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Abstract 
Information processing in the sensory modalities is not segregated but interacts strongly. 

The exact nature of this interaction is not known and might differ for different 

multisensory phenomena. Here, we investigate two cases of categorical audiovisual 

perception: speech perception and the perception of rapid flashes and beeps.  

 

It is known that multisensory interactions in general depend on physical factors, such as 

information reliability and modality appropriateness, but it is not known how the effects 

occur. Here we parameterize the effect of information reliability for both our model 

phenomena. We also describe the effect of modality appropriateness as that of a factor 

that interacts with the effect of information reliability for counting rapid flashes and 

beeps. 

 

Less explored is whether multisensory perception depends on cognitive factors such as 

attention. Here we show that visual spatial attention and attentional set influence 

audiovisual speech perception. Whereas visual spatial attention affected unimodal 

perception prior to audiovisual integration, attentional set influenced the audiovisual 

integration stage. We also show a strong effect of intermodal attention on counting rapid 

flashes and beeps. 

 

Finally, we introduce a quantitative model, early maximum likelihood integration (MLI), 

of the interaction between counted flashes and counted beeps. We compare early MLI to 

the Fuzzy Logical Model of Perception (FLMP) which is a MLI model based on 

categorical percepts, and show that early MLI fits the data better using fewer parameters. 

Early MLI is also able to incorporate the effects of information reliability and intermodal 

attention in a more efficient way than the FLMP. 
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Introduction 
This work aims at understanding how categorical auditory and visual information is 

integrated in human perception. The focus has been on constructing a quantitative model 

of human responses with little regard to which particular neural system it is implemented. 

To understand a system, it is essential to understand how it is influenced by its 

surroundings—stimulus properties, in this case—and its state—cognitive factors, in this 

case. It has long been known that multisensory interactions in general depend on stimulus 

properties and the properties of the perceptual system but the role of cognitive factors is 

poorly understood. This work therefore puts the emphasis on those.  

Audiovisual perception 
In the past decades, it has become increasingly clear that information in the sensory 

modalities interacts strongly. From an information theoretical viewpoint this is not 

surprising. Using information from all available sources will generally yield better 

performance than using information from any one source of information and evolution 

will strive towards better performance. Therefore, evolution will strive towards 

integrating information from all the senses relevant for a given task. In this introduction, 

we shall focus on audiovisual integration, but will digress to other examples of 

multisensory integration that have been important in the history of the field. Perception 

can be divided into continuous and categorical perception. This distinction holds for 

audiovisual perception as well and will be described in the following.  

Continuous perception 
Continuous perception is when we perceive the variation of stimulus properties on a 

continuous scale—e.g. when we perceive location. When location varies continuously, so 

does our estimate of it. Location can be determined by either audition or vision. If we can 

both see and hear an object, the resulting location estimate is a compromise between the 

location estimated from audition or vision alone [2,56]. Other examples of continuous 

percepts that integrate across audition and vision are simultaneity [18,66] and intensity 

[55]. 
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Categorical perception 
Categorical perception is when continuously varying stimuli are perceived in categories. 

The full extent of categorical perception implies that the stimulus, or features of the 

stimulus, can be varied continuously but that this variation is only perceived when it 

crosses category boundaries. Two types of experiments are the standard requirement for 

determining whether a stimulus is perceived categorically. One experiment is an 

identification experiment. A stimulus attribute is varied continuously and subjects are to 

classify the stimulus. The transition between responding in one category and in the other 

should be abrupt for perception to be categorical. This transition is called the category 

boundary. The category boundary could, however, be due to an effect at the response 

level rather than at the perceptual level. Therefore, in the other required experiment, 

subjects are to discriminate between stimuli on the same continuum as used in the 

identification task. If subjects can only discriminate between stimuli separated by the 

category boundary, the effect is truly perceptual and perception is categorical; we 

perceive only the category of the stimulus, not continuous variations in its attributes. 

  

Categorical perception was first demonstrated in speech perception by Liberman et al. 

[27]. However, it is important to note that this report did not find speech perception to be 

completely categorical. Rather, they found that discrimination is better across the 

category boundary, but that we do also have discrimination ability within categories. This 

weaker definition of categorical perception finds better support in the literature. It is also 

in accordance with neurophysiological findings. The mismatch negativity (MMN) is an 

electroencephalography (EEG) component that is elicited in response to infrequent 

auditory stimuli in a stream of frequent auditory stimuli. The difference between frequent 

and infrequent stimuli must be audible for the MMN to be elicited. For speech sounds, 

within-category differences elicit the MMN although between-category stimuli elicit a 

stronger MMN [39]. Yet another caveat in the theory of categorical perception is that 

whether a stimulus is perceived categorically or continuously may depend on the stimulus 

presentation and response scheme [20]. Here we shall assume a broad definition of 

categorical perception that merely implies that subjects respond in categories—not on a 

continuous scale. 
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One of example categorical audiovisual perception is the counting of rapid flashes and 

beeps. Shams and co-workers showed that one rapid flash may be perceived as two when 

accompanied by two rapid beeps [47,48]. The unaccompanied flash, however, is clearly 

perceived as a single flash. Thus this is an auditorily induced visual illusion. Shams et al. 

also showed that two rapid flashes are not perceptually fused into one when accompanied 

by a single beep. They generalized this phenomenon to stating that while there is a clear 

fission illusion (perceiving more flashes than actually presented due to more beeps) there 

is no fusion illusion (perceiving fewer flashes than actually presented due to fewer 

beeps). In Publication P1, we replicated the original work of Shams and co-workers [5] 

and, surprisingly, we found also a clear fusion illusion. In two later studies, Shams and 

coworkers demonstrated that electrophysiological correlates of the illusory flash occurred 

in visual cortex [10,49]. 

