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ISBN 951-22-7567-8
ISBN 951-22-7568-6 (pdf)

Otamedia Oy
Espoo 2005



HELSINKI UNIVERSITY OF TECHNOLOGY
P.O. BOX 1000, FIN-02015 HUT

http://www.hut.fi

ABSTRACT OF DOCTORAL DISSERTATION

Author

Name of the dissertation

Date of manuscript              Date of the dissertation

Monograph                                      Article dissertation (summary + original articles)

Department

Laboratory

Field of research

Opponent(s)

Supervisor

(Instructor)

Abstract

Keywords

UDC     Number of pages

ISBN (printed)           ISBN (pdf)

ISBN (others)           ISSN 

Publisher

Print distribution

The dissertation can be read at http://lib.hut.fi/Diss/

Sillanpää, Mika Antero

Quantum device applications of mesoscopic superconductivity

14.12.2004 April 1st 2005

✔

Department of Engineering Physics and Mathematics

Low Temperature Laboratory

Experimental condensed-matter physics

Prof. Hans Mooij

Prof. Martti M. Salomaa

Prof. Pertti J. Hakonen

The work involves a study of physical phenomena that take place at very small length scales, below one micro-meter. At 
temperatures roughly below one degree Kelvin, quantum-mechanical effects may rule in electronic transport. Macroscopic 
quantum-coherent effects that occur in metallic superconducting microstructures, are particularly intriguing. Large-scale 
quantum information processing is widely believed to be attainable utilizing such physical systems.

This work concentrates on answering the question of how the described quantum-mechanical systems may be used as 
sensitive measuring devices. Considerable attention is paid to energy-storing metallic microstructures whose electrical 
properties resemble those of the familiar inductor or capacitor. This research involves primarily experimental 
investigations conducted around temperatures of 0.1 Kelvin. Methods both at low and at radio frequencies have been used. 
The experimental findings have been modelled theoretically, and theoretical concepts for new physical phenomena have 
been introduced.

An inductively measured radio-frequency Cooper-pair transistor, the L-SET, has been developed and experimentally 
verified in this work. Being highly sensitive, fast, and non-invasive, the L-SET appears to be the most promising method 
for measuring electric charge. Sensitivity in charge measurements of 20 millionths of the electron charge (micro-e) within 
one second, and an input bandwidth of 100 MHz, have been demonstrated. It has been shown theoretically that the 
ultimate measurement accuracy is about 0.1 micro-e within a second. A new phase detector based on the Cooper-pair 
transistor has been proposed. This system has also been shown to be potentially usable as a quantum bit. A new type of 
radio-frequency single-electron transistor built using a multi-walled carbon nanotube has been fabricated and operated.

Technologies have been developed in order to make the physical nano- or microstructures. A method has been presented 
to fabricate non-superconducting tunnel junctions. Consequences of the inverse superconducting proximity effect on the 
studied superconducting structures were considered. Measurement procedures were investigated for a new low-noise 
nanoamplifier, the Bloch-oscillating transistor. Single superconducting tunnel junctions were tested as detectors of energy 
states of the environment, or of noise.

High-frequency techniques, single-electron transistor, quantum measurement
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List of abbreviations

A surface area
AC alternating current
B bandwidth
BCS Bardeen-Cooper-Schrieffer theory of superconductivity
BNC, MCX, SMA types of microwave connectors
BOT Bloch-oscillating transistor
CSET quantum capacitive phase detector
CW continuous wave
C capacitor or capacitance
Cc coupling capacitor
Ceff observable quantum capacitance
Cg gate capacitance
CQ quantum capacitance
CΣ island capacitance
d asymmetry of Josephson energies of an SCPT
DC direct current
DCB DC-block
DOS density of states
e absolute value of electron charge, e � 1.6022 × 10−19 Coulomb
E0 lowest energy band of an SCPT
E1 first excited energy band of an SCPT
EC charging energy of Cooper-pair transistor, EC = e2/(2CΣ)
EC0 charging energy of a single junction
EJ Josephson energy of a single junction
E∗

J effective Josephson energy of a Cooper-pair transistor
EL energy scale of an inductor, EL = Φ2

