
This material is posted here with permission of the IEEE. Such permission of
the IEEE does not in any way imply IEEE endorsement of any of Helsinki
University of Technology's products or services. Internal or personal use of
this material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective
works for resale or redistribution must be obtained from the IEEE by writing to
pubs-permissions@ieee.org.

By choosing to view this document, you agree to all provisions of the copyright
laws protecting it.

0-7803-5767-1/00/$10.00 ©2000 IEEE
S 18-1

AREA-EFFICIENT IMPLEMENTATION OF A FAST SQUARE ROOT ALGORITHM

Matti T. Tommiska
Laboratory of Signal Processing and Computer Technology

Helsinki University of Technology
P.O. Box 3000

FIN-02015 TKK
Finland

Phone +358 9 451 2477 Fax +358 9 460 224
Matti.Tommiska@hut.fi

ABSTRACT
In this paper, an area-efficient implementation of a fast
converging square root algorithm is presented. The design
of special arithmetic operations differs in many ways from
the traditional tasks that digital designers are used to, and
the role of parameterizibility and mapping of mathematical
algorithms into digital hardware is discussed. Certain real-
world applications requiring the use of the square root
operator are presented, and it is argued, that implementing
special arithmetic operations directly in hardware offers
significant speed advantages over the conventional
approach of implementing them in software. The
mathematical algorithm of the square root operator is
described, and its applicability to an implementation in
digital logic is presented. It also is shown, that the the
square root operator can be efficiently implemented without
the need to resort to multiplications or divisions, which is
advantageous in terms of both area and timing.

I. INTRODUCTION

Field programmable gate arrays (FPGAs) have
been mostly used for Application Specific Integrated
Circuit (ASIC) prototyping and implementing control logic.
If the targeted application has been intensive in arithmetic
operations —both in their number and variety— the
designer has usually opted for either a microcontroller, a
microprocessor or a signal processor. Choosing a processor-
based solution to design problems has many obvious
benefits, one of them being that the designer does not have
to concern herself or himself with the actual
implementation of the arithmetic operations. This decreases
the crucial time-to-market and increases productivity, since
there is no need to “reinvent the wheel”.

However, there are cases when special attention
needs to paid for the effective implementation of unusual
arithmetic operations. A processor-based solution may be
too slow and an ASIC-based solution may be too expensive.
This presents additional problems for FPGA designers, who
more often than not are not accustomed to implementing
unsual arithmetic operations. Most FPGA synthesis tools
provide efficient implementations for additions —which
subsume subtractions and comparisons— that have been
fine-tuned for the internal architecture and structure of the

targeted FPGA devices, but when there is a need for
special-purpose arithmetic operations, they must either be
designed from scratch or acquired as an Intellectual
Property (IP) block. The first option takes time and the
second one costs money.

The mapping of mathematical algorithms into
FPGA hardware is a work-intensive process, since the
designer must be able to select the optimal algorithm
satisfying multiple constraints. These include, but are not
limited to, the convergence of the algorithm itself and the
latency, throughput, required area and timing characteristics
of its implementation. For example, if one algorithm has
quadratic convergence but requires a lot of multiplications,
a mathematically slower algorithm which can be
implemented with shift operations instead of multiplications
could be a better choice, especially if the area requirements
are tight. Moreover, a good implementation of a
mathematical algorithm should be parameterizable, which
means that the algorithm should be coded in a hardware
description language (HDL), of which VHDL and Verilog
are the most obvious choices. All of the constraints
mentioned above imply, that the designers of unusual
mathematical operators must be well versed in both
mathematics and the special features of the targeted
hardware, which is a somewhat rare combination.

There are several FPGA features that can be taken
advantage of when selecting and implementing
mathematical algorithms for the computation of special
arithmetic operations. Several FPGA device families have
internal memory blocks, that can be effectively used to
implement look-up tables. Another advantageous feature of
programmable logic devices is that they are not inherently
bound to any specified word-width. For example, if a
particular application needs only 13 bits resolution, all
arithmetic operations can be performed with exactly 13 bits
resolution, which may imply substantial savings in the
required area resources.

