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An FPGA-based Implementation and Simulation of
the AAL Type 2 Receiver

Matti Tommiska, Mika Loukola, and Tero Koskivirta

Abstract: This paper describes a hardware implementation
of an ATM Adaptation Layer (AAL) type 2 receiver. The
simulation performance of the developed prototype is mea-
sured with real AAL type 2 encoded material and compared
to two software-based AAL type 2 receiver implementations.
The advantages and disadvantages of hardware-based and
software-based simulation approaches in product development
and prototyping are discussed. It is concluded that simulating
a communication block directly in hardware both speeds up
the simulations and decreases the development time.

Index Terms: AAL Type 2, Decoder, FPGA.

I. INTRODUCTION

The AAL type 2 has aroused interest among cellular network
suppliers as a means for transporting data and voice between the
base station and the mobile switching center (MSC) [1]. The
bit rate from a mobile source is typically low and that is why
a small size AAL type 2 Common Part Sublayer (CPS) packet
can increase the overall performance as it provides bandwidth-
efficient transmission of low-rate, short, and variable length
packets in delay sensitive applications [2],[3].

The role of the AAL type 2 in mobile infrastructure networks
is discussed in [2]. It will be applied first in W-CDMA diversity
connections between the base station and the diversity combin-
ing point. Next it will be used also in MSC-MSC connections,
thus bypassing transcoders.

Compared with other multiplexing methods, e.g., [4], the
AAL type 2 is less bit efficient, but more tolerant to cell losses.

II. AAL TYPE 2 SPECIFICATION

As is the case with other ATM Adaptation Layers (AALs), the
AAL type 2 is also subdivided into the Common Part Sublayer
(CPS) and the Service Specific Convergence Sublayer (SSCS).

The AAL type 2 transfers AAL Service Data Units (AAL-
SDUs) from one AAL Service Access Point (AAL-SAP) to an-
other. The user can select among different AAL-SAPs (associ-
ated with SSCSs) that offer different Quality of Service (QoS).
The CPS transmitter process receives CPS-SDUs from SSCS
transmitter processes, and multiplexes and packs CPS-Packets
(see Fig. 1). At the receiving end the CPS-Packets are sub-
sequently unpacked, demultiplexed and passed to one of the
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Fig. 1. Functional model of AAL Type 2.
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Fig. 2. Format of AAL Type 2 CPS-Packet.

SSCS receiver processes. The introduction of several QoS lev-
els within a single ATM connection brings along the required
switching capability of AAL-SDUs. This means that the inter-
mediate ATM switches need to decode the AAL-SDUs from the
incoming ATM cells and switch them according to the QoS re-
quirements as additional feeds are inserted to the channel. The
scheduling algorithms for QoS levels are not a part of the AAL
type specification [2].

The format of the AAL type 2 CPS-SDU, i.e., the CPS-packet
is shown in Fig. 2.

The Channel Identifier (CID) identifies the AAL type 2 CPS
user. As the channels are bi-directional the CID values are used
for both directions. The Length Indicator (LI) field carries a
value that is one less than the number of octets in the CPS-Packet
payload. The maximum length is set by signaling or manage-
ment procedures with the default value being 45 octets. The
CPS users, SSCS entities, or Layer Management can transfer
codepoint messages through the User-to-User Indication (UUI)
field. The last CPS-Packet header field is the Header Error Con-
trol (HEC) field [2].

The CPS-PDU is shown in Fig. 3. The Start Field (STF)
is subdivided into Offset Field (OSF), Sequence Number (SN),
and Parity (P). OSF indicates the number of octets between the
end of the STF and the start of the first CPS-Packet. SN bit is
the modulo 2 number of the CPS-PDU stream. The parity of
the STF field must be odd. The CPS-packet consists of the CPS
packet header (CPS-PH) and payload.
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Fig. 4. Decoding of AAL Type 2 CPS-PDUs.

Fig. 4 illustrates how a CPS-Packet may overlap one or two
ATM cell boundaries. A CPS-Packet may be partitioned any-
where. If some cells have been dropped the receiver can resume
decoding as the STF field points to the starting point of the next
CPS-Packet. In the second CPS-PDU the STF field points to
the third CPS-Packet which is the starting point of the first new
CPS-packet in the second cell.