0/(8π
2L)

FWHM full width at half maximum (of a resonance)
f0 resonant frequency of an LC oscillator, f0 = ω0/(2π)
fp frequency of the Josephson plasma resonance, fp = ωp/(2π)
g transfer function
gm the maximum value of transfer function with respect to gate
HP high pass
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h Planc constant, h � 6.62608 × 10−34 Js
� h/(2π) � 1.0546 × 10−34 Js
I1 current at the drive frequency
IC critical current of Josephson junction
I∗
C effective critical current of an SCPT

IV current-voltage
JJ Josephson junction
kB Boltzmann constant, kB � 1.3807 × 10−23 J K−1

L-SET inductive single-electron transistor
LJ Josephson inductance of single junction
L∗

J effective Josephson inductance of SCPT
LO local oscillator
Ltot total inductance of the L-SET
LP low pass
MAA methacrylic acid
N non-superconducting (normal) metal
NIN normal-insulator-normal (tunnel junction)
PMGI polydimethylglutarimide
PMMA polymethyl methacrylate (plexiglass)
PC critical power
q quasicharge of a single JJ
Q real charge on a capacitor
Qi internal quality factor
QI charge of an island
QL loaded quality factor
qg gate charge, qg = CgVg/e
R resistance in general
RF radio frequency
RF-SET radio-frequency single-electron transistor
RMS root-mean-square
RT room temperature
RK quantum resistance, RK = h/e2 � 25.8 kΩ
RQ quantum resistance of Cooper pairs, RQ = h/(4e2) � 6.45 kΩ
RSET effective quasiparticle resistance of a SET
RT tunneling resistance of a single junction
SCPT single Cooper-pair transistor
SEM scanning electron microscope
SET single-electron transistor
SIS superconductor-insulator-superconductor junction
SM surface mount
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SNR amplitude signal-to-noise ratio
SS stainless steel
sq charge sensitivity
SQUID superconducting quantum interference device
sϕ phase sensitivity
T temperature in general
TN amplifier noise temperature
UHV ultra high vacuum
V voltage in general
V1 voltage amplitude at the drive frequency
VB bias voltage
VCV critical voltage amplitude of a JJ, for voltage bias
VCI critical voltage amplitude of a JJ, for current bias
Vg gate voltage
Vin amplitude of an incoming voltage wave
VI island voltage amplitude
Vout amplitude of an outgoing voltage wave
VR voltage amplitude over a parallel resonator
VS switching voltage amplitude, at the first maximum of Z1

Z impedance in general (also impedance of the L-SET)
ZEP chloromethacrylate and -methylstyrene
Z0 transmission line impedance, Z0 = 50 Ω
Z1 impedance of a JJ at drive frequency
ZR impedance of a parallel resonator

β0 current gain
Γ microwave voltage reflection coefficient
∆ superconductor energy gap
ε0 permittivity of vacuum ε0 � 8.8542 × 10−12 F m−1

εr relative permittivity
θ SCPT island phase
Θ qubit mixing angle
ξS superconductor coherence length in the dirty limit
τ time constant
Φ magnetic flux
Φ0 quantum of magnetic flux, Φ0 = h/(2e) � 2.0678 × 10−15 Wb
ϕ phase of the superconductor order parameter
ω01 qubit level spacing, �ω01 = E1 − E0
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Chapter 1

Overview of this work

I will first introduce some main principles of this thesis work in simple
terms.
The modern western society and our way of life owes a great deal to the

development of physics in the 20th century. This may not be obvious to
everyone. In particular, our civilization relies heavily on electrical digital
technology. Its basis was created by physicists making breakthroughs with
basic research in their laboratories. Basic research is the most fundamental
research effort aiming at understanding the laws that nature obeys. Engi-
neers then took the knowledge into use to create device applications that are
currently employed in our everyday life.

This thesis represents basic research in a new and growing field of physical
science, commonly termed nanotechnology, which may in the future belong
to everyday life in a manner similar to computers do today. The present
work involves exploration of certain weak physical phenomena which become
apparent only if disturbances coming from the environment are sufficiently
attenuated. In practice, this means a very low temperature not more than
one tenth of a degree above the absolute zero at −273.15 degrees Celsius,
and a size below a thousandth of a millimeter, one micrometer (µm). On
this length scale, physical structures resemble large clusters measuring a few
hundreds of atoms across.

