, it is not clear at all whether such
defects are actually present, or if their concentration is high enough to provide
the magnetic moment observed in the experiments.

At the same time, it is well known that irradiation of carbon systems with
energetic electrons and ions should give rise to defects, and their number can be
controlled by choosing the right irradiation dose, particle energy and irradiation
temperature. Thus, if irradiation of the originally non-magnetic carbon samples
gave rise to magnetism, this could be strong evidence for the defect scenario.

Graphite samples were recently irradiated with 1.5 MeV He and 2.25 MeV H
ions [29]. It was found that proton bombardment produced a strong magnetic
signal, while bombardment with helium ions produced a signal, which was only
slightly larger than background.

To explain the irradiation-induced magnetism and shed light on the role of
defects in all-carbon magnetism, the atomic structure and magnetic moment of
various defects is studied in this thesis at the atomistic level within the frame-
work of Density Functional Theory (DFT). The importance of the behavior of
various point defects–vacancies, interstitials and more complicated aggregations,
both intrinsic, and those, which can appear in carbon nanotubes and graphite
under irradiation to properties of material is addressed. Not only magnetic,
but also structural and other characteristics of the defects are described, such
as formation energies and diffusivity. It is shown that under certain conditions
the defects can indeed give rise to magnetism. Defects, which can appear under
proton irradiation are considered, and the fact that even a small amount of
hydrogen in carbon samples might be very important for the formation of the
magnetic state is demonstrated.
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Chapter 2

Introduction to
Computational Methods

Modern atomistic modeling techniques can be divided into three parts [30]:

1. Molecular mechanics uses classical physics and is computationally cheap
since it is very fast even with limited computer resources. It can be used
to calculate large systems like enzymes, which may have thousands of
molecules. This means that the primary users are in the area of biologi-
cal physics. Molecular mechanics does not calculate electronic properties,
which prohibits bond breaking. Instead, molecular mechanics requires ab
initio or experimental data on which the force fields it uses are parame-
terized.

2. Semi-empirical methods use quantum physics but are computationally less
demanding than ab initio methods. The idea is to use a relatively simple
molecular-orbital theory to define the potential surface of interest in such
a way that it can be adjusted to match ab initio calculations or exper-
iment. The adjustments are usually made either by varying parameters
that arise naturally in the semiempirical calculations or by adding locally
defined correction functions to the semiempirical surface in order to “fix
up” special regions of the potential surface such as barriers or minima [31].
This means the usage is in the medium sized systems with hundreds or
even a few thousands of atoms. They too, however, rely on ab initio or
experimental data.

3. Ab initio or “the first principles” methods are also based on quantum
physics. They are mathematically very rigorous in the sense that they do
not have empirical parameters. Ab initio methods are very useful for a
broad range of systems. Computationally they are extremely expensive
and this limits the size of the system to little over 100 atoms. The usage
is in systems requiring high accuracy, and flexible atomic environments.

In the following studies Ab initio techniques are used by applying density
functional theory (DFT) to find the ground state of the system. A brief outline
of DFT is given by following closely Ref. [32].
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2.1 Density Functional Theory

2.1.1 Basic Formalism

The Hamiltonian of an interacting many-particle system is

Ĥ = T̂ + V̂ + Ŵ , (2.1)

which can be written in the second-quantized formalism as

Ĥ =
∑
α

∫
d3r

[
ψ̂†

α(r)
(
− �

2

2m
�2 + v(r)

)
ψ̂α(r)

]

+
1
2

∑
αβ

∫
d3r

∫
d3r′ψ̂†

α(r)ψ̂†
β(r′)w(r, r′)ψ̂β(r′)ψ̂α(r).

(2.2)

In the nanometer scale, the dominant inter-particle interaction is the Coulomb
interaction. The problem to solve, in general, is an eigenvalue problem, namely

Ĥ |Φ〉 = (T̂ + V̂ + Ŵ )|Φ〉 = E|Φ〉. (2.3)

Assuming that the situation to deal with is such that the ground state is non-
degenerate, a member |Ψ〉 belonging to family of |Φ〉 provides the lowest eigen-
value (|Φ〉 is a solution of the Schrödinger equation, |Ψ〉 is the one, which gives
the lowest energy), i.e. the ground state energy:

Ĥ |Ψ〉 = Egs|Ψ〉. (2.4)

The ground state density can then be calculated from

n(r) = 〈Ψ|
∑
α

ψ̂†
α(r)ψ̂α|Ψ〉

= N
∑

α

∫
d3x2, ...,

∫
d3xN |Ψ(rα, x2, ..., xN )|2,

(2.5)

which is then a functional of v(r); the idea was first presented in [33]. The
particle number (N) and the ground state density (n(r)) are related through
the configurational distribution function, which also gives one of the sum rules
in the local density approximation (see appendix A).

The one to one correspondence between the density and the potential v(r) is
proved by first recognizing that two potentials, V̂ and V̂ ′, always lead to different
ground states |Ψ〉 and |Ψ′〉 if the potentials differ more than a constant, i.e.

V̂ �= V̂ ′ + const. (2.6)

Eigenvalue equations for both potentials are

(T̂ + V̂ + Ŵ )|Ψ〉 = Egs|Ψ〉 (2.7)

and
(T̂ + V̂ ′ + Ŵ )|Ψ′〉 = E′

gs|Ψ′〉. (2.8)

If |Ψ〉 and |Ψ′〉 are the same, the result is

(V̂ − V̂ ′)|Ψ〉 = (Egs − E′
gs)|Ψ〉, (2.9)
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which violates Equation (2.6). In the second phase of the proof, one must show
that |Ψ〉 �= |Ψ′〉 implies n(r) �= n′(r). Due to the Ritz principle

Egs = 〈Ψ|Ĥ |Ψ〉 < 〈Ψ′|Ĥ |Ψ′〉 (2.10)

and

〈Ψ′|Ĥ |Ψ′〉 = 〈Ψ′|Ĥ ′ + V̂ − V̂ ′|Ψ′〉 = E′
gs +

∫
d3r n′(r)[v(r) − v′(r)]. (2.11)

The combination of (2.10) and (2.11) gives

Egs < E′
gs +

∫
d3r n′(r)[v(r) − v′(r)]. (2.12)

By writing the corresponding argument for E′
gs, using the assumption n(r) =

n′(r), and adding with Equation (2.12) the result will be

Egs + E′
gs < Egs + E′

gs. (2.13)

The statements of the Hohenberg–Kohn theorem can then be formulated as
following:

• The ground state expectation value is a unique functional of the exact
ground state density

〈Ψ[n]|Ô|Ψ[n]〉 = O[n].

• Energy functional has variational character:

Ev0 [n] = 〈Ψ[n]|T̂ + Ŵ + V̂0|Ψ[n]〉,

where V̂0 is the external potential of a specific system with ground state
density n0(r) and ground state energy E0. By virtue of the Rayleigh–Ritz
principle Ev0 [n] has the property

E0 < Ev0 [n], ifn �= n0 (2.14)

and
E0 = Ev0 [n0]. (2.15)

Hence, the ground state can be determined from

E0 = min
n
Ev0 [n]. (2.16)

• T̂ and Ŵ do not depend on the V̂0 of the particular system, and hence,
the total energy functional may be written as

Ev0 [n] = FHK [n] +
∫
d3r n(r)v0(r), (2.17)

where
FHK = 〈Ψ[n]|T̂ + Ŵ |Ψ[n]〉.

Thus, FHK is universal.
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2.1.2 Kohn–Sham Scheme

The idea of creating something, which became to known as the Kohn–Sham
equations [34] rose, according to Walter Kohn [35], from descriptional differences
between the so-called Thomas-Fermi theory and the Hartree equations. The
difference between those two theories was in the treatment of the kinetic energy
term.

A system of N non-interacting particles described by the Hamiltonian

Ĥ = T̂ + V̂S (2.18)

has a unique total energy functional

ES [n] = TS [n] +
∫
d3r vS(r)n(r), (2.19)

which has, according to the variational principle, the ground state density nS(r)
corresponding to Equation (2.18). A central piece in establishing the Kohn–
Sham scheme is that for any interacting system, there exists a local single-
particle potential vS(r) such that the exact ground state density of the inter-
acting system equals the ground state density of the non-interacting system,
namely

n(r) = nS(r).

