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Abstract

This doctoral thesis consists of an introductory part and eight appended publica-
tions, which deal with hardware–based reprogrammability in algorithm accelera-
tion with a specific emphasis on the possibilities offered by modern large–scale
Field Programmable Gate Arrays (FPGAs) in computationally demanding appli-
cations.

The historical evolution of both the theoretical and technological paths culmi-
nating in the introduction of reprogrammable logic devices is first outlined. This
is followed by defining the commonly used terms in the thesis. The reprogram-
mable logic market is surveyed, and the architectural structures and the technolog-
ical reasonings behind them are described in detail. As reprogrammable logic lies
between Application Specific Integrated Circuits (ASICs) and general–purpose
microprocessors in the implementation spectrum of electronics systems, special
attention has been paid to differentiate these three implementation approaches.
This has been done to emphasize, that reprogrammable logic offers much more
than just a low–volume replacement for ASICs.

Design systems for reprogrammable logic are investigated, as the learning
curve associated with them is the main hurdle for software–oriented designers
for using reprogrammable logic devices. The theoretically important topic of par-
tial reprogrammability is described in detail, but it is concluded, that the practical
problems in designing viable development platforms for partially reprogrammable
systems will hinder its wide–spread adoption.

The main technical, design–oriented, and economic applicability factors of
reprogrammable logic are laid out. The main advantages of reprogrammable logic
are their suitability for fine–grained bit–level parallelizable computing with a short
time–to–market and low upfront costs. It is also concluded, that the main opportu-
nities for reprogrammable logic lie in the potential of high–level design systems,
and the ever–growing ASIC design gap. On the other hand, most power–conscious
mass–market portable products do not seem to offer major new market potential
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for reprogrammable logic.
The appended publications are examined and compared to contemporaneous

research at other research institutions. The conclusion is that for relatively wide
classes of well–defined computation problems, reprogrammable logic offers a
more efficient solution than a software–centered approach, with a much shorter
production cycle than is the case with ASICs.
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Chapter 1

Introduction

Reprogrammable logic1 has been around for decades, and it has struggled to find
its place as a suitable compromise between the flexibility and adaptability of soft-
ware running on general–purpose processors and the high performance of cus-
tom integrated circuits2. Reprogrammable logic has been generally regarded as
a substitute for custom circuits in low–sized production quantities by the hard-
ware designers, and on the other hand, software designers have been relatively
uninformed of the possibility of running their compiled programs on other plat-
forms besides general–purpose processors. Both of these viewpoints are missing
a novel trend, which is that reprogrammable logic is emerging as an equivalent
and important algorithm implementation platform of its own. This is mainly due
to the advantages that the practically instant reprogramming of the entire device
provides, both during product development and device operation.

This doctoral consists of an extensive and comprehensive introductory part,
and appended eight Publications P1–P8, which describe the results in research
projects that the author has participated in over the years. The common theme
in the introductory part and the appended Publications are the advantages that
reprogrammable logic –based implementations of computationally intensive al-
gorithms have, especially when compared to software–based implementations.

The thesis is organized as follows: Chapter 2 presents an overview of the his-
tory and present–day reprogrammable logic technology followed by a retrospec-
tive look at reconfigurable computing, and the chapter is concluded by comparing

1In this thesis, reprogrammable logic encompasses all digital logic devices with device–wide
reprogrammabality. See also Section 2.1.1.

2Section 2.3.2 reviews reconfigurable processors, which in an optimal case combine the best
features of reprogrammable logic and processors.
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2 CHAPTER 1. INTRODUCTION

microprocessors, reprogrammable logic, and custom integrated circuits.
Chapter 3 presents a detailed look at the architectural details of modern Field

Programmable Gate Arrays (FPGAs), including their design challenges and op-
portunities, and presents examples of high–speed computing platforms based on
reprogrammable logic devices.

Chapter 4 presents a summation on the technical, design–related, and eco-
nomic applicability of reprogrammable logic in efficiently implementing algo-
rithms and constructing large electronic systems. The main points are collected
into a SWOT (Strengths, Weaknesses, Opportunities, Threats) matrix for reprog-
rammable logic.

Chapter 5 presents overviews of application areas covered in Publications P1–
P8, and compares the author’s results with those of contemporaneous research at
other places.

Chapter 6 concludes the thesis by summarizing the main results of the research
culminating in this thesis.

1.1 Author’s Contribution in the Publications

The author’s contribution in the appended Publications P1–P8 is as follows:

• The author performed all AHDL programming for the genetic algorithm,
and was responsible for writing chapters 6.2 and 6.3 in Publication P1.

• The author performed all C, MATLAB, and VHDL programming for the
AAL Type 2 receiver, and was responsible for writing chapters III–VII in
Publication P2.

• The author is responsible for all research and writing in Publication P3.

• The author is responsible for the bulk of research and writing in Publication
P4, with professor Skyttä performing supervisory and project management
duties.

• The author is responsible for all C and VHDL programming for the GP–
extended FIR predictor, and was responsible for writing chapters 1 and 4–6
in Publication P5. Furthermore, the author added significant portions to the
MATLAB code provided by researcher Tanskanen.
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• The author is responsible for suggesting the usage of diminished–one num-
ber representation and Ma’s algorithm for the implementation of the mul-
tiplication block in the IDEA encryption algorithm, for supervisory and
project management duties and for performing all VHDL recoding of the
design. The author is responsible for writing most of Publication P6, with
researcher Hämäläinen contributing for figures 3 and 4.

• The author is responsible for suggesting the usage of memoryless imple-
mentation of the SubBytes transformation in the AES encryption algorithm,
for supervisory and project management duties, and for writing chapters 1
and 6–7 in Publication P7.

• The author is responsible for all research and writing in Publication P8.



4 CHAPTER 1. INTRODUCTION



Chapter 2

Reprogrammable Logic Devices

This chapter begins with a retrospective look at the history of reprogrammable
logic up to the early nineties, followed by a clarification of the terminology used
in this thesis and an introduction into current reprogrammable logic market. A
brief description of reconfigurable computing is included to clarify its relation-
ship to the concepts presented in this thesis. Finally, ASICs and microprocessors
are compared to reprogrammable logic devices in terms of performance and flex-
ibility, and particular emphasis is laid on the field of reconfigurable processors.

2.1 History of Reprogrammable Logic

The first descriptions of computing automata capable of reprogramming them-
selves were put forward by John von Neumann in a series of lectures and unfin-
ished manuscripts dating back to the late 40’s and early 50’s. After the death of
von Neumann in 1957, his works on self–reproducing automata were collected
and edited by Arthur Burks, who published them in 1966 [277]. Although von
Neumann is generally regarded as the main developer of the conventional serial
model of computing, it seems obvious that during the last years of his life, he was
more interested in more complicated computing automata.

In 1960, Gerald Estrin of University of California at Los Angeles proposed a
variable structure computer system to achieve performance gains in a variety of
computational tasks [88] [90]. The central idea was to combine both fixed and
variable structure computer organizations, where the variable subsystem could be
reorganized into a variety of problem–oriented special–purpose configurations.

5



6 CHAPTER 2. REPROGRAMMABLE LOGIC DEVICES

The structure of a prototype of a variable structure computer system is also pre-
sented in [89].

In 1967, Robert Minnick published a survey of microcellular research [205].
He described both fixed and variable cell–function arrays. In fixed cell–function
arrays the switching function of each cell remained fixed, and only the intercon-
nections between cells were programmable. In the case of variable cell–function
arrays, the function produced by each cell could also be determined by parameter
selection.

In the seventies, interest in and the corresponding financial support for non–
serial forms of computation seems to have tapered off. This was most proba-
bly caused by the introduction of the first microprocessor —the famous 4004 by
Intel— in 1971 and the ever growing number and scope of applications enabled
by the expanding market of microprocessors and microcontrollers [184]. For a
moment, it seemed that software running on serial microprocessors could fulfill
practically all computing needs.

In the eighties, there was a revived interest in both systolic and parallel archi-
tectures. This interest was inspired by the advances in semiconductor integration
technology, the evolution of system design concepts [201], and by new and more
demanding applications of supercomputing. An interesting design combining par-
allelism with reprogrammability was the Texas Reconfigurable Array Computer
(TRAC) [175]. In the TRAC project, adaptability was achieved by the reprogram-
ming of interconnections between individual computing elements.

In the late eighties and early nineties, the first computing platforms with sub-
stantial amounts of reprogrammable logic were designed. Noteworthy projects
were the Programmable Active Memory (PAM) project at Digital Equipment Cor-
poration’s (DEC) Paris Research Laboratory (PRL) [28], and the Splash project
at the Supercomputing Research Center in Bowie, Maryland [43] (See also Sec-
tion 3.3). The speedups achieved by the PAM project were very impressive and
as similar results were reported by other research groups at approximately the
same time, interest into the possibilities of reprogrammable platforms increased
substantially. This was also realized by two influential engineering societies,
the Association for Computing Machinery (ACM) and the Institute of Electrical
and Electronics Engineers (IEEE). These engineering societies began sponsoring
two annual conference series about the applications of FPGAs (Field Program-
mable Gate Array), namely the ACM/SIGDA International Symposium on Field–
Programmable Gate Arrays and the IEEE Symposium on FPGA–Based Custom
Computing Machines. In Europe, the first International Workshop on Field–
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Programmable Logic and Applications was held in 1991.
Manufacturing reprogrammable logic devices would not be possible without

the advances in electronics, because large reprogrammable circuits have enor-
mous silicon overhead; for example a reprogrammable device with 50000 usable
gates may have well over a million transistors [258] (See also Figure 3.2). This
demonstrates that the reprogrammable logic market has benefited tremendously
from advances in semiconductor manufacturing technology.

The earliest electronic computers were built with error–prone vacuum tube
technology. In 1959, Jack Kilby invented the monolithic integrated circuit at Texas
Instruments, but it was not until the introduction of Intel’s 4004 microprocessor
in 1971 (see above) that general–purpose computers began to be integrated on the
same silicon chip [259].

The first suggestion for an implementable reprogrammable logic device is
probably due to Sven Wahlstrom, who in 1967 proposed the inclusion of addi-
tional gates to customize an array of integrated circuitry [279]. However, the
silicon "real estate" was an extremely scarce resource in those days, and the idea
that a large area of an integrated circuit would be dedicated to customizable inter-
connection structure was regarded as heretic.

In the late seventies, the first Programmable Array Logic (PAL) devices were
introduced by Monolithic Memories. These were simple arrays of AND and
OR gates, and their reprogramming could not be performed on–the–fly. Ini-
tially, PALs and their close cousins, Programmable Logic Arrays (PLAs) were
used mainly as "glue logic" and there were not any serious attempts to imple-
ment demanding computation applications with them. PALs and PLAs were fol-
lowed by Programmable Logic Devices (PLDs), first by Simple Programmable
Logic Devices (SPLDs), and later by Complex Programmable Logic Devices
(CPLDs). Xilinx, which was founded in 1984, introduced the world’s first FPGA
in 1985 [51]1.

Being the first in the FPGA market, Xilinx has continued to dominate it well
into the present time, although its main competitor Altera has occasionally taken
Xilinx’ place as the market leader. Other noteworthy reprogrammable logic man-
ufacturers include Actel, Atmel, Cypress and Lattice (See also Section 2.1.2). In
the nineties and onwards, reprogrammable logic began to be regarded as the third,
middle–of–the–road alternative to both ASICs (Application Specific Integrated
Circuit) and microprocessors in the implementation of digital circuits and sys-
tems. The historical review of reprogrammable logic is summarized in Figure 2.1.

1The terminology is explained in Section 2.1.1.
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1950
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by von Neumann in the
late 40's and early 50's

Estrin's proposal for a
variable structure
compurer in 1960

Minnick's studies of
cell-function arrays in 1967

Revived interest in systolic
and parallel computing in
the early 80's

First monolithic integrated
circuit by Jack Kilby in 1959

First article about programmable
logic arrays (Wahlstrom, 1967)

The 4004 microprocessor
introduced by Intel in 1971

First PAL device introduced by
Monolithic Memories in 1978

First FPGA introduced by
Xilinx in 1985

Reprogrammable logic becomes
mainstream technology

Theoretical path Technological path

Figure 2.1: Historical timeline of reprogrammable logic into the nineties.
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2.1.1 Reprogrammable Logic Terminology

Defining a universally acceptable terminology for reprogrammable logic is a daunt-
ing task, as most manufacturers and researchers (re)define common terms for their
own purposes, and this fluidity in terminology has also been pointed out else-
where [37].

As PLDs and FPGAs were introduced in the previous chapter, it is worth
pointing out their main difference, which lies in the internal structure: whereas
PLDs are based on wide two–level switching functions with even tens of inputs,
FPGAs use a typically 4–input programmable lookup–table (LUT) with an op-
tional output register as the basic structure [42]. Furthermore, FPGAs are volatile
SRAM (Static Random Access Memory) –based, whereas PLDs are typically
based on EPROM/EEPROM technology ((Electrically) Erasable Programmable
Read–Only Memory). The timing characteristics of FPGAs are more dependent
on signal routing and their architecture is more hierarchical, than is the case with
PLDs. However, the distinctions between FPGAs and (C)PLDs are sometimes
blurred, as there is a recent trend to adopt FPGA–based logic blocks into modern
CPLDs, e.g. Altera’s MAX II product line [192].

For the purposes of thesis, the term "reprogrammable logic" is used to encom-
pass all digital logic devices, which incorporate device–wide reprogrammability,
and thus both (C)PLDs and FPGAs are included.

The terms reprogrammability and reconfigurability are used interchangeably
in this thesis, as in all practical cases the two terms are equivalent. Furthermore,
the term "FPGA" is occasionally used interchangeably with "reprogrammable
logic (device)". This is to conform with the original references and/or based on
the assumption that the topic under discussion is specifically targeted for FPGAs,
and not for (C)PLDs.

Reconfigurable computing, the topic of Section 2.2, is defined as the ability to
modify the system structure during run–time [73].

The granularity of reprogrammable logic architectures is defined as the size
and complexity of the basic computing block [62]. Generally, fine–grained com-
mercial architectures are more flexible in implementing logic, but have longer
reprogramming times and are less efficient in implementing arithmetic–heavy dat-
apaths.

A system is classified as partially reprogrammable (in the paper [178], this is
called dynamically reconfigurable, but for the purposes of this thesis, these terms
are equivalent) if it can be partially reprogrammed while active [178].
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The terms compile–time reconfiguration (CTR) and run–time reconfiguration
(RTR) have been defined in [146], where CTR applications have been defined as
systems with a single configuration, whereas RTR applications consist of multiple
configurations.

2.1.2 Modern Reprogrammable Logic Devices

In 2003, the size of the global reprogrammable logic market was $2.6 billion2,
of which Xilinx accounted for 51%, Altera for 32%, Lattice for 8%, Actel for
6%, with the remaining 3% belonging to other manufacturers [296]. Although the
reprogrammable logic market of $2.6 billion is less than the total ASIC market of
$13 billion in 2003 [220], the ratio between new ASIC designs and new FPGA
designs is one to three [19] (See also Section 2.3.3), which is a solid argument to
regard reprogrammable logic as a mainstream technology (See also Figure 2.1).

The main market segments for reprogrammable logic are communications and
consumer electronics, with 37% of the annual volume targeted for production
phases, 30% for preproduction phases, 30% for prototyping, and 3% for emula-
tion [183]. Leading reprogrammable logic manufacturers do not own their fabrica-
tion facilities ("fabs"), but instead rely on the "fabless" corporation model, which
allows them to exploit the most cutting–edge manufacturing technology without
having to invest into modern multi–billion dollar fabs. For example, in March
2003 Xilinx became the first reprogrammable logic manufacturer to ship 90–nm
line–width reprogrammable logic devices, but the actual production of these de-
vices takes place at fabs operated by United Microelectronics Corporation (UMC)
and International Business Machines Corporation (IBM) [297].

A list of representative and popular reprogrammable logic devices is presented
in Table 2.1. The distinction between CPLDs and FPGAs is done by the manu-
facturers. The gathered information originated from [161], and has been updated
from the manufacturers’ websites. The figures are as given by the manufactur-
ers and they may not be fully comparable with each other3. For example, I/O
numbers may include pins not only for general–purpose use, but also clock inputs
may be included. It has been assumed, that the manufacturers have used the stan-
dard 2–input NAND gate requiring four transistors as the definition of one gate,

2The total global semiconductor market in 2003 was $166.4 billion [230], with reprogram-
mable logic outpacing average market growth [229]

3Exact comparison between advertised and estimated gate count figures is discouraged, as there
are no independent third party measurements (See also Section 3.1.1).
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but this has not been explicitly stated in the data sheets. Especially the largest
FPGA families have embedded processors and hardwired multiplier blocks (See
also Section 3.1.1, but these characteristics have not been represented in detail in
Table 2.1.