II. APPLICATIONS FOR THE SQUARE ROOT
OPERATOR

Most of the research efforts into the hardware
implementations of arithmetic functions have concentrated
on the efficient implementation of adders and multipliers,

S 18-2

which undoubtedly constitute a majority of the most
frequently needed components of the arithmetic libraries.
However, more specialized arithmetic functions are an
indispensable part of many algorithms, and an efficient
implementation of these arithmetic operations gives a big
performance boost. In the following paragraphs, certain
applications that may well benefit from an efficient
hardware implementation of the square root function are
briefly presented. It should be noted, that the potential uses
of the square root function are by no means limited to the
cases presented below.

In the case of genetic algorithms, non-linear
functions are often needed in the evaluation of the fitness
function. The hardware acceleration of genetic algorithms
with reconfigurable logic has been able to speed up
simulations by many orders of magnitude when compared
to a software-based simulation [1]. An efficient
implementation of the square root function widens the
scope of available operation in fitness functions, and in that
way makes a reconfigurable hardware-based solution for
accelerating genetic algorithms more attractive.

In short, a simple genetic algorithm is based on the
collective learning process within a population of indivuals,
which is arbitrarily initialized. Each member of the
population represents a point in the solution space of the
problem, and by means of crossover, mutation and
recombination new members are created. The fitness value
of the new members is evaluated, and if deemed desirable,
old members are replaced by more fit new members. A
high-level block diagram of a simple genetic algorithm is
presented in Figure 1.

The design of receiver blocks in communication
systems benefits from an efficient implementation of the
square root operator. As an example of a receiver block
utilizing the square root operator, a block diagram of a
noncoherent correlator, which is a part of an optimal
noncoherent receiver in correlator form with equal symbol
energies, includes a square root operator at its output [2]
(See Figure. 2). It is obvious, that the more accurate and

faster this operation is, the less bit errors result at the output
of the receiver.

III. THE SQUARE ROOT OPERATOR

The square root operation has been a somewhat
neglected member in the arithmetic libraries of several
microprocessors, and support for it has remained uneven. It
has been noted, that microprocessor designers perceive
square root —and division, to which it is closely related—
as infrequent and low-priority operations, barely worth the
trouble of implementing. A table describing the arithmetic
performance of recent microprocessor floating point units
(FPUs) in [3] presents illuminating results of this design
philosophy. However, the efficient implementation of the
square root operation is an integral part of many
mathematical algorithms, and thus its relative rarity should
not cover its obvious importance in many special cases.

A good overview of square root algorithms can be
found in [4]. A description of the implementation of a non-
restoring square root algorithm for single precision floating
point numbers on FPGAs is presented in [5].

IV. ALGORITHM PRESENTATION

The implemented algorithm uses unsigned
integers, which have several advantages over floating-point
numbers in FPGA arithmetic. Operations on unsigned
integers are often simpler to implement, and they require
less chip area and resources. The square root operator
assumes that its input argument has already been converted
into an unsigned integer, which must be taken care of if an
application uses signed integers.

The implemented algorithm is based on the
bisection method presented by E. W. Dijkstra for
approximating the square root of a given non-negative
integer x [6]. More precisely, the algorithm finds a non-
negative integer a satisfying the following constraints:

S 18-3

The algorithm finds the square root of a 2n bits
wide number in n steps. The algorithm has been slightly
modified from Dijkstra’s original one, and therefore it will
be called the modified Dijkstra’s square root algorithm in
this paper. The algorithm itself is represented in C language
in Figure 3. The modified Dijkstra’s algorithm does not
need to perform multiplications, but instead two logical
right shifts are used, which are not only very compact and
convenient to implement in hardware, but also faster than
multiplications by numbers which are not powers of two.