The ground state density has then a unique representation (non-degeneracy
assumed)

n(r) =
N∑

i=1

|ψ(r)|2 (2.20)

in terms of the lowest single-particle orbitals obtained from the Schrödinger
equation (

− �
2

2m
�2 + vS(r)

)
ψi(r) = εiψi(r), ε1 ≤ ε2 ≤ .... (2.21)

Rewriting the total energy functional (2.17) into form

Ev0 [n] = TS [n] +
∫
d3r n(r)v0(r) +

1
2

∫
d3r

∫
d3r′ n(r)w(r, r′)n(r′) + EXC [n]

(2.22)
the exchange-correlation functional EXC [n] is formally defined as

EXC [n] = FHK [n] − 1
2

∫
d3r

∫
d3r′ n(r)w(r, r′)n(r′) − TS [n]. (2.23)

The kinetic energy term in (2.22) has now changed from T [n] to TS[n], which
can be written in terms of single-particle orbitals

TS[n] =
N∑

i=1

∫
d3r ψ∗(r)

(
− �

2

2m
�2

)
ψ(r). (2.24)

Using the facts that Hohenberg–Kohn variational principle ((2.14),(2.15)) en-
sures that Ev0 [n] is stationary for small variations δn around the minimum
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density n0(r), single-particle orbitals satisfy Equation (2.21), and that the or-
bitals are normalized, an expression for single particle potential, which generates
n0(r) via Equation (2.20) can be derived. The result is

vS,0(r) = v0(r) +
∫
d3r′ n0(r′)w(r, r′) + vXC([n0]; r), (2.25)

where

vXC([n0]; r) =
δEXC [n]
δn(r)

∣∣∣∣
n0

. (2.26)

2.1.3 Extension to Spin-Polarized Systems

In spin-polarized systems, V̂ in (2.1) needs to be extended in general to

V̂ =
∫
d3r [v(r)n̂(r) − B(r) · m̂(r)], (2.27)

where the density operator is

n̂(r) =
∑
α

ψ̂†
α(r)ψ̂α = n̂+(r) + n̂−(r) (2.28)

and the magnetic moment density is

m̂(r) = −µ0

∑
αβ

ψ̂†
ασαβ(r)ψ̂β , (2.29)

where σαβ is a Pauli spin matrix and in particular

m̂(r) = −µ0(n̂+(r) + n̂−(r)). (2.30)

The difference of this formalism compared to the standard one is that instead
of trying to find only the ground state density, the objective is to find a four
vector (n(r),m(r)) for the non-degenerate ground state. The one-to-one cor-
respondence between the ground state and the ground-state densities can be
established through a similar argument as in (2.10) and (2.11). This fact is
enough to establish the variational principle. According to Ref. [32] there is
not any proof that there is one-to-one correspondence between unique external
potential (v(r),B(r)) and a given ground state. However, in the limit B → 0
this formalism leads to a suitable description of systems having a spin-polarized
ground state even without an external magnetic field (and in this case one-to-
one correspondence between external potential and the state holds, although,
the z-component of magnetic moment can have either positive or negative sign).

2.1.4 Kohn–Sham Scheme in Spin-Polarized Systems

For later purpose, and for notational simplicity, the external magnetic field B(r),
and magnetization m(r) have only z-components

B(r) = (0, 0, B(r))

m(r) = (0, 0,m(r)).
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The Kohn–Sham equation for the spin-polarized scheme consists of the following
equations:(
− �

2

2m
�2 + v(r) − αµ0B(r) +

∫
d3r′ n0(r′)w(r, r′) + vXC([n+, n−]; r)

)
ψ

(α)
i (r)

= εiψ
(α)
i (r), ε(α)

i ≤ ε
(α)
2 ≤ ....

(2.31)

where α = + or− and

nα(r) =
∞∑

i=1

γ
(α)
i |ψ(α)

i (r)|2, (2.32)

with γ(α)
i satisfying the following relations

γ
(α)
i = 1 , ε(α)

i < µ(α)

γ
(α)
i ≤ 1 , ε(α)

i = µ(α)

γ
(α)
i = 0 , ε(α)

i > µ(α)

∞∑
i=1

γ
(α)
i = Nα , N+ +N− = N.

(2.33)

The exchange-correlation potentials are defined as

v(α)
XC([n+, n−]; r) =

δEXC [n]
δnα(r)

∣∣∣∣
n0

, (2.34)

and the functional EXC [n+, n−] is defined as

EXC [n] = FL[n+, n−] − 1
2

∫
d3r

∫
d3r′ n(r)w(r, r′)n(r′) − TL[n+, n−]. (2.35)

FL[n+, n−] is an extension of FHK to include degenerate states and constrained
search, whereas TL can be written as

TL[n] =
N∑

i=1

γ
(α)
i

∫
d3r ψ∗

α(r)
(
− �

2

2m
�2

)
ψα(r). (2.36)

2.2 Approximations in DFT

2.2.1 Approximation for Exchange-Correlation Functional

Local (Spin) Density Approximation

One problem of the density functional theory is that the exchange-correlation
energy functional defined in (2.35) is not known. EXC is composed of the kinetic
energy part and the interaction part. With the help of Equation (2.2) a few
words can be said of the interaction part, which is the one that usually is divided
into the exchange and correlation parts. With the help of Wick’s theorem, an
expansion of the expectation value into direct and exchange parts can be made.
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In the homogeneous electron gas model (rotational and translational symmetry,
ion cores considered as neutralizing background) the direct part cancels along
with the contributions from the background and electron-background interaction
to the total energy. So the problem is to study the exchange term perturbatively.
The exchange term (in terms of Feynman diagrams, see Figure 2.1(a)) in the
first order produces the well-known result for the exchange energy

Figure 2.1: (a) Hartree-Fock energy diagrams. Because of the translational sym-
metry and the uniform charge background, only the first diagram is nonzero for
a uniform electron gas. (b) The first diagram gives the second order pertur-
bation on the kinetic energy. Each cross represents a density vertex with the
momentum of the external field. [36]

Ex

N
= −e2 3

4π
(
3π2n

)1/3 1
2

[
(1 + ξ)4/3 + (1 − ξ)4/3

]
, (2.37)

where ξ = (N+ − N−)/N [37]. The second order diagrams contributing to
the exchange-correlation energy can be found in Figure 2.2. Figure 2.2(a) is
well behaved (see for example Ref. [37]) while 2.2(b) is divergent. In higher
order terms, contribution from diagrams resembling Figure 2.2(b) are the fastest
diverging. In the high density limit, a summation of the fastest diverging terms
can be done exactly [38, 39]. In the low-density limit, energy per particle can
be computed exactly [40, 41, 42], from which the correlation contribution can
be calculated. The remaining task is to find an expression for arbitrary density
and spin-polarization. One of the most noteworthy parameterizations can be
found in Ref. [43] where the high-density limit of electron gas, scaling relation
of spin-polarized ring approximation and Monte-Carlo results by Ceperley and
Alder [44] are taken into account [32]. The method described above is known
as the local density approximation (LDA) or the local spin-polarized density
approximation (LSDA). LDA has been highly successful because it fulfills the
so-called sum rules of the exchange-correlation hole. Its deficiencies are that
it inadequately cancels the self-interaction contributions. The consequence is
that the local exchange-correlation potential does not exhibit correct asymptotic
behavior proportional to 1/r for localized systems (atoms, molecules etc.).
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(a)
(b)

Figure 2.2: Second order diagrams contributing to exchange-correlation energy.
Fig. (a) is the second order exchange contribution and well behaving while Fig.
(b) is the first order correlation diagram contributing to the correlation energy.

Generalized Gradient Approximation

In order to improve LDA/LSDA the simplest thing to do is to include gradient
terms of the density into the functional. The functional built is known as the
gradient expansion approximation (GEA). The difference between LDA and
GEA is that instead of being free particles and holes in Figures 2.1 and 2.2,
they are experiencing an external potential. This modifies the calculation of
the correlation energy in the high density limit [36]. In later work, it was
realized that GEA violates the sum rules of the exchange-correlation hole. In
order to enforce the sum rules of the exchange hole, a real space cut-off was
introduced [45]. A similar treatment had to be done also for the correlation
energy functional [46] since the exchange and correlation have to be treated in a
balanced way. This leads to a scheme known as PW91 [47]. A useful formula in
visualizing and thinking about the nonlocality, or in comparing one GGA with
another is

EGGA
xc [n↑, n↓] ≈

∫
d3r n

(
− c

rs

)
Fxc(rs, ξ, s), (2.38)

where c = (3/4π)(9π/4)1/3, and −c/rs = ex(rs, ξ = 0) is the exchange energy
per electron of a spin-unpolarized uniform electron gas, and Fxc is an enhance-
ment factor showing the effects of the correlation [48].