2.2 Reconfigurable Computing

At the beginning of the 1990s, the research community began to view the volatil-
ity of SRAM–based FPGAs as a strength instead of a liability. It was assumed,
that the reprogrammability of FPGAs was in fact the key to new types of appli-
cations [132]. One of the first such applications was logic emulation, where
reprogrammable systems outperformed software simulation by orders of mag-
nitude. FPGAs were being seen as an ideal building block for multimodal and
generic hardware, and it was visioned that a future hardware supercomputer would
consist of an array of interconnected FPGAs.

In the mid 1990s, the semiconductor industry was actively looking for a re-
placement for the traditional sequential microprocessor as the driving force for
further revenues [258]. Reprogrammable logic was seen as a promising alternative
or at least as a supplement to microprocessor, despite its overhead and unsparing
use of silicon real estate. On the theoretical front, there were efforts to define a
restricted domain of the general–purpose architectural space focused on Reconfig-
urable Computing [73] (See Section 2.1.1). At around the same time (mid 1990s),
the term Configurable Computing Machine (CCM) was used to describe an FPGA
system that could be customized to the task at hand [34].

After an initial enthusiasm for reconfigurable computing, realism began to re-
place over–optimistic predictions. Realizing the potential of reconfigurable com-
puting systems outside research laboratories proved difficult, because these sys-
tems relied on manipulating low–level abstractions and thus required high–skilled
developers [185]. It was deemed unlikely that reconfigurable computing would
make significant inroads against the microprocessor in the foreseeable future. Ma-
jor drawbacks included a lack of high–level software programming model and a
consequent lack of truly automatic mapping tools [273].

Interest in reconfigurable computing meant broadening the scope of imple-
mentation platforms from fine–grained FPGAs to coarse–grained and mesh–based
architectures and related CAD software. It was argued, that the classical "von
Neumann" computer was becoming obsolete and being replaced by a new "soft
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Table 2.1: Popular reprogrammable logic devices in the market (July 2004). Up-
dated from [161].

Manufacturer

Family Type Max. gates (k) RAM bits (k) User I/O

Actel Axcelerator FPGA 125–2000 29–338 168–684
ProASICPLUS FPGA 75–1000 27–198 158–712

Altera MAX 3000A CPLD 0.6–10a –b 34–208
MAX II CPLD 3.6–32a –b 80–272

Stratix II FPGA 600–8000a 419–9383 365–1173
Cyclone II FPGA 180–2800a 120–1152 142–622
Stratix FPGA 422–3300a 920–7428 426–1203

Atmel ATF15 CPLD 1.5–12 –b 36–212

AT40 FPGA 5–50 2–18 128–384
AT6000 FPGA 6–30 –b 96–124

Cypress Delta39K CPLD 30–200 70–480 174–428
Quantum38 CPLD 48–144 16–48 174–302

Lattice ispXPLD CPLD 75–300 128–512 141–381
ispXGPA FPGA 139–1250 92–414 176–496
LatticeECP–DSP FPGA 400–3000 117–709 224–576

Xilinx CoolRunner–II CPLD 0.75–12 –b 33–270
Spartan–III FPGA 50–600 32–288 182–514
Virtex–II FPGA 40–8000 72–3024 88–1108

aAs Altera no longer publishes equivalent gate count figures, the table uses esti-
mates based on the logic element to gate conversion factor inferrable from Altera’s
older datasheets.

bNo dedicated RAM blocks.
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Figure 2.2: A speculative view on computing platforms: a) von Neumann, b)
current, c) emerging [129]

machine" paradigm with a host and reconfigurable arrays (RAs) [129]. If this
became true, performance is not the only feature that improves, as the flexibility
of the host/accelerator system to support turn–around times of minutes instead of
months is certainly also interesting. A fully integrated design language allowing
co–compilation is naturally an absolute requirement for this to succeed. These
speculative topics are described in Figure 2.2.

A good review of the most recent developments in reconfigurable computing
is presented in [62], which considers both hardware aspects, design software and
run–time reconfiguration. Another recent review [37] summarizes the main differ-
ences of reconfigurable logic and traditional processing architectures as spatial vs.
temporal computation, configurable vs. fixed datapath, distributed vs. centralized
control and distributed vs. centralized resources. Although the reconfigurable
computing never materialized, it can be argued that the contemporary incorpora-
tion of reconfigurable datapaths in both ASICs and microprocessors can be traced
to the same phenomenon in changing design approaches, namely a fresh look at
the potential offered by reconfigurable computation elements.

2.3 Reprogrammable Logic, Processors, and
ASICs

In an ideal case, reprogrammable logic combines the best of both worlds: the
flexibility of software run on general–purpose processors and the speed of tai-
lored hardware, namely ASICs (Application Specific Integrated Circuit). This
tradeoff is illustrated in Figure 2.3, and a more quantified comparison between
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Figure 2.3: Comparing processors, reprogrammable logic and ASICs. There are
overlaps between regions, due to designer agility and design schedule require-
ments.

reprogrammable logic, processors and ASICs is made in the following Sections.
Special attention is paid to an emerging and promising field of reconfigurability
in processors in Section 2.3.2.

2.3.1 Reprogrammable Logic and Processors

Most current high–performance computing platforms have a processor as the main
workhorse, which makes the platform flexible enough to execute a large class of
applications. The internal architecture of a processor is fixed, which implies that
the sequential instruction decoding and execution, memory access bottleneck, and
fixed control architecture limit the achievable performance. Modern processors
consist of small execution engines, which are multiplexed heavily to support de-
manding computations on a relatively small amount of active hardware.

In reprogrammable logic, computations are implemented by spatially com-
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Figure 2.4: Spatial vs. temporal computation for y = Ax2 + Bx + C [76].

posing primitive operators rather than temporally composing them of primitive
instructions as in microprocessors (See Figure 2.4). This way, reprogrammable
logic can be thought of as offering higher peak computational density at the cost
of lower instruction density. [76]

The continuing decline in the line width of semiconductor manufacturing pro-
cesses does not necessarily mean that processor performance scales linearly with
feature size. Increased power consumption, on–chip interconnection delays, mem-
ory access time (the so–called "memory wall"), and escalating heat problems (the
so–called "thermal wall") shift the design effort from processor to the entire sys-
tem. Silicon die area may be of little concern in the future, but there are physi-
cal and program behavior limits to taking advantage of additional area resources,
when processors with hundreds of millions of gates are being designed. [95]

A probable trend in future microprocessors is to incorporate adaptability to
the hardware, where reconfigurable logic will support the spatial composition of
regular computations. The major functional blocks traditionally found on micro-
processors may well be interconnected in a reconfigurable manner. Furthermore,
as the well–known "90/10 rule" implies (90% of runtime is consumed in 10%
of code), operations locality may exhibit sufficient regularity for a reconfigurable
implementation within a processor [76]. Increasing the performance of micropro-
cessors cannot be achieved by simply adding fixed functional units, as this neither
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yields the highest desired performance in proportion to the area which the fixed
units consume, nor allow the construction of low–cost systems of wide applica-
bility [70].

2.3.2 Reconfigurable Processors and FPGAs as Coprocessors

General–purpose microprocessors for modern desk–top computers dedicate more
silicon area for the application–specific accelerators than for the microprocessor
core itself [128]. This has blurred the distinctions between conventional micro-
processors and reprogrammable logic, which has resulted in intense research into
reconfigurable processors, and also commercially successful products have been
introduced. Reconfigurable processors can be tuned for a particular computation
task after the physical hardware has been designed, for example by adaptively re-
configuring their instruction set. Reconfigurable processors are generally divided
into three main classes [21] (See also Figure 2.5):

• Attached processor, where the reconfigurable logic is placed on an I/O bus
of the host processor.

• Coprocessor, where the reconfigurable logic is placed next to the processor,
and the communication protocol is similar to that used for floating–point
coprocessor.

• Reconfigurable functional unit (RFU), where the reconfigurable logic is
placed inside the processor, and the processor treats the RFU as if it were
one of the standard units on the processor’s datapath.

In all three classes, the conventional microprocessor is typically used to sup-
port the bulk of the functionality required to implement an algorithm, while the
reconfigurable processor is used to accelerate only the most critical computation
kernels of the program [134]. Common requirements for all classes of reconfig-
urable processors are moderately wide datapath, very short reconfiguration times,
and the possibility to reconfigure the processor during runtime [128].

The PRISM–I (Processor Reconfiguration through Instruction–Set Metamor-
phosis) [16] platform is an example of the attached reconfigurable processor model.
The proof–of–concept hardware platform consisted of a processor board with a 10
MHz Motorola 68010 processor, and a second board consisting primarily of four
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Xilinx 3090 FPGAs with a 16–bit bus connecting the two boards. The micro-
processor implemented standard functions, and computationally demanding parts
were identified and executed on hardware.

Both HARP [167] and Garp [136] can be regarded as reconfigurable copro-
cessors. The HARP platform consisted of a 32–bit RISC (Reduced Instruction
Set Computer) microprocessor (a T805 transputer) with 4 MB of DRAM, closely
coupled with a Xilinx XC3195A FPGA with its own local memory. A MIPS
processor was combined with reprogrammable logic on the same silicon die in
the Garp architecture, which allowed partial reprogramming controlled by the ex-
tended MIPS instruction set.

The majority of research into reconfigurable processors has concentrated on
reconfigurable functional units (RFUs), where the instruction decoder issues in-
structions to the reconfigurable unit as if it were one of the standard units of
the processor [21]. The Nano reconfigurable Processor [290] was implemented
on a Xilinx 3000 series FPGA. Custom instructions were developed to achieve
application–specific functionality, and the processor control was implemented
within the FPGA instead of using a standard microprocessor. The DISC (Dy-
namic Instruction Set Computer) [287] reconfigurable processor had a morphable
instruction set, which was implemented by partial demand–driven reconfiguration.
A drawback of this scheme is the overhead caused by continually reconfiguring
instruction modules.

The MorphoSys architecture [168] was targeted at computation–intensive and
data–parallel applications, and combined a TinyRISC control processor with an
array of reconfigurable cells. The execution model was based on partitioning
applications into sequential and data–parallel tasks. The OneChip [50] reconfig-
urable processor integrated a reconfigurable functional unit into the pipeline of a
RISC processor, and supported issuing multiple instructions simultaneously and
performing out–of–order execution. The Chimaera [134] reconfigurable processor
enabled multi–operand custom instructions be granting direct access to the regis-
ter file of the host processor, which was also taken into account in the design of an
automated compiler. Operating system issues have been taken into consideration
from the very beginning in the Proteus [68] architecture, whose objective was to
extend an ARM processor with reconfigurable functional units. An interesting
application of reconfigurability in processors is presented in [231], where run–
time adaptability allows an automatic evolution and refinement of the system to
better suit run–time conditions. The so–called polymorphic processor paradigm,
which allows the programmer to modify the processor functionality and hardware
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at will without architectural and design modifications, is the object of research in
the MOLEN reconfigurable processor project [270].

Commercial reconfigurable processors are offered, among others, by TenSil-
ica with its configurable and extensible 32–bit Xtensa microprocessor core, and
by Triscend (acquired by Xilinx in March 2004) with its A7 and E5 families of
customizable microcontrollers. Altera’s Excalibur devices integrate an industry–
standard ARM922T processor with debugging modules, on–chip memory, and
peripherals with an APEX 20KE device–like architecture [91], and Xilinx has in-
tegrated the IBM PowerPC 405 core into the Virtex–II Pro device family [274]
(See also Section 3.1.1).

Work on reconfigurable processors is still primarily in the research phase, with
significant challenges remaining [81], especially in improving current immature
hybrid CPU/FPGA programming models [10]. Nevertheless, there are promis-
ing application domains for reconfigurable processors, such as communications,
multimedia and cryptography [87].

2.3.3 Reprogrammable Logic and ASICs

At the other end of the computing spectrum, ASICs are designed for a specific
application. Therefore, they have a superior performance for a highly restricted
set of computing tasks, due to their fixed functionality. For example, in certain
tightly defined radar signal processing applications, ASICs seem to outperform
best available FPGAs by a factor of two [207] [188]. An obvious disadvantage of
ASICs is the exclusion of post–design optimizations and feature upgrades. [37]

The fundamental reason for the popularity of ASICs in mass–market appli-
cations is well–known: for any algorithm to achieve maximum throughput, it
should be implemented in hardware [53]. ASICs also dominate the low–power
market segment, where reprogrammable logic is not as competitive (See also Sec-
tion 3.1.3). When a designer decides to go for an ASIC–based solution, he prefers
speed over generality, since ASICs provide precisely defined functionality for a
specific task. It has been estimated, that the ratio between new ASIC designs
and new FPGA designs is one to three (with FPGA designs in the majority), and
that the ratio is growing more and more advantageous for the FPGA manufactur-
ers [19].

Reprogrammable logic and ASICs have connections and similarities in both
economical and development respects. Reprogrammable logic may be used in
either pre– or post–ASIC production phases, where the small market size makes
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reprogrammable logic more economical than ASICs. There are also several mi-
gration paths for converting an FPGA–based design into an ASIC [23], for ex-
ample the leading reprogrammable logic manufacturers both offer a service to
convert existing FPGA design into structured ASICs, as evidenced by Altera’s
HardCopyTM [127] and Xilinx’ EasyPathTM [275] solutions. Software develop-
ment environments for both reprogrammable logic and ASICs have much more in
common than the push–button approach available in software engineering [164].
Using a Hardware Description Language (HDL) or a low–level schematic entry
tool is unheard of in modern software development, whereas they are common-
place in hardware–based design. When the price of development tools for FPGAs
and ASICs is compared, the similarities end: FPGA design tools are by far less
expensive than corresponding ASIC tools [19].

The semiconductor industry has traditionally regarded ASICs as the only eco-
nomical alternative for mass–market products, and the first reprogrammable logic
devices did not directly encroach on ASIC territory. However, this may be chang-
ing, as modern million–gate FPGAs enable Configurable System on Chip (CSoC)
products allowing unprecedented levels of system integration. Reprogrammable
logic may have several benefits over ASICs, such as reduction in costs, time, and
resources relative to ASIC designs, flexibility to implement different functions us-
ing the same devices, and wider vendor sources of FPGA technologies than with
ASIC designs [207]. Consequently expanding markets, such as networking and
wireless communications, are not anymore the exclusive realm of ASICs. At the
same time there is also a move away from programming the end product only
once, for both economical and technological reasons. The economical reasons
include time to market and upgrade revenues, and the technological reasons com-
prise bug fixes, customization, and remote diagnostics and monitoring. All this
motivates to search for new business models for reprogrammable logic. [158]

According to the so–called Makimoto’s wave [182], the semiconductor in-
dustry swings between standardization and customization, with changes in di-
rections taking place roughly every ten years. Reprogrammable logic represents
both extremes of Makimoto’s wave, as they are standardized in manufacturing
but customized later in application. Coupled with the current shift from the "PC"
(Personal Computer) to "DC" (Digital Consumer) products, this means that repro-
grammability is a necessity in mass–market applications, which may have a short
time to market and a dramatic end of life. [182]

Communications and networking may become the first mass–market applica-
tion area where reprogrammable architectures find widespread acceptance as a
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true alternative to ASIC–based solutions. As the complexity of electronics sys-
tems outpaces the technology evolution predicted by Moore’s law, the integration
density advantage of ASICs begins to lose its importance. Evolutionary and adap-
tive environments require flexible solutions, which are causing a shift in the design
paradigm towards a platform–based design [221]. The combined need of flex-
ibility and energy–efficiency benefit from using reprogrammable architectures,
as energy–consuming blocks can be turned on only when needed. The poten-
tial to integrate application–tailored coarse–grained dynamically reprogrammable
architectures has been studied, for example, in the Dynamically Reconfigurable
Architecture for Mobile Systems (DReAM) research project [24].

2.3.4 Quantitative Comparisons

There have been surprisingly few published articles with a rigorous investigation
of the quantified performance differences of FPGAs, ASICs and microprocessors
with a wide spectrum of compared algorithms and applications. Furthermore, de-
sign effort and required time for a design cycle are often omitted from these com-
parisons. This section presents three quantified comparisons of FPGAs, ASICs
and microprocessors. Further material can also be found in Chapter 4 and the
appended Publications P1–P8.

A quantitative performance comparison of FPGAs, ASICs and digital signal
processing (DSP) processors using actual fixed–point DSP applications and CAD
tools demonstrated that FPGAs outperform DSP processors by an order of magni-
tude, and in many cases approach the ASIC performance [215]. The comparisons
concentrated on the performance of a multiplier, which is a core building block
in almost every DSP application. Single–dimensional Finite Impulse Response
(FIR) filters and a Fast Fourier Transform (FFT) calculation were used as bench-
marks. It was found, that for FPGAs to achieve a performance increase in DSP
applications over DSP processors and ASICs, specialization and parallelism must
be employed to the fullest. Specifically, constant coefficient multipliers in FPGAs
almost equalled the performance of ASICs.