 

Speech perception affords a complex example of audiovisual integration and has 

accordingly been studied extensively. From speech, we perceive many qualities, both 

continuously and categorically, which can be derived from either face or voice. In 

accordance, many of them are based on information integrated across audition and vision 

when both sources of information are available. The continuous qualities include source 

location [8] and loudness [43] which have both been shown to be influenced by both 

audition and vision. The categorical include identity, gender, emotional tone and phonetic 

content. Of these, phonetic content [36] and emotional tone have been shown to integrate 

across audition and vision [19].   

 

Phonetic speech perception stands out between all examples of multisensory integration 

due to the McGurk effect [36]. In McGurk and McDonald’s classical example of this 

effect, a video of a face uttering /ga/ is dubbed with a voice saying /ba/. This results in an 

auditory percept of hearing /da/. If the utterances of the face and voice are interchanged 

so that a face uttering /ba/ is dubbed with a voice saying /ga/, the resulting auditory 

percept is /bga/. What makes the McGurk effect unique is that we have no comprehensive 

theory of how it arises from the auditory and visual percepts. Such theories exist for other 
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multisensory phenomena. The McGurk effect therefore stands unchallenged as the most 

complex and most poorly understood example of multisensory integration. Another effect 

of audiovisual integration of speech is that auditory speech comprehension is improved 

when watching a congruently articulating face [58]. This is, of course, the ecologically 

valid situation under which audiovisual integration of speech developed evolutionary.  

Factors influencing categorical audiovisual perception 

Physical factors 
By physical factors we refer to the properties of the stimulus and stimulus transduction. 

Perhaps the first physical factor described in the literature on multisensory integration 

was modality appropriateness [71]. Some of the first studies on multisensory integration 

employed prism goggles that displace visual input [42,69]. Subjects were then given 

motor tasks like grasping [42] or pointing [69] where proprioceptive or tactile 

information was also available. This elicited the phenomenon of visual capture where the 

visual modality completely dominates or captures the other modality. Visual capture was 

explained by the modality appropriateness hypothesis: The more appropriate modality 

dominates perception. By more appropriate is understood having greater acuity for the 

task at hand. According to this hypothesis, vision dominates in spatial tasks because 

(primate) visual spatial acuity is greater than proprioceptive spatial acuity. Conversely, 

audition dominates in temporal tasks because temporal acuity is greater for audition than 

for vision. This is seen when the estimated rate of visual flicker is strongly influenced by 

the rate of concurrently presented auditory flutter [50,70].  

 

However, later it was hypothesized that the basis of the more appropriate modality 

dominating perception was not its appropriateness per se but rather that it provided more 

reliable information due to its appropriateness. This is termed the information reliability 

hypothesis. It predicts that if the more appropriate modality receives less reliable 

information it looses its advantage and will no longer dominate. 

 

Unfortunately, information reliability has been used in two meanings in the literature. 

Whereas Schwartz used the term to describe the stimulus’ reliability [46], Warren used it 
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to denote the perceived reliability which includes subjects’ assumptions on its reliability 

which he manipulated by telling naive subjects about the diffracting properties of the 

prism goggles they wore [68]. To distinguish between these two meanings, we adopt the 

terms stimulus and cognitive information reliability. Certainly, the two concepts are 

related in that both physical and cognitive information reliability may contribute to, what 

we shall call perceptual information reliability. In this section, we shall describe physical 

stimulus information reliability and, in the next section on cognitive factors, we shall 

briefly revisit cognitive information reliability. 

 

Stimulus information reliability denotes how informative a stimulus about an attribute of 

an object [71]. The most straightforward example of a stimulus attribute that affects 

information reliability is the stimulus signal-to-noise ratio. A noisy stimulus—i.e. a 

stimulus with a low signal-to-noise ratio (SNR)—is less reliable, or informative. 

However, information reliability may not always depend so simply on stimulus SNR; the 

reliability of certain speech features are more robust to variations in SNR than others 

[37]. 

 

On the basis of the information reliability hypothesis, some of the phenomena that 

formed the basis of the modality appropriateness hypothesis have been revisited by 

researchers varying stimulus information reliability to investigate whether information 

reliability or modality appropriateness is the governing principle of multisensory 

interactions. Ernst and Banks studied the effect of information reliability on haptics and 

concluded that “Visual dominance occurs when the variance associated with visual 

estimation is lower than that associated with haptic estimation” [16]. Wada et al. studied 

the effect of information reliability on the perceived auditory flutter and visual flicker 

rates and concluded that “When ambiguous auditory temporal cues were presented, the 

change in the frequency of the visual stimuli was associated with a perceived change in 

the frequency of the auditory stimuli” [67]. Thus, in these types of experiment that 

originally led to the modality appropriateness hypothesis, the more reliable, not the more 

appropriate modality, dominate perception. 
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The information reliability hypothesis does not abolish the modality appropriateness 

hypothesis. It is not stimulus information reliability that determines modality dominance 

in multisensory perception. Rather, it is the perceptual reliability. The perceptual 

reliability is determined by both the stimulus reliability and the modality appropriateness, 

or acuity. Perceptual information reliability cannot exceed modality acuity regardless of 

the stimulus information reliability.  