At yet smaller size scale, at the level of a single atom or molecule, phe-
nomena radically differ from those in our macroscopic world. In the latter,
physical phenomena such as the running of a car engine, or space-ship mo-
tion in outer space, are immensely accurately described by Newton’s laws
of mechanics. However, the description of elementary particles which con-
stitute atoms, works correctly only with Schrödinger’s equation which is a
quantum-mechanical counterpart of Newtons’ equation of motion. According
to the quantum description, elementary particles resemble waves, such as we
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see, for instance, on the surface of water. These waves are commonly called
matter waves, or denoted with an abstract wave function |Ψ〉.

Like ordinary waves, matter waves can interfere, that is, strengthen or
weaken each other. The total wave of an elementary particle can also be a
sum, or as it is commonly called, a superposition, of two or more distinct
waves. For instance, the wave |Ψ〉 of an electron can be the sum of waves
going to the left and to the right. Mathematically, this is expressed as |Ψ〉 =
|0〉 + |1〉. The symbols |0〉 and |1〉 mean the two waves, respectively. The
symbols are actually nothing more than names for the waves. The message,
nevertheless, is that the electron is simultaneously going to the left and to
the right, which contradicts common sense.

Figure 1.1: Erwin Schrödinger presented in 1935 a paradox of a quantum-
mechanical cat [1]. The thought experiment (hopefully nobody will attempt
to do the experiment) involves sealing a cat and a bottle of lethal poison into
a tight box. Once triggered by the decay of a radioactive atom at a random
instant of time, the bottle will open, release the poison, and kill the poor
cat. The cat, the radioactive atom, and the bottle of poison evolve into a
special kind of quantum state known as entangled state, where the atom is
simultaneously decayed and not decayed, and hence the cat is simultaneously
dead and alive. Only a ”measurement” which means opening the box and
looking in, makes the cat dead or alive.
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However, when someone actually measures into which direction the elec-
tron is going (it can be performed, though it may not be easy), then, accord-
ing to the principles of quantum mechanics, the total wave |Ψ〉 collapses into
either |0〉 or |1〉 and hence we are left with an electron wave going either to
the left or to the right, but not both.

Nothing as such limits interference of matter waves to happen only in
the microscopic world of elementary particles. Because of the linearity of
the Schrödinger equation, sum waves of elementary particles, such as atoms,
molecules, tennis balls, or humans, obey the same wave laws. However, var-
ious disturbances of environment effectively ”measure” these kind of macro-
scopic quantum waves such that quantum superpositions do not usually exist
in practice in the macroscopic world. For example, the superposition of, say,
a cat-size object (like the one in Fig. 1.1), collapses within roughly 10−22

seconds which is the time it takes for a single particle of light, a photon, to
hit it!

Moderately large objects can, nevertheless, have quantum mechanical
features, but typically this requires good shielding from disturbances. A
famous example is the phenomenon of superconductivity (Fig. 1.2) which
takes place at low temperatures. Electrical current is carried by electrons
which are detached from their host atoms and move relatively freely through
solid matter. In a normal electrical conductor the waves of electrons oscillate
out of rhythm. In a superconductor, however, the electron waves have a
common rhythm and therefore they strengthen each other [2].

Figure 1.2: Permanent magnet levitates above a superconductor. The fa-
mous phenomenon is due to the so-called Meissner effect characteristic to
all superconductors. ”High temperature” superconductors, such as the piece
of Yttrium Barium Copper Oxide (YBCO) here, can display full supercon-
ducting properties at as ”high” a temperature as that of the boiling point of
nitrogen (-196o C).
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If a superconducting wire is cut, but the ends are kept a few nanometers
(millionth of a millimeter) apart from each other, electron waves can cross
the gap, as illustrated in Fig. 1.3. This peculiar phenomenon is called tun-
neling, and the famous structure is named a Josephson junction after Brian
D. Josephson who predicted it theoretically in 1962 [3] and was awarded the
Nobel Prize in physics for the discovery only eleven years later.