When floating–point applications were compared in another study [27], differ-
ent results in DSP performance were obtained when FPGA–based custom com-
puters were compared with general–purpose computers. The conclusion was, that
custom computers based only on FPGA execution units improve only little the
performance of state–of–the–art workstations. The most important reason for this
was, that both the TMS320C40 and Alpha 21064 (state–of–the–art processors of



22 CHAPTER 2. REPROGRAMMABLE LOGIC DEVICES

that time) had high–performance hardware support for floating–point arithmetic.
The implementations of a combinatorial search problem in both software and

reprogrammable logic were compared in [232]. The particular problem was the
search for approximate solutions of overconstrained systems of equations over
GF(2), which is of practical interest in cryptanalysis. It was discovered, that care-
ful programming of a modern microprocessor with good compiler support yields
comparable performance, such that an FPGA–based solution, albeit faster, may
not be worth pursuing. This is especially true for algorithms with high data de-
pendencies and sequential computation flow, whereas algorithms with a high de-
gree of parallelism are better suited for implementation on reprogrammable logic
than on microprocessors. Both microprocessors and reprogrammable logic have
well–known performance thresholds in problem size; for reprogrammable logic
this means exceeding the available logic resources, whereas for a software–based
solution, performance degrades after the problem size has exceeded the size of the
first level cache.



Chapter 3

Designing with Reprogrammable
Logic

The purposes of this Chapter are to describe the architectural characteristics of
modern large–scale reprogrammable logic devices, and to survey the advantages
and disadvantages of reprogrammability with a particular emphasis on partial re-
programmability, to present examples of reprogrammable computing platforms,
and to survey the software design tool issues in reprogrammable logic design.

3.1 Architectural Characteristics

The two main building blocks in reprogrammable logic devices are logic and inter-
connections, and both these are reviewed in separate subsections. The emphasis is
on modern large–scale FPGAs, since they represent the highest level of develop-
ment in reprogrammable technology. As reprogrammable logic device capacities
grow, power consumption is increasingly a matter of grave concern for application
developers, and power–related issues are described in their own subsection. The
description of reprogrammable logic architectures is concluded by a survey into
several non–commercial and unconventional architectural solutions.

23
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3.1.1 Computational Elements

A hierarchical view of a modern FPGA1, namely Xilinx Virtex–II2, is presented
in Figure 3.1. The following paragraphs highlight the historical and theoretical
background for basic logic size, logic block clustering, cascade and carry chains,
embedded memory, clock distribution and I/O. It should be remembered, that only
a small portion of the silicon area of a modern FPGA is dedicated to active com-
putational elements. A typical rule–of–thumb is a 1:10:100 relationship between
action logic, configuration memory, and programmable interconnect [75], which
is also presented in Figure 3.2.

For comparison purposes, the ratio of routing to logic cell area (the so–called
routing factor) in standard—cell ASIC design depends primarily on the number of
metal layers. With two metal layers the routing factor is typically between 1 and
2, whereas with three or more metal layers with over–the–cell routing enabled,
the routing factor is usually zero to 1. When test structures are added, it can be
estimated that the relative area of core logic in a standard–cell ASIC design varies
between 20–80% [243]. On the other hand, examples of processor core areas are
given, among others, in [84], and generally processor cores occupy 10–20% of die
area in modern general–purpose microprocessors.

Good reviews of the design issues with FPGAs are presented in [59] and [248].
It is emphasized, that the basic building block of an FPGA should be easily ar-
rayable in both horizontal and vertical directions. A regular structure is easier to
manufacture than an FPGA with a variable–grain architecture, i.e. where the size
of a logic block is not constant in the entire design.

Before a more detailed examination of the inner structure of modern FPGAs
begins, a few cautionary remarks are in place. Benchmarking and comparing
different FPGA device families and their architectures is challenging, as there
are various independent variables that have an effect on the performance. These
include, but are not limited to, gate count, types of logic circuits, types of memory
circuits, ratio of logic to memory, architecture, and design software tools. The
device vendors’ own benchmarks and test runs should also be taken with a grain
of salt [78]. FPGA performance depends a great deal on the way that CAD tools
map circuits on the chip, and also the gate count figures advertised by device
manufacturers cannot usually be verified by independent outsiders [42] (See also

1CPLDs are not handled separately in this thesis, as they do not represent the high–end spec-
trum of reprogrammable logic (See also Table 2.1).

2There is variation in the hierarchy and internal among different devices and manufacturers,
but the depicted Virtex–II device can be said to represent a typical modern FPGA.
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Table 2.1).
The fundamental structure of the logic block was heavily investigated in the

early nineties, and the conclusion was to use a four–input lookup–table (LUT)
as the best compromise between area requirements, timing delay, and flexible
functionality. These findings are relevant also today, as most commercial FPGAs
manufacturers use a four–input LUT as the basic building block of their devices.
On the silicon level, a LUT is implemented as a programmable static RAM lookup
table [223].

The effect of the logic block functionality on the total delay of an FPGA was
investigated in [240], where four basic architectures were compared. The experi-
ments indicated that five– or six–input LUTs had the lowest total delay over a set
of relevant logic circuits. Multiplexer–based block was close behind, followed by
wide–input AND–OR gates and NAND gates. These findings corroborated previ-
ously research, which had found that a four– or five–input lookup table achieved
the minimum average critical path delay over a large set of design examples [162].

The effect of logic block functionality on area efficiency was the subject of
research in [223], where the best results were achieved with three– or four–input
LUTs, largely independent of the programming technology. It was also found,
that the logic block should contain a D flip–flop, since this reduces the required
area in sequential circuits.

Individual logic blocks are clustered together with high–speed local intercon-
nections for three main reasons: less delay, less area, and shorter compilation
times [31]. The reasons for these improvements are clear: local interconnect is
faster than general–purpose routing, most area is consumed by general–purpose
interconnect with its long metal wiring, and placement and routing is the most
time–consuming step in mapping a design to an FPGA.

A cluster is defined as a group of basic logic blocks, that are fully connected
by a mux–based crossbar (See also Figure 3.3). Clustering has its origins in VLSI
design, where it has been used to construct a natural hierarchy of the circuit ele-
ments [239]. FPGA manufacturers have for several years incorporated a cluster–
based architecture in their devices.

The effect of cluster size on FPGA performance has been researched in both [5]
and [187]. The results of [5] indicate, that with LUT sizes of 4 to 6 a cluster size
of between 4 and 10 provides the best area–delay product in an FPGA, when also
deep sub–micron electrical effects are taken into account, and detailed simula-
tions are carried out. FPGA architectures with cluster sizes ranging from 1 to 20
were compared in [187]. The best performance was achieved with size 8 clusters,
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which had 23% less delay and 14% less area than size 1 clusters. As an example
of the reduction in compilation times, size 20 clusters required seven times less
time than size 1 clusters to compile.

Carry and cascade chains are usually embedded in the basic logic block to
facilitate the implementation of adders, comparators, bit shifters, counters and
equality checking circuits. They are also used in high–speed connections between
adjacent logic cells for functions whose implementations requires more area than
provided by a single logic block. An enhanced cascade chain based on a tree
structure was proposed in [294], where it was argued that the new structure would
reduce delay from linear time to log time in terms of the number of logic cells
cascaded. High–performance carry chains based on carry select, carry lookahead,
and Brent–Kung adders were proposed in [135], where an average of 3.8 improve-
ment over traditional ripple carry based carry chains was reported.

Modern FPGAs have embedded memory blocks with even millions of bits,
which act either as internal memory or as additional combinational logic for func-
tions with wide inputs. The instantiated memory can be configured to support a
wide variety of features, and can also have dual–port functionality, and be either a
synchronous or synchronous [137]. Flexible amounts of embedded memory help
in finding the right balance between logic and memory in an individual design, but
the generation of software design algorithms to take advantage of the additional
flexibility remains a challenge [138].

Large–scale modern FPGAs require global clock distribution of high quality,
and therefore fast clock paths are slowed down to be as slow as the slowest path to
achieve low–skew global clock signals. This requires dedicated de–skewing cir-
cuitry. The I/O capacity of large FPGAs is limited, since the minimum pad spac-
ing shrinks much slower than the line width of semiconductor manufacturing pro-
cesses. This means that large capacity FPGAs are often pin limited [263]. Most
modern FPGAs have several Phase–Locked Loops (PLLs), which enable the gen-
eration of multiple desired internal clock frequencies by PLL synthesis. Further-
more, tens of different electrical interface standards are also supported [6]. Mod-
ern FPGAs have also dedicated digital signal processing (DSP) blocks, for exam-
ple Altera’s Stratix devices DSP blocks consist of hardware multipliers, adders,
subtractors, accumulators, and pipeline registers enabling up to 333 million sam-
ples per second rates [6]. Embedding processors onto modern FPGAs is also
gaining popularity, for example Xilinx allows the integration of IBM PowerPC
405 cores onto Virtex-II Pro devices [274], and Altera offers Excalibur devices,
where an ARM922TTM is implemented on an APEX 20KE device-like architec-
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ture [91].
Examples of the design choices in commercial FPGA devices over the years

are briefly described below. Altera’s FLEX 6000 architecture, introduced in 1998,
has clusters consisting of eight four–input LUTs. Clusters are called Logic Array
Blocks (LABs) and they have common LAB–wide clock and asynchronous con-
trol signals [271]. Altera’s Stratix architecture, introduced in 2002, has clusters
of size 10, and to provide support for digital signal processing, dedicated DSP
blocks are available for common signal processing functions. The memory hier-
archy of Stratix devices comprises three levels [172]. Variable–grain architectures
have been proposed relatively seldom, although they might have advantages over
constant–grained architectures in fitting a larger variety of functions on the ba-
sic logic block. Examples of variable–grain architectures are Vantis’ VF1 FPGA
architecture, which had a three–level logic hierarchy with both three– and four–
input LUTs at the lowest hierarchical level [4], and Atmel’s second generation
FPGA architecture, whose lowest hierarchical level consisted of two– and three–
input LUTs [157].

Recently, there has been a trend towards adaptive basic building blocks in
high–end FPGAs. Altera has developed a novel structure called Adaptive Logic
Module (ALM) for its new Stratix II FPGA family. Each ALM contains two
adaptive four–inputs LUTs, and with up to eight inputs to the combinatorial logic
block, one ALM can implement up to two independent functions, each of varying
widths [46].

3.1.2 Interconnections

The internal interconnections in FPGAs are the primary reason for the speed and
density gap between FPGAs and Mask Programmable Gate Arrays (MPGAs),
since the MPGAs use mask–programmed metal wires and do not suffer from the
capacitance, resistance, and size of programmable connections of FPGAs [60].
Interconnections consume most of the chip area and are the dominating factor of
the overall circuit delay [234]. First FPGAs had a fully symmetrical structure,
with a symmetrical grid of logic blocks and routing channels on all four sides of
the logic block. This evolved into hierarchical FPGAs, which have a hierarchical
structure of both logic blocks and interconnections. Research proved that hier-
archical FPGAs could implement circuits with fewer routing switches and fewer
switches in total, which meant lower density and less costs [3]. Reducing the
number of programmable interconnect points that a signal must traverse to reach
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its target offers highly predictable signal delays, where predictability is defined as
the accuracy with which interconnect delay is estimated when the gates have been
placed on the logic blocks, but routing has not been completed [210].

The traditional measure of good FPGA design has been high gate utilization,
i.e. the more logic is fitted into LUTs, the better the design. This view has been
challenged in [74], where the relationships between high logic utilization and in-
terconnection efficiency were researched. It was concluded, that high LUT uti-
lization does not necessarily correlate with high area efficiency, as the amount of
interconnect needed per LUT varies among designs and within a single FPGA.
This means, that all LUTs and all interconnections cannot be used to their full
potential at the same, but one resource must be underutilized to fully utilize the
other. Furthermore, conventional FPGAs have substantially more configuration
bits for interconnections than actually needed. Bloated configuration files could
be compressed a great deal, if this were taken into account in design software [72].

The best distribution of routing segment lengths and the best mix of pass tran-
sistor and tristate buffer routing switches in island–style FPGA architectures was
investigated in [32] and later elaborated on in [234] (See also Figure 3.4). The re-
sults indicate, that while most commercial FPGA architectures use mostly length
1 wires (where the length of a wire is measured in terms of the number of logic
blocks it passes before being switched), the best performance both in terms of area
and delay is achieved with wires of length 4 to 8. The distribution of pass transis-
tors and tristate buffers seems to be about 50–50, with liberal switching between
buffered and pass transistor tracks.

Interconnections are used not only between logic blocks, but also between
memory blocks and logic. Adding direct programmable interconnections between
the internal memories improves routability and speed of FPGAs, with only a small
additional cost in required area. [285]

An active area of study is designing an optimal switch block, which is a
programmable interconnect connecting each incoming track to a number of outgo-
ing tracks. The flexibility of each switch block is the key to the overall flexibility
and routability of the device [191], since the majority of the electrical delay oc-
curs in interconnect and interconnect switching [148]. An analytical framework
for switch block design is presented in [169], where the design of a switch block
fabric containing wires of any length is described. The theory and design of uni-
versal switch blocks is presented in [236], where an algorithm to construct generic
universal switch blocks is presented, and the results indicated that universal switch
blocks improve routability at the device level. On the other hand, the traditional
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Figure 3.4: FPGA interconnection terminology [32].

Xilinx–style nonuniversal subset switch block was found superior to other pro-
posed architectures in [226].

3.1.3 Power Consumption

Reducing power consumption has several advantages: avoiding expensive pack-
aging, increasing the chip life operation, simplified cooling, and extending the
lifetime of battery powered systems [36]. Therefore, reduced power consumption
is a key design goal for portable computing and communication devices [1]. It
has been projected that power consumption, along with increasing design com-
plexity, will become the most serious design concern in the electronics industry.
This applies as well to FPGAs, which consume more power than ASICs during
high–speed operations, because the long routing tracks in FPGAs have signifi-
cant parasitic capacitance which dissipates significant amounts of power during
switching activity. Besides this dynamic power consumption, static power is ex-
pected to become an increasingly important part of the total power [218].

FPGA power consumption must be estimated at an early design stage step
to develop a suitable board design and a power supply unit. PEST , or the total



3.1. ARCHITECTURAL CHARACTERISTICS 33

estimated power consumption, of an FPGA consists of three parts:

PEST = PSTAT + PIO + PINT ,

where PSTAT is the static power consumption, PIO is the I/O–related power
consumption, and PINT is the internal power consumption [281]. The computed
PSTAT value is usually in the range of a few microwatts and can be ignored in
most power estimations. For FPGAs with a few number of on–chip gates and
disproportionately many I/O pins, PIO plays a major role in total power consump-
tion. However, in most cases the power budget is dominated by the internal power
consumption PINT , which is primarily caused by the charging and discharging
of the capacitance on each internal node that is switched. According to a detailed
analysis of dynamic power consumption in Xilinx’ Virtex–II FPGAs, PINT stands
for 90% of the total power dissipation on the average, with interconnections ac-
counting for 60%, logic for 14%, and clocking for 10% of the total consumption.
It was also concluded, that dynamic power dissipation of a Virtex–II CLB (Con-
figurable Logic Block, the basic logic block in Xilinx FPGAs) is 5.9 µW per MHz
for typical designs, but may vary significantly depending on the switching activ-
ity [233].

Careful design can produce substantial savings in total power consumption.
Design pipelining can reduce power consumption by about 25–40%, and an ad-
ditional saving of nearly 15–45% can be achieved by improving partitioning.
These improvements are due to a reduction of the interconnection network in-
fluence [36]. Yet another design technique to achieve dynamic power savings is
clock gating, which temporarily disables inactive elements in the circuitry. The
basic idea is to replace the global clock to pipeline stages with local clocks, which
may reduce the total power consumption by about 30% [48].

Present FPGA architectures will totally dominate the total power dissipation
in a portable environment with a power budget in the milliwatt range. To over-
come this, low–energy FPGA architectures have been proposed. An energy im-
provement of more than an order of magnitude was achieved by utilizing a hybrid
interconnect structure and low–swing circuit design techniques in [102]. Similar
techniques, namely a rich local–interconnect network and a dual–voltage scheme,
were proposed in [165].
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3.1.4 Innovative Reprogrammable Logic Architectures

Commercial fine–grained FPGAs are very efficient for implementing random logic
functions, but they have weaknesses in general arithmetic functions, reprogram-
ming and compilation times, forward compatibility, and size constraints [82] [111].
For these reasons, mostly academic research projects have periodically suggested
improvements to the mainstream fine–grained four–input LUT –based FPGA ar-
chitectures, but so far the commercial market has been dominated by traditional
solutions.

The goal of Triptych FPGA Architecture [38] and its associated mapping
tools [83] was to reduce the cost paid for routing in standard FPGAs. This was
accomplished by combining routing and logic in a way that allows a tradeoff be-
tween resources on a per–mapping basis. Consequently, the basic building block
in the Triptych architecture was called Routing & Logic Block (RLB), which was
a capable of performing both routing and logic tasks simultaneously.