 

How do the principles of information reliability and modality appropriateness apply to 

audiovisual categorical perception? In Publication P1, we present the only study so far 

that has formally investigated these effects on audiovisual integration of rapid flashes and 

beeps [5]. This study consisted of two experiments. In both Experiments, the stimuli 

consisted of 1-3 flashes, 1-3 beeps and all possible audiovisual combinations of flashes 

and beeps. In Experiment 1, the beeps were at a clearly audible sound level and in 

Experiment 2, the beeps were near detection threshold. Each experiment consisted of two 

blocks. In the count-flashes block the visual and audiovisual stimuli were presented and 

subjects were instructed to count the flashes. In the count-beeps block the auditory and 

audiovisual stimuli were presented and subjects were instructed to count the beeps. We 

found that the number of concurrent beeps strongly influenced the number of perceived 

flashes. The effect was stronger when the beeps were at a clearly audible level than when 

they were near subjects’ auditory threshold, which is in accordance with the information 

reliability hypothesis. We also found a converse, visually induced auditory illusion were 

the number of concurrently presented flashes influenced the perceived number of beeps 

but only when the beeps where near detection threshold. This also supports the 

information reliability hypothesis. Notably, the effect of information reliability was much 

stronger on the visually induced auditory illusion, which completely disappeared just 

above auditory threshold, than on the auditorily induced visual illusion, which persisted 

near auditory threshold even with clearly visible flashes. This effect can be explained by 

the modality appropriateness hypotheses.  Audition influenced vision throughout a 

greater range of stimulus information reliability than vision influenced audition because 

audition had greater acuity for the task of counting rapid events.  
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The effect of information reliability and modality appropriateness on audiovisual speech 

perception is somewhat more complicated. Obviously, audition is the more appropriate 

modality for speech comprehension, but the McGurk effect shows that vision exerts a 

strong influence on audition even at clearly audible sound levels. One explanation for this 

comes from the manner-place hypothesis [29]. There are three main features 

characterizing consonants: Voicing, manner and place. By voicing is meant that the voice 

is activated during a consonant uttering. Voiced consonants are e.g. /g/, /b/ and /d/. Their 

unvoiced counterparts are /k/, /p/ and /t/ respectively. Voicing is a purely auditory speech 

cue. There is no visual difference between a face uttering /k/ and /g/. In accordance with 

the modality appropriateness hypothesis, voicing should not be influenced by visual 

speech at all, which is indeed the case [29]. However, place of articulation is often more 

pronounced in vision than in audition. As an example, take the similarly sounding 

consonants /m/ and /n/ where visually the bilabial closing of the /m/ is clearly 

distinguishable from the alveolar /n/. Thus, for certain speech cues, vision may actually 

be the more appropriate modality. Auditory and visual speech thus complement each 

other and this might be the basis of why speech perception is integrated across audition 

and vision. 

 

Several studies have shown visual influence on the auditory speech percept increases 

with decreasing SNR [30,58] which is in accordance with the information reliability 

hypothesis. In Publication P6 we present a study where we confirmed this result using the 

McGurk illusion [3]. As an example, our study showed that a clear McGurk effect of 

hearing /apta/ when the auditory stimulus was /ata/ and the visual stimulus was /apa/ 

gradually changed into hearing /apa/ when the auditory SNR, and thus auditory 

information reliability was lowered, showing a stronger visual influence of audition.  

 

We conclude that the hypotheses of information reliability and modality appropriateness, 

which were first shown to apply to multisensory continuous perception, also apply to 

audiovisual categorical perception. 
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Cognitive factors 
Most studies in the literature have concluded that audiovisual integration of speech is an 

automatic process that does not depend on the perceiver’s cognitive state 

[15,31,36,53,65]. This is surprising seen in the light of Treisman’s feature integration 

theory of attention [61]. According to this theory, attention is necessary for features to be 

assembled into objects. This applies to feature integration across as well as within 

sensory modalities [60]. However, Liberman has argued that speech perception occurs in 

a specialized module that functions automatically without the need for attention [28].  

 

In the literature, there is a tendency to form a dichotomy between perceptual and 

cognitive effects, which we find is not completely justified [19,48]. Certainly, there is an 

important difference between response bias and perceptual effect. In the Stroop effect, the 

word “red” colored blue infers a response bias towards “red” when subjects are to 

identify the color of the word [57]. There is no perceptual effect of actually seeing the 

blue word as red, so this is a response bias. The McGurk effect, however, is truly a 

perceptual effect as witnessed by those who have experienced it [36]. This is supported 

by neurophysiological studies that show that visual speech can modify activity in parts of 

the brain associated with conscious auditory perception [38,40,44]. So far, the dichotomy 

is justified. But perceptual effects can certainly depend on attention. A recent striking 

example is provided by studies on inattentional blindness [51]. Simons and Chabris 

showed that a clearly visible person dressed up as a gorilla for conspicuity might not be 

consciously perceived when subjects are performing a moderately demanding visual task 

concurrently [52]. Here, the dichotomy between perceptual and cognitive effects is 

unjustified because the effect is truly perceptual but depends on attention. Therefore, 

audiovisual integration of speech can depend on attention even though it is a truly 

perceptual effect. 

 

Here, we shall first review the evidence for audiovisual integration of speech being an 

automatic process. Then, we shall review our own work which has shown that this is not 

always the case. 
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In the first report on the McGurk effect, McGurk and McDonald noticed that the illusion 

persists after extended exposure even when subjects are aware of the discrepancy 

between the face and the voice [36]. This certainly indicates that the illusion and hence 

audiovisual integration is not under voluntary control under the circumstances employed.  

 

Massaro has studied the effect of instructing subjects to report either what they heard or 

what they saw on perception of phonetic and emotional contents of speech [31,32]. He 

found a strong effect of task instructions in that visual influence was greater when 

subjects reported what they saw and that auditory influence was greater when they 

reported what they heard. Since the stimuli were the same in both cases, this could 

indicate an effect of task instructions on audiovisual integration. However, Massaro 

reached another conclusion that the effect occurred at the unimodal processing stage. His 

conclusion was based on a model-based analysis, to which we shall return in the section 

on models of audiovisual integration. 

 

Massaro’s conclusion has found acceptance in the literature. Driver accepted Massaro’s 

argument as a confirmation of his own conclusion that the audiovisual integration of 

speech source location seems to be automatic and uninfluenced by cognitive factors [15]. 

