
Chapter �

Hardware Implementation of GA

Matti Tommiska and Jarkko Vuori

Helsinki University of Technology

Otakaari �A� FIN������ ESPOO� Finland

E�mail� Matti�Tommiska�hut�fi� Jarkko�Vuori�hut�fi

Abstract� A genetic algorithm has been designed with Altera Hardware
Description Language �AHDL�� The design has also been simulated and
implemented with programmable logic devices of Altera�s Flex ��K Field
Programmable Gate Array �FPGA� family� The genetic algorithm is run
on a PC card� which is connected to the central processing unit �CPU�
through high�performance Peripheral Component Interconnect �PCI� bus�

Due to the easy recon�gurability of programmable logic devices� experi�
mentation with variable population sizes and various �tness functions is
greatly facilitated� This is accomplished by rewriting the AHDL code on
the host computer and then reprogramming the chip on the 	y through
PCI bus�

The main advantage of a hardware�based genetic algorithm is its inher�
ent speed advantage over software�based methods� This speed advantage
makes hardware�based genetic algorithm a prime candidate for real time
applications� for example optimization of routing in telecommunications
networks�

Keywords� programmable hardware� FPGA� hardware GA

The complete title of this article� �Implementation of Genetic Algorithms with Program�

mable Logic Devices�	 The article is available via anonymous ftp at site ftp�uwasa�fi directory

cs��NWGA as
le Vuori�ps�Z	

��

�� Proceedings of the �NWGA� Vaasa� Finland� �� � �� August ����

��� Introduction

Genetic algorithms �GAs� ����� have aroused an intense interest due to their 	ex

ibility in solving problems which traditional optimization methods and machine
learning �nd di�cult

Due to their iterative problem solving method� the need for computational
power is immense
 Traditional microprosessors are not very e�cient in running
these genetic algorithms� especially good high
speed random number generation
has been di�cult to implement
 By using traditional microprocessors it is also
very di�cult to fully exploit the inherent parallelism in genetic algorithms
 Cur

rently the complexity of programmable hardware has been evolving to the phase
where large high
speed digital systems can be implemented on a single program

mable logic chip
 The potential bene�t of using a genetic algorithm hardware is
that it allows both the huge parallelism and extremely e�cient atomic opera

tions just suited to random number generation� crossover� mutation and �tness
evaluation

As the system support logic increases in complexity� it becomes harder to
craft the circuitry without incorporating small
to
medium
sized blocks of memory
�single
port or multi
port SRAMs� FIFO bu�ers� etc
�
 These integrated memory
blocks both simplify system design and allow systems to operate at faster speeds�
since o�
chip references can be avoided or di�erent
speed system buses can all be
tied together �����

Unlike the high memory densities achievable in gate arrays and custom designs�
implementing blocks of memory on previous
generation �eld
programmable gate
arrays �FPGAs� has not been very e�cient
 In addition� since memory cells
have to be formed from the programmable logic� they have typically been slow�
generally o�ering access times of �� to �� ns at best �����

Genetic algorithms need large memory banks to store the population and
this has made the hardware implementation of GAs very ine�cient
 But that
is changing
 Several recent FPGA family releases� especially ones that employ
distributed memory such as the XC����E family from Xilinx or the ��K family
from ALTERA which has arrays of dedicated RAM blocks� now allow users to
implement blocks of SRAM to their FPGA designs

We selected ALTERA�s ��K family ��� for our implementation because of the
good availability of the largest chips from the ��K family
 Design e�ciency of the
��K family seems to be better than standard gate arrays or other RAM based
FPGA families
 The largest chip in the ��K family contains �� ������� ��� gates�
depending on the application
 Logic in the ��K family is divided inoto logic ar

ray blocks �LABs� and into the embedded array blocks �EABs�
 LABs can only
implement logic but EABs can implement either ���� bits of SRAM memory or
������� gates towards specialized tasks like multipliers� ALUs� and DSP func

tions
 The chips of the ��K family can be programmed with Altera�s special
AHDL description language which resembles the widely used VHDL hardware

Tommiska � Vuori� Hardware Implementation of GA� ��

description language

����� Related work

There have been few reported studies on GA hardware implementations� one
VHDL description has been announced in ���� but no performance estimations
were made
 In ����� hardware description of GAPA system containing multiple
FPGA chips and multiple digital signal processors was given
 In our work we
have implemented a GA in hardware using AHDL hardware description language
and simulated the performance of the system with real timing information from
a readily available FPGA chip