All array resources are dedicated to a single function for an entire operation in
conventional reprogrammable logic architectures, whereas Dynamically Program-
mable Gate Arrays (DPGAs) were designed to be multiple context devices [71].
The goal was to increase device utilization by allocating space on chip to store
several configurations for each gate or switch. This enabled context switches with
minimal overhead. A prototype DPGA was implemented in 1995 in a 3–layer
metal, 1.0µm CMOS process. The prototype used four–input LUTs for the basic
logic blocks and supported 4 on–chip context memories, with each context fully
specifying both the interconnect and LUT functions [251].

The goal of the RaPiD research project was to define a general coarse–grained
reconfigurable architecture, consisting of a linear array of functional units which
can be configured to form a linear computational pipeline [82]. Another coarse–
grained architectural solution resulted in the design of the PipeRench architec-
ture, which was based on pipeline reconfiguration, where individual physical
pipeline stages called stripes could be dynamically reconfigured in a single clock
period [111].

The quest for FPGAs with faster performance includes research into SiGe het-
erojunction bipolar transistor (HBT) FPGAs, whose prototype implementations
should run in the 1–20 GHz range [105]. This would make FPGAs suitable for
even the most demanding high–speed digital signal processing tasks, but the im-
maturity of the manufacturing process and large power consumption are disadvan-
tages of the SiGe technology. There have also been research efforts to remove the
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clocking restrictions by designing fully asynchronous FPGAs [133] [293], but the
absence of a clock would require a radical re–education of FPGA designers, and
therefore the future commercial prospects of asynchronous FPGAs do not look
very promising.

3.2 Reprogrammability

The reprogrammability of FPGAs sets them apart from other pieces of hardware,
as the functionality of hardware can be changed on–the–fly. Reprogrammability
naturally has also disadvantages, as a large portion of on–chip resources have to
be dedicated to perform this function. There does not seem to be a general rule for
quantifying the costs and benefits of reprogrammability, and more often than not,
they have to be analyzed in a case–by–case manner. The purpose of the follow-
ing subsections is to describe the reprogramming technologies, partial reprogram-
ming, self–reconfiguration and design systems. As mentioned in Section 2.1.1,
the terms reprogrammability and reconfigurability are used interchangeably in this
thesis to conform with the terminology in the original publications.

3.2.1 Reprogramming Technologies

The reprogrammability of most modern FPGAs is based on SRAM (Static Ran-
dom Access Memory) technology, meaning that the configuration points in the
FPGA are connected to SRAM bits, whose (re)programming also (re)configures
the FPGA [62]. The contents of the SRAM–based programming memory de-
termine the interconnections between computational elements and the functions
which the computational elements (typically four–input LUTs) perform. Usually,
the SRAM stores only one configuration, but if it is capable of storing more, for
example four [224], contexts could be switched on a clock–cycle basis. The con-
tents of SRAM are volatile, which means that the FPGA has to be programmed (or
"booted"), usually from an external non–volatile memory, every time the power is
turned on.

If nonvolatility of an FPGA is desirable, and there is no need to reprogram
the device ever, antifuse–based FPGAs are a good alternative. Antifuses are one–
time programmable, which create a connection between two points when "blown",
while when unblown remain an open circuit [132].

There has been interesting research into optically reprogrammable FPGAs,
which would enable ultra fast dynamic reprogrammability and high density of
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usable gates. The configuration of logic elements would be stored in an on–chip
programming memory, which would be dynamically reprogrammed using optical
interconnections. A fully optical FPGA would be the ultimate goal, but so far,
these ambitious plans have remained on the drawing tables [269].

Most modern device families support only device–wide reprogrammability,
which means that the contents of the entire chip are reprogrammed at the same
time, meaning that the device is not functional during reprogramming. Partial re-
programming (also called dynamic and run–time reprogramming) has been com-
mercially supported by the discontinued CLAy (Configurable Logic Array) plat-
form of National Semiconductor and similarly discontinued XC6200 device fam-
ily of Xilinx. Currently, Xilinx’ Virtex families support partial reprogrammability.
This important concept is further studied in the next subsection.

The perspective of reconfigurable hardware going beyond the traditional elec-
tronic systems is investigated in [194], where it is noted that current electronic
systems are at a definite disadvantage in terms of plasticity, true hardware recon-
figuration and especially reconfiguration and evolution of the hardware construc-
tion system itself. Microfluidic systems are described in detail and it is concluded,
that they provide a potential bridge between biomolecular reactions and reconfig-
urable electronic hardware.

3.2.2 Partial Reprogrammability

Partial reprogrammability is a theoretically important concept, but the regrettable
lack of practical applications and development tools has so far prevented it from
maturing into a mainstream computing model. However, due to its theoretical
significance and a potential for future breakthrough, partial reprogrammability is
reviewed at considerable depth in this Section.

As defined in Section 2.1.1, partial reprogrammability means that a device
can be partially reprogrammed while active [178]. This means that the embedded
configuration storage circuitry can be updated selectively, without disturbing the
operation of the remaining logic. The term Logic Caching is introduced to imply
the memory hierarchy of active and inactive tasks. This is presented in more
detail in Figure 3.5. A four–class categorization of reconfigurable architectures is
presented in [118]. General purpose machines are all considered reconfigurable,
but differences arise in the way in which reconfiguration is managed. Based on
this, reconfigurable machines are grouped into four classes based on the size of
reconfigurable units and the presence (or absence) of local memory.



3.2. REPROGRAMMABILITY 37

Dynamically reconfigurable FPGA
Configuration memory

New task

being loaded

Active tasks Inactive tasks Unused FPGA resources

Figure 3.5: Logic caching concept in dynamic reconfiguration of FPGAs [178].

The terms compile–time reconfiguration (CTR) and run–time reconfiguration
(RTR) were described in Section 2.1.1. RTR systems can be further divided into
global and local classes, with the local RTR applications taking advantage of par-
tial reprogrammability, as they may program any percentage of the reprogram-
mable resources at any time. A functional density metric is introduced in [289] to
balance the advantages of RTR against its associated reconfiguration costs. The
goal of RTR is to free up reprogrammable circuitry that would be idle in non–RTR
designs, while at the same time making sure that reconfiguration time should not
dominate execution time. A Run–Time Reconfiguration Artificial Neural Network
(RRANN) is presented as an application that benefits from RTR [289] [86].

The generic identification of circuits which would benefit from partial repro-
grammability remains an open research issue. Attempts have been made to for-
mally establish a class of circuits whose performance can be improved by partial
reprogramming. In [179], this class of circuits is referred to as programmable,
multi–function cores (PMCs), whose control registers are programmed at run–
time to select a particular circuit as required by the application. Results of a
UART (Universal Asynchronous Receiver Transmitter) case study show area re-
ductions of 21% and speed increase of 14%. Circuits that fix their parameters at
run–time might well benefit from partial reprogrammability, as constant coeffi-
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cient arithmetic units would be used instead of general–purpose arithmetic units.
This would lead to substantial savings in area resources [119]. Run–time param-
eterized circuits for the Xilinx XC6200 device family were presented in [214].
Worst–case delay analysis is a difficult problem in run–time parameterized de-
signs, as a bound on the circuit delays must be determined during design time.

Basic Research on Partial Reprogrammability

Effective utilization of partial reprogrammability requires partitioning the design
in time and scheduling the partitioned design into a time–multiplexed reprogram-
mable logic device. In [262], the architectural framework of a scheduler with
a micro register to hold computation results intact between configurations was
presented. The scheduling problem in MorphoSys, an integrated coarse–grained
multicontext reconfigurable system, has been discussed in detail in [180], where
system operation control has been delegated to a tiny RISC (Reduced Instruction
Set Computer) processor.

Hardware sequencing, i.e. the managing of the partial reprogramming of the
device, has been mostly accomplished with a processor based architecture [288],
and an algorithm for automatically adding prefetch operations into reprogram-
mable applications has been presented [131]. Effective sequencing was also the
goal in designing the Virtual Hardware Handler (VHH) [139], where low recon-
figuration time has been regarded as a key design parameter. Other research into
run–time management of different configurations includes RAGE (Reconfigurable
Architecture Group) [44], and structuring the reconfiguration manager into three
parts: a monitor, a loader, and a configuration store [235].

Well–known concepts from software engineering, such as data flow comput-
ing [35] and pipelining [225] have also influenced research into partial repro-
grammability. Data–flow concepts are evident in wormhole run–time reprogram-
ming [34], where the control mechanism for partial reprogrammability is inher-
ently distributed. Multiple computational streams can simultaneously reprogram
parts of the device in a data–driven stream processing. The PipeRench architecture
has been developed based on the notion, that if reprogrammable systems become
practical, they will be predominately applied to pipelineable applications [47].
For this reason, PipeRench supports placing different pipeline stages in different
absolute locations of the device, and reprogramming individual pipeline stages in
one clock cycle.
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Self–Reconfiguration

An interesting subtopic with intriguing new design possibilities in partial repro-
grammability is self–reconfiguration, which has obvious connections with the
(somewhat overhyped) concept of "evolvable hardware". A reprogrammable de-
vice is called self–reconfigurable, if it is able to both read and write the config-
uration memory [237], which is also called metacomputation. Self–modification
of configuration bits has its counterpart in software technology, where a piece of
software having access to both its program and data segments has the potential
for self–reference, but this is both rare and taboo in disciplined software tech-
nology [80]. The on–chip management of dynamically varying circuit modules
with the reprogrammable device itself overseeing a static collection of tasks was
presented in [41]. When coupled with an operating system, such as Java–based
ReConfigME [283], totally self–sufficient reprogrammable devices may be feasi-
ble.

A case study in self–reconfiguration was performed in [196], where the re-
configuration control logic and target application executed in parallel on the same
FPGA, with the data required for reconfiguration generated on demand. The ap-
plication in question was a pattern matching with task–dependent data folding on
a commercial Xilinx XC6216 device. A Self–Reconfigurable Gate Array (SGRA)
capable of context switching (i.e. self–reconfiguration) in a single clock cycle was
designed in [238]. The synthesized SGRA was able to store eight configurations.

Design Objectives and Tools in Partial Reprogrammability

The most important objective in designing systems with partial reprogrammability
is to maximize the amount of static circuitry that remains unchanged when chang-
ing from one configuration to another. This is accomplished by partitioning the
application into functional blocks that are, for the most part, common to all con-
figurations [122]. This is the first step in developing a partially reprogrammable
system, the second step is to physically map the configurations onto the device.

Verification and visualization of partially reprogrammable systems is orders
of magnitude more challenging than in conventional designs, where a one–to–
one mapping exists between circuits and device resources. Partially reprogram-
mable systems map many circuits to shared device resources, each of which can
be decomposed into sequences of temporal, one–to–one mappings. This verifica-
tion problem has been attempted to solve in a proposed CAD framework called
Dynamic Circuit Switching (DCS) [222]. Visualizing configuration partitioning,
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reprogramming overhead effects, spatial overlaps between blocks in different con-
figurations and design execution and configuration schedule has been attempted
in the DYNASTY Framework [268].

Design tools for partially reprogrammable systems have been mostly based
on the JavaTM programming language, and not on traditional HDLs (Hardware
Description Language), such as VHDL or Verilog, for example. First attempts at
design tools for partially reprogrammable systems included writing a supervisory
program that controlled the platform. The goal of JHDL (Just another Hardware
Description Language) [25] was to integrate supervisory control with circuit de-
scription, and to allow designers to express dynamically changing circuit organi-
zations using only standard programming abstractions found in object–oriented
languages. Starting with JBitsTM [117], Xilinx became the pioneer among reprog-
rammable logic manufacturers to support partial reprogrammability at the tool
level. JBitsTM is a set of JavaTM classes which provide an Application Program
Interface (API) into the Xilinx FPGA bitstream. The interface allows all config-
urable resources to be individually set under software control, since the program-
ming model used by JBitsTM is a two dimensional array of Configurable Logic
Blocks (CLBs), the basic reprogrammable unit in Xilinx devices.

Based on JBitsTM, RTP (RunTime Parameterizable) Cores were developed [119],
which allow cores to be created at runtime and to be used to dynamically mod-
ify existing circuitry. Simple and direct support for partial reprogramming was
not supported in JBitsTM, but it was introduced in JRTR [199], which has been
used in frame–based reprogramming of Virtex devices. JBitsDiff [154] is also
a JbitsTM based tool for extracting circuit information directly from the configu-
ration bitstreams to produce pre–routed and pre–placed cores for run–time use.
PARBIT (PARtial BITfile Transformer) [143] is a tool to transform configuration
bitstreams into partial bitstreams, which is accomplished by reading the configu-
ration frames from the original bitstream and copying only the configuration bits
related to the user–defined area to the partial bitstream.

3.3 FPGA–based Computing Platforms

After the introduction of reprogrammable devices into the semiconductor market,
the pent–up demand for computation acceleration platforms could be satisfied.
The AnyBoard [267] project at the North Carolina State University is a represen-
tative example of the capabilities offered by the first entrants into the reprogram-
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mable rapid–prototyping market, as the initial version was completed in 1990.
The heart of AnyBoard consisted of an array of five Xilinx FPGAs, with a total
usable gate count of approximately 25000 gates, large by the standards of that
time. The AnyBoard hardware had both local and global buses, RAM memory,
downloading interface and PC interface with the ISA (Industry Standard Archi-
tecture) bus. Applications were developed with dedicated custom software, and
AnyBoard was primarily used as a coprocessor to a PC in neural networks, image
compressors, motor controllers, systolic convolvers and microsequencers.

More ambitious and longer–lasting FPGA–based computing platforms were
the Splash project [43] at Supercomputing Research Center in Bowie, Maryland,
and the PAM (Programmable Active Memory) project [278] at Digital Equipment
Corporation’s Paris Research Laboratory (See also Section 2.1).

The Splash project was initially motivated by a need to accelerate systolic al-
gorithms for DNA string matching. The first Splash version was released to the
Supercomputing Research Center user community in June 1989, and it consisted
of two boards [107]. The first board contained a 32–stage linear array of Xil-
inx FPGAs and associated memories, and the second board contained a dual–port
memory card. The boards resided in two VME (Versabus Modified for Eurocard)
slots of a Sun workstation. Programming Splash was very tedious, as applica-
tions had to be described at the gate level and manual partitioning was required.
Compared to supercomputers of that time , the computing acceleration achieved
with Splash was impressive, as speedup factors of over 300 were reported. Archi-
tectural limitations of the first Splash version, most notably small I/O bandwidth
and lack of interprocessor communication motivated the design of Splash 2 [13],
which had a fully programmable 16x16 crossbar among the Xilinx FPGAs. The
programming environment for Splash 2 was based on VHDL [12], which facil-
itated the porting of applications, such as keyword/dictionary searching, DNA
pattern matching, and custom image processing [15]. The impressive speedups
achieved with both Splash versions were undoubtedly a strong motivation for the
entire reprogrammable logic community, as they demonstrated that custom hard-
ware can outperform high–end supercomputers in dedicated computing tasks.

The PAM (Programmable Active Memory) concept was introduced in 1989
[28], when the Perle–0 prototype board was advertised as a software silicon foundry
for a 50K gate array with a 50 milliseconds turn–around time. Over the follow-
ing six years, four generations of PAM hardware and four generations of PAM
programming environments were designed and implemented [29]. The concept
of PAM meant in general terms a reprogrammable hardware coprocessor tightly
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coupled with a host workstation. PAMs took different sizes and forms: as an ex-
ample, the third generation board, DECPeRLe–1, was composed of an array of 24
Xilinx 3090 FPGAs, 4 MB SRAM, and a fast FIFO–based interface to the I/O bus
of a workstation. A customized version of C++ was later used in programming
the applications onto PAMs. The PAM project achieved remarkable speedups by a
factor of 10 to 1000 over conventional processors in computer arithmetic, cryptog-
raphy, error correction, image analysis, stereo vision, high–energy physics, ther-
modynamics, biology and astronomy [278]. Later, the PCI Pamette [232] grew
out of the PAM Project, as the popular PCI (Peripheral Component Interconnect)
bus was selected to connect the computing platform with its host processor. The
programming of Pamette was also performed in C++. with a special class library
allowing netlist descriptions to be embedded in user–written C++ code [195].

The one million gate limit in FPGA–based computing platforms was achieved
in 1995 by the Teramac configurable hardware system [8] built at the Hewlett–
Packard Laboratories at Palo Alto, California. A fully configured Teramac in-
cluded half gigabytes of RAM, and it consisted of 1728 custom FPGAs imple-
mented in MCMs (Multichip Modules). An entire software tool chain with com-
piler, netlist filter, global and local partitioner, placer, and router was also de-
signed. The Teramac system tolerated defective resources introduced during man-
ufacturing of its FPGAs, as automatic mechanisms to precisely locate the defects
were also developed [66]. Another FPGA–based computing platform that sur-
passed the one million gate barrier was the Transmogrifier–2 designed at the De-
partment of Electrical and Computer Engineering, University of Toronto [173].
The Transmogrifier–2 was intended as a flexible rapid–prototyping system with
relatively high clock rates of approximately 10 MHz, and the hardware resources
consisted of 16 boards each with two Altera 10K50 FPGAs. Of the most recent
large–scale FPGA–based systems, the Berkeley Emulation Engine (BEE) [54] is
representative with its estimated capacity of 10 million gates and attainable system
clock frequency of over 60 MHz.