Driver studied the interaction of auditory spatial attention and audiovisual integration of 

spatial location. He conducted an experiment using a loudspeaker on each side of a 

display of visual speech. Speech coming from one loudspeaker was congruent with the 

visual speech; speech coming from the other was not. Seeing the visual speech impaired 

participants’ ability to identify the incongruent speech token. Driver concluded that the 

visual speech integrated with the congruent auditory speech causing an illusory 

displacement of the auditory sound source towards the central display and hence the other 

sound source. The illusory decrease in distance between the two sound sources impeded 

the participants ability to separate one from the other and hence comprehension. The 

audiovisual integration was thus detrimental to task performance, and on this basis Driver 

concluded that audiovisual integration of talker location occurs involuntarily and 

automatically. 
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Another study pointing to automatic audiovisual integration was done by Soto-Faraco 

who studied a syllabic interference task [53]. Two syllables were presented in rapid 

consecution. The second syllable only interferes with the classification of the first if it 

varies; not if it is constant. This is interpreted as auditory attention failing to select the 

relevant stimulus so that the second syllable is obligatorily processed even though 

participants attempt to focus their attention only on the first one. By using audiovisual 

incongruent stimuli as the second syllable they created a McGurk effect. It was the 

illusory percept rather than the actually presented acoustic stimulus that determined 

whether interference occurred. Soto-Faraco et al. concluded that the visual influence on 

the auditory speech percept must have occurred before attentional selection.  

 

Vroomen et al. studied the effect of performing a secondary task while perceiving the 

emotional content of a face and voice [65]. In order to scan for an effect of attention 

across attentional faculties, three secondary tasks were employed in separate 

experiments; addition, counting and pitch discrimination. In all three experiments did a 

static face influence the perceived emotional content of the voice similarly. 

 

The above studies show that audiovisual integration of some speech attributes is robust to 

some cognitive factors. The coverage of speech attributes and cognitive factors is, 

however, sparse and we did not find them sufficient conclude by induction that 

audiovisual integration of speech is generally robust to variations in all cognitive factors. 

Therefore, we proceeded with the following studies of the effect of attention on 

audiovisual speech perception. 

 

In Publication P2, we employed a leaf like drawing appearing to float across a talking 

face [59]. Subjects were instructed to follow the leaf with their gaze while reporting what 

they heard the talker say. At the moment of articulation the leaf was near the face so that 

gaze displacement would have little effect on speech perception—visual or audiovisual. 

Still, we did find a decrement in visual influence on auditory speech perception in that the 

McGurk illusion was weaker when subjects attended the leaf. This decrement must then 

have been due to the attentional demands of the tracking task including the displacement 
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of visual spatial attention. The decrement was, importantly, not always accompanied by a 

decrement in lip reading performance in the corresponding unimodal visual condition. 

This points to an effect on audiovisual integration rather than an effect on unimodal 

perception prior to integration.  

 

In Publication P3, we continued to study the effect of visual spatial attention [7] using 

visual stimuli consisting of two faces on each side of a central fixation point. Below the 

fixation point was an arrow cueing the subjects which face to attend. In the visual 

condition, subjects were instructed to lipread the attended face. In the audiovisual 

condition, a voice was dubbed onto the movie of the faces and subjects were instructed to 

respond according to what they heard. In the conclusive experiment in this study one face 

uttered /eke/, the other /ete/ while the voice uttered /epe/. This type of stimulus enabled 

us to distinguish the effect on perception that each face and the voice had.  

 

We found a strong effect of visual spatial attention in that the attended face had a greater 

influence on speech perception than did the unattended face. The unattended, distractor 

face did however also influence speech perception indicating that attentional selection 

was not complete. This was seen in the control condition employing videos without the 

distractor face—i.e. with only one face laterally displaced from the central fixation point. 

Here, the effect of the face on speech perception was greater than when the distractor face 

was present. The influence of the voice and thus audiovisual integration was unaffected 

by the distractor face. Assuming that the attentional load was greater when the distractor 

face was present, this indicates that attention worked independently of audiovisual 

integration. Therefore, the effect of visual spatial attention is likely to have taken effect 

prior to audiovisual integration at the unimodal visual processing level. This was 

corroborated by the results from unimodal visual trials in which the effects of visual 

spatial attention and the distractor face were similar to the results in audiovisual trials.  

 

While both our studies on the effect of visual spatial attention on audiovisual speech 

perception show a significant effect, they disagree on whether this effect of attention 

occurs at the unimodal processing stage or at the audiovisual integration stage. In the first 
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study, the effect of attention on audiovisual perception was not reflected in unimodal 

visual trials indicating that the effect occurred at the audiovisual integration stage. In the 

second study, the effect of attention was reflected in unimodal visual trials indicating that 

the effect occurred at the unimodal visual stage. However, in the last study we found that 

the effect of the distractor face was reflected in unimodal perception only when subjects’ 

eye movements were monitored. This could be due to subjects looking – despite 

instructed not to - at the attended object in the visual but not audiovisual condition only 

when they were not aware of being monitored. The reason why this would occur in the 

visual but not audiovisual condition could be that in the visual condition they reported on 

the attended face which would be easier if they also looked at it. In the audiovisual 

condition they reported on the voice which would not get any easier if they looked at the 

attended face. Unfortunately, this difference in motivation was also present in the first 

study. Since we did not record eye movements in that study, we cannot check whether 

absence of an effect of attention in the unimodal visual condition was due to eye 

movements. The second, more controlled study therefore forms the basis of our 

conclusion. 