The source switch must carefully decide when to wait for ad-
ditional AAL-SDUs and when to pad the remaining part of the
CPS-PDU and transmit the cell. A compromise has to be made,
since padding reduces the bandwidth-efficiency but at the same
time decreases the delay characteristics of the channel. This
problem is addressed in [5]. In case the CPS-Packet does not
fill the CPS-PDU and the cell must be transmitted immediately
the rest of the CPS-PDU is filled with zero-padded octets as il-
lustrated in Fig. 3. A timer is associated with the transmitter
process. When the timer expires the CPS-PDU is transmitted
whether or not it has been filled up. The timer is reset when a
CPS-Packet overlaps to the next CPS-PDU or when the a new
CPS-PDU is initialized.

Upon receipt of a CPS-PDU the parity (P) indicated in STF
is verified as well as the sequence number (SN). After that the
HEC is verified. If no errors are detected then the receiver re-
sumes to decode a possible overlapping packet followed by a
new CPS-packet from the OSF point.

III. THE FPGA DEVELOPMENT ENVIRONMENT

The prototyping environment consists of a personal computer
(PC) with a 233 MHz Pentium II processor and Red Hat 4.2
Biltmore LINUX as the operating system. The host computer
is equipped with a special hardware acceleration card contain-
ing three Field Programmable Gate Array (FPGA) chips. Two
of the FPGA chips are Altera’s 10K50 devices, each of which
have approximately 50000 gates. They are well suited for in-
tensive bit-level calculations due to the fine-grained granularity
of Altera’s 10K family [6]. The third FPGA chip serves as a
Peripheral Component Interconnect (PCI) bus interface.

In addition to the internal embedded memory of the FPGA
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Fig. 5. Block diagram of the FPGA development environment.

chips, the hardware acceleration card has 128 kilowords of addi-
tional fast Static Random Access Memory (SRAM), which can
be written to and read from both by the hardware acceleration
card and the host computer. The most natural uses for the SRAM
block are the exchange of information between the host com-
puter and the hardware acceleration card and the storage of tem-
porary results during the FPGA computation. The development
environment encompasses also a custom-written loading and de-
bugging software package, which enables the (re)programming
of the FPGA chips and inspection of the shared 128 kilowords
large memory. The architecture of e development environment
is illustrated in Fig. 5.

IV. FPGA IMPLEMENTATION

The implementation of the first working version of an FPGA-
based AAL type 2 receiver was a relatively straightforward pro-
cedure, since the underlying receiver state machine has been
thoroughly described in [2]. However, the tuning and optimiza-
tion of the sequential flow chart presented in [2] for a parallel
hardware implementation was the most intensive and demand-
ing part of the FPGA design process.

The design flow is described in Fig. 6. The first stage was
to write a functional VHSIC Hardware Description Language
(VHDL) [7] model of the AAL type 2 receiver and simulate it
with Model Technology’s ModelSim VHDL simulator. An al-
ternative would have been to write a synthesizable VHDL de-
scription with Altera’s Max+Plus II design software right away.

This approach might appear faster at first sight, but experi-
ence has taught that the time invested in first writing a functional
VHDL model greatly helps in both discovering design flaws at
the earliest possible stage and in understanding the overall algo-
rithm.

The translation of a functional VHDL model into synthesiz-
able VHDL is not an automated one, since the subset of VHDL
that is synthesizable, i.e., can be compiled into a gate-level de-
scription, varies greatly among manufacturers of logic synthesis
software. However, the translation process was not a major hur-
dle in this particular case, since the AAL type 2 receiver process
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Fig. 6. Design flow of the FPGA-based AAL Type 2 receiver.
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Fig. 7. AAL Type 2 CPS-PH (Common Part Sublayer Packet Header).

consists mostly of atomic bit-level operations.
The main reason for implementing the AAL type 2 receiver

in reprogrammable hardware was to speed up simulations of the
performance of a AAL type 2 receiver process, which in turn
decreases the development cycle. This was accomplished by
taking advantage of the parallelizability of the AAL type 2 re-
ceiver state machine. Independent operations can be performed
simultaneously in “malleable” FPGA-based hardware, whereas
a sequential microprocessor-based implementation is bound by
the fixed instruction set and register-level implementation of the
processor.

As a specific example of the advantages offered by an FPGA-
based implementation over a software-based one, the Header
Error Check (HEC) of the CPS-Packet Header (CPS-PH) is de-
scribed.

The 5 bits of the HEC field (See Fig. 7) are the remainder of
the division (modulo 2), by the generator polynomialx

5+x2+1,
of the productx5 and the contents of the first 19 bits of the CPS-
PH [2].