The commercial manufacturers of present FPGA–based computing platforms
include the leading programmable logic manufacturers, which all sell develop-
ment and prototyping kits [7] [295], as well as third–party companies, such as
Annapolis Micro Systems [11]. Interesting recent academic research projects into
FPGA–based computing platforms include an Internet–connected FPGA–based
platform [92], where the required TCP/IP (Transmission Control Protocol, In-
ternet Protocol) protocol stack was implemented directly in VHDL on a Xilinx
Virtex FPGA, a stand–alone portable platform iPACE–V1 [159] for real–time ap-
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plications with a support for partial reprogramming, and Pilchard [171], which
interfaces directly into the DIMM (Dual In–line Memory Module) socket in stan-
dard PCs.

3.4 Software Tools

A smooth, easy–to–use, and reliable design tool set is necessary for the acceptance
of reprogrammable logic in the electronic design community. To accomplish this,
major reprogrammable logic manufacturers have invested a lot into their design
tools3, and due to their high quality, most designers do not have to learn the intri-
cacies of converting a design from a high–level description onto silicon.

A typical design process for reprogrammable logic starts from a high–level
design description, and includes logic synthesis, technology mapping, placement,
and routing [55]. Most often logic synthesis and technology mapping are per-
formed with a third party design software, such as Synplify from Synplicity [249]
or FPGA Advantage from Mentor Graphics [96], whereas placement and routing
require a backend tool from the FPGA manufacturer, for example Quartus II by
Altera [219] or ISE Foundation by Xilinx [150].

3.4.1 Logic Synthesis, Technology Mapping, Placement and
Routing

The research in design tools has concentrated on SRAM–based FPGAs with four–
input LUTs as their basic architectural element, as this architecture has been most
widespread among major reprogrammable logic manufacturers.

Combinational logic synthesis optimizes the logic gate networks by first per-
forming logic optimization, which transforms the gate–level network into another
equivalent gate–level network which is more suitable for the subsequent step, and
then performing technology mapping, which transforms the gate–level network
into a network of logic elements (or cells) in the target technology by covering
the network with the cells [64]. First FPGA–based logic synthesis algorithms per-
formed a variety of network transformations and optimizations that were geared
specifically towards standard cell architectures, and knowledge of FPGA archi-
tectures was not used in the optimization process. Recent research has concen-

3According to Wim Roelandts (the CEO of Xilinx), there are more software engineers working
at Xilinx than there are hardware engineers [120].
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trated on an FPGA–specific logic synthesis approach, which unites multilevel
logic transformation, decomposition, and optimization techniques into a single
synthesis framework [272]. After logic synthesis has been performed, the technol-
ogy mapping phase selects the circuit elements used to implement the optimized
circuit. As FPGAs are usually constructed of K–input lookup tables (with K

typically equalling 4), a single LUT can implement 22
K different combinational

functions. Therefore, ASIC–based approaches to technology mapping, which fo-
cus on using circuit elements from a limited set of simple basic gates, do not work
well with FPGAs, and different approaches to technology mapping are required
for LUT–based FPGAs [98] [61].

The original approach to logic synthesis and technology mapping of finite
state machines (FSMs) and sequential circuits was to use the same algorithms as
for combinational circuits, and to map the combinational logic between the out-
put registers of logic elements [212], but technology–specific features of the target
architectures are nowadays taken into consideration in the FSM partitioning pro-
cedures [93]. After the introduction of internal embedded memory blocks into
FPGAs, additional challenges and opportunities appeared for technology map-
ping. The large capacity of embedded memory blocks enables the implementa-
tion of complex functions in one logic level without the routing delays associated
with a subnetwork of LUTs. Technology mapping algorithms that identified parts
of circuits that could be efficiently mapped to an embedded memory block have
been designed, such as EMB_Pack [65] and SMAP [284]. The technology map-
ping procedure was also extended to dual–port memory blocks [142], as many
applications require memories that can be accessed simultaneously by two sepa-
rate subcircuits.

Placement and routing are the two most important steps in physical design
for FPGAs, and they are responsible for a major portion of the overall design
time [156]. The placement process fixes the locations of the logic blocks onto
the FPGA, and the routing process assigns signals to routing resources to suc-
cessfully route all signals while achieving a given overall performance [200]. As
routing resources in FPGAs are discrete and scarce, a simultaneous solution to
both minimizing total delay and routing all signals is challenging. A popular
placement and routing tool with freely available source code is the VPR (Versatile
Place and Route) [30] CAD suite. The router in VPR is based on the Pathfinder
negotiated congestion algorithm [200], and the simulated annealing algorithm is
used for placement. Most recent research has concentrated on tightly integrating
placement and routing, instead of the traditional view of iterating between the two
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distinct steps [156].
As compile times are important for production software [147], it has been ob-

served that users may be willing to trade certain mapping quality for a reduction
of CAD tool runtimes. In this respect, FPGA design differs from ASIC design,
where producing the highest quality design results at the cost of significant run-
times is justified by the long fabrication times and large costs, whereas FPGA
design allows reasonable compromises in this respect. The tradeoffs between run-
time and design were investigated in [209].

3.4.2 High–Level Design with FPGAs

The vast majority of present–day FPGA designs are written in a Hardware De-
scription Language (HDL), such as VHDL or Verilog. The size and complexity
of modern circuits make traditional schematic–based design methods unattractive
alternatives [94], and it has been estimated, that 5–20 kilogate designs described
with schematics or Boolean equations can require several person–months of la-
bor [242]. When using an HDL for FPGAs, the design must be adapted to the
available reprogrammable resources, and this requires a solid understanding of
the targeted architecture. For example, one–hot encoding of state machines is
beneficial for fine–grained LUT–based architectures, and multiplexers are expen-
sive to implement in FPGAs [116]. Proper use of hierarchy is critical in achieving
desired device utilization, as the advantages of hierarchical design style include
adding structure to the design, easing debugging, providing a mechanism for shar-
ing the design among members of the design team, and facilitating the creation of
reusable design libraries. However, no amount of re–designing the hierarchical
structure compensates for a poorly written HDL code. A time–tested recommen-
dation by Xilinx has been to partition a large design into modules in the 3000 to
5000 equivalent gate range [94].

An obvious disadvantage of using an HDL in FPGA design is the steep learn-
ing curve associated with HDL–based design and the complexity of the associated
software tools [177]. A long–standing interest, although of largely academic na-
ture, has been to design a single programming language that would permit the
designers to compile parts of a program into instruction sequences for a conven-
tional processor and other parts into circuits for reprogrammable logic [286]. This
would allow the user to program at a high level language without having to deal
with low–level hardware details, such as scheduling, pipelining, and architectural
details [26]. The challenges in constructing a universal programming language
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are daunting, as hardware designs are parallel in nature, whereas most designers
think in sequential von Neumann patterns [141].

Despite the obvious difficulties, there have been several efforts to incorporate
high–level programming languages into FPGA design. Less wide–spread high–
level programming languages that have been attempted to be used for FPGA de-
sign include occam [211], Ruby [121], Pebble [177], and Prolog [26]. A compiler
for a subset of occam with only integers as a basic type is described in [211],
where completely synchronous circuits with only simple gates and D–type flip–
flops are produced. The compiler for Ruby, a relational language for capturing
block diagrams parametrically, produces target code in various formats, including
device–specific formats such as XNF (Xilinx Netlist File), or device–independent
formats such as VHDL [121]. The compiler for Pebble, an alias for Parameterized
Block Language, supports run–time reconfiguration. Other design goals included
simple syntax and semantics, and providing support for both word–level and bit–
level design [177]. The development environment based on Prolog, a structured
logic programming language, takes a high–level algorithm description as its in-
put, and produces an EDIF (Electronic Data Interchange Format) netlist through
an intermediate hardware description notation [26].

The most intense research efforts into using high–level programming lan-
guages for FPGA design have concentrated on the C programming language, since
there are millions of C programmers worldwide who might be quick to adopt the
language for reprogrammable hardware design [101]. None of the proposed C–
like programming languages supports the entire C syntax, as compromises have
had to be made to tailor the C programming language to take into account the
limited availability of hardware resources. The compiler tools described in [141]
and [190] both produce a synthesizable HDL description from a C–like input. The
implementation in [141] has an open source license and its syntax is modelled on
both Perl and C, with support for while loops, if–else branches, integer arithmetic,
parallel statements and register assignments. The C–to–HDL compiler in [190]
generates pipelined circuits for recursive programs, and it is based on dividing all
operations into cascades of 8–bit wide operations. The Transmogrifier C [101]
and NAPA C [109] are examples of C–like programming environments that have
been initially developed for a particular hardware environment. The Transmogri-
fier C language lacks support for multiplication, division, pointers, arrays, struc-
tures and recursion, and its output is an XNF file. The NAPA C language and its
associated tools target a hybrid architecture with both a RISC processor and an ad-
jacent FPGA. Programming pragmas are used extensively to specify where data is
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to reside and where computation is to occur. Computing machines with multiple
FPGAs are supported by the system described in [216], where a C–like input is
first translated into a dataflow graph representation, and then scheduled and par-
titioned onto the multiple FPGAs. Compiling for more than one FPGA is also
supported by the Streams–C system [108], which has been developed to support
stream–oriented calculations. The Streams–C language is implemented as a small
set of library functions callable from a C language program. A C–like program-
ming environment that has matured into a commercial product is the Handel–C
programming language [126] by Celoxica, but based on the company’s repeating
funding rounds, the acceptance of Handel–C does not seem to be widespread.

Object–oriented programming languages, such as C++ and JavaTM, have also
been attempted to be used in high–level design for FPGAs. One of the first C++
compilers for FPGAs is described in [151], where a small subset of C++ with some
extensions is used as the input programming language. Other C++–based design
systems for FPGAs are described in [152] with support for high–performance bit–
serial pipelined systems, and in [203] with support for module library generation.
JavaTM–based design systems for FPGAs are described in [49] and [291], with
both systems supporting synthesizing hardware from compiled JavaTM byte codes
instead of the original JavaTM text. This seems promising, as the byte code model
is platform independent, executable, and supported by many available tools that
compile for the JVM (Java Virtual Machine) model. An ongoing project is Open
SystemCTM [255], whose goal is to provide hardware–oriented constructs within
the context of C++ as a class library implemented in standard C++.

As MATLAB is a very popular language within the global academic commu-
nity, it is not surprising that there have been intense research efforts into synthe-
sizing FPGA–based designs directly from MATLAB code. The MATCH com-
piler [20] produces synthesizable VHDL, and first experimental results indicated
that the performance of MATCH compiler generated hardware were on the aver-
age five times slower than manually optimized designs [124]. The initially aca-
demic project has led to a commercial startup company named AccelChip [2],
which currently holds the intellectual property rights for the MATCH compiler.
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Chapter 4

Applicability of Reprogrammable
Logic

This chapter presents an overview of the common characteristics of applications,
that are suitable for implementation on reprogrammable logic. The emphasis is
first placed on the technical features of applications, and issues such as computa-
tional characteristics, host coupling and the added value brought by reprogramma-
bility are taken into account. Design problems with reprogrammable logic and the
semiconductor market issues are reviewed, because they are at least as instrumen-
tal as the technical features of applications in shaping up the future usability of
reprogrammable logic.

The observations and predictions in this chapter are partly based on the ma-
terial presented in Chapters 2 and 3. The individual design cases, presented in
Publications P1–P8 and reviewed in Chapter 5, will be used as representative ex-
amples of applications, that benefit from an FPGA–based implementation. The
observations in Section 4.1 concentrate mostly on the advantages of reprogram-
mable logic over software–based solutions, as the projects described in Publica-
tions P1–P8 were academic prototyping research and feasibility studies, and an
ASIC implementation was not a realistuc option. Design culture issues are han-
dled separately in Section 4.2, whereas the economic considerations (especially
between reprogrammable logic and ASICs) are treated in Section 4.3. The chapter
is concluded in Section 4.4, where a SWOT (Strengths, Weaknesses, Opportuni-
ties, Threats) analysis on reprogrammable logic is performed. The SWOT chart is
reflects the author’s own opinions and experience in design projects described in
the appended Publications P1–P8.

49
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4.1 Algorithms on Reprogrammable Logic

4.1.1 Granularity

As mentioned in Section 3.1.1, most commercially available reprogrammable
logic devices have fine–grained granularity, since they are based on four–input
LUTs with optional registers and fast carry chains. There have also been mostly
academic designs with more coarse–grained architectural solutions (See Section
3.1.4), which have been primarily intended for byte–width datapath functions,
whereas the commercially available finer–grained reprogrammable logic is most
suitable for bit–level manipulations and arithmetic.

Most often the major contributor to hardware performance advantage can be
traced to fine–grained parallelism [115], and if an algorithm is mapped spatially
on a fine–grained reprogrammable architecture, the computational density advan-
tage [75] of FPGAs over conventional sequential processors may be measured in
hundreds. As fine–grained reprogrammable logic architectures provide generic
logic functionality, they are suitable for implementing datapath circuits that are
based on data widths not implemented on conventional processors [62].

Of the applications presented in the following chapter, genetic algorithms
(Publication P1), the forward error correction (FEC) in AAL2 (ATM Adaptation
Layer Type 2) prototyping (Publication P2), the cryptographic algorithms IDEA
(International Data Encryption Algorithm) and AES (Advanced Encryption Stan-
dard) (Publications P6 and P7), and the bit–level mapping performed in the sig-
moid function calculation (Publication P8) all utilize the underlying fine–grained
architecture in an efficient manner. Unconventional word–widths offered by a di-
rect mapping to reprogrammable hardware are used in the network optimization
implementations in Publication P4.

4.1.2 Data Characteristics

The main advantages of reprogrammable logic over traditional computer archi-
tectures in computing problems with repetitive computation of small or variable–
sized arithmetics are twofold: the ability to tailor the datapath to the problem at
hand [232] and the ability to take advantage of bit–level and instruction–level
parallelism that is not accessible to general–purpose processors [252]. On the
other hand, reprogrammable logic has serious disadvantages, especially in im-
plementing variable–length loops and branch control [62], and it is questionable,
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whether implementing e.g. recursive subroutines on hardware is worth the effort
at all [286].

Beneficial algorithmic and data features, from the viewpoint of implementa-
tion on reprogrammable logic, include the following (adapted from [252]):

• Non–conventional, e.g. not powers–of–two, word–width is the basic operand
size

• Inherent parallelism, with multiple units operating at the same time

• Operation foldability, where multiple basic operations can be combined into
a single specialized operation

• Computations can be pipelined

• Constant propagation can be performed

• Input value reusability

Computations suitable for implementation on reprogrammable logic can be di-
vided into two categories: stream–based functions and custom instructions [252],
with the stream–based functions processing a large data input stream and produc-
ing a large data output stream, whereas custom instructions take only a few inputs
and produce a few outputs, possibly after a substantial computation delay.

Of the applications presented in the following chapter, communications proto-
col implementations (Publication P2), digital signal processing algorithms (Pub-
lication P5), and cryptographic algorithms (Publications P6 and P7) are stream–
based functions. On the other hand, genetic algorithms (Publication P1), special
arithmetic operations (Publications P3 and P8), and shortest path routing algo-
rithm implementation (Publication P4) are better described as custom instructions.

4.1.3 Host Coupling

A large fraction of reprogrammable logic applications utilize a processing fab-
ric attached to a host processor [37], which may control functions to reconfigure
the logic, schedule data I/O, and perform external interfacing. Depending on the
closeness of the coupling, the reprogrammable logic platform is called either a
coprocessor (tight coupling) or an attached reconfigurable processing unit (loose
coupling) [62] (See also Section 2.3.2. The looser the coupling is, the more inde-
pendent the reconfigurable unit is to perform computations, but a price has to paid
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Figure 4.1: Coupling between host and reprogrammable logic (shaded) [62].
Compare also to Figure 2.5.

in the form of a higher delay in communication between the host processor and
the reconfigurable hardware. If no host processor is needed, the reprogrammable
platform acts as an external stand–alone processing unit, which communicates in-
frequently (if at all) with other system units. The alternatives for host coupling
are summarized in Figure 4.1. The challenge of a system designer is to accu-
rately balance the communications needs versus the computational burden of the
algorithm, and thereafter settle on the most suitable host coupling scheme.

Of the applications presented in Publications P1–P8, genetic algorithms (Pub-
lication P1) were implemented on a custom–made PCI (Peripheral Component In-
terconnect) board, which can be regarded as an attached reconfigurable processing
unit. The applicability of the special arithmetic operations (Publications P3 and
P8) and the shortest path routing algorithm (Publication P4) varies depending on
the implementation, but in most cases they are executed on tightly coupled copro-
cessors, which enables frequent communication of inputs and results between the
host and the attached coprocessor. The remaining applications, namely the AAL2
Type 2 receiver (Publication P2), the digital signal processing application (Publi-
cation P5), and the stream–based cryptographic applications (Publications P6 and
P7) would in most cases be implemented on an external stand–alone processing
unit.
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4.1.4 Benefits of Reprogrammability

When FPGAs were introduced, the fact that they required (re)programming from
an external memory source, and that they lost their configuration once power was
removed, was generally considered a liability [33] (See also Section 2.2). How-
ever, over the years the additional benefits of short time–to–market and the ability
to fix bugs or accommodate late specification changes rose in importance, and
nowadays the reprogrammability of FPGAs is regarded as an asset, and not as a
liability.