The problem with LDA/LSDA and GGA is that they are both designed
for non-homogeneous electron gases. Hence, the long-range interaction of non-
overlapping systems is neglected. The reason for this is that the integrals in-
volved in the evaluating the diagrams shown in sub-subsection 2.2.1 are done
either in k-space (for Fourier transforms a box is needed) or in the real space
with a regularization (potential of the form exp[−λr]/r). This means van der
Waals interactions (long range dipole-dipole interaction) are neglected and the
calculation of distance between the layers of graphite can not be correctly done.
Recently, a work has begun to overcome this problem (see for example Refs.
[49] and [50]).

2.2.2 Band Gap Problem

The definition of the exact band gap ∆ is [32]

∆ = I −A (2.39)
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where I is the ionization potential

I = E(N − 1) − E(N), (2.40)

where E(N) refers to the energy (functional) of N particle system, and A is the
electron affinity

A = E(N) − E(N + 1). (2.41)

The definition of the chemical potential µ is

δEv[n]
δn(r)

= µ. (2.42)

If nN is the ground state density of N particle system then the ground state
energy can be written as EN = Ev[nN ]. The exact chemical potential can then
be written as

µ(N) =
∂EN

∂N
, (2.43)

and with the help of the fractional particle formalism [32]

µ(N) =

{
−I(Z) whenZ − 1 < N < Z;
−A(Z) whenZ < N < Z + 1.

(2.44)

This means that the band gap can be written in the form

∆ = −µ(N − δ) − µ(N + δ)
(2.42)
=

{
δEv[n]
δn(r)

∣∣∣∣
N+δ

− δEv[n]
δn(r)

∣∣∣∣
N−δ

}
n=n0

(2.22)
=

{
δTS [n]
δn(r)

∣∣∣∣
N+δ

− δTS [n]
δn(r)

∣∣∣∣
N−δ

}
n=n0

+

{
δExc[n]
δn(r)

∣∣∣∣
N+δ

− δExc[n]
δn(r)

∣∣∣∣
N−δ

}
n=n0

≡ ∆KS + ∆xc.

(2.45)

In order to recognize the terms in Equation (2.45) the fractional particle for-
malism has to be used with the fact that the chemical potential can be written
as in Equation (2.42). First the Kohn–Sham total energy functional for N + δ
particles can be written as

Ω+
0 (δ) =

N∑
i=1

εi + δεN+1 − 1
2

∫
d3r

∫
d3r′ nδ(r)w(r, r′)nδ(r′)

+ EXC([nδ]) −
∫
d3r vXC([nδ

0]; r)n
δ(r),

(2.46)

and a similar equation for the N − δ particles

Ω−
0 (δ) =

N−1∑
i=1

εi + (1 − δ)εN − 1
2

∫
d3r

∫
d3r′ n−δ(r)w(r, r′)n−δ(r′)

+ EXC([n−δ]) −
∫
d3r vXC([nδ

0]; r)n
−δ(r).

(2.47)
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Subtracting Ω0 from Equation (2.46), and from Ω0 Equation (2.47), the result
is

Ω+
0 (δ) − Ω0 = δεN+1 + (EXC([nδ+

] − EXC [n]) (2.48)

and
Ω0 − Ω−

0 (δ) = δεN + (EXC [n] − EXC [n−δ]) (2.49)

since the other terms explicitly depend on the density and a small density change
around the ground state density does not change them. Dividing then Equations
(2.48) and (2.49) with δ, taking δ to zero and subtracting them from each other
an equation corresponding to Equation (2.45) is obtained. The final result will
be then

∆ = εN+1 − εN +
∂EXC [nδ]

∂n

∣∣∣∣
N+δ

− ∂EXC [nδ]
∂n

∣∣∣∣
N−δ

. (2.50)

If ∆xc (ie. a discontinuity of derivative of µ(N) at N = Z) is the reason for
the band gap problem, then changing the exchange-correlation functional does
not improve the situation. The visible improvement is only a fluke since the
underlying reason behind the gap is still present.

A partial remedy to the question, which of the deltas is responsible for the
gap was given by Godby, Schüter and Sham [51]. They calculated the exchange-
correlation from equation [32]∫

d3y vXC(y)
∫

dω

2π
Gs(r,y;ω)G(y, r;ω)

=
∫
d3y

∫
d3y′

∫
dω

2π
Gs(r,y;ω)Σxc(y,y′;ω)G(y′, r;ω),

(2.51)

where Σxc(y,y′, ω) is the irreducible self-energy, from which the local Hartree
potential has been substracted. Gs satisfies equation

(ω − hs)Gs = 1, (2.52)

where hs is the Kohn–Sham Hamiltonian. The full Green’s function can then
be written by means of Dyson’s equation

G = Gs +GsΣ̃G, (2.53)

where Σ̃ is defined as

Σ̃ = Σxc(y,y′;ω) − δ(r − r′)vXC(r). (2.54)

The connection to the particle density is

n(r) = −i
∫
dω

2π
Gs(r, r;ω) = i

∫
dω

2π
G(r, r;ω). (2.55)

Using the GW approximation for the self energy in (2.51), Godby, Schüter, and
Sham found an agreement between vXC in the local density approximation and
vXC obtained in the fashion of Equations (2.51)-(2.55), as well as for the band-
structures. The consequence is that the neglected discontinuity is the primary
source of error. For example, in the case of GaN the calculated band gaps (as
in Ref. [52]) are between 1.76 eV and 3.0 eV in LDA calculations, and 1.45 eV
in the GGA calculation compared to the experimental 3.41-3.65 eV.
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2.2.3 Plane Wave Basis Set and Supercell Approximation

In electronic structure calculations, beside the exchange correlation energy, some
things have to be approximated or assumed. In the following, a brief outline of
these technical issues is given.

In the preceding sections, it was shown how a many-particle problem can
be reduced to the effective single particle calculations. When looking at solids,
the scale of the system is 1023 atoms. Even with non-interacting electrons,
calculating their movement in that external potential would be a huge task.
There are two challenges: a wave function must be calculated for each of the
almost infinite number of electrons in the system and since each electronic wave
function extends over the entire solid the basis set required to expand each
wave function is almost infinite. With the help of the Bloch’s theorem the wave
function can be divided into a cell-periodic part and wavelike part [53], namely

ψi(r) = exp[ik · r]fi(r), (2.56)

where the cell-periodic part of the wave function can be expanded using a basis
set consisting of a discrete set of plane waves whose wave vectors are reciprocal
lattice vectors of the crystal

fi(r) =
∑
G

ci,G exp[iG · r]. (2.57)

The wave function can therefore written as

ψi(r) =
∑
G

ci,G exp[i(k + G) · r]. (2.58)

Electronic states are allowed only at a set of k points determined by the
boundary conditions in the bulk. The infinite number of electrons in the solid
are accounted by an infinite number of k points, and only a finite number of
electronic states are occupied at each k point. Each electron in an occupied
state contribute to the total energy and thus the number of needed k points is
infinite. Luckily, if the k points are close to each other the wave functions will
be almost identical. This means that the wave function at one k point presents
the wave functions in the region of space. In order to calculate the electronic
potential and determine the total energy of the solid only finite amount of k
points is required. Methods for approximating the electronic potential and total
energy from filled electronic bands by calculating the electronic states at special
sets of k points in the Brillouin zone have been presented for example in Refs.
[54]. In metals, a large amount of k points is needed while in insulators only
few to get good k point convergences.

When operating in k space, the terms with small kinetic energy �
2/2m|k +

G|2 are usually more important (because of 1/k behavior of the Coulomb inter-
action) than with a large kinetic energy. The plane-wave basis set can therefore
be truncated. In the process an error is made. When selecting a potential
(pseudopotential, PAW, etc.) , it is necessary that with the selected cut-off
energy the total energies of the system are converged when compared to the
larger cut-off energies.