Thousands of scientific articles have been written on Josephson junctions
since then. This thesis deals mostly with very small Josephson junctions, in
which quantum-mechanical interference effects are especially strong.

constructive interference destructive interference

Figure 1.3: Schematic illustration of a superconducting tunnel junction
(Josephson junction). Depending on the phase of waves on different sides
of a narrow gap in the superconductor, the sum wave (strong line) may
become stronger (left), or weaker (right).

One such structure consists of a tiny piece, an ”island”, of a superconduc-
tor, less than µm across, and two Josephson junctions. The quantum state
of the small island can now be a superposition of whether or not one single
pair of superconducting electrons have tunneled into the island, as shown in
Fig. 1.4. Since this single pair can also control the flow of billions of other
electrons, the quantum state of the island is a macroscopic superposition,
like that of the famous Schrödinger cat.

Quantum-mechanical phenomena in Josephson junctions may in the fu-
ture be used to build an ultimate device for mankind: a quantum computer.

Ordinary bits are always either 0 or 1. Nobel Laureate Richard Feynman
proposed in early 1980’s a bit [4] which would be simultaneously 0 and 1.
This is a quantum-mechanical bit, or qubit. Qubit values are the quantum
states |0〉 and |1〉 and can also be, according to the principles of quantum
mechanics, a superposition of them. A computer composed of at least a few
hundred qubits, if ever to be built, is the quantum computer. Because of
the superposition, a quantum computer would calculate the outputs for all
possible inputs in a single run (quantum parallelism), and hence it would be
immensely faster than any supercomputers ever built using ordinary bits.

Small Josephson junctions, such as those in Fig. 1.4, may be used in
several ways as building blocks of a quantum computer. After the quantum
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Figure 1.4: Electron microscope image of an actual sample studied in this
work. A pattern consisting of aluminium wires 100 nm wide (size of a typical
virus) has been fabricated by evaporation on the surface of a smooth silicon
chip (750 similar wires would fit the diameter of human hair, 75µm on the
average). One pair of superconducting electrons |1〉, or zero pairs |0〉, may
have tunneled into an isolated grain through the Josephson junctions.

computation, value of each qubit should be measured. This step is the main
concern of this thesis. The L-SET device described, for instance, could be
useful for that purpose. In quantum mechanics, measurement has a special
role. One could imagine the difficulty of measuring, say, the position of a
wavelike entity. This also turns out to be the case. One of the most famous
results in quantum mechanics is the Heisenberg uncertainty principle. It
states that for any conceivable object, such as an atom, a tennis ball, or a
human being, whose energy is E, this energy fluctuates by an amount ∆E
during a time interval ∆t such that

∆E∆t > h/(4π), (1.1)

where h is a fundamental constant of nature, whose value in the SI-units is
roughly 6.626×10−34 Joule-seconds, and is called the Planck’s constant. The
Heisenberg uncertainty principle, Eq. (1.1), and a couple of similar others,
state that quantities like energy and time cannot be measured simultaneously
arbitrarily accurately because they do not even have well defined values at
the same time. Although this kind of fundamental limitations are of little
observable significance in our everyday life, in quantum-mechanically behav-
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Figure 1.5: Powerful dilution refrigerator used in this work reaches temper-
atures as low as 9 milli-Kelvins. Some electrical measuring equipment are
seen on the background.

ing systems, such as small Josephson junctions, they may have very well
observable consequences related to physical phenomena, their measurement
in particular.

For the experiments done in this thesis, the studied micro-structured
samples must be extremely carefully isolated from electrical noise. They must
also be cooled down to well below one degree Kelvin, because temperature is
also a form of noise. The cooling is done using a so-called dilution refrigerator
(it is shown in Fig. 1.5), where ”cold is produced” by circulation, powered
by strong pumps, of a mixture of the two helium isotopes, 3He and 4He.
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Chapter 2

Technological aspects

THE research described in this thesis is primarily experimental. Accord-
ingly, we will discuss some techniques developed which have proven par-

ticularly useful over the years.