The FPGA -tailored modified Dijkstra’s square root

algorithm starts by initializing three internal variables,
mask, root and remainder, to MASK_INIT, 0 and arg,
respectively. The individual bits in the constant

MASK_INIT are set to zero except for the second most
significant bit, which is set to one. For example, if the
calculations are performed with 16 bits wide unsigned
integers, the constant MASK_INIT equals 0100 0000 0000
0000. The internal variable remainder is set to the radicand,
i.e. the number whose square root is to be calculated.

The modified Dijkstra’s square root algorithm is
executed for n steps when calculations are performed with
2n bits wide numbers. Each step consists of a single
comparison, where the sum of root and mask is compared
to remainder. If remainder is larger than the sum of root
and mask, the values of remainder and root are updated to
remainder-root-mask and root+2*mask, respectively.
During each step, mask is logically shifted right two bit
positions and root is logically shifted right one bit position.
The stopping condit ion is met, when mask equals zero.
After the stopping condition is met, the following relation
holds:

If remainder is larger than root after the last step,
root is incremented by one. This rounds up the result to the
nearest integer. If truncation is preferred to rounding, this
operation does not have to be performed.

V. FPGA IMPLEMENTATION

The modified Dijkstra’s square root algorithm was
coded in RTL VHDL and compiled and simulated with
Altera’s Max+Plus II version 8.2 design software. A
separate VHDL package was written, where all parameters
(for example, bit width and MASK_INIT) are defined.
Because Altera’s Max+Plus II v8.2 does not support VHDL
shift operations, a logical right shift operation was also
written and included in the VHDL package. A symbol of
the top-level VHDL design entity of the modified Dijkstra’s
square root operator with parameterizable input argument
width is presented in Figure 4.

The modified Dijkstra’s square root operator for
16- bit unsigned integers was compiled for Altera’s 10K50
target device [7]. The device utilization and performance of
the modified Dijkstra’s square root operator is presented in

S 18-4

Table 1 .The latency of the modified Dijkstra’s square root
operator is only 8 clock cycles for 16-bit radicands.

VI. CONCLUSIONS AND FURTHER STUDY

An area-efficient iterative algorithm for the square
root function was presented in this paper. The presented
algorithm does not require multiplications, which is a
considerable advantage when the algorithm was
implemented on the programmable logic devices of Altera’s
FLEX10K family.

The importance of an efficient implementation of
special arithmetic functions on FPGAs is often overlooked,
since they are not frequently needed. However, certain

applications that may directly benefit from special
arithmetic operations were presented.

Further research goals include providing efficient
floating-point support for the square root algorithms on
FPGAs, finetuning the pipelining properties of the
algorithm, and further study of additional special arithmetic
functions and their implementation on FPGAs.

REFERENCES
[1] Matti Tommiska and Jarkko Vuori “Hardware

Implementation of GA”, Proceeedings of the 2nd Nordic
Workshop on Genetic Algorithms, Vaasa, Finland 19-23
August 1996, pp. 71–78.

[2] Stephen G. Wilson, Digital Modulation and Coding,
Prentice Hall 1996, p. 210.

[3] Peter Soderquist and Miriam Leeser “Division and
Square Root: Choosing the Right Implementation”, IEEE
Micro, Volume 17, Number 14, July/August 1997, pp.
56-66.

[4] Israel Koren, Computer Arithmetic Algorithms, Prentice
Hall, New Jersey, 1993, pp. 163–167.

[5] Yamin Li and Wanming Chu, “Implementation of
Single Precision Floating Point Square Root on FPGAs”,
Proceedings of the IEEE Symposium on FPGAs for
Custom Computing Machines, April 16-18, 1997, Napa
Valley, California, pp. 226232.

[6] Edsger W. Dijkstra, A Discipline of Programming,
Prentice Hall 1976, pp. 61-65.

[7] Altera Data Book 1998, Altera Conrporation, 1998, pp.
29 - 30.

	Copyright: © 2000 IEEE. Reprinted with permission from Proceedings of the Third IEEE International Caracas Conference on Devices, Circuits and Systems. Cancun, Mexico, 15-17 March 2000, pages S18-1 - S18-4.