The Bloch’s theorem cannot be applied to a system with a defect. Calcula-
tions with the plane-waves can only performed if a periodic supercell is used. A
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supercell contains a defect with enough bulk around it to remove defect-defect
interactions between neighboring cells. This requires, of course, a set of test
calculations. The supercell is reproduced to fill the space to infinity [55].

2.2.4 Pseudopotential Approximation

The pseudopotential approximation makes use of the fact that the valence elec-
trons are more important in determining the physical properties of a solid than
the core electrons. In practise, this means that the Z/r behaviour of the core
electrons is replaced by a weaker pseudopotential, which acts on a set of pseu-
dowave functions rather than true valence wave functions (see Figure 2.3). The
rapid oscillation of the valence wave functions in the region occupied by the core
electrons due to the strong ionic potential maintain the orthogonality between
the core and valence wave functions required by the exclusion principle. The
construction of the pseudopotential is made so that its scattering properties or
phase shifts for the pseudo wave functions are identical to the scattering prop-
erties of the ion and the core electrons for the valence wave functions in such a
way that there are no radial nodes in the core region. In the core region, the
total phase shift produced by the ion and the core electrons will be greater by π
for each node the valence functions had in the core region than the phase shift
produced by the ion and the valence electrons. Outside the core region the two
potentials are identical, and the scattering from the two potentials is indistin-
guishable. The phase shift produced by the ion core is different for each angular
momentum component of the valence wave function and so the scattering from
the pseudopotential must be angular momentum dependent. The most general
form for a pseudopotential is then

VNL =
∑
lm

|lm〉Vl〈lm|, (2.59)

where |lm〉 are the spherical harmonics and Vl is the pseudopotential for angu-
lar momentum l. This operator decomposes the electronic wave function into
spherical harmonics and each of them is multiplied by pseudopotential Vl.

A pseudopotential that uses the same potential for all the angular momen-
tum components of the wave function is called a local pseudopotential. In this
case the pseudopotential is a function of the distance from the nucleus. It is
possible to produce arbitrary, predetermined phase shifts, but there are limits
to the amount that the phase shifts can be adjusted for the different angular
momentum states, while maintaining the smoothness and weakness of the pseu-
dopotential. The shortcoming of this approach is the difficulty in expanding the
wave functions using a reasonable number of plane-wave basis states [55].

2.2.5 Projector Augmented-Wave Method

A basic strategy of the augmented-methods is to divide space into regions,
i.e. to make a partial-wave expansion near atom-centered sphere and envelope
functions outside the spheres. The basic formalism in the Projector Augmented
Wave-Method [56] is the following: A definition for a linear transformation is

τ = 1 +
∑
R

τ̂R (2.60)
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Figure 2.3: Schematic illustration of all-electron (solid lines) and pseudoelectron
(dashed lines) potentials and wave functions. The radius at which all-electron
and pseudoelectron values match is designated rc. [55]

where τ̂R acts inside some augmentation region ΩR enclosing the atom. τ̂R
is defined for each augmentation region individually by specifying the target
functions |φi〉 for a set of initial functions |φ̃i〉, which are orthogonal to the core
states and complete in ΩR, i.e. |φi〉 = 1+τ̂R|φ̃i〉. |φi〉 are called all-electron (AE)
partial waves and |φ̃i〉 pseudo (PS) partial wave functions. A natural choice for
the AE partial waves are solutions of the radial Schrödinger equation for the
isolated atom, which are orthogonalized if necessary. A connection between PS
and AE waves is that they are equal outside the augmentation region.

Considering an all-electron wave function (a full one-electron Kohn-Sham
wave function), which can be presented as

|Ψ〉 = τ |Ψ̃〉 =
∑

i

|φi〉ci, within ΩR, (2.61)

and a similar expression can be written for

|Ψ̃〉 =
∑

i

|φ̃i〉ci, within ΩR. (2.62)

The requirement that the transformation τ to be linear guarantees that the coef-
ficients are linear functionals of the PS wave functionals. Hence, the coefficients
are scalar products

ci = 〈p̃i|Ψ̃〉, (2.63)

where the functions |p̃i〉 are called projector functions for each PS wave. The
projector functions must fulfill the condition

∑
i |p̃i〉〈φ̃i| = 1 within ΩR. This

means that the one-center expansion
∑

i |p̃i〉〈φ̃i|Ψ̃〉 = |Ψ̃〉.
In summary, Equations (2.61) and (2.63) define the linear transformation to

be used. The three quantities, which are determined from this transformation
are:
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• the AE partial waves |φi〉, obtained by radially integrating the Schrödinger
equation of the atomic energy for a set of energies ε1i and orthogonalization
to the core states, i.e. the core state can be expressed as

|Ψc〉 = |Ψ̃c〉 + |φc〉 − |φ̃c〉 (2.64)

• PS partial wave |φ̃i〉, which coincides with the corresponding AE partial
wave outside some augmentation region for each AE partial wave

• one set of projector functions |p̃i〉 for each PS partial wave localized within
the augmentation region, and obeys the relation 〈p̃i|φ̃j〉 = δij .

The variational variable is |Ψ̃〉. The implementation of PAW-method into a
pseudopotential code can be done with relative ease (and it is done in Ref. [57]).
One benefit of the PAW method is that it takes in a sense the core electrons
into account. The core region is well established. The approximation, which is
made in both pseudopotential and PAW calculations, is freezing the cores. In
the search of energy minimum, modern computer algorithms can optimize the
position of ions using the Hellmann-Feynman forces [58, 59].

2.3 VASP

In this thesis the Vienna Ab Initio Simulation Package (VASP) is used as
the main work horse. VASP is a package for calculating ab-initio quantum-
mechanical simulations using pseudo-potentials (PP) or the PAW-method with
the plane wave basis set. The execution time of parts of plane wave codes usually
scales like N3 where N is the number of electrons in the system. In VASP the
prefactors before the cubical term are negligible, leading to an efficient scaling
with respect to system size. This has been achieved by evaluating the non-
local parts of the pseudo-potential in real space and by keeping the number of
orthogonalisations at a minimum.

The implementation in VASP is based on the (finite temperature) LDA with
the free energy as a variational quantity and an exact evaluation of the instan-
taneous electronic ground state at each MD step. VASP uses an efficient Pulay-
Broyden charge density mixing. These techniques avoid all problems possibly
occurring in the original Car–Parrinello method, which is based on the simulta-
neous integration of electronic and ionic equations of motion. The interaction
between ions and electrons by ultra-soft Vanderbildt pseudo-potentials (US-PP)
or by the PAW-method. These pseudo-potentials and the PAW method allow
for a considerable reduction of the number of plane-waves per atom for transi-
tion metals and first row elements. Generally, not more than 100 plane waves
per atom are required to describe the bulk properties of a solid. Forces and the
full stress tensor can be calculated easily, and used to relax atoms into their
instantaneous ground state.

The combination of self-consistency cycle to calculate the electronic ground
state with efficient numerical methods has lead to an efficient scheme for evaluat-
ing the self-consistent solution of the Kohn-Sham functional. The implemented
iterative matrix diagonalisation scheme is among the fastest available schemes.

The symmetry of an arbitrary configuration is automatically determined in
VASP. The symmetry code is also used to set up the Monkhorst-Pack special
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points allowing an efficient calculation of bulk materials and symmetric clus-
ters. The integration of the band-structure energy over the Brillouin zone is
performed with smearing or tetrahedron methods [60, 61, 62].
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Chapter 3

Magnetic Properties of
Frenkel Pairsin Graphene

3.1 Introduction

There are two main types of intrinsic defects: vacancies and interstitials, and
dislocations. Vacancy means that one ion is missing and interstitial that there
is an extra ion in the crystal. These defects are usually the cause for the ob-
served conductivity of ionic crystals, and they have a significant effect on the
optical properties (especially on the color). They are always present in thermal
equilibrium, which makes them intrinsic in nature [53]. Dislocations are line
defects, and they do not have thermodynamic origin. Instead, dislocations are
caused by stresses affecting a sample during growth. Dislocations are essential
in explaining the observed strength (or lack of it) of real crystals and the ob-
served growth rates [53]. Since recombination of proximate Frenkel partners is
very probable, in this section the properties of isolated adatoms and vacancies
in carbon systems are considered - specifically a graphene sheet and various
nanotubes.