One of the first applications to take advantage of reprogrammability was logic
emulation [132], as the designers of custom chips needed to verify that the circuit
they were designing actually behaved exactly as desired. A more recent potential
application that makes extensive use of (partial) reprogrammability is a multimode
handset with integrated services and global roaming ability. A multimode radio
requires real–time reconfiguration capability to interface and communicate with
heterogeneous networks as the user moves over different geographic regions, and
requests different services or if the radio has to adapt to varying channel con-
ditions. Provided that the vast challenges in reconfiguration management and
power consumption issues are solved, an FPGA–based configurable computing
machine (CCM) platform might show promise for this kind of a software radio
handset [245].

Although partial reprogrammability has been extensively researched in the
past (See Section 3.2.2), it has never really left the research laboratories, and has
remained a largely theoretical concept to this day. The main reasons are a lack
of easy–to–use design tools [185] and the failure to establish a commercial pres-
ence with resultant business failures [250]. At least for the time being, the main
benefits of reprogrammability include ease of design, low upfront costs, and field
upgradability (See also Section 4.3). Both design–time and run–time parameteriz-
able designs, e.g. special arithmetic functions for arbitrary bitwidths, benefit from
reprogrammability, as the hardware can be adapted to the computation structure at
an appropriate design stage [37]. This is also true for designs, whose computation
accuracy has to be first determined by simulations.

Reprogrammability has been naturally useful in all the designs described in all
Publications P1–P8, but this is especially true for the square root algorithm (Pub-
lication P3) and the GP (General Parameter) adaptation (Publication P5). The re-
quired bit width of these designs can be decided on–the–fly based on computation
accuracy requirements and/or simulation results. Publication P2 also includes dis-
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cussion on the benefits of hardware–based versus software–based simulation, and
the design of the AAL Type 2 described in Publication P2 was partly motivated
by its potential use in a logic emulation environment.

4.2 Design Challenges and Opportunities

To gain larger market share, reprogrammable logic should make advances both
into the microprocessor–dominated market segment, as well as into the ASIC–
dominated high–performance mass–market and low–power segment. The main
obstacle for a more widespread acceptance of reprogrammable logic as a new
computing paradigm is the inherently sequential design culture of programming,
which thoroughly dominates mind set in computer science education. The mi-
croprocessor will remain an indispensable tool for implementing digital systems,
but it should not have the mental monopoly in programming education. As of
today, ordinary programmers have severe problems in mapping an application or
algorithm onto hardware platforms, other than relying on microprocessor–based
state–machine mechanisms. [22]

A remedy to reduce the emerging productivity gap in embedded system design
is to include hardware design languages, like VHDL and Verilog, into mainstream
computer science curricula. This would enable ordinary graduating engineers and
programmers to have the skills needed for hardware/software partitioning deci-
sions, and to acquire the algorithmic cleverness needed to migrate an application
from software onto reprogrammable platforms. A more thorough and long–term
solution would be to implant reprogrammable thinking deep into the intellectual
infrastructures of computer science education. [130]

Reprogrammable logic has been regarded more as "hardware" than "software"
in the electronic design community. This suggestive terminology has not helped to
fully understand the potential of programmable logic, and a better distinction than
hardware/software is to think in terms of control flow vs. data flow approaches
when designing and implementing algorithms. Control flow is exemplified by se-
quential programs, where instructions manipulate data. This includes micropro-
cessor instruction sequences, and at a higher level, programs coded in imperative
and functional languages. Data flow, on the other, is exemplified by intercon-
nected processing elements with data moving between elements, not under some
central programmed control. This includes logic circuitry, and at a higher level, in-
terconnected computation units. Another way of comparing these two approaches
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is to call control flow as "computing in time" and data flow as "computing in
space". Traditionally, control flow has been associated with software, and data
flow with hardware. The main impact of reprogrammable logic should be that a
data flow approach can be made available to the software designer, as an alterna-
tive form of programming. This would enable the emergence of a new parallel
computing paradigm based on reprogrammable logic and a softening of barriers
between thinking either in software or in hardware. [40]

There has been much interest into High–Level Synthesis (HLS) design en-
vironments (See Section 3.4.2), but their immaturity and lackluster commercial
reception makes it probable, that the majority of FPGA designs will be based on
either VHDL or Verilog for the foreseeable future. However, there is a poten-
tial for an integrated hardware/software co–design environment based on a single
high–level programming language [286], but practical and design cultural prob-
lems have so far been insurmountable for a widespread commercial acceptance.

Several appended publications include discussion on the topics mentioned in
this subsection, such as co–simulation and co–development environments, and
high–level design. Publication P5 describes custom–written conversion functions
and batch files in the C programming language and awk, which facilitated both
importing initial simulation values from MATLAB into Altera’s Max+Plus II de-
sign software and exporting results from Max+Plus II back into MATLAB for
graphical inspection. A corresponding co–development environment is also de-
scribed in Publication P8, where a MATLAB–based design environment for auto-
matically generating synthesizable VHDL code from the MATLAB output file via
the McBoole Logic Minimizer [67] is described. Publication P6 describes the ini-
tial design effort to write the HDL code in Handel–C [126], a high–level C–like
design language (See Section 3.4.2). Because design performance deteriorated,
clock speeds decelerated, and compilation times outgrew practical bounds, the
design described in Publication P8 was decided to be entirely rewritten in more
resilient VHDL.

4.3 Economic Considerations

In the real world, component and design choices are never made on the techni-
cal merits alone, and economic factors are decisive in product design. Putting all
the relevant economic variables into a comprehensive equation is challenging, al-
though it has been tried in Altera’s FPGA total cost calculator [97]. The relevant
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economic parameters include, among others, the average annual salary of an en-
gineer, company’s gross margin, software tools cost, approximate original selling
price of final product, typical end product price deterioration per quarter, forecast
final product unit sales in introductory quarter, how much faster the market were
accessed if the design were implemented on an FPGA, and how many quarters are
required to get to full production.

The preceding listing suggests, that choosing between an ASIC and an FPGA
on economic merits is more complicated than a simple glance at the price–per–
unit metric would suggest. This was also investigated in [18], where three cases
(pure ASIC, pure digital signal processor, pure FPGA) were compared with Monte
Carlo statistical analysis for designing a 3G base station, whose ASIC–based de-
sign required approximately $100 million development cost and a 36–month de-
sign gestation. The final conclusion was something of a non–result, mainly that
even after consolidating all the relevant different items (unit costs, power budgets,
masking and tooling costs, development costs, amortized time costs, project flex-
ibility etc.), it proved extremely difficult and very situation–specific to tell which
approach was the best. Oftentimes economic reviews also overlook two advan-
tageous characteristics of reprogrammable logic, namely shorter time–to–market
and field upgradability [158]. Both of these may contribute substantially to the
cumulative sales of the end product (See also Figure 4.2).

The debate between reprogrammable logic advocates and ASIC advocates re-
sembles the older debate between assembly–language advocates and high–level–
language advocates in software engineering. The debate was "won" on technical
merits by the assembly–language advocates by proving better performance and
better size. But the war was won by the high–level programming advocates, be-
cause the significance of the shift to high–level languages and design concepts
and better productivity was missed by the assembly–language advocates. The
analogy to the present debate between reprogrammable logic advocates and ASIC
advocates is obvious: focusing only on chip size, power consumption, and circuit
speed misses the significance of the shift to reprogrammable systems [261]. The
main point is no longer about absolute size and speed; it is about what is good
enough, and ASICs fail in this respect because they are inflexible and too expen-
sive. The CEO of Synopsys was quoted in September 2002 as saying that "The
cost of designing a complex SoC in copper on 0.13 µm is $10.9 million, and we
are reaching the point where testing the chip may be more expensive than fab-
ricating it" [186]. It is no coincidence, that the soaring ASIC design costs have
started to limit the number of companies that can afford an ASIC–based imple-
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Figure 4.2: Economic benefits of faster time–to–market and field upgradability.
Adapted from [158].
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mentation for their end product [45]. It has been reported, that standard cell ASIC
designs have dropped from 5200 in 1997 to 1400 in 2003, mostly due to rising
mask fabrication costs [220].

The role of microprocessors may also change in a design environment dom-
inated by reprogrammable logic: the microprocessors will assume the role of
supervisors, and they will manage systems tasks, much the same way as car
drivers manage their automobiles’ tasks but do not do the work of propelling
all that mass [260]. The biggest drawback to achieving power–conscious de-
sign with modern reprogrammable logic is their power–hungry SRAM configu-
ration memory, which should be replaced with more efficient nonvolatile mem-
ory, such as magnetoresistive memory, ferroelectric memory, and ovonic unified
memory [103].

4.3.1 Suitable Comparison Metrics

The most serious proposal for adopting industry–wide impartial comparison bench-
marks for reprogrammable logic devices was put forward by the Programmable
Electronics Performance Corporation in 1993 [193]. The PREP Benchmarks in-
cluded a set of ten benchmark circuits and an implementation methodology for
measuring both logic capacity and speed performance in programmable logic de-
vices. The PREP benchmarks were developed to evaluate different architectures
and devices using common logic functions and a standard methodology. Nowa-
days, the PREP benchmarks are a bit outdated, but a new substitutive set of bench-
marks designs has not been universally adopted, and there is a tendency among
reprogrammable logic manufacturers either tend obfuscate or to oversimplify the
quantitative characteristics of their products, whichever seems more advantageous
for their purposes.

If comparing FPGAs to other FPGAs is challenging, it is even more difficult
to agree on an universally acceptable mechanism for comparing FPGAs to either
ASICs or microprocessors (See also Section 2.3). However, certain general con-
clusions can be drawn from recent research in this area. For example, it has been
found, that the peak FPGA floating–point performance is growing significantly
faster than peak floating–point performance for microprocessors [265]. The main
reasons for this inequality in performance improvement are the high degree of
hardware configurability in FPGAs, and the dataflow nature of computation on
FPGAs. In quantitative terms in floating–point performance, the microprocessors
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are following a well known corollary of Moore’s law 1 (doubling in performance
every 18 months), whereas FPGA performance is increasing by a factor of four
every two years. When FPGAs are compared to ASICs, it has been proposed that
the flexibility of reprogrammable hardware should be taken into account as yet
another metric besides the more traditional metrics, such as area, performance,
and power [63]. If the flexibility of a design is defined as the ability of a design to
implement particular types of circuits from a given application domain, the repro-
grammability of FPGAs comes into its own when comparing them to ASICs with
a fixed architecture.

It has also been argued that traditional cost functions, such as area, power,
clock speed, and design efficiency, do not adequately represent the performance
as conceived by the end–user. Features as dependability, scalability, product–
level inter–generation compatibility and effective lifetime, should also be taken
into account. It has been proposed, that reprogrammable IC architectures do well
if these "softer" performance characteristics are also taken into account. [266]

Suitable comparison metrics are also discussed in Publication P8, where the
usage of gate as a measurement of area efficiency in FPGAs is criticized, and the
more suitable Logic Element (LE) 2 is proposed as a better metric for area usage
in FPGAs.

4.4 SWOT Analysis on Reprogrammable Logic

A SWOT analysis is a tool used to evaluate the strengths, weaknesses, opportu-
nities, and threats involved in a product 3. Strengths and weaknesses are internal
characteristics of the product, whereas opportunities and threats originate from
outside the product. Based on the discussion in this and preceding chapters, a
SWOT matrix for reprogrammable logic is proposed in Figure 4.3.

1The observation made in 1965 by Gordon Moore [208], co–founder of Intel, that the number
of transistors per square inch on integrated circuits had doubled every year since the integrated
circuit was invented. Moore’s law has held surprisingly well for almost four decades.

2LE is Altera’s terminology for the basic building block, that is a four–input LUT and a pre-
settable register, but its usage is justified, as the underlying structure of most modern FPGAs is
sufficiently similar.

3Originally, SWOT analysis was used for projects or business ventures, but over the years its
usage has extended to organizations and products. Although SWOT analysis has been criticized
for oversimplifying complex issues, its advantage is obvious: by explicitly pinpointing weaknesses
and threats, it may help in turning them into opportunities, and ultimately into strengths.
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Figure 4.3: SWOT matrix for reprogrammable logic.
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The strength of reprogrammable logic is self–evident from the name itself: Re-
programmability, which enables fast turn–around times and consequently shorter
time–to–market than with ASICs. Reprogrammability enables also remote field
upgrades to products, which would otherwise require costly manual maintenance
work. As mentioned in Section 4.1.4, partial reprogrammability has had a rough
start in the commercial world, and the more conventional occasional device–wide
reconfiguring still remains the dominant motif for choosing reprogrammable logic
as an implementation platform for digital designs.

The weakness in modern reprogrammable logic is twofold: power consump-
tion and high unit costs for mass–market applications. The relatively high power
consumption of FPGAs (See Section 3.1.3) has thus far precluded their usage in
portable battery–powered environments, but this may be slowly changing with
the introduction of less power–hungry reprogrammable devices [260]. The other
weakness, higher unit costs, becomes obvious by glancing at Figure 3.2, where
it is evident that reprogrammable dedicates an enormous amount of high–prices
silicon real estate for non–logic functions [258]. However, the break–even point
in production quantities between ASICs and FPGAs is moving upwards, caused
both by rising ASIC design and production startup costs (See Section 4.3), and
by the diminishing product life cycle lengths, which emphasize shorter time–to–
market [18]. However, the real bonanza of mobile phones and related products,
seems to remain outside the reach of reprogrammable logic for the time being
due to their huge production quantities and stringent power consumption require-
ments, despite the tantalizing appeal of multimodal reconfigurable mobile hand-
sets (See also Section 4.1.4).

The main opportunities for a reprogrammable logic breakthrough are the emer-
gence of "push–button" high level design systems, and the growing design gap in
ASICs. Although there has been a lot of research into high–level design lan-
guages and systems (See Section 3.4.2), commercially viable solutions have been
practically non–existent. However, if a breakthrough in high–level design occurs,
the attractiveness of reprogrammable logic will certainly increase in the eyes of
more software–oriented designers. The other main opportunity for reprogram-
mable logic is a corresponding threat to ASICs, namely the growing design gap,
which means that while the complexity of the designs is increasing from year–to–
year, the productivity of the integrated–circuit designer is not keeping pace [221].
Besides the afore–mentioned design gap, other design advantages of reprogram-
mable logic over ASICs include speed (especially the place and route of large–
scale ASIC designs can be very time–consuming), ease (there is no need for post–
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layout back–annotation, as in ASICs), the need to design extensive test vectors
for ASICS, and the large price gap between ASIC and FPGA design software
(See Section 2.3.3. These reasonings make ASICs the design choice of ever fewer
and bigger companies, which can invest the required amounts of workforce and
money for high–end ASIC design, thus leaving the small–to–medium sized design
vulnerable for reprogrammable logic –based alternatives.

Two external threats to reprogrammable logic can be identified: existing de-
sign cultures and overhyped expectations 4. The existing dichotomy between soft-
ware and hardware designers is not beneficial for reprogrammable logic, as the
present–day computing science curricula present mostly only the traditional von
Neumann–type microprocessor as the implementation platform of choice [22].
Softening of barriers between hardware design and software design [40] should
be an educational goal, but the general trend in undergraduate education has been
a divergence between electrical engineering and computer science [155]. An ex-
ample of overhyped expectations for reprogrammable logic was the fever for re-
configurable computing (See Section 2.2), or the idea of creating chips that can
(self–)modify their function dynamically, or on the fly as they are operating [250].
The expectations and projections for reconfigurable computing were sometimes
wildly off–the–mark, and business failures 5 were an unfortunate consequence.
The adoption of reprogrammable logic as an equivalent alternative to both ASICs
and microprocessors is most likely to be an evolutionary, not revolutionary pro-
cess.

4Overhyping, or raising unwarranted expectations which are not later fulfilled, is admittedly a
rather general threat for every new product and/or technology, but it can be argued that reprogram-
mable logic has been more vulnerable to overhyping than most other technical fields.

5An example of business failures was the Silicon Valley –based Chameleon Systems, which
raised 70 million dollars before going bankrupt in 2002 [250].



Chapter 5

Applications in Selected Fields

Each of the individual sections in this chapter begins with an overview of the
application area and its relevance. After that, the results presented in the author’s
publications P1–P8 are compared to contemporary research efforts elsewhere, and
the main contributions based on the discussion and categorization in Chapter 4 are
highlighted.

The author’s publications are not covered in a strict order by the publica-
tion date, as they have been reordered in compliance with a more meaningful
application–centered model. Although it is impossible to present an entire spec-
trum of FPGA–friendly case studies, Publications P1–P8 can be said to represent
a fairly extensive survey of the possibilities offered by reprogrammable logic in
modern digital design.