 

To summarize, our studies on the effect of visual spatial attention on audiovisual speech 

perception indicate that there is a strong effect. The effect occurs prior to and 

independent of audiovisual integration so that visual spatial attention selects the face to 

be integrated with the auditory speech percept. This agrees well with the studies outlined 

above that also found no effect of attention on audiovisual integration. However, most of 

these studies showed no effect of attention on audiovisual integration by showing no 

effect of attention on audiovisual perception. In contrast, our studies showed no effect of 

attention on audiovisual integration despite a strong effect of attention on audiovisual 

perception. We have thus demonstrated that the effects of attention at the unimodal 

processing stage can propagate to bimodal perception, and that it is important to 

distinguish between the effects of attention on audiovisual perception and audiovisual 

integration. 
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In Publication P4, we found an effect of attention which is likely to target audiovisual 

integration per se [62]. In this study we employed sine-wave speech created by 

positioning time-varying sine waves at the centre frequencies of the three lowest formants 

of a natural speech signal. Two speech tokens, /omso/ and /omso/ were used. Our pilot 

studies showed that when the natural speech token /omso/ was dubbed onto a face saying 

/onso/ a McGurk effect of hearing /onso/ occurred. Likewise /onso/ dubbed onto a face 

saying /omso/ was heard as /omso/.  

 

First, subjects were trained to categorize the sine-wave speech tokens in two arbitrary 

categories. At this point, the subjects were not aware of the speech like nature of the 

stimuli. We then tested that they were able to perform this task. Then we used 

audiovisual stimuli consisting of the sine-wave speech tokens dubbed onto the face 

uttering the speech tokens. Of special interest are the incongruent audiovisual speech 

stimuli where we would expect to see a McGurk effect similar to that for natural speech. 

If the McGurk effect occurred, concurrent presentation of the incongruent face should 

change subjects’ responses to the other response category. This effect was, however, very 

weak. We then trained subjects in perceiving the sine-wave speech tokens as speech and 

to categorize them phonetically. Then we tested the same audiovisual speech stimuli as 

before and now found a very strong McGurk effect. We interpreted this result as evidence 

of a speech specific mode of audiovisual perception which can be manipulated by 

cognitive factors. Only when subject were aware of the speech like nature of the sine-

wave speech stimuli did they enter speech mode and integrated sine-wave speech with 

visual speech. 

 

Finally, we return to our study of audiovisual integration of rapid flashes and beeps in 

Publication P1 [5]. Our results showed a strong effect of task instructions, or intermodal 

attention, on subjects’ responses. When counting flashes, subjects’ responses were 

strongly influenced by the number of concurrently presented clearly audible beeps. When 

counting clearly audible beeps, subjects’ responses were uninfluenced by the number of 

concurrently presented flashes. This shows that instructing subjects to respond according 

to what they see increases influence from vision while instructing subjects to respond 
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according to what they hear increases influence from audition. This effect was quite 

similar to that found by Massaro on audiovisual speech perception described above 

[31,32].  

 

Recall the distinction between physical and cognitive information reliability from above. 

Cognitive information reliability denotes the effect of our assumption of the information 

reliability [68]. It is easy to see that intermodal attention can be seen as assuming that the 

unattended modality is less reliable. Thus the effect of attention could be to increase the 

perceptual information reliability of the attended modality. This is in accordance with the 

gain theory of attention stating that the effect of attention is to increase the gain of the 

attended stimulus relative to the unattended stimulus through increased processing 

[25,63].  

 

In summary, our studies on the effect of attention on audiovisual speech perception 

showed that there is a great effect of visual spatial attention which occurs prior to 

audiovisual integration at the unimodal processing level. Further, our study showing an 

effect of intermodal attention on counting of rapid flashes and beeps extends Massaro’s 

finding of an effect of intermodal attention on audiovisual speech perception to an effect 

on categorical audiovisual perception in general. This effect shall be analyzed in greater 

detail below. Finally, the effect of speech mode on sine-wave speech perception strongly 

indicates that cognitive factors can influence the audiovisual integration stage of speech 

perception. 

Models of categorical audiovisual perception 
A multitude of functional architectures for audiovisual integration in categorical 

perception has been suggested [46]. We find it most informative to divide models in two 

categories: early and late. Early models assume that audiovisual integration occurs prior 

to classification. Features extracted from the auditory and visual speech signals are 

integrated and the integral forms the basis for a categorical decision. Late models assume 

that classification occurs in each modality and that these classifications are then 

integrated across audition and vision. We describe these two classes of models in the 

following.   
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Early integration 
Although not quantitative, the manner-place hypothesis described above has had some 

success in describing which McGurk illusion arises from which audiovisual stimulus 

combinations and why [29]. The manner-place hypothesis is an early model; it is manner 

and place that are integrated audiovisually before phonetic classification. Its success 

should serve as an encouragement for deriving a quantitative, or exact, early model. In 

Publication P5, we introduced a model called early maximum likelihood integration 

(MLI) [6] which we applied to the perception of rapid flashes and beeps. Here, we 

describe this model first because other early models can be derived as from it.  

 

Maximum likelihood as the principle governing multisensory integration has recently 

been studied for stimuli falling on a continuum [2,16,17]. In these studies, it has been 

assumed that the stimulus, S, causes an internal representation, x, in the brain. In the 

process, perceptual Gaussian noise is added so that the probability of an internal 

representation value given a stimulus is given by: 
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where Sµ  and  r  denote mean and reliability of the internal representation, respectively. 

The reliability, r , relates to the standard deviation, σ ,  of the Gaussian distribution as 
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Given an auditory stimulus, AS , and a visual stimulus, VS , with internal representation 

means Aµ  and Vµ  respectively, the integrated internal representation, AVx , is also 

Gaussian distributed with mean 
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where the weight, w, is 
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and the reliability is 
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It is reasonable to equate the reliability in this model with perceptual information 

reliability as described above. Then, this model contains the information reliability 

hypothesis in the form of Eq. 4. When a modality is more reliable it is weighted higher.  

