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Abstract. IDEA (International Data Encryption Algorithm) is one of
the strongest secret-key block ciphers. The algorithm processes data in
16-bit subblocks and can be fully pipelined. The implementation of a
fully pipelined IDEA algorithm achieves a clock rate of 105.9 MHz on
Xilinx’ XCV1000E-6BG560 FPGA of the Virtex-E device family. The
implementation uses 18105 logic cells and achieves a throughput of 6.78
Gbps with a latency of 132 clock cycles.

1 Introduction

Cryptography is the science of keeping communication secure, so that eavesdrop-
pers cannot decipher the transmitted messages. The transmission speeds of core
networks require hardware-based cryptographic modules, since software-based
cryptography cannot meet the required throughput requirements.

Field programmable gate arrays (FPGAs) are ideal components for fast cryp-
tographic algorithms. The large capacities of FPGAs enable the fitting of fully
pipelined algorithms on a single chip. The reprogrammability of FPGAs enables
using the same hardware platform as a cryptographic engine for a multitude of
communications protocols.

Cryptographic algorithms are divided into public-key and secret-key algo-
rithms. In public-key algorithms both public and private keys are used, with the
private key computed from the public key. Secret-key algorithms rely on secure
distribution and management of the session key, which is used for encrypting and
decrypting all messages. When it comes to both software- and hardware-based
implementations, secret-key algorithms are 100 to 1000 times faster than public-
key algorithms. For this reason, dual-key sessions use a secret-key algorithm for
the bulk of communication, whereas the session specific secret keys are agreed
on and distributed with a public key algorithm.

The International Data Encryption Algorithm (IDEA) was introduced by
Lai and Massay in 1990 [1], and modified the following year [2]. IDEA has been
patented in the U.S. and several European countries, but the non-commercial
use of IDEA is free everywhere. The patent holder was originally Ascom AG,
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but in 1999 the intellectual property rights were transferred to Mediacrypt AG.
Part of the fame of IDEA is due to its usage in Pretty Good Privacy (PGP).

IDEA is considered highly secure, and it has resisted all forms of attack tried
by the academic community. No published attack (with the exception of attacks
on weak keys) is better than exhaustive search on the 128-bit key space, which
is computationally infeasible. The security of IDEA appears bounded only by
the weaknesses arising from the relatively small (compared to its keylength)
blocklength of 64 bits. [3]

Unlike many other cryptographic algorithms, IDEA can easily be imple-
mented on 16-bit microcontrollers, since the algorithm operates on 16-bit sub-
blocks. In 1999, a software-based implementation of four parallel IDEA algo-
rithms (4-way IDEA) achieved a throughput of the order of 72 megabits per
second (Mbps) on a 166 MHz MMX Pentium processor [4]. If this result is scaled
to modern 2.533 GHz Pentium 4 processors, a software-based implementation
of a 4-way IDEA achieves a throughput of 1.1 gigabits per second (1.1 Gbps).
This sets a reference point for hardware-based implementations.

There have been several reported hardware implementations of IDEA in the
published literature. Mediacrypt AG sells two hardware-based IDEA solutions,
the IDEACrypt Coprocessor and the IDEACrypt Kernel. The IDEACrypt kernel
is faster of these two and implements the IDEA algorithm with a three-stage
pipeline. A 0.25 micron implementation has a throughput of 720 Mbps at a
clock rate of 100 MHz. [5]

The Improved IDEA chip by Salomão et al. [6] achieved a throughput of 809
Mbps at a 100 MHz clock rate. If eight of these devices are connected in series,
an estimated throughput of 6.5 Gbps can be achieved.

