
Dijkstra’s Shortest Path Routing Algorithm in

Reconfigurable Hardware

Matti Tommiska and Jorma Skyttä

Signal Processing Laboratory
Helsinki University of Technology

Otakaari 5A
FIN-02150, Finland

{Matti.Tommiska, Jorma.Skytta}@hut.fi

Abstract. This paper discusses the suitability of reconfigurable com-
puting architectures to different network routing methods. As an exam-
ple of the speedup offered by reconfigurable logic, the implementation
of Dijkstra’s shortest path routing algorithm is presented and its perfor-
mance is compared to a microprocessor-based solution.

1 Introduction

The uses of reconfigurable logic have increased both in number and scope. The
combination of reconfigurability and high-speed computing has given birth to a
new field of engineering: reconfigurable computing which ideally combines the
flexibility of software with the speed of hardware. [1]

Increased Quality of Service (QoS) poses tough requirements on network
routing. The increase in computational complexity is exponentially related to
an increase in QoS, and to achieve acceptable network performance, additional
computing resources are required [2]. A promising solution to computational
bottlenecks in network routing is reconfigurable computing.

This paper presents a brief overview of the applications of reconfigurable com-
puting in network routing. As a case study, an FPGA-based version of Dijkstra’s
shortest path algorithm is presented and the performance differences between
the FPGA-based and a microprocessor-based versions of the same algorithm are
compared.

2 Classification of Routing Methods and Suitability to
Reconfigurability

There are a number of ways to classify routing algorithms [3,4]. One of the
simplest routing strategies is static routing, where the path used by the sessions
of each origin-destination pair is fixed regardless of traffic conditions.

Most major packet networks use adaptive routing, where the paths change
occasionally in response to congestion. The routing algorithm should change its
routes and guide traffic around the point of congestion.

G. Brebner and R. Woods (Eds.): FPL2001, LNCS 2147, pp. 653–657, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

654 Matti Tommiska and Jorma Skyttä

In centralized routing algorithms all route choices are made at the Routing
Control Center (RCC). In distributed algorithms, the computation of routes is
shared among the network nodes with information exchanged between them as
necessary. Because computation is distributed evenly across the whole network,
the network is not vulnerable to the breakdown of the RCC.

The applicability of reconfigurable computing in routing varies according to
the routing method. In static routing, reconfigurable computing methods help
in accelerating the computations to fill the lookup tables. In adaptive routing,
reconfigurable computing allows the routing algorithm to run in hardware where
parallelism is exploited to the fullest, and when network conditions change, a
different routing algorithm is swapped in to run in the same hardware. Tra-
ditionally, adaptive routing algorithms have been run in software, but running
these algorithms in reconfigurable hardware brings speed advantages.

Whether the routing method is centralized or distributed is not essential to
the applicability of reconfigurable computing, since both central and distributed
algorithms can be adaptive. The pros and cons of routing methods and the
applicability of reconfigurable computing are presented in Table 1 [5].

Table 1. Characteristics of routing methods

Routing method Advantages Disadvantages Applicability of
reconfigurable
computing

Static Simple, fast Inflexible Precomputation of
the routing tables

Adaptive Adapts to network
changes

Complex, requires
careful planning

Good

Centralized Relieves nodes from
computation

Vulnerability
of the RCC

Depends on the
routing algorithm

Distributed Large tolerance to
link failures

Vulnerability to
oscillations

Depends on the
routing algorithm

3 Dijkstra’s Shortest Path Algorithm in Route
Computation

The problem of finding shortest paths plays a central role in the design and
analysis of networks. Most routing problems can be solved as shortest path
problems once an appropriate cost is assigned to each link, reflecting its available
bandwidth, delay or bit error ratio, for example.

There are various algorithms for finding the shortest path if the edges in a
network are characterized by a single non-negative additive metric. The most
popular shortest path algorithm is Dijkstra’s algorithm [6], which is used in
Internet’s Open Shortest Path First (OSPF) routing procedure [7].

