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Abstract: Special attention must be paid to an efficient approximation of the sigmoid function in
implementing FPGA-based reprogrammable hardware-based artificial neural networks. Four
previously published piecewise linear and one piecewise second-order approximation of the
sigmoid function are compared with SIG-sigmoid, a purely combinational approximation. The
approximations are compared in terms of speed, required area resources and accuracy measured by
average and maximum error. It is concluded that the best performance is achieved by SIG-sigmoid.

1 Introduction

Artificial neural networks (ANNs) have been mostly
implemented in software. This has benefits, since the
designer does not need to know the inner workings of
neural network elements, but can concentrate on the
application of the neural network. However, a disadvantage
in real-time applications of software-based ANNs is slower
execution compared with hardware-based ANNs.

Hardware-based ANNs have been implemented as both
analogue and digital circuits. The analogue implementations
exploit the nonlinear characteristics of CMOS (complemen-
tary metal-oxide semiconductor) devices, but they suffer
from thermal drift, inexact computation results and lack of
reprogrammability.

Digital hardware-based implementations of ANNs have
been relatively scarce, representive examples of recent
research can be found in [1–3]. Recent advances in
reprogrammable logic enable implementing large ANNs
on a single field-programmable gate array (FPGA) device.
The main reason for this is the miniaturisation of component
manufacturing technology, where the data density of
electronic components doubles every 18 months [4].

Special attention must be paid to an area-efficient
implementation of every computational element when
implementing large ANNs on digital hardware. This holds
true for the nonlinear activation function used at the output
of neurons [5].

A common activation function is the sigmoid function
(Fig. 1)

y ¼ 1

1 þ e�x
ð1Þ

An advantage of the sigmoid function is its derivative (see
Fig. 1)

dy

dx
¼ yð1 � yÞ ð2Þ

whose existence is essential in neural network training
algorithms. Since the sigmoid function has a symmetry
point at (0, 0.5), only half of the x–y pairs have to be
computed

yx>0 ¼ 1 � yx�0 or ð3Þ

yx<0 ¼ 1 � yx�0 ð4Þ

A straightforward sigmoid implementation requires a lot of
area, and an approximation is the only practical solution in
digital ANNs.

2 Implementations of sigmoid function

Digital hardware implementations of the sigmoid function
are divided into three main categories: piecewise linear
(PWL) approximations, piecewise second-order approxi-
mations and combinational approximations. The efficiency
criteria for a successful approximation are the achieved
accuracy, speed and area resources.

The maximum and average error are used to evaluate the
accuracy of an approximation. Following the methodology
in [6], if a function f (x) is approximated by a function f̂f ðxÞ
in the interval x 2 ða0; a1Þ; the average Eave and maximum
Emax errors are obtained by uniformly sampling x on 106

equally spaced points in the domain of ða0;a1Þ

Eave ¼

P106�1

i¼0

j f̂f ðxiÞ�f ðxiÞj

106

Emax ¼ max j f̂f ðxiÞ � f ðxiÞj

8>><
>>:

ð5Þ
Evaluating speed is straightforward, provided that all the
implementations under comparison compute the sigmoid
function in a single clock cycle. In this case the speed metric
is the maximum clock rate, typically denoted in megahertz
(MHz).

When evaluating the area resources of FPGA-based
implementations, the basic unit is a logic element (LE)
discussed in Section 3.

A straightforward implementation of the sigmoid func-
tion is not feasible, since both division and exponentiation
are very demanding operations, as they require a lot of area
resources and converge slowly.

In this paper, only fixed-point notation is used. Floating-
point arithmetic does not suit a digital approximation for
two main reasons: the area requirements of floating-point
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arithmetic are extensive compared with fixed-point
arithmetic [7]; and the sigmoid function has a limited
range in both its input and output. The fixed-point format is
defined as follows:

½s� a·b ð6Þ

where the optional s denotes a sign bit with 0 for positive
and 1 for negative numbers, a is the number of integer bits
and b is the number of fractional bits.

If the sign bit is present, two’s complement notation is
used, otherwise unsigned notation is used. The examples in
Table 1 clarify the notation.