Cheung et al. [7] have investigated the tradeoffs in parallel and serial im-
plementations of the IDEA algorithm. The parallel implementation achieved a
throughput of 1.17 Gbps on a Xilinx Virtex XCV300-6 at a clock rate of 82
MHz, whereas the serial implementation achieved a throughput of 600 Mbps on
the same device at a clock rate of 150 MHz. When two rounds of the IDEA algo-
rithm were implemented, the parallel implementation required 79.56 per cent of
the logic resources of an XCV300-6. The serial implementation of a single round
required 93.68 per cent of the logic resources of the same device. It was esti-
mated, that by utilizing linear scaling of the area requirements, a fully pipelined
parallel implementation of the IDEA algorithm would fit into a XCV1000 Virtex
device with a device utilization of 94.42 per cent. This would correspond to a
throughput of 5.25 Gbps, if the clock rate remained unchanged.

2 Description of the IDEA Algorithm

IDEA encrypts 64-bit plaintext blocks into 64-bit ciphertext blocks using a 128-
bit input key K. The algorithm consists of eight identical rounds followed by
an output transformation. Each round uses six 16-bit subkeys K

(r)
i , 1 ≤ i ≤ 6,

to transform a 64-bit input X into an output of four 16-bit blocks, which are
then input to the next round. All subkeys are derived from the 128-bit input
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key K. The subkey derivation process is different in decryption mode from the
encryption mode, but otherwise encryption and decryption are performed with
identical hardware.

IDEA uses only three operations on 16-bit sub-blocks a and b: bitwise XOR
denoted by ⊕, unsigned addition mod (216) denoted by � and modulo (216 +
1) multiplication, denoted by �. All these three operations are derived from
different algebraic groups of 216 elements, which is crucial to the algorithmic
strength of IDEA. Of the three arithmetic operations, bitwise XOR and unsigned
addition mod (216) are trivial to implement, whereas a both area-efficient and
fast implementation of modulo (216 + 1) multiplication requires careful design
and bit-level optimisation. The IDEA computation path is described in Fig. 1.
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Fig. 1. The IDEA cryptographic algorithm

Except for key scheduling, the IDEA algorithm is defined as follows: [3]

INPUT: 64-bit plaintext M = m1...m64; 128-bit key K = k1...k128.
OUTPUT: 64-bit ciphertext block Y = (Y1, Y2, Y3, Y4).
1. (Key schedule) Compute 16-bit subkeys K

(r)
1 , ..., K

(r)
6 for rounds

1 ≤ r ≤ 8, and K
(9)
1 , . . . , K

(9)
4 for the output transformation.
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2. (X1, X2, X3, X4)← (m1 . . . m16, m17 . . . m32, m33 . . . m48, m49 . . .m64),
where Xi is a 16-bit data store.

3. For round r from 1 to 8 do:
(a) X1 ← X1 � K

(r)
1 , X4 ← X4 � K

(r)
4 , X2 ← X2 � K

(r)
2 , X3 ←

X3 �K
(r)
3 .

(b) t0 ← K
(r)
5 �(X1⊕X3), t1 ← K

(r)
6 �(t0�(X2⊕X4)), t2 ← t0�t1.

(c) X1 ← X1⊕t1, X4 ← X4⊕t2, a← X2⊕t2, X2 ← X3⊕t1, X3 ← a.

4. (Output transformation) Y1 ← X1 � K
(9)
1 , Y4 ← X4 � K

(9)
4 , Y2 ←

X3 �K
(9)
2 , Y3 ← X2 �K

(9)
3 .

In IDEA, a�b corresponds to modulo (216+1) multiplication of two unsigned
16-bit integers a and b, where 0 ∈ Z216 is associated with 216 ∈ Z216+1as follows:
if a = 0 or b = 0, replace it by 216 (which is ≡ −1 mod (216 + 1)) prior to
modular multiplication; and if the result is 216, replace this by 0. Decryption is
achieved with the ciphertext Y provided as inputM . Key scheduling is described
in standard textbooks on cryptography [3] [8], and its hardware requirements are
negligible when compared to modulo (216 + 1) multipliers.