��� Hardware implementation

Our hardware consists of a Pentium microprocessor based base unit which has
four high
speed PCI bus slots available
 These slots may contain one to four
special purpose GA hardware boards
 One board contains the high
speed PCI bus
interface� a white noise generator and an A�D converter and a couple of Altera�s
��K family FPGA chips
 FPGA chips can be con�gured by the host Pentium
processor via the PCI bus
 It is also possible to build the algorithm which resides
on the FPGA chips in such a way that the main operating parameters are fully
parametrized
 These parameters can then updated via the PCI bus and no AHDL
rewriting and compilation is needed

The population resides on the FPGA chip in the EABs� which are a 	exible
RAM and are therefore ideally suited for the storage of individual chromosomes

The �tness function is evaluated on the same chip in LABs� which can be con

�gured for various arithmetic operations

����� Random number generation

Good random number generation is of great importance to the proper operation
of the GA
 Normally random numbers are made by using linear shift
register
�LSHR� based random number generators
 These kind of generators are easy
to implement and produce fairly good pseudo
randomness
 In order to get the
periodicity of the pseudo
random numbers su�ciently long� three shift
registers
with appropriate lengths are coupled together

Seed to this LSHR based random number generator is generated with the
help of a noise diode� an ampli�er and a high
speed ��� megasamples per second�
��
bit analog
to
digital converter
 This produces natural gaussian noise and true
randomness� which is very important in genetic algorithms
 A sample from the
noise diode is used as the seed and is added periodically to the LSHR random
number generator
 Random numbers are needed at �� ns intervals and these seeds

�� Proceedings of the �NWGA� Vaasa� Finland� �� � �� August ����

are received at ��� ns intervals which means that every other random sample is
from the noise diode and every other is synthetically produced in the shift register

����� Mutation

Mutation is implemented by toggling one randomly selected bit
 The mutation
rate is now ��� �� but this can be varied easily
 The code in �gure �
� implements
the mutation part of our genetic algorithm

TITLE �mutation��

SUBDESIGN muta����

rand	
���� � INPUT�

string
in	������ � INPUT�

string
out	������ � OUTPUT�

�

VARIABLE

xor
partner	������ � NODE�

BEGIN

TABLE

rand	
���� �� xor
partner	�������

H���� �� B�����������������������������������

�

�

�

H��E� �� B�����������������������������������

H��F� �� B�����������������������������������

END TABLE�

string
out	� � string
in	� xor xor
partner	��

END�

Figure ���� AHDL code for the mutation operation�

����� Operation of the Pipeline

The genetic algorithm is run in a pipelined fashion� �gure �
�
 The pipeline
comprises of four stages� which are separated by register banks
 The register
banks are necessary for the synchronization of the pipeline and the preservation of
the addresses of the chromosomes
 This guarantees that the same RAM addresses
which the chromosomes were read from are also written to after the pipeline has
processed and evaluated the chromosomes and their o�springs

Tommiska � Vuori� Hardware Implementation of GA� ��

Figure ���� GA pipeline operates in four stages�

At the �rst stage of the pipeline� two chromosomes are selected at random
from a ��x�� RAM �random access memory� block
 The RAM is implemented
as a synchronous memory with separate read and write ports
 This facilitates
the implementation of the control block� since no bidirectional data busses are
required

At the second stage of the pipeline� the selected chromosomes are subjected
to crossover and mutation
 The selected chromosomes are also passed over to
the next stage in their original unchanged form
 The crossover site between the
two chromosomes is selected at random and the resulting o�springs are subjected
to mutation� which is implemented as an inversion of a randomly selected bit
in the ��
bit long chromosome
 The random numbers used in the selection of
the crossover site and mutation are uncorrelated to each other
 In this design�
the crossover probability was set to ��� � and the o�spring chromosomes were
subjected to mutation with a probability of �
� �
 Both the crossover logic and
mutation probability can be changed on the 	y by rewriting the AHDL code