If the sign bit is used, the minimum xmin and maximum
xmax numbers in sa.b notation are

xmin ¼ 2�a

xmax ¼ 2a � 2�b

�
ð7Þ

If the sign bit is not used, the minimum xmin and maximum
xmax numbers in a.b notation are

xmin ¼ 0

xmax ¼ 2a � 2�b

�
ð8Þ

The maximum truncation error Etrun is the absolute
difference between the real number x and its truncated
binary representation x̂x; that is jx � x̂xj: Excluding overflows
and underflows, the maximum truncation error in [s ]a.b
notation is

Etrunmax ¼ 2�ðbþ1Þ ð9Þ

2.1 Piecewise linear approximations of
sigmoid function

Piecewise linear (PWL) approximation is a method to obtain
low values for both maximum and average error with low
computational complexity. In the following subsections,
four PWL schemes are presented. They differ in the number
and location of start and end points of the approximating
lines and the selection criteria and algorithms. None of the
presented PWL approximations require multipliers, which
is positive in hardware implementability.

2.1.1 A-law based approximation: Myers and
Hutchinson designed an approximation based on the A-law
companding technique [8]. A modified curve was developed
so that the gradient of each linear segment is expressed as a
power of two. This enables replacing multipliers with
shifters. The curve has seven segments and its breakpoints
are presented in Table 2.

2.1.2 Approximation of Alippi and Storti–
Gajani: Alippi and Storti–Gajani based their approxi-
mation on selecting an integer set of breakpoints, and setting
the y-values as power of two numbers [9]. If only the
negative x-axis is considered, see (3), and (x) is defined as
the integral part of x, the decimal part of x with its own sign
is denoted x̂x and defined as follows:

x̂x ¼ x þ jðxÞj ð10Þ
The general expression for approximating the sigmoid
function becomes

y ¼
1
2
þ x̂x

4

2jxj ð11Þ

Since the formula involves only additions and shift
operations, it is well suited for digital implementation.

2.1.3 PLAN approximation: The PLAN approxi-
mation (piecewise linear approximation of a nonlinear
function) was proposed by Amin, Curtis and Hayes–Gill
[10]. The PLAN approximation uses digital gates to directly
transform from x to y. The approximation of the sigmoid
function is presented in Table 3. The calculations need only
be performed on the absolute value of the input x, see (3).
After simplifying the shift and addition operations implicit
in Table 3, the bit-level logic equations become effective to
implement.

2.1.4 Centred recursive interpolation of
sigmoid function: Basterrextea, Tarela and del
Campo presented a recursive algorithm for approximating
the sigmoid function [11]. The algorithm is based on the
centred recursive interpolation (CRI) method, which
attempts to improve the accuracy recursively, as the number
of linear segments increases exponentially with every round.

The initial three straight lines are

y1ðxÞ ¼ 0

y2ðxÞ ¼
1

2
� 1 þ x

2

� �
y3ðxÞ ¼ 1 ð12Þ

–8 –6 –4 –2 0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

x

y  ←symmetry point

sigmoid function
sigmoid function derivative

Fig. 1 Sigmoid function and its derivative

Table 1: Examples of binary notation

Format Example binary number Decimal number

s3.5 011001100 6.375

s2.5 11001001 21.71875

0.8 11001001 0.78515625

Table 2: Breakpoints of A-law based sigmoid approximation

Break-points x 2 8.0 2 4.0 2 2.0 2 1.0 1.0 2.0 4.0 8.0

y 0.0 0.0625 0.125 0.25 0.75 0.875 0.9375 1.0
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Since only the positive x-axis needs to be considered, see
(4), the CRI algorithm is as follows:

gðxÞ ¼ y2ðxÞ; hðxÞ ¼ y3ðxÞ;
for ði ¼ 0; i ¼ q; i þþÞf

g0ðxÞ ¼ Min½gðxÞ; hðxÞ�;

hðxÞ ¼ 1

2
ðgðxÞ þ hðxÞ � DÞ;

gðxÞ ¼ g0ðxÞ;

D ¼ D
4
; g

gðxÞ ¼ Min½gðxÞ; hðxÞ�; ð13Þ

where q is the interpolation level, D is the depth parameter
dependent on q, h(x) is the linear interpolation function, and
g(x) is the resulting approximation. Neither multiplications
nor divisions are needed, since they are reduced to shiftings.