Besides vacancies and interstitials, there are other types of simple defects,
such as Stone-Wales defects (two heptagons and two pentagons), formed by
rotating a carbon-carbon bond by 90 degrees [63]. The barrier for such defect
formation is lower than that for Frenkel pairs, especially if an extra carbon atom,
which works as a catalyst is nearby [64]. However, this defect is nonmagnetic,
so it is not considered further.

The abundance of open space in nanotubes suggests that the interstitial
atom can also be treated as an adatom adsorbed onto the nanotube surface [65,
66]. This is particularly the case for isolated single-walled nanotubes (SWNT)
and interstitials in the inner cores of the tubes. However, the nature of the
vacancies and interstitials in graphite and multi-walled nanotubes (MWNT)
is complicated by the presence of nearby layers. If graphite is considered as
an example, it is clear that the properties of vacancies and interstitials may
be affected by the presence of the second layer. However, as discussed in the
previous section, any treatment of interlayer processes with DFT ignores the
fact that the van der Waals interaction between layers is incorrectly represented.
Hence, it is probably better, and still qualitatively correct, to consider only a
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single graphene sheet as a good model of graphite.

3.2 Properties of Adatom on Graphene

3.2.1 Equilibrium Position

The first ab initio calculations concerning the properties of an adatom on a
single sheet of graphite (graphene) were performed by Mattila and coworkers
[67] in the middle of 1990s. Using a 50-atom size sheet and LDA the authors
of that work concluded that the ground state of an adatom was in a bridge-like
structure.

The development of computing techniques and computers alongside the re-
newed interest on the carbon materials made it tempting to recalculate the
ground state properties of the carbon atom on a sheet of graphite. Using GGA
with the full relaxation of the spin produced a whole set of results [68]: The
adatom is 1.87 Å above the surface (2.0 Å in Mattila’s studies), the distance
to the adatom’s nearest neighbors is 1.52 Å and the distance between the near-
est neighbors is 1.58 Å. The adsorption energy was found to be 1.40 eV (3.30
eV in Mattila’s studies and 1.2 eV in Heggie’s work [69], and 1.78 eV in Lee’s
work [70]). A new property of the equilibrium position of adatom was that
the ground state has a magnetic moment of 0.45 µB . The magnetism arises
from the interaction between the sp2- and unhybridized px-orbital, which trans-
fers charge from the px-orbital to the dangling sp2-orbital (see Figure 3.1 [68]).
The orbital-orbital interaction, which is the cause of the adatom’s magnetism,

Figure 3.1: (a) Spin density in e/Å3 of plane normal to surface through center
of adatom when adatom is at equilibrium position. The adatom is at (0,0). (b)
A Schematic diagram of bond orbitals at the equilibrium position in a plane
through the adatom and two surface carbons. Note that this schematic is
a projection, and that the blue p-orbital is orthogonal to the adatom-surface
bonds.[68]

is caused by the breakdown of the symmetry of the sp2-hybridization. In the
graphene plane, the angle between each bond is 120◦. When three carbon atoms
form a bridge structure, it is obvious that the angles differ from 120◦.

3.2.2 Migration of Adatom

The study of the migration path is crucial in determining the dynamics of the
defect. The migration energy path gives two important pieces of information:
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The migration energy barrier tells how stable the defect is, i.e. how easily
defect’s properties can be measured, and the path provides information about
what happens to the magnetism during the motion of the defect.

The calculated migration path of an adatom is almost a straight line (see
Figure 3.2). During the migration between the equilibrium positions, the mag-
netic moment disappears because the adatom’s hybridization changes from sp2-
to sp-like (only one bond attached to the surface) leaving one dangling bond,
px-, and py-orbitals free. The p-orbitals then interact with themselves creat-
ing π-orbitals, which interact then with the remaining sp-orbital. The result is
much more delocalized density and the magnetism is destroyed. The migration
energy barrier is 0.47 eV (Figure 3.3) (0.1 eV in Heggie’s work [69]). These facts
mean that the adatom is highly mobile on the plane at room temperatures, and
experimental observation is difficult. The diffusion through the layers has an
energy barrier of 2.3 eV [71] making in-plane motion of an adatom favorable.

(a) (b)

Figure 3.2: Migration path of adatom on graphene from (a) top and (b) side.
The starting point of the path is the equilibrium position and the end point
is another equilibrium position. They are both so-called bridge-like structures.
The middle points of the path, where adatom has two bonds, is actually a
transition point from magnetic to non-magnetic situation. The reason is the
change in the hybridisation of the adatom.

3.3 Clustering of Adatoms

Since it is known that adatoms are very mobile, an obvious question is whether
they form clusters on the surface. The clusters have properties depending on
their size, as will be shown. The smallest clusters, dimers and trimers, are
studied here.

The adsorption energy of a carbon atom above another carbon atom forming
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Figure 3.3: Migration energy barrier of adatom on graphene.[68]

the top of a bridge structure, as shown in Figure 3.4(a), is 8.7 eV. This system
is not magnetic since the the dangling sp2-bond of the bridge forms a bond
with the sp-orbital of the upper carbon ion. The px-orbital of the carbon ion
at the bridge configuration interacts with the p-orbitals of the upper carbon ion
becoming π-orbital as in graphene. The reason why the sp-type dangling bond
does not have a magnetic moment is as in the case of an adatom alone.

(a) (b)

Figure 3.4: Clustering of multiple adatoms. The equilibrium structure of two
adatoms (dimer) in Fig. 3.4(a) and three adatoms (trimer) in Fig. 3.4(b).

Making a similar calculation with a carbon trimer results in a linear C-C-C
equilibrium configuration parallel to the surface plane. Compared to the perfect
graphene sheet and three isolated carbon atoms this structure has 12.2 eV lower
energy, demonstrating that adatoms will cluster on the surface. In contrast to
the dimer, the trimer is magnetic, but with a lower moment than the adatom
(0.2 µB). Since C-C-C is composed of sp-bonds, the conclusion is that the
dangling sp-bonds interact first with the p-orbitals preventing the formation
of π-orbitals. In general, these results suggest that all clusters with an even
number of atoms will be non-magnetic, and all odd will be magnetic - but the
moment decays rapidly with the size of the cluster. However, any quantitative
conclusions would require an extensive study of cluster growth and include the
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effects of interlayer interactions.

3.4 Properties of Adatom on Nanotubes

3.4.1 Ground State Properties

Because the structure and bonding in carbon nanotubes are very similar to that
of graphite, it is interesting to explore whether adatoms are also magnetic on
nanotubes. The ground state of an adatom on nanotubes is in a bridge-like struc-
ture as in graphite. There are slight differences in bridge-structures depending
on the position of the bridge and depending on a tube. Figures 3.5 and 3.6 show
the equilibrium positions of an adatom on zigzag and armchair nanotubes, re-
spectively. The parallel position (the bridge is parallel to the translational axis
of the tube) shown in Figures 3.5(a) and 3.6(a) is a metastable position, as can
be seen in the Table 3.1 [72], while perpendicular position (the Figures 3.5(b)
and 3.6(b)) is the ground state position. The small zigzag nanotubes are semi-

(a) (b)

Figure 3.5: Equilibrium positions of adatom on (9,0) nanotube in (a) parallel
and (b) perpendicular positions.

(a) (b)

Figure 3.6: Equilibrium positions of adatom on (5,5) nanotube in (a) parallel
and (b) perpendicular positions.

conductors while the armchair nanotubes are always metals. This difference in
the electronic structure has an effect on the magnetic moment of an adatom.
There are three factors to be considered when evaluating the magnetic moment
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Table 3.1: Data for various nanotubes considered in this study. [72].
Nanotube Class Radius (Å) Adsorption Energy (eV) Magnetic moment (µB)

Par. Perp. Par. Perp
(8,0) Semiconducting 3.13 2.37 2.89 0.01 0.23
(10,0) Semiconducting 3.96 2.09 2.57 0.25 0.23
(11,0) Semiconducting 4.41 2.03 2.49 0.20 0.22
(5,5) Metallic 3.39 2.33 3.29 0.23 0.44
(9,0) Semiconducting 3.57 2.35 2.80 0.24 0.35
(6,6) Metallic 4.07 2.15 2.91 0.27 0.43
(12,0) Semiconducting 4.97 2.04 2.50 0.32 0.36
Graphene Metallic ∞ 1.40 1.40 0.45 0.45

of an adatom: the electronic structure of the tube, the location of the bridge on
the tube, and the radius of the tube itself. If a nanotube, on which an adatom
lies, is semiconducting, some of the adatom’s charge goes to decreasing the band
gap of the tube. If the gap is small enough, the defected tube becomes metallic,
which is what happens with (9,0) and (12,0) nanotubes. This change in elec-
tronic structure takes place in the vicinity of the defect, so if the concentration
of defects is low enough, the rest of nanotube remain semiconducting. If the
adatom’s unhybridized p-orbital is parallel to the translational axis of the tube
as in Figure 3.6(b), the situation is very close to graphene since the curvature
of the tube in this direction is the same as graphene’s, namely infinite. When
an adatom is on a zigzag nanotube at the parallel position (see Figure 3.5(a)),
the p-orbital is perpendicular to the translational axis of the tube. If the tube’s
radius is small enough, as for example in (8,0), the p-orbital interacts with it-
self around the tube destroying the moment. Thus, the size of the magnetic
moment contributed by an adatom depends on the radius of the tube, which
affects directly and indirectly, simultaneously.