5.1 Optimization Methods

Optimization can be loosely defined as the study of maximizing and minimiz-
ing functions subject to specified boundary conditions or constraints. Certain
optimization problems are computationally intractable, and require heuristic or
optimization methods, whereas other problems can be solved by deterministic,
i.e. non–heuristic, methods. In the following two subsections, FPGA–based im-
plementations of both a heuristic optimization method (genetic algorithm) and a
deterministic optimization method (shortest path algorithm) are presented.

63



64 CHAPTER 5. APPLICATIONS IN SELECTED FIELDS

5.1.1 Genetic Algorithms

A genetic algorithm (GA) is an optimization method that is based on natural se-
lection methods found in the Darwinian theory of evolution [110]. Genetic algo-
rithms are regarded as a robust general–purpose optimization technique with real–
world applications in adaptive equalization, character and number recognition,
digital filter design, image compression, robot control and VLSI design [256].

The basic operations of genetic algorithms are the selection of population
members for the next generation, mating these members via a crossover of chro-
mosomes, and performing mutations on the chromosomes to preserve population
diversity so as to avoid convergence to local optima. The fitness of each member in
the new generation is determined using a fitness function, whose results influence
the selection process for the next generation [228]. The success of a genetic al-
gorithm is determined by the right combination of crossover rates, mutation rates,
and population size [241]. The basic operations of genetic algorithms display in-
herent parallelism, atomic bit–level operations, unconventional word lengths, and
pipelinability, thus making them ideal candidates for direct implementation on
reprogrammable hardware. However, FPGA–based implementations of genetic
algorithms have been relatively scarce, probably due to the unfamiliarity with
reprogrammable devices in the genetic algorithm research community. In the late
nineties, approximately around the time of Publication P1, there were a few other
research projects on FPGA–based genetic algorithms in the academic community,
and they are briefly reviewed in the following paragraphs.

The Hardware Genetic Algorithm (HGA) [228] was designed to work as a co-
processor with the CPU of a PC, and it implemented the core functions of genetic
algorithms on a separate FPGA–based computing platform. The HGA was tested
against software–based genetic algorithms running on a Silicon Graphics 4D/440
with four MIPS R3000 CPUs, each running at 33 MHz, and the average speedup
factors ranged between 12.75 and 18.74. It was estimated, that for complex prob-
lems, the HGA might accelerate computations by three orders of magnitude.

Accelerating the chip partitioning problem, a computationally intensive NP–
complete problem with applications also in FPGA design, with genetic algorithms
was the topic of research in [241]. The most time–demanding computations in a
software–based implementation were required in the fitness function evaluation,
which required over 95% of the execution time. The computational kernels of
the genetic algorithm for the chip partitioning problem were implemented on a
separate Armstrong III multicomputer with both conventional microprocessors
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and three Xilinx XC4010 FPGAs, and the results indicated an average speedup
factor of 8.32 over a pure software–based implementation of the same algorithm
on a SUN SPARCStation 20 Model.

Genetic algorithms were employed with the Splash II platform to accelerate
the NP–complete family of travelling salesman problems [114], which involved
finding the shortest path through a collection of n cities, visiting each city exactly
once and returning to the starting city. A candidate tour was coded into a chro-
mosome, with the fitness function indicating the length of the tour. The FPGA–
accelerated genetic algorithm outperformed a software implementation executing
on a 125 MHz HP PA–RISC workstation by a speedup factor ranging between 6.8
and 10.6. The most important factor for this performance difference was found to
be fine–grained parallelism, which enabled operator pipelining [115]. The other
contributors for the performance difference included hard–wired control, and flex-
ibility in custom address generation.

Significant speedups were reported in [189], where a computation platform
with two Altera’s EPF10K100 FPGAs and external SRAM memory was used to
implement genetic algorithms for the knapsack problem and the graph partitioning
problem. The FPGA–based system achieved a speedup factor ranging between 50
and 130 compared to 200 MHz Ultra–Sparc workstation. Interesting research
results were also reported in [163], where Xilinx XC6216 was used to accelerate
the fitness measurement task of genetic programming, which is an extension to
genetic algorithms with the goal of automatically creating computer programs.

Publication P1 describes a high–level hardware design language (AHDL, Al-
tera Hardware Description Language) –based implementation of a genetic algo-
rithm, whose performance is compared to both a 120 MHz Pentium based Linux
system and a HP C110 workstation. The speedup factor over software–based ge-
netic algorithms was roughly 200, and it was estimated that the speedup factor
could be increased to over 3200 by further parallelizing the algorithm and uti-
lizing extra instances of the acceleration card. The results achieved in Publica-
tion P1 are in line or exceed corresponding research results reviewed in previous
paragraphs. Additional contributions of Publication P1 include distributed inter-
nal memory utilization, PCI (Peripheral Component Interconnect) bus interfacing,
and random noise generation with the help of a noise diode.
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5.1.2 Shortest Path Graph Algorithms

Graphs are central data structures, and they have wide applicability in many fields
of engineering. Formally, a graph G is defined by (V,E), where V is a finite
nonempty set of vertices, and E is a finite nonempty set of edges connecting pairs
of distinct vertices from V [282]. Since the terminology of graph theory has not
been standardized, vertices are often called nodes and edges are often called arcs,
branches or links. Graph algorithms are used, for example, in computing critical
placement and routing patterns in circuit and hardware design, in deducing con-
nectivity in networks, in finding shortest paths in telecommunications and Internet
routing, in computing the closure of relations in databases, and in managing stor-
age in operating and runtime systems [144]. To achieve acceptable performance in
time–critical computations, graph algorithms must be fast and the data structures,
which represent graphs, must be effective.

The efficient representation of graph structures in reprogrammable hardware
was investigated in [144], where dynamic graph structures were implemented as
dynamic graph processors (DGPs), which maintain a collection of gates (repre-
senting the vertices) and wires connecting the gates (representing the edges) as a
graph circuit. DGPs allow a low–cost and dynamic insertion and deletion of ver-
tices and edges without the need to recompile and refit the circuit structure, and
speedups of more than three orders of magnitude were reported in computing a
graph’s transitive closure compared to an effective software algorithm running on
a contemporary fast 500 MHz DEC Alpha processor. The DGP structure was ex-
tended in [204] in three ways: streamlining the implementation via tri–state logic
to increase density and graph size, scaling the hardware arrays to larger graphs by
splitting them into multiple contexts, and embedding the graph accelerator circuits
in a module generation environment. The resulting improved graph structure was
called HArdware Graph ARray (HAGAR).

The problem of finding the shortest path plays a central role in the design,
analysis, and operation of networks. Most routing problems can be solved as
shortest path problems once an appropriate cost is assigned to each link in the
network. For example, in communications networks the cost of a link could reflect
its available bandwidth, delay or bit error ratio. Formally, given a graph G =

(N,E) with a positive cost dij for all edges (i, j ∈ N), start node S and a set P

of permanently labelled nodes, the shortest path problem is defined as finding the
shortest path from start node S to every other node in the graph. If the shortest path
between the start node S and a given node is sought, the shortest path algorithm
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may terminate as soon as the shortest path to it has been found.
Shortest path problems are categorized as the single–destination shortest path

problem (SDSP) and the all–pairs shortest path problem (APSP). Of the com-
monly used shortest path algorithms, the Bellman–Ford algorithm and Dijkstra’s
algorithm are used for the SDSP problem, whereas the Floyd–Warshall algorithm
is suitable for the APSP [181].

Dynamic computation structures (DCS) were introduced in [17] to directly
map graph instances onto reconfigurable architectures, and a front–end compiler
was implemented to parallelize the entire inner loop of the Bellman–Ford short-
est path algorithm. The speedups ranged between 10 and 52 for the shortest path
problem, compared to execution on a SPARCStation 10 processor. The Bellman–
Ford shortest path algorithm was also implemented on reprogrammable hardware
in [69], where the research emphasis was on decreasing the compilation time by
synthesizing high–level graph designs to a specific domain and adapting to the
input graph instance at run–time. In comparison to software implementations, the
asymptotic run–time speedup was estimated at 3.75. Automating the design flow
was a central theme also in [181], where Xilinx’ System Generator was used to
generate the VHDL code automatically for the Floyd–Warshall shortest path algo-
rithm, but explicit speedup figures compared to a software–only implementation
were not reported.

Publication P4 describes the first published FPGA–based implementation of
Dijkstra’s shortest path routing algorithm, as extensive literature searches have not
found publications on the same topic. The average speedup factor compared to a
contemporary microprocessor–based implementation ranged between 23.58 and
67.41, and the speedup factor increased as graph sizes grew. This can be attributed
to the parallelism in comparator bank implementation, which along with efficient
usage of embedded memory and a discussion on the suitability of reconfigurable
computing in network routing are the main contributions of Publication P4.

5.2 Protocol Prototyping and Verification

Designing and operating communications networks is greatly facilitated by a lay-
ered protocol stack, of which the International Standards Organization (ISO) Open
Systems Interconnect (OSI) Reference Model is the best known. The ISO/OSI
Reference Model defines seven layers of communications types (starting from the
top: application, presentation, session, transport, network, data link and physi-
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cal), and the interfaces among them. Each layer depends on the services provided
by the layer below it, all the way down to the physical network hardware. The
ISO/OSI Reference Model processing is normally performed in software, but with
the continuous rise in data rates, hardware–based protocol processors or acceler-
ators are increasingly being deployed [104]. This is also of interest to the reprog-
rammable logic industry, since the reprogrammability and fast time–to–market
of FPGAs makes them an attractive alternative for accelerating network protocol
processing.

A dynamically reconfigurable FPGA–based architecture, called the Program-
mable Protocol Processing Pipeline (P4), was described in [123] to act as a pro-
tocol booster. The P4 could be inserted and deleted from network protocol stacks
on an as-needed basis, with a dynamical downloading and activation of process-
ing elements, whose architecture consisted of a pool of Altera’s FLEX8000 de-
vice family FPGAs. The P4 was designed to operate on streams of Asynchronous
Transfer Mode (ATM) cells at 155 Mb/s at the edge of the boosted portion of a
network cloud. Case study measurements indicated that the P4 protocol booster
performed with minimal processing delay in Forward Error Correction (FEC) ac-
celeration. An accelerator for the topmost layer in the ISO/OSI Reference Model,
layer seven, was described in [202]. The accelerator was implemented on Xilinx
Virtex XCV1000E FPGA target chip, and its key tasks included tree lookup for
routing, checksum calculation, packet classification, and pattern matching. The
overall execution time was decreased by as much as 20 times, and the reprogram-
ming overhead ranged from 0.2 µs to 3 ms.

Reprogrammable devices have also been extensively used in the design of net-
working elements and protocols. A case study of decreasing the simulation times
for ATM switching fabrics was described in [257], where discrete event simu-
lation was accelerated by mapping the model of a physical ATM switch onto a
computing system comprised of a Xilinx XC6216 Reconfigurable Processing Unit
(RPU). The performance improvement in simulation times ranged between 200
and 1100. Reprogrammable architectures are widely used in prototyping experi-
ments, for example in designing Internet routers [140]. A framework to process
both ATM cells and Internet Protocol (IP) packets directly in hardware has been
proposed in [39], where an 8–port ATM switch was equipped with FPGA–based
Field Programmable Port Extenders (FPX). Since the lowest layers could be pro-
cessed directly in hardware, the prototype IP router could operate at an impressive
line speed of 2.4 Gb/s. Another example of a modularly reprogrammable network-
ing platform is the Transmutable Telecom System [206], which consisted of five
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reconfigurable boards and a main microprocessor–based master board. Differ-
ent networking functions were packed on individual boards to provide flexibility,
and the system could be completely reconstructed by using application–dependent
board arrangements.

A growing trend in the design of networking equipment is to make them se-
cure against malicious attacks by third parties, and due to their ability to effec-
tively parallelize bit–level operations at the hardware level as opposed to tedious
software–oriented approach, reprogrammable logic devices have been used in ac-
celerating security–related functions. One of first examples of this design trend
is described in [197], where an FPGA–based Firewall Inline Processor (FIP) is
used, based on an access list, to either accept or reject connections in an ATM
firewall. Internet Protocol (IP) characterization, or the process of classifying IP
packets into categories depending on information in the header, has also been ac-
celerated with FPGAs [79]. The characterization was performed with the Content
Addressable Memories (CAM) in a Xilinx XCV1000 FPGA, and depending on
the details of the implementation, between 3.4 and 7.1 million searches per sec-
ond were achieved. Software–based real–time network monitors do not function
properly in the gigabits per second transmission speed range, and research ef-
forts have concentrated on using reprogrammable hardware to accelerate network
packet filtering. A high–level design methodology to automatically synthesize
FPGA circuits from network monitor descriptions is described in [160], and the
open–source firewall software Snort [244] has been accelerated with FPGA–based
solutions [57] [106], with both implementations performing real–time network
intrusion detection at approximately 2 Gb/s. An automated JHDL–based [25]
module generator to automatically extract rules from the Snort rule database and
to generate corresponding circuits for Xilinx FPGAs is described in [145]. The
FPGA–based intrusion detection module exceeded the performance of a software–
based system by over 600 times.

5.2.1 Simulation Acceleration of an ATM Adaptation Layer
Type 2 Receiver

Publication P2 describes an FPGA–based implementation and simulation of the
ATM Adaptation Layer Type 2 (AAL2) [153] receiver, and the features of hard-
ware and software–based simulation approaches are compared. The AAL Type
2 Receiver was written entirely in VHDL, and it was implemented on a special
hardware acceleration card with a custom–written reconfiguration utility. The
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FPGA–based AAL Type 2 receiver exceeded the performance of a similar AAL
Type 2 receiver written in the C programming language by 70 times, and the simu-
lation speed of a MATLAB–based AAL Type 2 receiver model was outperformed
by a factor of 55000. The speedups are based on the ratios simulated transmission
rates, which are displayed in Table 1 in Publication P2 (70 ≈ 55 Mbps ÷ 790 kbps
and 55000 = 55 Mbps ÷ 1 kbps). The biggest contribution to the speedup was
the concurrent implementation of the Header Error Check (HEC) module, where
utilizing the reprogrammable logic architecture in an efficient manner was suc-
cessful. Another contribution of Publication P2 is an analysis on the advantages
of hardware–based simulation, and it was concluded, that simulating a communi-
cations block directly in hardware both speeds up the simulations and decreases
the development time.

As the project described in Publication P2 had direct industrial funding, the
design was motivated by its potential use in a logic emulation environment.

5.3 Arithmetic Algorithms

The development of cost–effective arithmetic operators for reprogrammable logic
requires a pairing of high–speed algorithms with a solid understanding of the
given target technology [176]. Arithmetic algorithms have usually been opti-
mized for microprocessors, and most often they do not map well onto reprogram-
mable logic without modifications. A special class among arithmetic operations
is formed by iterative algorithms, which use only shifts and adds, thus making
them an attractive choice by avoiding costly multiplications and divisions. The
skills required to design effective special arithmetic operations for reprogram-
mable logic are in high demand, as it seems that the majority of today’s hardware
designs are done by engineers with little or no background in hardware efficient
algorithms [9].

5.3.1 Square Root Operator

Square root is a basic arithmetic operation in scientific calculations and computer
graphics, among other applications [174]. The square root operation remains a
serious design challenge, because of the dependence among the iteration steps
and the relatively high complexity of the result–digit generation function, which
typically produces one digit of the result per iteration [253]. When arithmetic
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operations are implemented as a part of complex computation systems on reprog-
rammable logic, special care must be taken to design as small units as possible,
since this enables fitting a maximum amount of special arithmetic on the reprog-
rammable device.

A digit–recurrence square root implementation for FPGAs is described in [176].
The implemented algorithm computes one result digit per clock cycle, and a cycle
time of 22.3 ns was achieved in simulations for Xilinx XC4010 FPGA devices.
Another square root implementation on FPGAs is reported in [253], which also
computes one result digit per clock cycle, but since the result digits are produced
in signed–digit form, an on–the–fly conversion scheme to two’s complement form
is required. The FPGA area resource requirements for Xilinx XC3000 FPGA de-
vice family architectures were estimated at 26 + 9.5n CLBs (Configurable Logic
Block), where n equals the number of bits in the radicand. A more recent imple-
mentation of the square root algorithm is reported in [217], where a 32–bit square
root based on the non–restoring square root algorithm was implemented on Al-
tera’s FLEX10K20 device. The implementation required 161 Logic Cells (LCs),
and achieved a maximum clock rate of 21.36 MHz.

In addition to the fixed–point FPGA–based square root implementations de-
scribed in the previous chapter, floating–point square root operations have also
been implemented. Both a low–cost iterative and a high–throughput pipelined
version of a single precision floating point square root operator were reported
in [174], and the results were refined in [280]. However, it was also noted that
floating–point arithmetic has just recently become feasible with FPGAs [280].