The optimum values for D have been calculated in [11]
for q ¼ 1 . . . 3 and are denoted as Dq;opt: They are presented
in Table 4 with the number of linear segments in the
approximating curve. Increasing q above 3 does not provide
additional accuracy, as the approximation saturates [11].

The CRI method requires iterative calculation for q þ 1
clock cycles. This makes the CRI method a slow
approximation algorithm, since typically more than one
clock cycle is required to reach satisfactory accuracy.

2.2 Piecewise second-order approximation of
sigmoid function

The sigmoid function has also been implemented as a
piecewise second-order approximation. In general, this
implies that the sigmoid function is approximated by

yðxÞ ¼ c0 þ c1 � x þ c2 � x2: ð14Þ
The obvious disadvantage is the need for multiplications.

Zhang, Vassiliadis and Delgado–Frias have presented a
second-order approximation scheme requiring one multi-
plier [6]. In the interval ]�4, 4[, the sigmoid function is
computed as follows:

y ¼ 2�1 � ð1 � j2�2 � xj2Þ �4 < x < 0

1 � 2�1 � ð1 � j2�2 � xj2Þ 0 � x < 4

�
ð15Þ

After simplifications (15) can be implemented with one
multiplier, two shifters and two XORs.

2.3 Combinational approximation of sigmoid
function

When both the input and output of an approximation contain
only a few bits, an alternative is to use a direct bit-level
mapping. No arithmetic operators are needed and area
requirements remain low.

Every Boolean function can be expressed in canonical
form as a sum of its 1-minterms [12]. This is called a sum-
of-products (SOP) representation and it corresponds to a
simple digital implementation, where the products or
1-minterms formed by ANDing the required inputs are
summed by a multiple-input OR gate to produce the output.

Quine [13] and McCluskey [14] presented a procedure
leading to a minimised SOP representation for a given
function. Based on their procedure, researchers have
implemented logic minimisation programs. In this paper,
the McBoole logic minimiser [15] was used to compute
minimised functions for all output bits of a sigmoid function
approximation. The purpose was to find out whether an
entirely combinational approximation, named SIG-sigmoid,
would outperform previously published methods.

2.3.1 SIG-sigmoid: Implementations are named as
follows:

sig xyzo

where x is the number of input integer bits, y is the number
of input fractional bits, z is the number of output fractional
bits (output integer bits are not needed), and o is either a, n
or p:

a or all, when all bits in all input values (both positive and
negative) are combinationally mapped to bits in the output
values
n or negative, when bits in only negative input values are
combinationally mapped to output bits. The positive input
values are handled according to (3). A z-bit-wide adder/
subtractor is needed.
p or positive, when bits in only positive input values are
combinationally mapped to output bits. The negative input
values are handled according to (4). A z-bit-wide adder/
subtractor is needed.

In addition to x integer bits and y fractional bits, the input
has also a sign bit. The naming convention is clarified in
Table 5. The fixed-point format has been defined in (6).

The Emax (5) of SIG-sigmoid implementations is defined
directly by z (9), because truncation error is the only error
source in direct bit-level combinational mapping

Emax ¼ 2�ðzþ1Þ ð16Þ
Equation 16 represents the worst-case Emax of SIG-sigmoid
implementations. Often the Emax of an implementation is

Table 3: PLAN approximation equations

Operation Condition

Y ¼ 1 jX j � 5

Y ¼ 0:03125 � jX j þ 0:84375 2:375 � jX j < 5

Y ¼ 0:125 � jX j þ 0:625 1 � jX j < 2:375

Y ¼ 0:25 � jX j þ 0:5 0 � jX j < 1

Table 4: CRI approximation

Interpolation

level

Optimum depth

parameter

Number of

segments

q ¼ 0 3

q ¼ 1 D1;opt ¼ 0:30895 5

q ¼ 2 D2;opt ¼ 0:28094 9

q ¼ 3 D3;opt ¼ 0:26588 17

Table 5: SIG-sigmoid naming convention

SIG-Sigmoid

name

Input

format

Output

format Explanation

sig_236a s2.3 0.6 Bit-level mapping for

all inputs

sig_235n s2.3 0.5 Bit-level mapping for

negative inputs only

sig_346p s3.4 0.6 Bit-level mapping for

positive inputs only
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less than defined by (16), which is also evident later in
Table 6.