 

In order to apply this model to categorical responses, it is necessary to add a model of 

categorization. We applied a simple model based on signal detection theory [24]. A 

category, C, is defined by an interval, min max[ , ]C Cx x of internal representation values. One 

endpoint may be replaced with plus or minus infinity as appropriate. When a feature 

value falls inside the interval, the stimulus is estimated to belong to the category; when it 

falls outside the interval, the stimulus is estimated not to belong to the category. The 

probability of a stimulus being classified as belonging to category C is then 
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where Φ  is the standard normal probability function.  
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With this model of categorization, early MLI is a complete model applicable to 

audiovisual integration of a single feature. For multiple features, the internal 

representation is vectorial and not scalar as above. Then, the simple classification model 

no longer holds but needs to be extended. 

 

This model has several desirable properties which come directly from the maximum 

likelihood rule for continuously perceived stimuli. First, it assigns system noise as the 

cause of response variability within subjects. This is in accordance with the well 

established signal detection theory [24]. Second, the weighting factor provides a measure 

of the relative influence of the sensory modalities involved. This is a model ability that 

has been sought after in the literature and which finds practical applications [21,33]. 

Third, it inherently incorporates the information reliability hypothesis which we have 

seen to be central in multisensory perception.  

 

A similar model has been proposed by Braida [11] who called it a pre-labeling model 

referring to audiovisual integration preceding phonetic classification or labeling. This 

model did not apply the simplifying assumption that a single feature characterizes both 

auditory and visual stimuli, but that a single feature characterizes auditory stimuli and 

another single and independent feature characterizes visual stimuli. Braida and co-

workers could thus test it on limited cases of audiovisual speech perception [11,12]. 

However, in order to reduce the complexity of the model, they assumed that the 

reliabilities of both modalities were the same. As we have seen, the information 

reliability and manner-place hypotheses indicate that this is not a good assumption. They 

also assumed that each modality carries only one feature and that this feature is not the 

same in each modality. For the features they used, voicing in the auditory modality and 

place in the visual modality, this is a rough assumption as place is mediated by both 

audition and vision. Still, Braida et al. obtained promising results in applying their model 

to a number of data sets and later Grant et al. obtained similar results [21,23]. 

 

Berthommier also applied a similar model, which he called Articulatory Feature Coding 

to spectrally reduced auditory speech [9]. Speech was spectrally reduced because certain 
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features of the manner-place hypothesis are localized in certain sub-bands of the auditory 

spectrum. This enabled Berthommier to vary auditory speech features in isolation which 

simplifies the model. However, Berthommier also assumed that the reliabilities of the 

modalities were identical. Still, also his results were promising but, to our knowledge, 

they have not been followed by a more comprehensive study. 

Late integration 
Our knowledge on audiovisual categorical perception and the factors affecting it provides 

restraints for quantitative models. The most striking effect is that of illusory percepts 

from incongruent audiovisual stimuli. This effect is closely linked to the increased 

classification performance to congruent audiovisual stimuli as compared to unimodal 

stimuli. Any model must be able to describe these phenomena. As Massaro has reviewed 

[31], there exists a plethora of late integration models of audiovisual speech perception 

that do not meet this basic requirement. We shall not include these models in this review. 

We shall include only Massaro’s influential Fuzzy Logical Model of Perception (FLMP) 

and disregard a number of models which have been shown to be equivalent, or very 

similar, to it [13,35].  

 

The FLMP has been suggested by Massaro to be a universal law for integrating 

information from multiple sources in cognitive systems [31,35]. Applied to audiovisual 

integration, the formula for the FLMP is 
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Here, ( )VARP i ,|  denotes the probability of responding in the ith response category given 

auditory, A, and visual, V, stimuli. The FLMP is recognized maximum likelihood rule of 

integrating two discrete, or categorical, independent probability distributions.  

 

The FLMP has been tested by Massaro mainly on audiovisual speech perception but also 

on a multitude of other phenomena [31,32]. Generally, the model has fitted the data 
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extremely well. This fact, along with the theoretical attractiveness of a maximum 

likelihood model for multisensory integration has given it recognition in the literature. It 

has, however, also been the object of severe criticism, which we shall describe in the 

following. 

 

In Publication P7, we showed that the FLMP is highly unstable when auditory and visual 

speech stimuli are incongruent—i.e. the stimulus combinations that can give rise to the 

McGurk effect [4]. Let us assume that the two sources of information A and V disagree 

about a binomial response probability, so that P(R1|A)=p1 and P(R1|V)=1-p1. This 

symmetrically incongruent information leads to a combined response probability of 50% 

which is obtained by inserting unimodal response probabilities into the FLMP: 
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If the unimodal response probabilities change so that P(R1|A)=p2=2p1 but P(R1|V) 

remains the same P(R1|V)=1-p1. Then the FLMP yields the combined response 

probability 
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The approximation holds when p1<<1. Thus, if a unimodal response probability is close 

to zero, it can often, with negligible effect on the goodness-of-fit, be chosen so that an 

arbitrarily small change in it can accommodate almost any accompanying change in the 

bimodal response probability. A similar argument as this was proposed by Schwartz [45] 

who called it the zero-zero trick.  

 

This instability of the FLMP means that it could only be implemented in a noise-free 

system. But, the brain is certainly not noise-free, so the instability poses a great challenge 

for the FLMP. One way to meet this challenge would be to allow variations in the 
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unimodal response probabilities by assuming them to be distributed according to a 

Dirichlet-multinomial distribution rather than a multinomial distribution [26]. In the 

Dirichlet-multinomial distribution, the unimodal response probabilities are themselves 

distributed according to a Dirichlet distribution—i.e. they are noisy and vary randomly 

from trial to trial. We are not aware of any closed-form derivation of the maximum 

likelihood rule for integration two independent Dirichlet-multinomial distributions, but it 

is certainly not equivalent to the FLMP. Since this model would incorporate the effect of 

noise it would be stable when implemented in a real, noisy system. 

 

The FLMP is a Generalized Linear Model known as the baseline logit model [1]. The 

instability of the FLMP has only been shown for incongruent auditory and visual 

information. This is reflected in the literature on Generalized Linear Models where it is 

emphasized that iterative maximization of likelihood is not a valid method for sparse 

categorical data. By sparse data is meant with many empty response categories, which is 

exactly the case when auditory and visual information is highly incongruent.   

