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ABSTRACT 
In this paper, an area-efficient implementation of a fast 
converging square root algorithm is presented. The design 
of special arithmetic operations differs in many ways from 
the traditional tasks that digital designers are used to, and 
the role of parameterizibility and mapping of mathematical 
algorithms into digital hardware is discussed. Certain real-
world applications requiring the use of the square root 
operator are presented, and it is argued, that implementing 
special arithmetic operations directly in hardware offers 
significant speed advantages over the conventional 
approach of implementing them in software. The 
mathematical algorithm of the square root operator is 
described, and its applicability to an implementation in 
digital logic is presented. It also is shown, that the the 
square root operator can be efficiently implemented without 
the need to resort to multiplications or divisions, which is 
advantageous in terms of both area and timing. 
 
I. INTRODUCTION 

Field programmable gate arrays (FPGAs) have 
been mostly used for Application Specific Integrated 
Circuit (ASIC) prototyping and implementing control logic. 
If the targeted application has been intensive in arithmetic 
operations —both in their number and variety— the 
designer has usually opted for either a microcontroller, a 
microprocessor or a signal processor. Choosing a processor-
based solution to design problems has many obvious 
benefits, one of them being that the designer does not have 
to concern herself or himself with the actual 
implementation of the arithmetic operations. This decreases 
the crucial time-to-market and increases productivity, since 
there is no need to “reinvent the wheel”. 

However, there are cases when special attention 
needs to paid for the effective implementation of unusual 
arithmetic operations. A processor-based solution may be 
too slow and an ASIC-based solution may be too expensive. 
This presents additional problems for FPGA designers, who 
more often than not are not accustomed to implementing 
unsual arithmetic operations. Most FPGA synthesis tools 
provide efficient implementations for additions —which 
subsume subtractions and comparisons— that have been 
fine-tuned for the internal architecture and structure of the 

targeted FPGA devices, but when there is a need for 
special-purpose arithmetic operations, they must either be 
designed from scratch or acquired as an Intellectual 
Property (IP) block. The first option takes time and the 
second one costs money. 

The mapping of mathematical algorithms  into 
FPGA hardware is a work-intensive process, since the 
designer must be able to select the optimal algorithm 
satisfying multiple constraints. These include, but are not 
limited to, the convergence of the algorithm itself and the 
latency, throughput, required area and timing characteristics 
of its implementation. For example, if one algorithm has 
quadratic convergence but requires a lot of multiplications, 
a mathematically slower algorithm which can be 
implemented with shift operations instead of multiplications 
could be a better choice, especially if the area requirements 
are tight. Moreover, a good implementation of a 
mathematical algorithm should be parameterizable, which 
means that the algorithm should be coded in a hardware 
description language (HDL), of which VHDL and Verilog 
are the most obvious choices. All of the constraints 
mentioned above imply, that the designers of unusual 
mathematical operators must be well versed in both 
mathematics and the special features of the targeted 
hardware, which is  a somewhat rare combination. 

There are several FPGA features that can be taken 
advantage of when selecting and implementing 
mathematical algorithms for the computation of special 
arithmetic operations. Several FPGA device families have 
internal memory blocks, that can be effectively used to 
implement look-up tables. Another advantageous feature of 
programmable logic devices is that they are not inherently 
bound to any specified word-width. For example, if a 
particular application needs only 13 bits resolution, all 
arithmetic operations can be performed with exactly 13 bits 
resolution, which may imply substantial savings in the 
required area resources. 
 
II. APPLICATIONS FOR THE SQUARE ROOT 
OPERATOR 

Most of the research efforts into the hardware 
implementations of arithmetic functions have concentrated 
on the efficient implementation of adders and multipliers, 
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which undoubtedly constitute a majority of the most 
frequently needed components of the arithmetic libraries. 
However, more specialized arithmetic functions are an 
indispensable part of many algorithms, and an efficient 
implementation of these arithmetic operations gives a big 
performance boost. In the following paragraphs, certain 
applications that may well benefit from an efficient 
hardware implementation of the square root function are 
briefly presented. It should be noted, that the potential uses 
of the square root function are by no means limited to the 
cases presented below. 

In the case of genetic algorithms, non-linear 
functions are often needed in the evaluation of the fitness 
function. The hardware acceleration of genetic algorithms 
with reconfigurable logic has been able to speed up 
simulations by many orders of magnitude when compared 
to a software-based simulation [1]. An efficient 
implementation of the square root function widens the 
scope of available operation in fitness functions, and in that 
way makes a reconfigurable hardware-based solution for 
accelerating genetic algorithms more attractive.  

In short, a simple genetic algorithm is based on the 
collective learning process within a population of indivuals, 
which is arbitrarily initialized. Each member of the 
population represents a point in the solution space of the 
problem, and by means of crossover, mutation and 
recombination new members are created. The fitness value 
of the new members is evaluated, and if deemed desirable, 
old members are replaced by more fit new members. A 
high-level block diagram of a simple genetic algorithm is  
presented in Figure 1. 
 