2.1 Diminished-One Number Representation

The diminished-one number representation is often used in arithmetic modulo
(2n + 1) [9]. In diminished-one number system the number A is represented
by A′ = A − 1 and the value 0 is represented by 2n. In IDEA, n = 16, and
consequentially, the value 0x0000 as a 16-bit unsigned integer is represented by
0x10000 in diminished-one representation.

The usage of diminished-one number system is advantageous in the imple-
mentation of modulo (216+1) multipliers. There are also downsides in using the
diminished-one number system: additional logic is required in adding up partial
products and conversions are required to/from ordinary 16-bit unsigned integers.
However, the advantages of using the diminished-one number system outweigh
the disadvantages in the design described in this paper.

3 Design and Implementation

With the introduction of million-gate FPGAs, the implementation of fully un-
rolled secret-key cryptographic algorithms became feasible. If the entire algo-
rithm with full inner and outer loop pipelining fits on a single FPGA, the limiting
factor for throughput is the achieved clock rate as follows: [10]

Throughput = block size × clock rate (1)

Since the block size of IDEA is fixed at 64 bits, a 100 MHz clock rate implies
a throughput of 6.4 Gbps. Clock rates above 100 MHz can be achieved in mod-
ern FPGAs by carefully analysing the algorithm, partitioning the design into
stages and pipelining the entire system. The disadvantage is increased latency
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measured in clock cycles, but this can usually be tolerated, since throughput
is the dominant design factor in high-speed applications. The high-level block
diagram of the fully pipelined IDEA implementation is described in Fig. 2

round 1 round 8 output
transform.

X[63..0] rounds 2-7

key
sched.

K[127..0]

Y[63..0]

clock

Fig. 2. Fully pipelined IDEA algorithm

A fully unrolled round of the IDEA algorithm is described in Fig. 3, which
can be compared with Fig. 1. There are seven subrounds in one round, and the
modulo (216+1) multiplier is further divided into four sub-subrounds (See 3.2).
A single round is calculated in 16 clock cycles, since three subrounds (1, 3,
and 5) with modulo (216 + 1) multipliers each require four clock cycles and
four subrounds (2, 4, 6 and 7) are executed in a single clock cycle. After the 8th
round, 8×16 = 128 clock cycles have been used. The final output transformation
requires additional four clock cycles, since two modulo (216 + 1) multiplication
operations are executed in parallel. This adds up to a total latency of 132 clock
cycles, which corresponds to 1.246 µs with the maximum clock rate of 105.9
MHz (See also Table 3).

3.1 Design Flows

The design was initially going to be implemented only in Handel-C [11], a high-
level hardware description language with built-in directives for implementing
parallelism in hardware. The design flow consisted of Celoxica’s DK1 Design
Suite v1.0 SP1, which produced a structural VHDL output file for logic synthesis
with Synplicity’s Synplify Pro 7.0 and subsequent place and route with Xilinx’
ISE Foundation Series 4.1i.

A single round of the IDEA algorithm was coded in Handel-C, with the clock
rate exceeding 80 MHz. However, as individual rounds were connected together,
the performance of the overall design decelerated and the area requirements of
the entire design increased in a non-linear manner for unknown reasons. Fur-
thermore, compilation times exceeded ten hours, which made it impractical to
improve the design within a single working day.

To achieve a clock rate of at least 100 MHz, it was decided to recode the entire
design in synthesisable VHDL with Synplify Pro 7.0. Investigating the critical
path revealed that the carry-save adder (CSA) structure (See 3.2) [12] was the
most time-consuming part. The CSA structure was replaced with a simple three-
stage adder tree, which both reduced area and increased the clock rate over the
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Fig. 3. A fully unrolled round of the IDEA algorithm

targeted 100 MHz. When the design was targeted for XCV1000E-6BG560, a
clock rate of 105.9 MHz was achieved with 18105 logic cells (LCs).

The design flows are compared in Table 1 with further details in Table 3.

Table 1. A comparison of the two design flows. Note that the implementation
of modulo (216 + 1) multiplier was coded in different manner in Handel-C and
VHDL.