Dijkstra’s Shortest Path Routing Algorithm in Reconfigurable Hardware 655

Dijkstra’s shortest path routing algorithm is presented below in pseudocode:

Given a network G = (N, E), with a positive cost Dij for all edges
(i, j∈N), start node S and a set P of permanently labeled nodes, the
shortest path from start node S to every other node j is found as follows:

Initially P = {S}, DS = 0, and Dj = dSj for j
j �=S∈ N .

Step 1: (Find the closest node.) Find i �∈P such that

Di = min
j �∈P

Dj

Set P = P∪{i}. If P contains all nodes then stop; the algorithm is
complete.

Step 2: (Updating of labels.) For all j �∈P set

Dj = min[Dj , Di + dij]

Go to Step 1.

Since each step in Dijkstra’s algorithm requires a number of operations pro-
portional to |N|, and the steps are iterated |N− 1| times, the worst case compu-
tation is O(|N|2) [8]. Using priority queues the runtime of Dijkstra’s algorithm is
O(|E| lg |N|2), which is an improvement over O(|N|2) for sparse networks [9].
However, the space requirement increases and operations on priority queues
are difficult to implement in reconfigurable logic, and for these reasons prior-
ity queues have not been dealt with in this paper.

4 FPGA-Based Dijkstra’s Shortest Path Algorithm

A parameterizable version of Dijkstra’s shortest path algorithm was designed in
VHDL [10] with Synopsys’ FPGA Express design software version 3.4 [11]. The
design was targeted for Altera’s FLEX10K device family [12] with the Quartus
design software [13].

The parameterizable features of Dijkstra’s shortest path algorithm were com-
piled into a separate VHDL package which was included in the main design file.
This way the design of other versions of Dijsktra’s algorithm with different ac-
curacy and for networks of different sizes is made easier, since all the changes
are made only in the VHDL package.

The block diagram of the FPGA-based Dijkstra’s shortest path algorithm
is presented in Fig. 1. The network structure is presented in the internal ROM
block of the logic device. In the block diagram of Fig. 1, there are six address
lines. This is sufficient to represent all node-to-node links of networks of size
upto eight nodes, if the network is represented as an adjacency matrix [9]. The
internal RAM blocks of the logic device represent the known status of nodes,
the distance to this node and the previous node. There are separate address

656 Matti Tommiska and Jorma Skyttä

and data lines for the ROM and RAM blocks, which allows the parallel transfer
of information to/from the memory blocks. To speed up the computations for
finding the closest node from the set of unknown nodes, all node-to-node links
whose other pair is the last known node are prefetched from ROM. Then the
next known node is computed by the parallel comparator bank.

ROM containing the
network description

6

Pre-fetch logic block

adr

8

data

Control blockexternal
inputs

RAM containing the
temporary results of
path computation
(See Figure 4)

RAM I/O logic block

adr data

3 15Comp

Comp

Comp

Comp

Comp

Comp

Comp

Comparator bank

Fig. 1. The top-level block diagram of the FPGA-based Dijkstra’s shortest path
algorithm. The ROM block contains the network description and the RAM block
contains the temporary results of shortest path computation. The comparator
bank selects the smallest distance from the prefetched edge lengths.

As an example, the compiled version of Dijsktra’s algorithm for networks
of maximum sixe eight nodes fitted into an EPF10K20TC144-3 device, which
has 1152 logic elements (LEs) corresponding to approximately 20000 available
gates. The design required 72 per cent of all LEs and 5 per cent of available
memory bits. Additional compilation results are summarized in Table 2. Logic
element requirements increase linearly, since the size of the comparator bank
grows linearly. On the other hand, memory requirements increase quadratically,
since the network description of a network of size N nodes requiresNxN memory
locations. If the network description requires an external memory chip, all that
is needed is to add an external data and address bus and to change the memory
handling functions to handle external memory instead of internal memory.