3.4.2 Migration of Adatom on Nanotubes

Migration of adatoms on nanotubes is important because this issue is directly
related to the stability of magnetic defects. Also, the effects of the curvature
and varying electronic structure on the migration barrier of an adatom will be
studied.

In order to study migration of adatoms on nanotubes, two complementary
approaches have been used. First, standard PW-DFT to calculate the adsorp-
tion energies for several different nanotubes, and to find the migration path and
barrier for one tube. Using this as a reference, the accuracy of the computa-
tionally cheaper DFT-TB method is tested. Figure 3.7 shows the comparison of
adsorption energies, and demonstrates good qualitative agreement - note that
the PW-DFT results differ from the DFT-TB (using LDA) by a constant, which
matches the difference between LDA and GGA in adsorption energies. Figure
3.8 also shows that the migration barrier is also in good agreement, hence DFT-
TB is used to calculate the migration for a large number of tubes. Figure 3.8
shows the barrier as a function of radius for the armchair and zigzag tubes con-
sidered. As expected, the barrier decreases with increasing radius, and tends
towards the limit of infinite radius, i.e. graphene.
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Figure 3.7: Adsorption energies of carbon adatoms on zigzag (a) and armchair
(b) single walled nanotubes as function of nanotube diameter. The arrows
visualize the relationships between the corresponding TB and PW results. The
numbers stand for the tube chirality indices. [73]

Figure 3.8: Energy barrier for adatom migration on the outer surface on nan-
otubes as function of nanotube diameters. Here the graphene migration barrier
is the same for the PW and TB calculations. [73]
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3.5 Vacancy in Graphene

In order to remove a carbon ion from the carbon network, of which the graphene
is composed, 7.7 eV (calculated as in Ref. [74]) is needed in agreement with
previous DFT results of 7.6 eV [75] and 7.4 eV [76]. Atoms 1 and 2 (see Figure
3.9) form a bond creating a pentagon. The distance between atoms 1 and 2
is 2.02 Å compared to the 1.42 Å in graphene. Atom 3 is elevated from the
surface through the Jahn-Teller displacement of about 0.18 Å (0.47 Å and no
magnetism in Ref. [76]). The vacancy is magnetic with a magnetic moment of
1.04 µB. The explanation is as follows: The removal of one carbon ion creates
three unsaturated sp2-orbitals in the neighboring carbon ions. The formation
of the pentagon saturates two of them, which leaves one sp2-orbital free. This
remaining dangling bond contributes the calculated magnetic moment as can
be seen in Figure 3.10.

Figure 3.9: (a) Atomic structure of vacancy in graphene plane. (b) The charge
density of a vacancy in the graphene plane (e/Å3). [77]

Figure 3.10: Spin density of vacancy in graphene plane (e/Å3). [77]
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3.5.1 Migration of Vacancy in Graphene

The calculated migration energy barrier of a vacancy is 1.41 eV (see Figure 3.12),
which is in agreement with 1.7 eV in Ref. [78] and with previous studies [79, 80],
but in disagreement with the experimental value of 3.1±0.2 [81]. Such a clear
disagreement between the experiments and theory suggests that experiments
have failed to measure the migration energy of a single vacancy, and instead the
migration of divacancy is measured. Thus, it is clear that the interstitials move
faster than the vacancies in graphite. The inter-plane migration of a vacancy is
a much more difficult with the experimental migration barrier of more than 5
eV [81]. Thus, in-plane migration is favourable for both types of defects.

The migration path of a vacancy is shown in Figure 3.11 and the correspond-
ing migration energy barrier in Figure 3.12. A bond rotation occurs between
points 10-12 which costs 0.2 eV in agreement with calculations in Ref. [76].
Points #3, #4, #6, #7 and #9 do not carry a net magnetic moment. The main
difference between points #4 and #5, and on the other hand points #8 and #9,
is the bond length of the pentagon bond. In the non-magnetic cases it is 2.00
Å(#4) or 1.98 Å(#9) while in the magnetic cases the length of the pentagon
bond is 1.87 Å(#5 and #8). The reason for this magnetic moment is in the
formation process of a bond, which seems to start with spin-polarization of the
sp2-orbital.

Figure 3.11: Migration path of vacancy in graphene.
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Figure 3.12: Migration energy barrier of vacancy in graphene.
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Table 3.2: Properties of 5-ring armchair SWNTs with vacancies of different
configurations. [77]

Nanotube Configuration Efor (eV) Class Mag. (µB)
(3, 3) Perp. 4.4 Semi. 0.0

Par. 5.2 Metal 1.0
(4, 4) Perp. 5.3 Semi. 0.0

Par. 6.2 Metal 1.0
(5, 5) Perp. 5.6 Metal 0.6

Par. 7.1 Semi. 0.0
(6, 6) Perp. 5.9 Semi. 0.0

(Metal1) (0.41)
Par. 7.3 Semi. 0.0

14-ring (6, 6) tube.

3.6 Vacancy in Nanotubes

The description of magnetic properties of a vacancy in nanotubes is much more
difficult task. The properties of a vacancy in a nanotube are due to an interplay
of the following facts: first, nanotubes are cylinders, not flat planes. The ions
guarantee that a nanotube is a three dimensional object. The surroundings
of a vacancy may have more than one configuration, and all of them need to
be checked in order to find the ground state. Secondly, the size of the tube
changes when the chirality vector changes. This has an implication that a
ground state vacancy configuration may not be a general ground state for all
tubes regardless of the chirality. Thirdly, in nanotubes the electronic structure
varies in perfect zigzag nanotubes between semiconducting and metallic, and
the perfect armchair nanotubes are always metallic. The electronic structure
changes easily when there are defects in the system. These facts mean a large
set of calculations, and the calculated results for different configurations (see
Figures 3.13(a) and 3.13(b) [77] ) are collected in Tables 3.2 and 3.3.

The configuration shown in Figure 3.13(c) has the following properties: Each
carbon ion is sp2-hybridized. The carbon atom with a dangling bond has mag-
netic moment of 1 µB and creates a metallic band. This metallic band is created
by the redistribution of the charge within the hexagonal carbon network of the
nanotube. In this sense, the behavior is similar to the behavior of an adatom
on a nanotube. However, the magnetic properties of a nanotube with a vacancy
depend much more on the curvature of the tube than the properties of a nan-
otube with an adatom because with a smaller tube the effect of removal of an
atom is larger. If the Jahn-Teller effect seems to be of similar size in absolute
scale, this means that the Jahn-Teller effect is much larger in smaller nanotubes
in relative scale. The reason for larger Jahn-Teller effect in smaller tubes is the
stress inherent in every nanotube, and in smaller nanotubes the stress is always
stronger than in larger nanotubes.