Main Design Language Other Performance Entire IDEA Additional
Tool Tools of one round algorithm information

DK1 Design Handel-C Synplify Pro 7.0 87.3 MHz 13h compilation CSA Array
Suite ISE 4.1i 2902 LCs did not fit into an (See 3.2)

ModelSim XCV1000E-6 XCV2000E-6

Synplify VHDL ISE 4.1i 105.9 MHz 105.9 MHz Three-stage
Pro 7.0 ModelSim 2122 LCs 18105 LCs adder tree

XCV1000E-6 XCV1000E-6 (See 3.2)

3.2 Modulo (216 + 1) Multiplication

The critical part of an efficient hardware implementation of IDEA is the mod-
ulo (216 + 1) multiplication operator. There has been a lot of academic activ-
ity in researching an optimum implementation of the modulo (216 + 1) multi-
plier [12], [13], [14], but the research has been limited to full-custom design.

The partial product generation proposed by Ma [12] was used. The inputs
to the partial product generation logic are 16-bit unsigned integers a and d in
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diminished-one representation. Since the second input d is always a subkey, it
can be converted in advance in the key scheduling block. After simplifications,
the eight partial products p0, . . . , p7 are generated by a set of eight 8-to-1 multi-
plexers, whose control input is a 3-bit wide sequence from the subkey. Additional
combinational logic is required for cyclic modulo left shifts, but the design fits
into little over 200 logic cells. An outline of the multiplexer bank is presented in
Fig. 4.

2 =10000000000000000
16

a a ...a a15 14 1 0

a a ...a14 13 1 0a

000 001 010 011 100 101 110 111

MUX 0

p
0

000 001 010 011 100 101 110 111
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... a
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a a ...1 0 15 14 3 2a a a a

a a1 0 15 14 3 2a a ...a a

Fig. 4. An outline of the multiplexer bank. The outputs are eight partial prod-
ucts p0 . . . p7 in diminished-one notation.

The produced partial products p0, . . . , p7 are 17 bits wide, since zero is rep-
resented by 0x10000 in diminished-one number representation. To obtain the
multiplication result, the partial products have to be summed together.

The CSA structure in [12] was coded in Handel-C, whereas a simpler three-
stage adder tree was coded in synthesisable VHDL (See 3.1). It was noted, that
the three-stage adder tree required fewer logic resources in the targeted devices
of the Virtex-E family. CSA structures do not save area resources in FPGAs,
but require more area resources than a straightforward implementation of the
partial products summation. This is due to the efficient implementation of fast
look-ahead carry logic chains in modern FPGAs, which leaves no practical room
for optimisation of adder structures.

When adding two numbers a and b represented in diminished-one notation,
attention must be given to the special case of zero. If zero is not used, addition
in diminished-one number system looks as follows: [13]

(a+ b+ 1) mod(2n + 1) =
{
(a+ b) mod 2n, if a+ b ≥ 2n

a+ b+ 1, otherwise (2)

Modulo (2n + 1) addition can be realised by an end-around-carry adder,
where the carry-out is inverted and fed back into the carry-in, i.e. cin = cout.
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This can be realized with two adders to prevent a combinational loop. The carry-
out inversion logic does not work when both summands equal zero. Therefore
an additional AND gate has to be added to produce the control input for a
multiplexer, which selects the correct output a + b = 0x10000, when a = b =
0x10000. There are seven modulo (2n + 1) adders to sum up the eight partial
products. This is described in detail in Fig. 5
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b[16..0]

a[16]

b[16]

(a+b)[16..0]

[16..0] [15..0]
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16
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Latency three clock cycles. Additional
clock cycle is required for generating
the partial products p . This adds up

to a total of four cycles for computing

the modulo (2 +1) multiplication.

Clock lines have not been drawn.

n

16

Fig. 5. The three-stage diminished-one adder tree used in IDEA implementation.
The inner structure of a diminished-one adder includes extra control logic for
the output multiplexer.