The area–efficient and iterative square root algorithm in Publication P3 offers
significant speed advantages compared to other published FPGA–based square
root operations, because the algorithm produces two result digits per a clock cycle
of 35 ns (1/28.57 MHz), and thus converges twice faster than the other imple-
mentations reported in [176], [217] and [253]. Furthermore, Publication P3 em-
phasizes the need for FPGA designers to have skills both in arithmetic algorithms
and the underlying reprogrammable target technology, which is one of the main
points in also [9]. The third main contribution of Publication P3 lies in the ability
to adapt a relatively old and little–known software algorithm for hardware usage
by parallelizing it as much as possible.
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5.3.2 Sigmoid Function

Artificial neural networks (ANNs) have found applicability in providing solu-
tions in pattern recognition, signal processing, and time series analysis problems,
among others. Software–based simulations are useful for investigating the capa-
bilities of neural network models and creating new algorithms, hardware imple-
mentations are essential for taking full advantage of the inherent parallelism of
neural networks [99].

FPGA–based realization of ANNs 1 with a large number of neurons is a chal-
lenging task [300], and careful planning of every computational element is re-
quired. This is especially true for the sigmoid function (See Equation 5.1), which
is the most common activation function in ANNs [301]:

y =
1

1 + ε−x
(5.1)

In practice, the sigmoid function cannot be implemented with a straightfor-
ward division and exponentiation, as these two operations are prohibitively de-
manding both in terms of speed and area. Publication P8 compares the speed,
accuracy, and required area resources of four previously published piecewise lin-
ear and one piecewise second order approximation of the sigmoid function with a
novel purely combinational approximation SIG–Sigmoid. The main contributions
of Publication P8 are the introduction of an FPGA–based metric for comparing the
performance of sigmoid function approximations, the automated design method
for minimizing two–level logic functions for combinational approximations, and
the final design which is the most accurate published FPGA–based sigmoid func-
tion approximation with tight area usage constraints. Due to its compactness and
accuracy, the SIG–Sigmoid approximation plays an important role in designing
massive fully connected artificial neural networks [125].

5.4 Digital Signal Processing

Digital signal processing (DSP) has pushed the limits of computation power, es-
pecially in terms of real–time applications. Nowadays, digital signal process-
ing is used extensively in various engineering fields, for example, in communi-
cations technology, image and video processing, audio and speech processing,

1Due to their size limitations, CPLDs have not been as intensively researched as FPGAs as an
implementation platform



5.4. DIGITAL SIGNAL PROCESSING 73

General-Purpose
processor

Specialization

Programmability

Programmable
DSP

Reconfigurable
Hardware

ASIC

Figure 5.1: Digital Signal Processing Implementation spectrum [254] (Compare
also to Figure 2.3).

target recognition and radar technology. FPGA–based DSP designs have been ex-
tensively reported in the published literature, and it can be safely assumed, that
digital signal processing is the most significant application area for reprogram-
mable devices. However, despite the widely varying fields of target applications,
digital signal processing systems exhibit the same basic computational charac-
teristics [254]. Over the years, the Multiply and Accumulate (MAC) operation
has remained the basic DSP operation, and a wide range of arithmetic functions,
such as Fast Fourier Transform (FFT), convolution, and digital filtering algorithms
all require an efficient MAC implementation, for which SRAM–based FPGAs are
well suited [113]. Modern FPGA devices also have several DSP–specific features,
which is a testimony to the commercial importance of digital signal processing
for reprogrammable logic manufacturers. The DSP implementation spectrum can
be regarded as a two–dimensional coordinate area with specialization and pro-
grammability as the horizontal and vertical axis (See Figure 5.1).

The main contributor for driving DSP technology forward has been the contin-
uous improvement in the performance of programmable digital signal processors,
which typically perform multiple instructions per clock cycle, and which are based
on the Harvard Architecture with dedicated memory buses between the processor
and separate code and data memories. However, the overall process is typically
performed in a three–step series of memory–read, process, and memory–write in-
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structions. This implies that the digital signal processor becomes less efficient
when an algorithm is dependent on two or more of the past, present, and/or fu-
ture state conditions. For this reason, the performance of digital signal processors
degrades significantly with each additional MAC operation [113], whereas large
FPGAs do not display a deterioration in DSP performance with additional MAC
operations, provided that all required multiplications and additions can be instan-
tiated in the same device with sufficient area resources. It has even been argued,
that instruction–based digital signal processors will not be efficient enough for
growing processing requirements, and that they will be replaced by reconfigurable
systems [261].

Designing efficient FPGA–based implementations of core digital signal pro-
cessing functions requires an intimate knowledge of the target architecture. For
example, delay models and cost analyses developed for ASIC technology are not
useful in designing and implementing fixed–point adders in FPGAs [298]. A
popular design technique for the MAC function in digital filter design is to use
Distributed Arithmetic (DA) techniques, instead of conventional arithmetic meth-
ods [113]. This is because distributed arithmetic makes extensive use of lookup
tables (LUTs), which are the basic building blocks in modern FPGAs. The full
flexibility of a general–purpose multiplier is also not required in many DSP ap-
plications, and only a limited range of values is needed on one of the multiplier
inputs. Various techniques exist to perform constant–coefficient multiplication in
an efficient manner, which enable multiplying two numbers by a series of shifts,
additions and/or subtractions, thus requiring less area and executing faster than
a general–purpose multiplier [264]. When designing demanding real–time appli-
cations, manual routing between neighboring arithmetic blocks is often needed
to achieve required performance. The design steps in designing highly pipelined
implementations include first describing a parallel pipelined architecture, then de-
composing the signal processing into small computational blocks that fit into a
single logic element with local communications and synchronous registers used
for every logic element output, followed by placement of the logic elements start-
ing with the most constrained interconnection regions, and working manually out-
ward to the rest of the design [276]. Manual placement and routing of individual
arithmetic functions is necessary in very demanding applications, but DSP engi-
neers tend to be relatively unfamiliar with hardware design, and this may have
slowed the wider adoption of FPGAs as the implementation platform of choice
for DSP functions [149].

System integration, dynamic reprogramming, and high–level compilation are
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the main trends in determining the future of digital signal processing with FPGAs
[254]. Wireless technologies are the major application area driving the move to-
wards adaptive computing, and FPGAs are becoming viable alternatives to previ-
ous full–custom implementations for high–speed classes of DSP applications. An
example of new application areas for FPGAs is radar front–end technology, where
the trend is to bring the A/D–converter closer to the radar antenna elements, and
process the incoming signals digitally instead of analog approaches [188]. FPGAs
allow front–end radar processing systems to move away from costly custom chip
with long development times, new fabrication runs for design changes, and the
inability to prototype hardware without fabrication [207]. A tantalizing vision in
the wireless world is offered by the great flexibility of FPGAs, which could en-
able designers to service multiple standards with the same communications plat-
form [77].

5.4.1 General Parameter Extension for Polynomial FIR Pre-
dictors

In Publication P5, an FPGA–based adaptive general parameter (GP) extension [14]
to polynomial FIR predictors was proposed for Rayleigh–distributed fading signal
prediction. The implementation process included a custom–written MATLAB–
to–VHDL conversion utility, analyzing finite wordlength effects, finetuning in-
ternal calculation accuracy, and taking into account specific target architecture
features in implementing constant–coefficient multipliers. Publication P5 also in-
cludes a review of the suitability of FPGAs for digital signal processing tasks.
As the implemented GP extension for polynomial FIR predictors has a sample
rate of 19.6 million samples per second, it has several real–time applications in
environments where low–complexity adaptation is required.

5.5 Cryptographic Algorithms

The goal of cryptography is to keep communication secure, so that eavesdroppers
cannot decipher the transmitted messages. There are two kinds of cryptosystems:
symmetric and asymmetric. Symmetric cryptosystems use the same session key
(secret key) to encrypt and decrypt a message, and asymmetric cryptosystems use
one key (the public key) to encrypt a message and a different key (the private
key) to decrypt it [227]. When it comes to FPGA–based implementations, espe-
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cially symmetric cryptosystems have been fairly thoroughly investigated, and it
has been stated that the art of cryptographic algorithm implementation is reach-
ing maturity [292]. FPGA–based implementations require both architectural and
algorithmic optimization steps [247], which means that an effective FPGA–based
cryptosystem requires expert knowledge on both cryptographic theory and design
practice with FPGAs.

Reprogrammable devices have several advantages for implementing crypto-
graphic algorithms [85] [292]:

• Algorithm Agility, which refers to the switching of cryptographic algo-
rithms during operation of the targeted application. Algorithm agility al-
lows also the deletion of broken algorithms, choosing algorithms according
to personal preferences, and adding new algorithms.

• Algorithm Upload, which allows the upgrading of a fielded device with a
new encryption algorithm, if, the current algorithm was broken, or a cryp-
tographic standard has expired.

• Architecture Efficiency, which means that in certain cases the hardware ar-
chitecture is more efficient if it is designed for a specific set of parameters.

• Resource Efficiency, which means that the same device can initiate commu-
nication with an asymmetric algorithm, and after the parameters of a sym-
metric cryptosystem have been agreed on, the device may perform run–time
reconfiguration and continue functioning in symmetric encryption mode.

• Algorithm Modification, which allows the customization of certain parts of
a standardized algorithms for proprietary purposes, for example with cus-
tom substitution boxes.

• Throughput, which means the proven performance speedup over general–
purpose processors in numerous publications of FPGA–based cryptosys-
tems.

• Cost Efficiency, which refers to the generally low– to medium–sized tar-
get market, where the large initial manufacturing startup costs included in
ASIC–based designs make FPGAs a better alternative.

Specific design techniques for finetuning the performance of FPGA–based im-
plementations of cryptosystems include combining sequences of logical opera-
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tions into a single operator by setting the lookup tables appropriately, and imple-
menting rotation, substitution and shifting in parallel at the bit–level. It should
be noted, that general–purpose processors, in particular if programmed in a high–
level language, are very inefficient at performing operations of this type [252]. In
many respects, cryptographic algorithms are prime candidates for FPGA–based
implementations, as they exhibit vast parallelism, are often pipelineable, make
extensive use of bit–level operations on varying word lengths, and benefit from
reprogrammability.

5.5.1 The International Data Encryption Algorithm

The International Data Encryption Algorithm (IDEA) was proposed by Lai and
Massey in 1990 [166]. The design of IDEA was based on the concept of mixing
operations from different algebraic groups, and IDEA operates with three group
operations on pairs of 16–bit subblocks, namely bit–by–bit XOR (exclusive OR)
of two 16–bit subblocks, addition of integers modulo 216, and multiplication of
integers modulo 216 + 1, of which the multiplication is by far the most demand-
ing operation to implement both in hardware and in software. In IDEA, both the
plaintext and ciphertext are 64–bit blocks, and the secret key is 128 bits long. En-
cryption and decryption are essentially the same process, but only with different
key subblocks. It has been stated, that prior to the introduction of AES (Advanced
Encryption Standard), IDEA may have been the most secure symmetric crypto-
graphic algorithm available to the public [227].

The first IDEA implementation on a VLSI chip at the Integrated Systems Lab-
oratory at the ETH, Zurich, achieved a throughput of 115 Mb/s [166]. IDEA
achieved particular fame due to its usage in the Pretty Good Privacy (PGP) se-
cure E–mail package, and IDEA was also proposed to be used as a general design
benchmark for reprogrammable devices [52], as it is computationally challeng-
ing but not impossible to implement, and has clearly understandable performance
metrics.

Prior to Publication P6, representative compact and high–speed implementa-
tions of IDEA included, a bit–serial implementation described in [170], whose es-
timated performance on a Xilinx XCV1000 device was 2 Gb/s, and the bit–parallel
implementation described in [56], whose throughput achieved 5.25 Gb/s on a Xil-
inx XCV1000 device. The bit–parallel implementation also included custom–
written software to customize the FPGA reprogramming bitstream for different
key schedules.
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The main contribution of Publication P6 is its speed, since the throughput at
6.78 Gb/s represented the fastest published FPGA–based implementation of IDEA
at that time. Other contributions of Publication P6 include implementing a fully
pipelined algorithm with both inner and outer loop pipelining on a single Xil-
inx XCV1000 device, the efficient usage of the diminished–one number system,
area–efficient implementation of the modulo (216) multiplication, and a compari-
son of the relative virtues of the Handel–C high–level design environment versus
VHDL–based design.

After Publication P6, IDEA was implemented on a Xilinx XCV600 device,
and this design achieved a throughput of 8.3 Gb/s [112]. The key to high through-
put was replacing all the operational units involving the key with its constant–
operand equivalents by partial reconfiguration, whose overhead was 4 ms. How-
ever, only few devices support partial reconfiguration, and the scheme requires a
controlling microprocessor. Another recent implementation of IDEA achieved a
throughput of 6 Gb/s by utilizing the embedded multipliers for the modulo (216)

multiplication algorithm, but it seems that this scheme did not produce any area–
saving advantages [213].

5.5.2 The Advanced Encryption Standard Algorithm

The two decades old Digital Encryption Standard (DES), with its short keylength
of only 56 bits, became obsolete in the nineties, and The National Institute of Stan-
dards and Technology (NIST) of the United States initiated a selection process to
develop a new Federal Information Processing Standard (FIPS) for the Advanced
Encryption Standard (AES). After a careful and open selection process, which
culminated in the final comparison process between five finalists, the Rijndael al-
gorithm was selected in October 2000 as the new AES algorithm, and the standard
became official in 2001.

The AES algorithm is a symmetric block cipher that can process data blocks of
128 bits, using cipher keys with lengths of 128, 192, and 256 bits. A single round
in the AES algorithm has four operations, namely byte swapping, constant Galois
field multiplication, key addition, and an S–box substitution, which finds the mul-
tiplicative inverse of a byte in GF (28). In terms of required logic resources, the
S–box substitution is the dominant element of the AES round function [85].

Representative FPGA–based high–speed implementations of the AES algo-
rithm prior to Publication P7 include the design reported in [100] with a through-
put of 12.2 Gb/s, an implementation in a Xilinx FPGA with exceptionally large
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internal memory [198] with a throughput of 7 Gb/s, and an implementation with
a throughput of 14 Gb/s, due to a design methodology which attempted to rigor-
ously limit the critical path inside a Xilinx slice [246].

The main contribution of Publication P7 is its speed, since the throughput
at 17.8 Gb/s represented the fastest published FPGA–based implementation of
the AES algorithm at that time. Other contributions of Publication P7 include
implementing the S–box substitution without internal memory, thus taking into
account the architectural limitations and constraints of target device family, and a
thorough comparison of the open literature on published high–speed FPGA–based
implementations of the AES algorithm.

After Publication P7, efficient implementation of the AES algorithm have been
a subject of intensive research in the FPGA design community. Notable recent
achievements include a very small–sized AES core fitting into only 222 Xilinx
slices and 3 Xilinx BlockRAMs [58], and probably the fastest current FPGA–
based AES implementation with a throughput of up to 23.57 Gb/s [299].
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Chapter 6

Results of the Thesis

This thesis presents a comprehensive overview of the possibilities and limitations
of present–day reprogrammable logic. The results of the applicability of reprog-
rammable logic are presented in Chapter 4, where Section 4.1 presents results on
the technical features of algorithms suitable for implementation on reprogram-
mable logic, Section 4.2 discusses the design issues in contemporary reprogram-
mable logic design, and the economic merits and drawbacks of reprogrammable
logic are reviewed in Section 4.3. Chapter 4 ends with a summarized SWOT ma-
trix of reprogrammable logic in Section 4.4.

The results presented in Chapter 4 are corroborated by a wide range of repre-
sentative case studies presented in Publications P1–P8, which are overviewed and
compared to contemporary research in Chapter 5. More specifically, the technical
merits of the appended publications P1–P8 are as follows:

• Publication P1 describes an FPGA–based genetic algorithm (GA), which
outperformed a similar software–based GA by a factor of 200.

• Publication P2 describes an FPGA–based simulation acceleration of ATM
Adaptation Layer (AAL) Type 2 receiver, which outperformed a similar
software–based implementation by a factor of 70.

• Publication P3 describes a compact square root operator for FPGAs, which
converges more rapidly than other contemporary approximations.

• Publication P4 describes the first published FPGA–based implementation
of Dijkstra’s shortest path routing algorithm, which outperformed a similar
software–based algorithm by a factor from 23.58 to 67.41.
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• Publication P5 describes an FPGA–based implementation of adaptive gen-
eral parameter (GP) extension to polynomial Finite Impulse Response (FIR)
predictors with a sample rate of 19.6 million samples per second.

• Publication P6 describes the fastest1 FPGA–based implementation of the
International Data Encryption Algorithm (IDEA) with a throughput of 6.78
Gb/s.

• Publication P7 describes the fastest1 FPGA–based implementation of the
Advanced Encryption Standard (AES) with a throughput of 17.8 Gb/s.

• Publication P8 presents an extensive review of previous approaches to ap-
proximate the sigmoid function, and describes SIG–Sigmoid, which is the
most accurate sigmoid function approximation with tight area constraints
for reprogrammable logic.

The author’s contribution in Publications P1–P8 has been presented in Sec-
tion 1.1.

1At the date of publication.
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