To compare the performance of an FPGA-based Dijsktra’s algorithm with a
microprocessor-based version, an identical algorithm was coded in C and com-
piled with gcc in Linux Redhat 6.2. The same network descriptions were then
tried in both the FPGA-based and software-based versions of the same algo-
rithm. The speedup factor in favor of the FPGA-based version depended on the
number of network nodes. As network sizes grew, the average execution time of
the FPGA-based version grew only linearly, whereas the average execution time
of the microprocessor-based version displayed quadratic growth (See Table 2).
This can be attributed to the more effective FPGA-based execution of Step 1 in
Dijkstra’s algorithm, since multiple comparators are used in parallel (See Fig. 1).

Dijkstra’s Shortest Path Routing Algorithm in Reconfigurable Hardware 657

Table 2. FPGA resources required by the implementation of Dijkstra’s shortest
path algorithm and a comparison between the execution times of FPGA-based
and microprocessor-based versions of the same algorithm.

Nodes
(edge cost @

8 bits)

Logic
Elements

Memory
bits

Device Execution
time (FPGA-

based)

Execution
time

(µP-based)

Average
speedup
factor

8 834 632 EPF10K20 10.6µs 250µs 23.58

16 1536 2116 EPF10K30 13.4µs 434µs 32.39

32 2744 8287 EPF10K50 17.2µs 802µs 46.63

64 5100 32894 EPF10K250 21.6µs 1456µs 67.41

5 Conclusions

Reconfigurable architectures have many applications in network routing. De-
pending on the routing algorithm or method, reconfigurability may assist in
speeding up network routing.

The FPGA-based version of Dijkstra’s shortest path algorithm was tens of
times faster than a microprocessor-based version. This can be attributed to the
following factors: multiple assignments to variables are executed concurrently,
multiple arithmetic operations, including comparisons, are executed in parallel
and the data structures and tables are implemented in the internal memory
blocks.

References

1. N. Tredennick: ”Technology and Business: Forces Driving Microprocessor Evolu-
tion”, Proceedings of the IEEE, Vol. 83, No. 12, December 1995, pp. 1641-1652.

2. A. Alles: ATM Internetworking. Cisco Systems, Inc. 1995.
3. W. Stallings: Data and Computer Communications. Prentice-Hall, 1999.
4. A. Tanenbaum: Computer Networks. Prentice-Hall, 1996.
5. M. Tommiska: ”Reconfigurable Computing in Communications Systems”, Licentiate
of Sciences Thesis, Helsinki University of Technology, 1998, pp. 46-50.

6. E. Dijkstra: ”A Note on Two Problems in Connexion with Graphs”, Numerische
Mathematik, Vol. 1, 1959, pp. 269-271.

7. J. Moy: ”OSPF Version 2, RFC 2328”, May 1998.
8. D. Bertsekas, R. Gallager: Data Networks. Prentice-Hall, 1987, pp. 297-421
9. M.A. Weiss: Data Structures and Algorithm Analysis in C. The Benjamin/Cum-
mings Publishing Company, Inc. 1993, pp. 281-343

10. M. Zwolinks: ”Digital System Design and VHDL”, Prentice-Hall 2000.
11. FPGA Express User’s Manual, 2000, Synopsys Corporation.
12. FLEX 10K Embedded Programmable Logic Family Data Sheet, ver. 4.02, May
2000, Altera Corporation.

13. Quartus Programmable Logic Development System & Software, ver. 1.01, May
1999, Altera Corporation.

	Introduction
	Classification of Routing Methods and Suitability to Reconfigurability
	Dijkstra's Shortest Path Algorithm in Route Computation
	FPGA-Based Dijkstra's Shortest Path Algorithm
	Conclusions

	Copyright: © 2001 Springer-Verlag. Reprinted with permission from G. Brebner and R. Woods (editors), Proceedings of the 11th Conference on Field-Programmable Logic and Applications (FPL 2001). Belfast, Northern Ireland, UK, 27-29 August 2001, pages 653-657.