Figure 3.13(a) shows the ground state of the vacancies for (5,5) and (6,6)
nanotubes. The (5,5) nanotube with a vacancy at the perpendicular configu-
ration is magnetic because the Jahn-Teller distortion is large-enough to form
the bridge structure (although not sufficient to get 1 µB). The relaxations of
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Table 3.3: Properties of 6-ring zigzag SWNTs with vacancies of different con-
figurations. [77]

Nanotube Configuration Efor (eV) Class Mag. (µB)
Perp. 4.6 Semi. 0.0

(5, 0)1 Par. 5.1 Semi. 0.02

3db 6.0 Semi. 0.02

(6, 0) Perp. 5.0 Metal 0.3
Par. 5.8 Metal 0.9

(7, 0) Perp. 5.2 Semi. 0.0
Par. 6.3 Metal 0.8

(8, 0) Perp. 5.3 Semi. 0.0
Par. 6.5 Metal 0.8

(9, 0) Perp. 5.4 Semi. 0.0
Par. 6.4 Metal 1.0
Perp. 5.5 Semi. 0.0

(10, 0) Par. 6.7 Metal 0.9
3db 7.4 Metal 1.9

1 8-ring (5, 0) tube.
2 Anti-ferromagnetic.

(a) (b) (c)

Figure 3.13: Ground state of vacancies in zigzag and armchair nanotubes. In
Fig. (a) are (5,5) (red) and (6,6) (opaque) armchair nanotubes and in Fig.
(b) are (6,0) (opaque) and (9,0) (red) nanotubes. Although the nanotubes are
shown inside each other they were calculated separately. In Fig. (c) calculated
properties of tubes with a vacancy follow from the properties of this configura-
tion.
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the rest of the tube are small enough so that the overall electronic structure
remains metallic. For the (6,6) nanotube, the Jahn-Teller effect is dependent on
the linear density of the vacancies along the tube. It is not large enough for a
magnetic ground state if the density is less than 1 vacancy per 4 carbon rings.
The smaller radii (3,3) and (4,4) armchair nanotubes demonstrate perfectly the
bridge configuration, giving a magnetic moment of 1 µB in the parallel position.

The bridge configuration is also responsible for the magnetism and metallic
electronic structure of the parallel vacancy in larger zigzag-tubes such as (7,0),
(8,0), (9,0) and (10,0) (see Fig. 3.13(b)). When the vacancy is in the perpen-
dicular configuration, these tubes remain semiconductors, as the removal of the
ion increases the gap. The ideal (6,0) nanotube is metal, and no matter where
the vacancy is located, it remains metallic and has a magnetic moment. (5,0)
is a semiconductor due to an extensive damage on the networks caused by the
vacancy on a small tube, preventing the formation of a metallic band.

The question as to what happens with an open ended nanotube was studied
in Ref. [23]. If the other end of a nanotube is capped with a fullerene, the
authors found that the edge atoms have a magnetic moment of 1.25 µB per
dangling bond. If a nanotube has both edges open, the spins of the dangling
bonds are antiferromagnetically ordered. If the dangling bonds at one edge are
saturated with hydrogen, the spins in the open edge contribute most to the total
magnetic moment (1µB per atom). In the (8,0) nanotube the authors found a
small polarization of p-orbitals at carbons attached to the hydrogen atoms at
the edge. The magnetic state generated by vacancies, zigzag edges at nanotube
ends, and defective fullerenes are very similar, and point very clearly to the
flatband mechanism of magnetism already studied in Refs. [20, 82].
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Chapter 4

Magnetism Stimulated by
Non-Magnetic Impurities

In addition to creating intrinsic defects in carbon materials, ion irradiation may
also lead to doping of the sample by the impinging ions. Specifically, the ir-
radiation of graphite by protons has been shown experimentally to induce a
significant magnetic signal [29]. Since similar irradiation by helium ions pro-
duces a much weaker signal, it cannot be simply explained by the generation
of vacancies and adatoms. Hence, the properties of hydrogen and helium in
graphite via DFT-GGA simulations are considered, and whether they a play
role in the observed magnetism examined.

The adsorption energy of H on perfect graphene is 0.87 eV (0.71 eV in
Ref.[83], 0.76 eV in Ref. [84], 0.76 eV in Ref. [85] and 0.67 eV in Ref. [86]) and
the adsorption position is above another carbon ion. This configuration has no
magnetic moment unless the density of hydrogen on the surface is very high,
i.e. approaching a few percent [85]. In any case, above a graphene sheet the
hydrogen is quite mobile (barrier 1.30 eV for an isolated H on graphene, but
reducing to 0.48 eV near other H atoms [84]) and does not form a dimer easily
since the barrier for recombination is 2.82 eV [84]. Hence, it is highly probable
that hydrogen migrates on the plane until it is pinned by another defect.

If the hydrogen encounters an empty vacancy, it saturates the dangling bond,
and is pinned at a height of 1.25 Å above the plane (Figure 4.1), with an adsorp-
tion energy of 4.36 eV. This configuration is non-magnetic. This result contrasts
with studies of the effect of a hydrogen on a vacancy-like defect in fullerenes [27],
where a magnetic moment of 3.0 µB per C60-cage was observed. However, the
local structure in the fullerenes is different, and the under-coordinated carbons
cannot saturate bonds with each other due to the increased strain in the sys-
tem. Hence, hydrogen saturates only one dangling bond and the local moment
is provided by the other two sites. In the context of hydrogen migration through
a layer, a similar configuration can be considered in graphene (see Figure 4.2),
where hydrogen adsorbs directly into the vacancy, in-plane with the graphene
sheet. The calculated migration path of a hydrogen through the graphite va-
cancy is shown in Figure 4.3, and the migration barrier is 1.25 eV. In points #1,
#2, #3, #4 and #5 a pentagon bond is formed, and the rest of the points are in
the process where hydrogen raises out of the plane. The saddle point (#0) is at
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(a) (b)

Figure 4.1: Ground state of hydrogen in graphite vacancy.

(a)
(b)

(c) (d)

Figure 4.2: Saddle point of hydrogen migrating through vacancy: (a) atomic
structure geometry, (b) charge density in plane of graphene sheet centered on
hydrogen (eV/Å), (c) spin-density and (d)simple model explaining calculated
magnetism.
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the graphite plane. This position of a hydrogen is magnetic. The reason is that
the hydrogen forces the ions forming the base of pentagon to move away from
each other (Fig. 4.2(a)). From the basis of Figure 4.2(b), which is the charge
density of the vacancy site, it is certain that the pentagon bond is significantly
weakened. The resulting magnetic moment is 2.3 µB, and the spin-density (Fig.
4.2(c)) shows that this is mainly due to two dangling bonds on the separated
carbon. With the help of a simple model figure (Fig. 4.2(d)) the interpretation
of the result is the following: The hydrogen’s 1s and one of the dangling bonds
form a bond. The electron cloud around the hydrogen atom becomes thinner
and it attracts the electrons localized in the dangling bonds of the other nearest
neighbor carbon atoms. Hence, the sp2-orbitals are directed toward the hydro-
gen ion and do not bond with each other. These two dangling bonds contribute
a magnetic moment of 2 µB. Now the remaining magnetic moment comes from
the 1s-sp2 bond. Since 1s is spherical, not all of its charge is committed to the
bond; only half an electron is contributed to the bond making- but suppress-
ing the magnetism of the sp2-bond a whole electron is required. Hence 1s-sp2

bond becomes magnetic and contributes a magnetic moment of 0.5 µB . Since
the method used cannot describe the van der Waals interactions properly, it is
possible that in a multi-layered system this state becomes a deep metastable
position, but other configurations seem more likely.
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Figure 4.3: Migration (a) barrier and (b) path of hydrogen through graphite
vacancy.

Two stable magnetic configurations involving hydrogen do exist in graphite.
Firstly, if a hydrogen atom encounters a vacancy which has already been satu-
rated by hydrogen, it will bond to the other side of the vacancy (see Fig. 4.4(a))
with an adsorption energy of 3.2 eV, at a distance of 0.76 Å below the plane -
the original H moves to 0.89 Å above the plane. This configuration has a mag-
netic moment of 1.2 µB localized on the dangling sp2-bond (see Fig. 4.4(b)).
Addition of a third hydrogen completes the decoration of the vacancy edges,
saturates the remaining dangling bond, and thus destroys the magnetism of the
vacancy. Adsorption energy to a system already occupied by two hydrogens is
4.0 eV.

If a hydrogen atom is pinned by an interstitial as shown in Figure 4.6, the
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(a) (b)

Figure 4.4: Vacancy surrounded by two hydrogens. Figure (a) is the geometry
and Figure (b) is the spin-density. The units are in µB/Å2.

(a) (b)

Figure 4.5: Equilibrium structure of graphene vacancy and three hydrogen
atoms.
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adsorption energy is 5.0 eV. The second layer is added to see whether a bridge
between the layers would form because of the C-H complex. Obviously, that
is not the case. Instead, there is a deformation in the second layer and the
C-H bond is tilted. The magnetic moment is 0.9 µB arising from the dangling
sp3-orbital.