The input range is defined by x, the number of input
integer bits. If x ¼ 3; the input range is [�8,8[, and if x ¼ 2;
the input range is [�4,4[, which suffices in many
applications.

MATLAB was first used to calculate the real sigmoid
values in the input range. Both the input and output values
were truncated according to the sig_xyzo naming
convention. The MATLAB output file was modified to
meet the requirements of the McBoole logic minimiser [15],
whose output was subsequently modified (for example,
ANDs and ORs were added) and renamed as a VHDL [16]
file sig_xyzo.vhd. The VHDL file was synthesised with
Synplicity’s Synplify Pro 7.1 logic synthesis software [17].
The report file of Synplify Pro 7.1 indicated the required
area resources and timing characteristics of a SIG-sigmoid
implementation. These are collected in Tables 8 and 9 in
Section 4.

Since SIG-sigmoid implementations are represented as
two-level logic, they fit well into the inner architecture of
FPGAs and are fast compared with other approximations.

When comparing representative SIG-sigmoid implemen-
tations with other approximations, it turned out that the best
performance was among sig xyzp implementations, i.e.
designs where only bits in positive input values were
combinationally mapped to output bits. Sig xyza
implementations do not require a z-bit-wide adder/subtrac-
tor, but the twice larger number of inputs requires more area

resources than sig xyzp implementations. A block diagram
of sig xyzp implementations is presented in Fig. 2.

2.4 Other approximations of sigmoid
function

In addition to the six approximations of the sigmoid function
presented in Sections 2.1–2.3, other approximations have
also been proposed. This Section describes briefly other
approximations of the sigmoid function, and motivates their
exclusion from the comparison in Section 4.

Implementing a sigmoid function as a lookup table is
straightforward. As the approximated values can be
calculated in advance, the Emax is defined by (9), where b
is the number of output fractional bits.

However, the lookup-table implementation is a limiting
factor, as the memory requirements of a pipelined neural
network implementation grow. Since internal memory is
limited in FPGAs, it has other purposes than serving only as
a storage for values of a lookup-table approximation. Self-
contained neurons are desirable, and sharing a lookup-table
approximation between all neurons decreases the execution
speed by orders of magnitude. As FPGA technologies
mature, both the amount and speed of available internal
memory increase, and this may make lookup tables an
attractive implementation option in the future.

Other approximations of the sigmoid function include a
polynomial floating-point approximation [19]. Since both a
floating-point multiplier and a floating-point adder are
required, the area requirements are extensive compared with
fixed-point implementations.

Both a second-order approximation [20] and a generic
nonlinear activation function operator [21] require a
multiplier, which does not compare well with simpler
multiplierless approximations.

If the main neural network uses a generic parameterisable
multiplier for multiplying the neuron inputs with weights,
the multiplier could also be used in a time-sharing manner
for computing an approximation of the sigmoid function.
However, an area-efficient implementation of a neural
network is most likely to use constant coefficient multipliers
when the weights are known, and therefore assuming the
availability of a generic multiplier is not realistic.

3 Field-programmable gate arrays

The traditional measurement unit of area usage is gate, or a
two-input NAND (NOT AND) gate requiring four transis-
tors [22]. This metric suits full-custom application-specific
integrated circuits (ASICs), where the entire architectural
structure is specified in the design process. ASICs are
suitable for high-volume designs, which amortises the
startup costs of ASIC production. On the contrary, field-
programmable gate arrays (FPGAs) require no upfront
costs, since the unit cost of a single device is more or less
constant irrespective of the number of devices required [23].