The AAL type 2 receiver has to check for the correctness of
the HEC field in a received CPS-PH. To do this in software re-
quires both unusual word-widths (19 and 5, respectively) and
tedious sequential bitwise XOR operations. On the contrary, the
VHDL description checks the HEC field in a unique process
called CheckHEC, which is executed concurrently with other
processes in the hardware (see Fig. 8).

The input to the CheckHEC process is the 24-bit wide PH-

LICID UUI HEC

CID 8 bits
LI 6 bits
UUI 5 bits
HEC 5 bits

24 bits = 3 bytes

Fig. 8. Example of concurrency in hardware: Checking the HEC Field in
CPS-PH.

Buffer, and the output HECOK is always available within the
same clock cycle, since each bit of the 5-bit wide syndrome can
be calculated by a parallel combinatorial XOR logic circuit [8].
The speedup achieved by this is of considerable amount, and it is
exactly in this kind of bit-level operations where the advantages
of programmable hardware are evident.

V. PERFORMANCE MEASUREMENTS

To compare the relative performance of the FPGA-based
AAL type 2 receiver, two software versions of the AAL type
2 receiver were also written. The first version was written in the
C programming language, which was complied and run under
LINUX operating system. The other version was written as a
MATLAB m-file and its relative performance was measured by
running it under Windows95 operating system.

The results obtained from these comparisons can be used
as a guideline for evaluating the quantitative speed advantage
of hardware-based simulation over the one based on software.
Both software-based versions of the AAL type 2 receiver read
AAL type 2 encoded data from a file and write the output to files
named channelxxx.txt, where the numbers xxx identify the par-
ticular channel. Since the Channel Identification (CID) field is
8 bits long, there is a maximum of 256 different channels avail-
able, but CID value 0 is not used and CID value 1 is reserved for
Layer Management peer-to-peer procedures. CID values from 2
to 7 are reserved [2].

The C programming language version of the AAL type 2 re-
ceiver can handle simulated transmission rates up to 790 kbits
per second when run on 200 MHz Pentium II PC. The actual
transmission rate varies considerably between different 48 bytes
long ATM packets, since the contents of each ATM packet differ
substantially from each other. For example, an ATM packet may
contain only the Start Field (STF) and 47 bytes of payload as-
sociated with a single channel. In this case, the decoding of the
whole ATM packet is both easy and fast. If, on the other hand,
an ATM packet contained numerous 3 bytes long CPS-packet
headers, a considerable amount of time would be needed for
the correct processing of each CPS-packet header. In this case,
the simulated transmission rate is quite low when compared to
“simpler” ATM packets.

For the reasons mentioned above, the simulated transmission
rates must not be regarded as absolute values, but rather as an
average obtained by simulating a set of widely varying pack-
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Table 1. Performance comparison for different AAL Type 2 receiver

implementations.

AAL type 2 receiver performance

Hardware-based Software-based
FPGA C language MATLAB

Simulated
Transmis-
sion rate

55 Mbps 790 kbps 1 kbps

Notes: Fclk = 23.7 MHz Pentium II @200 MHz Pentium @100MHz
Mbps = Megabits per second
Kbps = Kilobits per second

ets. The MATLAB version of the AAL type 2 receiver achieved
a simulated transmission rate of 1 kbits per second when run
on a 100 MHz Pentium PC. To make the simulated transmis-
sion rate comparable to that obtained by running the compiled
C programming language version, the simulated transmission
rate of the MATLAB version can be normalized to 2 kbits per
second (200 MHz vs. 100 MHz processor clock frequency), if
the somewhat simplistic assumption about the irrelevance of the
operating system in use is made. This indicates that compiled
(i.e., C source) code runs approximately 400 times faster than
interpreted (i.e., MATLAB) code in this particular case.

As could be expected, The FPGA-based AAL type 2 receiver
achieved the fastest transmission rates. According to the tim-
ing analyzer of Altera’s Max+Plus II design software, the maxi-
mum clock frequency of the AAL type 2 receiver was 23.7 MHz,
which may appear low when compared to the clock frequencies
of leading microprocessors. However, due to the inherent paral-
lelism of hardware and the suitability FPGAs for bit-level opera-
tions, the simulated transmission rate for the FPGA-based AAL
type 2 receiver was 55 Mbits per second for the same set of AAL
type 2 encoded data that was used with the two software-based
versions.

The simulated transmission rates are summarized in Table 1.
As can be seen from the table, FPGA-based simulation was or-
ders of magnitude faster than the two software-based versions.
The difference between the two software-based versions is also
quite striking, but it is not by any means unexpected, since MAT-
LAB m-files are interpreted, whereas C source files are com-
piled into machine code.