 

Instability as that shown by the FLMP is symptomatic for ill-posed problems. Problems 

are ill-posed when the number of degrees of freedom exceeds the number of data points. 

Note, that it is not the number of data points that determines ill-posedness. If two data 

points co-vary they share the same degree of freedom and should be considered as a 

single effectual data point. Also, if a data point does not show variation then it reflects no 

degree of freedom—i.e. we do not gain any information by adding empty response 

categories. Therefore, General Linear Models, such as the FLMP, can become ill-posed 

when the data is sparse. With more degrees of freedom than data points, there is no 

unique solution to ill-posed problems. Certainly, we can apply an iterative error-

minimizing algorithm to obtain a parameter estimate, but this estimate is likely not to be 

unique and to depend on the initial conditions. Schwartz has demonstrated that FLMP 

solutions obtained with iterative algorithms might not be unique [45]. The cure against 

ill-posedness is regularization which is a smoothing of the solution. Using the Dirichlet-

multinomial distribution rather than the multinomial has been suggested as a 

regularization method for models for categorical data [54]. This is in good agreement 
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with the notion that the Dirichlet-multinomial maximum likelihood model would be 

stable to noise. Furthermore, the goodness-of-fit does not represent how well ill-posed 

models describe the underlying structure of the system of interest. Optimization 

algorithms will use the excess free parameters to capture the coincidental structure in the 

sampling noise. This is called over-fitting. But, since there is not reproducible structure in 

the noise, fits to ill-posed models will not be able to predict new data even though they 

might describe the data well in retrospect. This criticism has also been directed towards 

the FLMP [14,41,64]. However, Massaro has answered the criticism by employing model 

evaluation criteria such as cross-validation [31] and Bayes factor [34] which take model-

flexibility into account. Studies by other authors have also pointed to some predictive 

ability of the FLMP [11,22]. The topic of whether the FLMP is generally over-fitting 

remains controversial in the literature and, we believe, will remain so in the absence of a 

more parsimonious model. 

 

If our concepts are fuzzy in the way described by the FLMP, then a response rule is 

necessary for transforming the fuzzy concept into a categorical response. The optimal 

response rule is the maximum a posteori rule which states that the response should 

always fall in the most likely category. However, the FLMP applies the equal probability 

rule which states that the responses are given probabilistically which is a suboptimal 

strategy. Thus the FLMP presents us with a black box perceptual system that reaches 

unimodal noiseless, but fuzzy percepts, which are then integrated according to an optimal 

integration rule only to be followed by a suboptimal response rule. All in all, this is a 

scenario which is difficult to align with our general understanding of perception and 

probability. 

 

In the FLMP, perceptual information reliability is not explicit. The FLMP does however 

obey the information reliability hypothesis. If a modality is less reliable, the response 

probability distribution has higher entropy—i.e. it is closer to a uniform random 

distribution. If a modality is more reliable, it has lower entropy—i.e. it is closer to a 

peaked distribution. A totally unreliable modality causing a uniform random, flat 

response distribution will not influence bimodal perception according to the FLMP. A 
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totally reliable modality causing a response distribution with a 100% of responses in one 

category will completely dominate bimodal perception according to the FLMP. But this 

effect is not parameterized, so to model e.g. a change in auditory SNR it is necessary to 

re-estimate the auditory response probability distribution which requires N-1 degrees of 

freedom where N is the number of response categories. If the effect was parameterized a 

change of parameter value would suffice costing only 1 degree of freedom making the 

model more parsimonious. 

 

Therefore the FLMP is in need of a parameterization of information reliability. In 

Publication P6, we suggested a model [3] which describes the auditory response 

probability distribution at a certain SNR as a weighted sum of a totally reliable and a 

totally unreliable response probability distribution. 
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Here, ( )SNRARP i ,|  is the probability of responding in the ith response category given 

auditory stimulus, A, at a given SNR. The parameterization of the noise level (inverse 

reliability) is denoted α . This model can be inserted into the FLMP as to provide this 

model: 
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We tested this model on responses from an auditory, visual and audiovisual speech 

identification task where the auditory SNR was varied between 4 levels. For this 

experimental paradigm the parameterization of the auditory SNR reduced the number of 

free parameters by 18. Although it gave a poorer fit even when the error measure was 

corrected for the number of degrees of freedom, it did capture some of the salient features 

of the effect of varying the auditory SNR on perception. This bears some promise that 

more advanced model of the effect of information reliability could successfully be 

merged into the FLMP to obtain a satisfactory parameterization.  
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Comparative model testing 
Early MLI has so far only been developed for audiovisual integration of one feature. This 

severe shortcoming hinders it being tested on audiovisual speech perception, which is the 

phenomenon that the FLMP has been applied to most often. However, counting rapid 

flashes and beeps is likely to be based on a single feature, so for this phenomenon both 

models apply. In Publication P5 [6], we conducted a study where we used the data from 

our study on counting rapid flashes and beeps in Publication P1 [5] to test and compare 

early MLI and the FLMP. Recall that in our study we varied auditory SNR between a 

clearly audible level and a near threshold level. We also varied task instructions between 

counting flashes and counting beeps. When we fitted the models separately to these four 

conditions, we found that early MLI fitted the data slightly better across all subjects and 

conditions. This should be seen in the light of early MLI having 38 fewer free parameters 

across all subjects and conditions. This result strongly favors early MLI.  