Table 6: Average Eave and maximum Emax errors of
sigmoid function approximations

Approximation Input range Eave Emax

A-law based approximation [�8,8[ 2.47% 4.90%

Approximation of Alippi and

Storti—Gajani

[�8,8[ 0.87% 1.89%

PLAN approximation [�8,8[ 0.59% 1.89%

CRI approximation, q ¼ 0 [�8,8[ 2.41% 11.9%

CRI approximation, q ¼ 1 [�8,8[ 1.20% 3.78%

CRI approximation, q ¼ 2 [�8,8[ 0.92% 2.45%

CRI approximation, q ¼ 3p [�8,8[ 0.85% 2.06%

Approximation of

Zhang et al.

]�4,4[ 0.77% 2.16%

sig_235p† [�4,4[ 0.69% 1.51%

sig_236p [�4,4[ 0.40% 0.77%

sig_336p [�8,8[ 0.33% 0.77%

sig_337p [�8,8[ 0.17% 0.39%

p
As mentioned in Section 2.1.4 [11], increasing the interpolation level q

above 3 does not provide additional accuracy.
†

The naming convention is explained in Section 2.3 and in Table 5.

x_in

if x_in<0
then

x=–x_in
else

x=x_in

x

AND
plane

minterms
called pn

OR
plane

y_temp
if x_in<0
then

y=1–y_temp
else

y=y_temp

ysee tables
11 and 12
for examples

see tables
11 and 12
for examples

Fig. 2 Block diagram of sig_xyzp implementations
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Another advantage of FPGAs is reprogrammability, which
makes them ideal candidates in prototyping applications,
where dynamic updating is required.

Implementing neural networks in FPGAs is attractive,
because this is usually done in low-volume experimental
projects. Furthermore, numerous updating cycles are
performed in searching for an optimum neural network
configuration.

When the area requirements of FPGA-based designs are
compared, the gate-count figures of ASICs do not serve their
purpose. This is because FPGAs have a pre-existing
structure of reprogrammable functional elements, which
cannot be effectively described as equivalent gate counts.

FPGAs consist of a regular and hierarchical structure of
reprogrammable basic functional elements, which are most
often called logic elements (LE), although the terminology
varies somewhat among manufacturers. LEs are connected
by hierarchical routing, where connections to neighbouring
elements are fastest. In this paper the LEs are regarded as
the area measurement unit in FPGAs.

The internal structure of a generic LE typically consists of
a four-input lookup table (LUT) for combinational functions
of up to four arguments, a presettable register for state
machines and sequential logic, fast carry and cascade chains
for high-speed arithmetic and additional clock control logic.
As a representative example of a modern LE, the high-level
structure of an LE in Altera’s APEX II devices is described
in Fig. 3.

4 Comparison of sigmoid function
approximations

To compare the sigmoid function approximations, all
algorithms presented in Sections 2.1–2.3 were implemented
both as MATLAB .m-files and as VHDL descriptions. The
MATLAB m-files were used to calculate Eave and Emax (5).
The error figures of the A-law based approximation
(Section 2.1.1), approximation of Alippi and Storti–Gajani
(Section 2.1.2), PLAN approximation (Section 2.1.3), CRI
approximation (Section 2.1.4), approximation of Zhang
et al. (Section 2.2) and representative SIG-sigmoid
approximations (Section 2.3) are presented in Table 6.

Although the Emax of both sig 236p and sig 336p is the
same, the Eave is smaller for sig 336p than for sig 236p:
This is due to the larger input range of sig 336p, as the
output of the sigmoid function saturates at 0 or 1 and the
average accuracy for jxj > 4 increases asymptotically.

The approximation errors in Table 6 are presented in
Figs. 4 and 5.

To conform with the original representations of the
sigmoid function approximations, the inputs and outputs
were represented in VHDL descriptions in fixed-point
format as suggested in or as could be concluded from the
original publications. This is summarised in Table 7.

The VHDL descriptions were synthesised with Synpli-
city’s Synplify Pro 7.1 logic synthesis software, whose
report file informed the area resources and timing
characteristics of a particular approximation. The number
of required logic elements was regarded as the area usage
metric. The targeted FPGA device family was Altera’s
APEX II (see also Fig. 3) [18], a representative modern
programmable logic device family both by its architecture
and performance. The CRI approximation was not coded in
VHDL, as the results reported in [24] were available. The
area requirements of the A-law based approximation
(Section 2.1.1), approximation of Alippi and Storti–Gajani
(Section 2.1.2), PLAN approximation (Section 2.1.3), CRI
approximation (Section 2.1.4), approximation of Zhang
et al. (Section 2.2) and several representative SIG-sigmoid
approximations (Section 2.3) are presented in Table 8 and
the maximum clock rate (in MHz) is presented in Table 9.