 
 

The design of receiver blocks in communication 
systems benefits from an efficient implementation of the 
square root operator. As an example of a receiver block 
utilizing the square root operator, a block diagram of a 
noncoherent correlator, which is a part of an optimal 
noncoherent receiver in correlator form with equal symbol 
energies, includes a square root operator at its output [2] 
(See Figure. 2). It is obvious, that the more accurate and 

faster this operation is, the less bit errors result at the output 
of the receiver. 
 

 
 
III. THE SQUARE ROOT OPERATOR 

The square root operation has been a somewhat 
neglected member in the arithmetic libraries of several 
microprocessors, and support for it has remained uneven. It 
has been noted, that microprocessor designers perceive 
square root —and division, to which it is closely related— 
as infrequent and low-priority operations, barely worth the 
trouble of implementing. A table describing the arithmetic 
performance of recent microprocessor floating point units 
(FPUs) in [3] presents illuminating results of this design 
philosophy. However, the efficient implementation of the 
square root operation is an integral part of many 
mathematical algorithms, and thus its relative rarity should 
not cover its obvious importance in many special cases. 

A good overview of square root algorithms can be 
found in [4]. A description of the implementation of a non-
restoring square root algorithm for single precision floating 
point numbers on FPGAs is presented in [5]. 
 
IV. ALGORITHM PRESENTATION 

The implemented algorithm uses unsigned 
integers, which have several advantages over floating-point 
numbers in FPGA arithmetic. Operations on unsigned 
integers are often simpler to implement, and they require 
less chip area and resources. The square root operator 
assumes that its input argument has already been converted 
into an unsigned integer, which must be taken care of if an 
application uses signed integers.  

The implemented algorithm is based on the 
bisection method presented by E. W. Dijkstra for 
approximating the square root of a given non-negative 
integer x [6]. More precisely, the algorithm finds a non-
negative integer a satisfying the following constraints: 
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The algorithm finds the square root of a 2n bits 
wide number in n steps. The algorithm has been slightly 
modified from Dijkstra’s original one, and therefore it will 
be called the modified Dijkstra’s square root algorithm in 
this paper. The algorithm itself is represented in C language 
in Figure 3. The modified Dijkstra’s algorithm does not 
need to perform multiplications, but instead two logical 
right shifts are used, which are not only very compact and 
convenient to implement in hardware, but also faster than 
multiplications by numbers which are not powers of two. 
 

 
 
The FPGA -tailored modified Dijkstra’s square root 

algorithm starts by initializing three internal variables, 
mask, root and remainder, to MASK_INIT, 0 and arg, 
respectively. The individual bits in the constant 

MASK_INIT are set to zero except for the second most 
significant bit, which is set to one. For example, if the 
calculations are performed with 16 bits wide unsigned 
integers, the constant MASK_INIT equals 0100 0000 0000 
0000. The internal variable remainder is set to the radicand, 
i.e. the number whose square root is to be calculated. 

The modified Dijkstra’s square root algorithm is 
executed for n steps when calculations are performed with 
2n bits wide numbers. Each step consists of a single 
comparison, where the sum of root and mask is compared 
to remainder. If remainder is larger than the sum of root 
and mask, the values of remainder and root are updated to 
remainder-root-mask and root+2*mask, respectively. 
During each step, mask is logically shifted right two bit 
positions and root is logically shifted right one bit position. 
The stopping condit ion is met, when mask equals zero. 
After the stopping condition is met, the following relation 
holds: 
 

 
 

If remainder is larger than root after the last step, 
root is incremented by one. This rounds up the result to the 
nearest integer. If truncation is preferred to rounding, this 
operation does not have to be performed. 
 
V. FPGA IMPLEMENTATION 

The modified Dijkstra’s square root algorithm was 
coded in RTL VHDL and compiled and simulated with 
Altera’s Max+Plus II version 8.2 design software. A 
separate VHDL package was written, where all parameters 
(for example, bit width and MASK_INIT) are defined. 
Because Altera’s Max+Plus II v8.2 does not support VHDL 
shift operations, a logical right shift operation was also 
written and included in the VHDL package. A symbol of 
the top-level VHDL design entity of the modified Dijkstra’s 
square root operator with parameterizable input argument 
width is presented in Figure 4. 
 

  
 

The modified Dijkstra’s square root operator for 
16- bit unsigned integers was compiled for Altera’s 10K50 
target device [7]. The device utilization and performance of 
the modified Dijkstra’s square root operator is presented in 
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Table 1 .The latency of the modified Dijkstra’s square root 
operator is only 8 clock cycles for 16-bit radicands. 
 

 
 
VI. CONCLUSIONS AND FURTHER STUDY 

An area-efficient iterative algorithm for the square 
root function was presented in this paper. The presented 
algorithm does not require multiplications, which is a 
considerable advantage when the algorithm was 
implemented on the programmable logic devices of Altera’s 
FLEX10K family.  

The importance of an efficient implementation of 
special arithmetic functions on FPGAs is often overlooked, 
since they are not frequently needed. However, certain 

applications that may directly benefit from special 
arithmetic operations were presented. 

Further research goals include providing efficient 
floating-point support for the square root algorithms on 
FPGAs, finetuning the pipelining properties of the 
algorithm, and further study of additional special arithmetic 
functions and their implementation on FPGAs. 
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