(a) (b)

Figure 4.6: (a) Ground state of hydrogen pinned by interstitial and (b) spin-
density of CH group adsorbed between two layers of graphene.

Assuming that every hydrogen atom introduced by proton irradiation even-
tually will saturate a carbon dangling bond, then an estimation of the measur-
able magnetic signal can be made. Two hydrogen atoms at a vacancy result in
a moment of 1.2 µB , and an adatom-hydrogen group provides a moment of 0.9
µB from the C-H itself, and 1.0 µB from the uncompensated vacancy. Hence,
we can consider each hydrogen as providing an average moment of 1.25 µB. For
an experimental dose of 3 µC (cf. Fig. 2 in Ref. [29]) of protons we get a signal
of 0.2 µemu which is in an agreement with the experimental signal of 0.3 ± 0.2
µemu, and with higher dose of 10 µC the predicted signal is 0.8 µemu in agree-
ment with 1 µemu. Obviously, it is very difficult to specify exactly the ratio of
different defects that would actually be present in the irradiated material, but
the agreement with the experimental magnetic signal strongly suggests that the
H-vacancy complex plays a dominant role.

Irradiating graphite with helium produced quite different results [29] com-
pared to the irradiation experiments with hydrogen, i.e. very small magnetic
signal was observed. According to the calculations, helium has a ground-state
well above the graphene sheet, and the interaction between graphite and he-
lium is very weak. When the helium is in the ground-state it does not affect
the magnetic signal created by the vacancy. If the helium is at the vacancy,
then the magnetic signal is destroyed, but this situation is highly improbable.
The conclusion is that helium creates initial defects, vacancies and interstitials,
which migrate and some of them recombine, and some of them form interlayer
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links resulting in magnetism close to zero.
Demonstration of magnetic ordering of the H-vacancy complexes due to the

defect-defect interactions from the DFT calculations is difficult. For adsorbed
hydrogen there are results, which indicate that the coupling on graphite is long
ranged, even up to 25 lattice constants [87].

Thus, hydrogen contributes to the development of the macroscopic magnetic
state in several different ways. Firstly, some defect configurations formed by
vacancies and H atoms are magnetic. Secondly, hydrogen prevents complete
recombination of Frenkel pairs, which should increase the number of intrinsic
defects (without H). And finally, H atoms appear to favour the development of
the long-range magnetic order.
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Chapter 5

Conclusions and Outlook

In the Introduction, the most important problems of magnetism in carbon sys-
tem are outlined. Theoretical findings, which shed light on two of the problems
are summarized, and a partial answer is considered to the third question con-
cerning different allotropes. Specifically, the local bonding geometry, which gives
rise to local magnetic moments and the role of non-magnetic impurity atoms
such as hydrogen, is addressed. The results presented in this thesis, along with
those obtained by other authors, provide strong evidence for defect-mediated
mechanism of magnetism in carbon systems, although contributions from other
mechanisms cannot be excluded in some systems, e.g. carbon foams.

Adatoms and vacancies on a graphene sheet provide a localized magnetic
moment - about 0.5 µB and 1.0 µB, respectively. In practice, however, the
high mobility of adatoms on graphene at room temperature would suggest that
many of them recombine with vacancies or cluster together, destroying their
magnetism. Despite the indications that a barrier to vacancy-interstitial pair
recombination exists [88], efficient recombination seems to be confirmed by He-
irradiation experiments [29]. It is very well known that a large amount of point
defects were produced by He ions, yet the magnetic signal was small.

For nanotubes the situation is even more complicated than in graphite. The
surface curvature provides an increase in the adatom migration barrier, and
hence, should increase the probability of stable magnetic defects, but the de-
pendence of nanotube electronic structure on chirality affects the picture. Only
for adatoms on armchair nanotubes is the defect picture similar to graphene,
and both adatoms and vacancies on many other nanotubes are nonmagnetic.
Some configurations provide a delocalized magnetic band, so, in principle, these
would avoid issues of paramagnetism - but controlled production of nanotubes
with a specific chirality is currently not possible.

The demonstration of induced ferromagnetism by proton irradiation on graphite
[29] indicates a promising direction for creating a magnetic carbon system in
a controllable way. Simulations indicate that this is due to a combination of
hydrogen trapping at vacancies and pinning of mobile adatoms, producing mag-
netic C-H complexes and uncompensated vacancies. Hydrogen contributes to
the development of the macroscopic magnetic state in several different ways. In
addition to magnetic defect configurations formed by vacancies and H atoms,
hydrogen prevents complete recombination of Frenkel pairs, which should in-
crease the number of defects without H. Also, H atoms appear to favour the

42



development of long-range magnetic order.
The role of defects and non-magnetic impurities can be studied in more de-

tail experimentally by irradiating the samples with energetic particles. To some
extent, this has been already done previously [29]. However, systematic studies
on irradiation of all-carbon systems with particles of different types and energies
should give much more insight into the origin of magnetism. The irradiation
temperature is also very important. For example, if carbon interstitials and
vacancies can indeed contribute to magnetism, irradiation with electrons or in-
ert gas ions at low (liquid helium or nitrogen) temperature followed by in situ
magnetic measurements should detect a magnetic signal from the samples. By
changing the temperature and thus annealing defects in the system one can,
in principle, correlate magnetism to specific defect types, as different defects
become mobile at different temperatures. Irradiation can also be used to in-
troduce non-magnetic impurities like N or B atoms into the system, and aid in
understanding the formation of the magnetic state.
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Appendix A

Spatial Correlations in
Fluids

Configurational distribution function is defined as (as in Ref. [89])∫
V

FN (r1, r2, ..., rN )d3r1d
3r2...d

3rN = 1. (A.1)

After integration over r1 out and multiplying equaton (A.1) with N

F1(r1) = N

∫
V

FN (r2, r3, ..., rN )d3r2d
3r3...d

3rN = n(r1), (A.2)

which is the particle density an point r1. For homogenous systems F1 is a
constant which will be denoted as n. The two particle distribution function is
now defined as

F2 = N(N − 1)
∫

V

FN (r3, r4, ..., rN )d3r3d
3r4...d

3rN = n2g(r2 − r1) = n2g(r).

(A.3)
The product g(r)d3r determines the probablity of finding an another particle
around the point r (or r2) when the other particle is in the origin (or at r1).
For classical systems g(r) is unity, and this is the reason why it is convenient to
define

ν(r) = g(r) − 1. (A.4)
The next step is to consider the fluctuations of the number of the particles

NA occupying a region VA. For this purpose one introduces a function

µ(r) =

{
1 when r inside VA

0 when r outside VA

(A.5)

and NA =
∑

i
N
µi. The average value on NA is given by

NA =
N∑

i=1

∫
V

µ(ri)FN (r1, r2, ..., rN )d3N r

=N
∫

V

µ(r1)d3r1FN (r1, r2, ..., rN )d3(N−1)r

=
∫

V

µ(r1)F1(r1)d3r1 =
∫

VA

F1(r)d3r =
∫

VA

n(r)d3r,

(A.6)
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where the last equality comes from the fact that the system is homogeneous.
The next step is to calculate the mean deviation:

< N2
A >=

N∑
i=1

N∑
j=1

∫
V

µ(ri)µ(rj)FN (r1, r2, ..., rN )d3Nr

=NA +
∑
i�=j

∫
V

µ(ri)µ(rj)FN (r1, r2, ..., rN )d3Nr

=NA +N(N − 1)
∫

V

µ(r1)µ(r2)d3r1d
3r2FN (r1, r2, ..., rN )d3(N−2)r

=NA +
∫

V

µ(r1)µ(r2)d3r1d
3r2F2(r1, r2)

=NA +
∫

VA

n(r1)n(r2)g(r1, r2)d3r1d
3r2.

(A.7)

This means that

< N2
A > −N2

A =
∫

VA

d3rn(r){1 +
∫

VA

d3r′n(r′)[g(r, r′) − 1]}. (A.8)

If a derivative is taken with respect to the volume VA and V ′
A of Equation (A.8),

and then divided with n(r) the result is

< n2 > −n2

n
= n(r′)[g(r, r′) − 1] + δ(r − r′). (A.9)
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