It is suggested, that a quality factor Q be defined to
represent the accuracy and usability of a sigmoid function
approximation

Q ¼ fmax

LEs � Eave � Emax

ð17Þ

where Q ¼ quality factor, fmax ¼ clock rate (Table 9),
LEs ¼ Number of logic elements (Table 8), Eave ¼ average
error in per cent (Table 6), and Emax ¼ maximum error
in per cent (Table 6). Based on (17) and Tables 6, 8 and 9,
the approximations are arranged into an order of superiority.
This is presented in Table 10.

data1

2

3

4

LUT carry &
control

carry-in &
cascade-in

outputpresettable
register

clock &
clear
logic

clock

clear

carry-out &
cascade-out

Fig. 3 Block diagram of logic element (LE) in APEX II devices
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4.1 Required approximation accuracy

The precision requirements in multilayer perceptron net-
works are stricter in the training phase than in feedforward
operation of the network. The minimum bit widths for both
network weights and the activation function (e.g. sigmoid)
were analysed in [25]. It was concluded by statistical
analysis, that the minimum bit width for the activation
function in the back-propagation learning algorithm is 8–10
bits, whereas the feedforward operation requires a precision
of 7 or 8 bits.

An extensive review of the quantisation errors in
hardware implementations of neural networks is presented
in [26], where hardware-friendly learning algorithms, for
example perturbation algorithms and local-learning algor-
ithms, are proposed. The discussion concentrates on the
required accuracy of weight representation, and the
precision of the activation function is not specifically
researched. The robustness of the activation function with
the proposed hardware-friendly learning algorithms remains
a subject of interesting further studies.

–8 –4 0

a b
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–8 –4 0 4 8
0
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–8 –4 0 4 8
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–8 –4 0 4 8
0

0.02

0.04

c d

e

Fig. 4 Error function in previously published sigmoid function approximations

a A-law based approximation
b Approximation of Alippi et al.
c PLAN approximation
d CRI approximation, q ¼ 3
e Approximation of Zhang et al.
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Fig. 5 Error function in representative SIG-sigmoid approximations

a sig_235p
b sig_236p
c sig_336p
d sig_337p
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The empirical experiments reviewed in [26] exhibit a
more robust performance with smaller bit widths in weight
values than could be inferred from [25], since the
statistically simulated minimum bit widths tend to represent
worst-case scenarios. Taking into account the well-known
robustness of neural networks, it has been assumed in this

paper that satisfactory operation of a neural network can be
achieved with one bit less than proposed in [25]. A precision
of 7 bits corresponds to a Emax of 0.39%, see (9), which is
regarded as a functional limit on the accuracy of the
activation function in network training. With regards to
network forward operation, it has been assumed that a
precision of 6 bits corresponding to a Emax of 0.78%, see (9)
is tolerable.

The tentative assumptions in the previous paragraph have
to be verified with extensive simulations and real world
experiments. The number of hidden layers and connections
of a neural network are also significant factors in neural
network performance.

4.2 Recommendations

Based on the discussion in the previous Section, the
following recommendations can be made:

If the input number range is [�8,8[, the best choice is the
sig 337p SIG-sigmoid implementation. It has the smallest
Eave and Emax (Table 6), and requires only 45 logic elements.
If area is the most important criterion and training is not
required, the sig 336p SIG-sigmoid implementation might
the best alternative, as its Emax is still tolerable at 0.77% and
only 32 LEs are required.

If the input number range is [�4,4[, network training
probably cannot be performed, as all approximations under
comparison have a too high Emax: When it comes to network
operation, the best alternative is the sig 236p SIG-sigmoid
implementation, since it requires only 25 LEs and its Emax is
still tolerable at 0.77%. The smaller sig 235p SIG-sigmoid
implementation with 22 LEs increases Emax to 1.51%, which
is probably too high.