2.1 Measurement setup

In this section, we will briefly describe the schematics of the electrical mea-
surements, and the related cryogenic apparatus.

2.1.1 Low-frequency measurements

By low-frequency electrical measurements we here mean those whose band is
limited by wiring capacitance and sample resistance, or preamplifier, down
to typically below 10 kHz. These are also referred to as DC measurements.
Publications [P1] , [P2] , [P3] , [P4] , [P11] are exclusively based on data gath-
ered in these types of measurements.

Several different DC measurement schemes were tested at different cryo-
genic sites which varied, for instance, with respect to environmental distur-
bances (50 Hz and its harmonics), and the quality of grounding. In every
case, success was estimated in terms of the voltage width of the smallest
features in the IV-curve. In a DC-measurement, this indicates the amount
of unwanted AC voltage, due to noise and pickup, over the sample.

A home-made optoisolator based on a commercial optical isolation am-
plifier (Fig. 2.1) turned out to be useful in order to get rid of disturbances
due to ground loops.

The best setup, used by co-workers to measure the data in [P11] using
the lines 12, 21, 22 and the sample holder in Fig. 2.3 (a) is described in Fig.
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Figure 2.1: Optoisolator for low-frequency measurements. The separated
grounds are marked in black and gray.

2.2. The optoisolator was used for both input and output leads. The current
amplifier Ithaco 1211 yielded the best results.

Thermocoax cable (diameter 0.5 mm, inner conductor resistivity ∼ 50 Ω/m)
plays an important role in sample holder design. Its main function is to filter
noise above 1 GHz [6]. Unfortunately, its processing requires special tricks
because it is made of stainless steel.

In the best sample holder (Fig. 2.3 (a)), 1.1 meters of Thermocoax was
wound around the Cu holder for each line, and attached by silver solder-
ing. The Thermocoaxes were terminated into MCX connectors which were
soldered to the cable outer shield using a special soldering flux. Inner con-
ductors (IC) of Thermocoax were soldered either by first silver coating, or
directly tin-soldered using the special flux and 40 µm bare Cu wire wound
10-20 turns around the IC. The fluid and tin solder alone, without the Cu
wire, do not suffice to wet the IC properly.

Adverse resonances at 1 ∼ 10 GHz in the wiring were quite successfully
eliminated by engineering an impedance match on the path, and reducing
path length, between the sample and the Thermocoax cable that also acts
to dampen these resonances. Contact problems have so far not been encoun-
tered in the described wiring.

Noise attenuation of the DC wiring above 10 MHz is efficient (Fig. 2.4)
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Figure 2.2: DC wiring in the Leiden MNK126-150/700 cryostat. Shown are
series resistors or voltage dividers consisting of tiny 0.3 × 0.8 × 1.6 mm SM
resistors [5]. Minicircuits LC filters Low Pass 1.9 MHz were used atop the
cryostat.
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oax

sample area

Figure 2.3: Photographs of sample holders used in this research; (a) the best
holder (see text); (b) detail of its Thermocoax - bonding pad connection; (c)
another holder which had a special installation of an RF cable: the sample
pad was bonded directly to its inner conductor.
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Figure 2.4: Power transmission of the described DC wiring in a 50 Ω system.
The line numbers refer to Fig. 2.2.

independent of the voltage divisions. Further filtering of noise and pickup
at the lowest frequencies was attempted with tough LC filters packed into a
BNC case [7], but their high reactance caused the amplifiers to oscillate.

2.1.2 Radio-frequency measurements

Measurement cables should be carefully constructed also at radio frequencies
(around 1 GHz). Our cables [8] with typically home installed SMA connec-
tors exhibit the first resonances around 22 GHz, above which transmission
rapidly weakens. It is often also desired to band-pass filter around the de-
sired operation frequency in order to suppress noise. This was done using
commercial LC filters [9]. They worked without change down to 25 mK.

The final version of the cabling (Fig. 2.6) was used in the latest L-SET
experiments (sample E, see Sec. 5). Determination of the power reaching the
sample through the numerous cables and other components whose attenua-
tion depends on temperature, is a matter of some concern. We measured the
setup attenuation, from the cryostat top down to the sample, at RT. The
attenuation was estimated to reduce about 3 dB at the base temperature.
For the setup in Fig. 2.6, the attenuation finally amounts to −66 dB.