Incorporating the effect of attention in maximum likelihood 
models 
Maximum likelihood models of multisensory integration are stimulus driven, or bottom-

up. They do not incorporate cognitive or top-down effects. At first, this seems to be in 

discrepancy with the two effects of attention on audiovisual categorical perception that 

we have described above: intermodal attention and attentional set, but a closer look will 

reveal that this is not necessarily the case. Here, we shall first examine the effect of 

intermodal attention which has caused some difficulties in the literature. We point to and 

correct a flaw in previous FLMP based analyses of the effect. We then briefly discuss the 

effect of attentional set, or speech mode, which is too recent to have been discussed in 

any but the original report, Publication P4. 

 

Recall that Massaro’s studies showed that instructing subjects to respond according to 

what they see increased visual influence compared to instructing subjects to respond 

according to what they hear. Massaro analyzed this effect using the FLMP [31,32]. To 

test the FLMP when subjects responded according to what they saw, he fitted the FLMP 

to the data from three conditions: the audiovisual condition when attending vision 

(AV/V) and unimodal auditory (A) and visual (V) conditions. To test the FLMP when 
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subjects responded according to what they heard, he again fitted the it to the data from 

three conditions: the audiovisual condition when attending audition (AV/A) and 

unimodal auditory (A) and visual (V) conditions. Massaro found no significant difference 

in FLMP goodness-of-fit between the two fits. He concluded that the FLMP described 

integration in both cases so there was no difference in audiovisual integration between 

the two conditions and that the effect therefore occurred before audiovisual integration at 

the unimodal processing stage.  

 

In Publication 6 [6], we pointed to a paradox in Massaro’s analysis. If we explicitly note 

the obvious fact that the unimodal auditory condition (A) was, in fact, the auditory 

condition when audition was attended (A/A), and likewise that the visual condition (V) 

was actually the visual condition when vision was attended (V/V) then we see that 

Massaro fitted both (AV/V) and (AV/A) to (A/A) and (V/V). The attentional state was 

thus varied only in the audiovisual condition but not in the unimodal conditions. We 

claim that (AV/A) should be fitted to (A/A) and (V/A), i.e. the visual condition when 

audition was attended. Likewise (AV/V) should be fitted to (V/V) and (A/V), i.e. the 

auditory condition when vision was attended. In that way, the attentional state would not 

vary within fits. Only thus would we isolate the audiovisual integration mechanism from 

the effect of intermodal attention. We emphasize that this problem applies generally to 

models of multisensory integration, but, to our knowledge, has never been recognized 

before. Of course, the (A/V) and (V/A) conditions are impossible. Subjects cannot 

respond to stimuli in one modality while attending another modality in which no stimulus 

occurs. These hypothetical conditions should therefore be left as free parameters. We 

note that the ability of the FLMP to provide good fits when applied in a paradoxical way 

reflects its purported hyper-flexibility. It is a remarkable expression of non-linear 

flexibility that the FLMP can describe widely different audiovisual percepts from 

identical unimodal percepts. 

 

As described above, we studied the effect of instructing subjects to attend either vision or 

audition on the perception of rapid flashes and beeps and found an effect similar to that 

found by Massaro [6]. We fitted the FLMP to these data in the same way as Massaro 
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fitted it to his data. We also fitted early MLI to our data. As a maximum likelihood rule, 

early MLI faces the same problem as the FLMP in accounting for the effect of task 

instructions. Rather than using the Massaro’s approach, we assumed that the effect of 

intermodal attention could be quantified as an effect upon perceptual information 

reliability so that attending a modality would lead to an increase in the perceptual 

reliability of that modality as compared to when it is not attended. As described earlier, 

this assumption is based on the gain theory of attention which equates the effect of 

attending a stimulus as an increase in the gain of the internal representation of that 

stimulus relative to the unattended stimulus or background noise [25,63]. Notably, due to 

the inherent parameterization of information reliability in early MLI, modeling the effect 

of intermodal attention on unimodal perception imposed the added cost of only one free 

parameter. Auditory perception when vision was attended (A/V) was modeled by 

decreasing the reliability of auditory perception when audition was attended (A/A). This 

approach is not only more reasonable but also much more parsimonious employing only 

12 free parameters to model two attentional states where the FLMP employs 24 free 

parameters. In addition to these benefits, early MLI fitted the data better than the FLMP. 

 

No maximum likelihood rule—neither early MLI nor the FLMP—provide any solution to 

the binding problem. There is no parameter that quantifies the amount of integration in 

isolation from unimodal perception. However, early integration might provide an 

explanation of how sine wave speech can be more or less bound to visual speech 

depending on whether it is perceived as speech. When sine wave speech is not perceived 

as speech, attention could focus on some acoustic feature that is irrelevant to phonetic 

classification. This feature might not be mediated by vision. Audition would therefore be 

the only reliable modality for this feature and classification would not be influenced by 

vision. When sine wave speech is perceived as speech, attention would focus on features 

relevant for phonetic classification. This feature would be likely to be mediated also by 

vision which therefore would influence perception. 

Concluding summary 
We have demonstrated how the information reliability hypothesis can incorporate many 

of the phenomena we see in multisensory perception. The stimulus information reliability 
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combined with modality acuity, or appropriateness, combines to form perceptual 

information reliability, which determines the relative influences of the sensory modalities 

in multisensory perception.  

 

We then introduced early maximum likelihood integration (MLI) as a model for 

audiovisual categorical perception. This model is an extension of MLI for continuously 

perceived stimuli. Both models inherently and explicitly incorporate the information 

reliability hypothesis. Using the gain theory of attention, we showed that effects of 

attention can be incorporated in early MLI through changes in perceptual information 

reliability. We compared this model with the Fuzzy Logical Model of Perception (FLMP) 

and found that early MLI can describe data better while being a more parsimonious 

model. We conclude that the early MLI is a promising new model of audiovisual 

categorical perception in terms of goodness-of-fit, parsimony and interpretability.  

 

Finally, we have shown that sine-wave speech is only integrated with visual speech when 

subjects are aware its speech-like nature which suggests that there may be other factors 

that influence audiovisual integration beyond the scope of current MLI models.  
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