The logical equations for the sig 337p and the sig 236p
SIG-sigmoid implementations are presented in Tables 11
and 12, which can be used with Fig. 2 to deduce the
complete operation of both sig 337p and sig 236p.

When other approximations besides SIG-sigmoid are
compared, the best choice is the PLAN approximation, as it
requires only 39 LEs and has the lowest Eave of 0.59%
among the other approximations. This is not surprising,
as the internal structure of the PLAN approximation
implementation resembles the SIG-sigmoid implemen-
tations. The second best choice is the approximation of
Alippi and Storti–Gajani, whose Eave of 0.89% underper-
forms the PLAN approximation, but otherwise these two are
quite similar in characteristics.

Table 7: Fixed-point format (6) used in VHDL descriptions

Approximation Input Output

A-law based approximation s3.6 0.7

Approximation of Alippi and Storti–Gajani s3.6 0.7

PLAN approximation s4.5 1.7

CRI approximation, q ¼ 1 . . . 3p

approximation of Zhang et al. s3.10 3.10

sig_235p s2.3 0.5

sig_236p s2.3 0.6

sig_336p s3.3 0.6

sig_337p s3.3 0.7

p
Authors’ results reported [24].

Table 8: Area requirements in logic elements (LE) of
sigmoid function approximations

Approximation LEsp

A-law based approximation 36

Approximation of Alippi and Storti–Gajani 36

PLAN approximation 39

CRI approximation, q ¼ 0 . . . 3† 65

Approximation of Zhang et al. 176

sig_235p 22

sig_236p 25

sig_336p 32

sig_337p 45

p
Target device is EP2A15F672C7, the smallest member of Altera’s APEX II

family.
†

Target device was Altera’s EPC10K20RC240–4 [24], but since its internal

architecture is almost equivalent to the APEX II architecture the results are

comparable.

Table 9: Clock rate of sigmoid function approximations

Approximation

Clock ratep

MHz

A-law based approximation 58.6

Approximation of Alippi and Storti—Gajani 64.2

PLAN approximation 75.8

CRI approximation, q ¼ 0 34.7

CRI approximation, q ¼ 1† 16.3

CRI approximation, q ¼ 2 11.6

CRI approximation, q ¼ 3 8.7

Approximation of Zhang et al. 66.4

sig_235p 89.5

sig_236p 94.7

sig_336p 85.7

sig_337p 76.4

p
Target device is EP2A15F672C7.

†
Since iterative CRI approximation requires q þ 1 cycles to complete,

normalised clock rate as defined by fnom=q þ 1; where fnom ¼ 34:72 MHz

[24] is reported.

Table 10: Quality factor sigmoid function
approximations

Approximation Quality factor

sig_337p 25,608

sig_236p 12,299

sig_336p 10,540

sig_235p 3,905

PLAN approximation 1,743

Approximation of Alippi and Storti–Gajani 1,085

approximation of Zhang et al. 0,227

A-law based approximation 0,134

CRI approximation q ¼ 2 0,079

CRI approximation q ¼ 3 0,076

CRI approximation q ¼ 1 0,055

CRI approximation q ¼ 0 0,019
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The approximation of Zhang et al. needs too many LEs as
it requires a multiplier. This is also corroboration for
excluding other approximations that require a multiplier
(Section 2.4). The CRI approximation is slow and not very
precise and the A-law based approximation is too
inaccurate, especially when x � �4:

5 Conclusions and future work

Comparing published digital sigmoid function approxi-
mations, it was concluded that a novel purely combinational

implementation called SIG-sigmoid developed at the Signal
Processing Laboratory of the Helsinki University of
Technology is fastest, smallest and most accurate. This
assessment was based on implementing several published
sigmoid function approximations in both MATLAB and
VHDL and comparing their quality factor defined by (17)

If the input number range is [�4,4[, the best choice is the
sig_236p SIG-sigmoid implementation, and if the input
number range is [�8,8[, the best choice is the sig_337p
SIG-sigmoid implementation.

FPGAs open new possibilities for implementing ANNs,
since the number of neurons, layers and interconnections
can be varied dynamically. Also the time-consuming ANN
training benefits from a reprogrammable implementation.