3.3 Results

The logic cell (LC) requirements of the seven subrounds (See Fig. 3) are summa-
rized in Table 2. About 93 per cent of the area requirements of a single round are
caused by modulo (216 + 1) multipliers implemented with a simple three-stage
adder tree (See Fig. 5).

As mentioned, the two implementations of the modulo (216 + 1) multiplier
differ in their area requirements, because a straightforward implementation of
the three-level adder tree fits into a much smaller number of LCs than a more
sophisticated CSA design (See also 3.2). A single modulo (216 + 1) multiplier
implemented in Handel-C utilizing the CSA scheme [12] required 919 LCs com-
pared to 463 LCs for the simpler VHDL-based multiplier.

To compare the results with those projected in [7], the VHDL-based design
was targeted for an XCV1000E-6 device, and the area and timing characteristics
are presented in Table 3. For comparison purposes, the design was compiled for
certain Altera FPGAs, but these results must be viewed with caution, since no
device-specific optimisations were made.

To verify the design in hardware, the IDEA algorithm was targeted for Xilinx’
XCV2000E-6BG560 device on an RC1000 PCI card [15]. Logic synthesis with
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Table 2. The area requirements of a single IDEA round in an XCV1000E-6.

Subround LCs Additional Information

1 969 2 multipliers, 2 adders

2 32 2 XORs

3 533 1 multiplier

4 16 1 adder

5 533 1 multiplier

6 48 2 XORs, 1 adder

7 32 2 XORs

Total 2163 4 multipliers, 4 adders, 6 XORs

After minimisation 2125

Table 3. Timing and area characteristics of the entire IDEA algorithm.

XCV1000E-6 XCV2000E-6 APEX20KC-8 EP2A40-8

LCs (Xilinx) 18105 18233 37289 37413
ATOMs (Altera)

Device Utilisation 73 % 45 % 71 % 97%

Clock rate 105.9 MHz 105.9 MHz 32.0 MHz 66.2 MHz

Throughput 6.78 Gbps 6.78 Gbps 2.05 Gbps 4.24 Gbps

Latency (132 cycles) 1.25µs 1.25µs 4.13µs 1.99µs

Synplify Pro 7.0 and place and route with Xilinx’ ISE Foundation Series 4.1i
reported the same maximum clock rate of 105.9 MHz (See Table 3).

The RC1000 card has a programmable clock circuit with a maximum fre-
quency of 100 MHz. The design fit into 45 per cent of the logic resources of an
XCV2000E, and the functionality was verified with test vectors and with varying
clock rates. Since the maximum clock frequency was 100 MHz, the functionality
could not quite be tested at the reported maximum clock rate of 105.9 MHz.

4 Conclusions

The design and implementation of the IDEA algorithm at 6.78 Gbps on a single
XCV1000E-6BG560 proves that entire unrolled and pipelined complex crypto-
graphic functions can be implemented on a single FPGA. The limiting factors in
achieving maximal throughput are the block size of the algorithm and the clock
rate, which can be increased by carefully analysing the algorithm and partition-
ing the individual operations into subblocks executed in a single clock cycle.

An FPGA-based cryptographic module is a strong candidate, when high-
performance cryptography is required. Applications include Virtual Private Net-
works (VPNs), satellite communications and hardware accelerators for encrypt-
ing huge files or entire disks.

An interesting research area is partial reprogrammability applied to cryptog-
raphy. This is especially true for algorithms, which process data in small-sized
blocks, whose other input is directly computed from the session key. IDEA is an
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example of this kind of an algorithm. Xilinx’ Virtex FPGAs support partial run-
time reconfiguration [16], and the area requirements of IDEA could be reduced
by precalculating the optimum implementation for modulo (216+1) multiplica-
tion for every 65536 subkeys. When a session key is changed, the device would
be partially reconfigured with optimal modular multipliers.
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