VI. COMPARISON OF HARDWARE AND
SOFTWARE-BASED SIMULATION

When compared to software-based simulation, the main ad-
vantage of hardware-based simulation is speed. Hardware-based
simulation allows the simulation process to take advantage of
the parallel execution of instructions. For example, multiple in-
dependent assignment statements in a sequential software pro-
gram can be performed in programmable hardware within the
same clock cycle.

Other advantages of programmable hardware are the ability
to perform bit-level operations on “unusual”, i.e., not powers of
two, word lengths and the possibility to allocate only a certain
number of bits to represent internal variables. An example of
atomic bit-level operations is the header error check process in
an FPGA-based AAL type 2 receiver, where the 5-bit long syn-
drome is calculated within one clock cycle by a combination of

bit-level XOR operations. A good example of the possibility to
allocate only a certain number of bits to internal variables is the
AAL type 2 receiver, where all internal variables can be repre-
sented by a maximum of nine bits, which means a big saving in
hardware resources.

The design and construction of hardware-based simulation
platforms has traditionally been a tedious undertaking, and this
approach has been rarely employed in practice. However, this
state of affairs has been somewhat changed with the advent of
reprogrammable logic devices. This has enabled the construc-
tion of generic FPGA boards, which can be quickly customized
to the particular simulation task at hand by reprogramming the
FPGA chips. In other words, there is no need to design and con-
struct a custom hardwired electronic printed circuit board (PCB)
every time when hardware-based simulation is desired.

The benefits of hardware-based simulation are also evident, if
the simulated algorithm is going to be implemented in a Appli-
cation Specific Integrated Circuit (ASIC) for mass production.
This is especially the case, if the hardware-based simulation pro-
cess has been conducted with FPGAs and a hardware descrip-
tion language (HDL), for example, VHDL or Verilog, has been
used in the design.

There are two great barriers for the use of hardware-based
simulation, namely the undeveloped state of design tools and
the steep learning curve associated with hardware design. Un-
fortunately, both of these obstacles will probably be preserved
for some time, since there does not seem to be enough market
pull nor technology push to make hardware-based simulation
more accessible to people, whose background is in software de-
velopment.

Software-based simulation has naturally its own advantages,
too. Most people are used to at least one programming language,
and preliminary results are usually obtained many times faster
than when resorting to hardware-based simulation. If the sim-
ulated task is not large or is not a part of a larger entity, there
usually is no need to speed up simulations by resorting to hard-
ware acceleration.

A comprehensive simulation of all the different parameters in
a modern communications system and the interplay between the
individual (e.g. transmitter, receiver, coder) blocks is extremely
time consuming in software, but a parametrizable FPGA-based
hardware accelerator may provide enormous speedup ratios.
The addition of truly analog noise sources for example, with
a noise diode is an added bonus in hardware-based prototyping,
since there is no need to resort to pseudorandom bit generators,
which are necessary in software-based simulations.

The advantages and disadvantages of hardware-based and
software-based approaches to simulation are summarized in Ta-
ble 2.

VII. CONCLUSIONS

The significance of AAL type 2 is in its ability to achieve high
bandwidth efficiency and low packetization delay at the same
time [9]. The essential characteristics of AAL type 2 have been
standardized, and its potential application areas include packet
telephony applications over backbone ATM networks. It is de-
sirable to keep the packet sizes smaller than the default payload
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Table 2. Comparing hardware and software-based approaches to

simulation.

Property Hardware-based Software-based
Simulation
speed

Fast Slower, especially
with interpreted
languages

Parallelism Inherent Bound by the
sequential nature of
the microprocessor

Bit-level
operations

Easy Tedious

Design cycle Longer, but
getting shorter

Short

Design tools Still immature,
long learning
curve

Mature

size of 48 bytes.
An FPGA-based AAL type 2 receiver was designed, and its

simulation performance was found to be orders of magnitude
faster than that of two software-based versions. An FPGA-based
development environment was found to speed up both the sim-
ulation and the prototyping by a substantial factor. The benefits
of hardware-based simulation, especially on reprogrammable
hardware, are its speed advantage and convertibility into pro-
duction versions of the simulated design. The spreading use
of HDLs in FPGA and ASIC design has helped to bridge the
gap between hardware and software, but nevertheless, the abil-
ity to “think hardware, write software” is still a quite rare phe-
nomenon.
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