Future work involves estimating the maximum size of
ANNs in modern FPGAs. The main points are the size and
parameterisability of multipliers and the number of inter-
layer interconnections. The first defines mainly the required
area resources and the second defines the required routing
resources.

Table 11: Logical equations for sig_337p

Input x5x4x3x2x1x0
1

AND plane2

p1 ANDfx5; x2g

p2 ANDfx5; x4g

p3 ANDfx5g

p4 ANDfx5; x3g

p5 ANDfx4; x3;x2;x1; x0g

p6 ANDfx4; x3;x2;x1; x0g

p7 ANDfx4; x3;x2;x1; x0g

p8 ANDfx3; x2;x1;x0g

p9 ANDfx4; x3;x1;x0g

p10 ANDfx4; x3;x1;x0g

p11 ANDfx4; x2;x1g

p12 ANDfx4; x3;x1;x0g

p13 ANDfx3; x2;x1g

p14 ANDfx3; x1;x0g

p15 ANDfx4; x2;x0g

p16 ANDfx4; x3;x2;x1g

p17 ANDfx4; x3;x2;x1g

p18 ANDfx4; x3;x2g

p19 ANDfx4; x3;x2g

p20 ANDfx3; x2g

p21 ANDfx4; x2;x1;x0g

p22 ANDfx4; x2;x1;x0g

p23 ANDfx4; x3;x2;x1g

p24 ANDfx4; x2;x1;x0g

p25 ANDfx4; x3;x2;x0g

p26 ANDfx4; x3g

p27 ANDfx4; x3;x2;x0g

Output y6y5y4y3y2y1y0
3

OR plane4

y6 ‘1’5

y5 ORfp3;p5;p8;p10;p11;p12;p13;p14;p15;

p16;p18;p23;p24;p26g

y4 ORfp3;p5;p6;p10;p11;p15;p16;p20;p24;p26g

y3 ORfp3;p6;p11;p13;p17;p18;p21;p26g

y2 ORfp3;p6;p7;p9;p12;p13;p16;p19;p23;p25g

y1 ORfp3;p6;p7;p8;p12;p21;p22;p23;p24;p27g

y0 ORfp1;p2;p4;p5;p7;p8;p10;p13;p14;

p15;p18;p22g

1
Input is positive, x6 would be redundant sign bit

2
See also Fig. 2

3
There is no sign bit

4
See also Fig. 2

5
y � 1

2

Table 12: Logical equations for sig_236p

Input x4x3x2x1x0
6

AND plane7

p1 ANDfx4;x3;x2g

p2 ANDfx4g

p3 ANDfx4;x3;x2; x1;x0g

p4 ANDfx4;x3;x2; x0g

p5 ANDfx4;x2;x0g

p6 ANDfx4;x3;x1g

p7 ANDfx4;x2;x1; x0g

p6 ANDfx4;x2;x1g

p9 ANDfx4;x3;x2; x1g

p10 ANDfx4;x3;x2; x1g

p11 ANDfx4;x2;x1g

p12 ANDfx4;x3;x2; x0g

p13 ANDfx4;x3;x2; x1g

p14 ANDfx4;x3;x1; x0g

p15 ANDfx4;x3;x1; x0g

p16 ANDfx4;x3;x2; x1;x0g

p17 ANDfx3;x0g

p18 ANDfx2;x1;x0g

p19 ANDfx3;x1g

p20 ANDfx2;x1;x0g

p21 ANDfx3;x2g

p22 ANDfx3;x2g

Output y5y5y4y3y2y1y0
8

OR plane9

y5 ‘1’10

y4 ORfp2;p4;p17;p19;p22g

y3 ORfp2;p3;p4;p10;p21g

y2 ORfp3;p5;p6;p8;p9;p13;p18;p22g

y1 ORfp1;p3;p7;p11;p15;p16;p19;p20g

y0 ORfp3;p4;p7;p10;p12;p13;p14;

p16;p18g

6
Input is positive, x5 would be redundant sign bit

7
See also Fig. 2

8
There is no sign bit

9
See also Fig. 2

10
y � 1

2
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