At the third stage of the pipeline� the four chromosomes � the original two
and their o�springs � are evaluated
 The �tness function used in this design was
a simple comparison between unsigned ��
bit binary numbers
 The four chro

mosomes were compared with each other in a round
robin fashion
 Since every
chromosome must be compared with all other three chromosomes� a total of six
��
bit comparisons were required
 The best two chromosomes were selected for
write
back in the next stage of the pipeline
 The 	exibility of Altera�s ��K in

ternal architecture allows the updating of the �tness function without seriously
a�ecting the operating speed of the pipeline
 For example� if the �tness func

�� Proceedings of the �NWGA� Vaasa� Finland� �� � �� August ����

tion included multiplications with a constant value� experimenting with di�erent
constant values would be easy by simply rewriting the AHDL code

At the fourth and last stage of the pipeline� the best two chromosomes from
the previous stage are written back to the same addresses from which either
the chromosomes themselves or their parents were read from four clock cycles
earlier
 The control logic of the pipeline sets the appropriate control signals of
the RAM blocks and of the address selection logic
 The pipeline is active during
four consecutive cycles and inactive during the next four clock cycles� giving it
an e�ciency of �� per cent

mean
median

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (us)

F
itn

es
s

Figure ���� Fitness convergence of the hardware implemented genetic algorithm�

��� Simulations and performance

The design was simulated with Altera�s Max�Plus II software simulator
 The
chromosomes residing in the RAM block were initialized with random values

The simulation results demonstrated both rapid convergence and robust overall
performance
 Algorithmwas targeted to the Altera FLEX ��K�� chip� which con

tains ����� usable gates
 This implementation used �� of the memory capasity
and ��� of the logic cells

Both the mean and median values of the population increased steadily during
the �rst �� �s of simulation
 When the maximum achievable hexadecimal value
FFFFFFFF was normalised to �� the median value of the population was ���� and

Tommiska � Vuori� Hardware Implementation of GA� ��

the mean value of the population was ���� at the end of the �� �s long simulation
period� �gure �
�
 The best hexadecimal value of an individual chromosome was
FFF�����
 The most remarkable feature of the simulated pipeline was its speed
when compared to software
based genetic algorithms

The largest achievable operation speed was ��
� MHz� giving the design a cycle
time of �� ns
 Since the pipeline operates at a �� per cent e�ciency� the selection
of two chromosomes� their crossover operation and mutation� �tness evaluation
and write
back requires ��� ns of processing time
 Because the chromosomes
are selected at random� successive generations overlap
 The pipelined algorithm
processes �� chromosomes in �
�� �s� which can be regarded as the time in which
the number of chromosomes processed equals the population size

The same algorithmwas coded in C language and compiled and run on a Linux
system with ��� MHz Pentium� processor
 In this case the complete selection�
crossover and mutation �tness evaluation cycle took �� �s
 This means that our
hardware was �������� � ��� times faster than the software solution
 The same
algorithm was also run on a HP C��� workstation �SPECint�� ���� with HPUX
operating system
 In this case the complete cycle took �� �s

��� Conclusions and future

We have demonstrated the feasibility of using modern FPGA chips to speed
up
the operation of genetic algorithms
 In our case we got an improvement of roughly
��� compared to the software solution
 This can be easily further improved by
a factor of four by adding three additional parallel operating calculation units to
the same FPGA chip
 In addition� there can be four calculation machines of this
kind on the same PCI bus
 The total speed
up factor compared to the software
implementation will then be ����� if the speedup factor is linear
 This can be
even further improved by using logic devices of higher
speed and larger FPGA
chips to be announced in the near future

Several additional features can be added to this basic pipelined algorithm

These include di�erent and more complicated �tness functions� larger populations
with longer chromosomes and the use of non
overlapping generations

Cost function evaluation in our system was extremely simple
 More complic

ated functions can be implemented by combining logic gates and RAM tables
 It
seems that this combinatorial optimization problem can be solved using evolu

tionary programming methods
 It is also possible to evaluate the �tness function
in the host computer� but this may severely degrade the operating speed of the
system

Potential applications for hardware
based genetic algorithms are numerous

We have studied the use of genetic algorithms in the optimization of routing in
ATM �Asynchronous Transfer Mode� networks
 The initial results are promising

�Pentium is a registered trademark of Intel Corporation

�� Proceedings of the �NWGA� Vaasa� Finland� �� � �� August ����

Other real
time applications which require rapid and robust optimization can also
be tackled with a hardware
based genetic algorithm

��� Bibliography

See chapter bibliography at the end of this proceedings