Success of the L-SET experiments heavily relied on the microwave circu-
lator (Fig. 2.5) whose S-parameters were measured in a separate cooldown.
For the low-temperature test, port 3 was terminated with a matched 50 Ω
load. At RT, the insertion loss S21 within the circulator band was 0.5 dB.
At cryogenic temperatures, it is not known accurately. The increase in S21

in Fig. 2.5 (b) at low temperatures is likely to be due to decrease of cable
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attenuation. Above the operation band at 1 GHz − 6 GHz, both S12 and
S21 were −30... − 15 dB. Based on the circulator test, we conclude that the
circulator performs even better at cryogenic temperatures, although its band
changes moderately.
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-50
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f (Hz) x 108(b)

d
B

 (
a
rb

)

10cm

Figure 2.5: (a) Photograph of partially disassembled Pamtech UTE1255K
circulator; (b) its S-parameters measured at RT, 77 K, and 40 mK.

Performance of the RF setup was first investigated with RF-SETs fabri-
cated from Al, or from carbon nanotubes [10], as discussed in [P5] . Problems
arose because certain aluminium cables broke after a couple of full thermal
cycles from RT down to to 4 K. Similarly, the performance of pressed contacts
in the Anritsu bias-T K251 and the Krytar directional coupler sometimes de-
graded during cooldown (note that the cabling setup for the RF-SET differs
from that of the L-SET in Fig. 2.6).

The RF-SET [11] is based on the famous sequential tunneling SET [12]
(either normal or superconducting). In the RF-SET setup, a SET is coupled
to an LC tank circuit, resonant at the angular frequency ω0, in the scheme
shown for instance in Fig. 1 of [P5] . The SET resistance RSET depends
on the gate charge, which affects dissipation in the resonator circuit. The
advantage of the RF-SET scheme is based on making an impedance match
from high-impedance SET into a low-impedance transmission line capable of
transmitting very high frequencies. This enables high sensitivity and high
speed, where the latter is determined by the loaded quality factor, ∼ ω0/QL.
The system is probed by reflection measurement (for a review of these stan-
dard techniques, see e.g., Ref. [13]).
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Figure 2.6: Improved cabling used in RF studies of the Josephson plasma
resonance in the Leiden MNK126-150/700 cryostat. Two circulators at the
base temperature had at least a total of 40 dB backwards isolation within
the 630 MHz − 900 MHz band. Filter cut-offs are expressed in MHz.
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Let us denote the resonator impedance, including the SET, by Z, and
the wave impedance of transmission lines by Z0, here Z0 = 50 Ω. The AC
voltage reflection coefficient Γ = |Γ| exp(i arg(Γ))

Γ =
Z − Z0

Z + Z0

(2.1)

is quite sensitive to QL

QL =
RSET ω0C

1 + Z0RSET /(ω0L)2
. (2.2)

Electrometer performance of the RF-SET is a compromise between charge
sensitivity sq and bandwidth. The best experimentally demonstrated num-
bers are 3.2 × 10−6e/

√
Hz and 7 MHz [14], or 1.2 × 10−5e/

√
Hz and 100

MHz [11] for sq and bandwidth, for slow and fast devices, respectively. Our
carbon nanotube RF-SETs, with a measured sq ∼ 2 × 10−5e/

√
Hz and esti-

mated bandwidths on the order of 50 MHz hence perform fairly well.

2.2 Sample fabrication

The metallic sub-micron samples studied in this thesis were patterned using
rather well-established procedures of electron-beam lithography and shadow
evaporation [15]. Contribution by the author was to push this technology
against its limits by (1) increasing the charging energy EC by reducing over-
lay junction size; (2) increasing the Josephson energy EJ at a given EC by
reducing thickness of the insulating Al2O3. Choice of the fabrication method
turned out to be crucial for fulfilling these criteria which resulted in a suc-
cessful demonstration of the charge-tunable Josephson inductance (Sec. 5).

The probability that a particle with mass m and energy E penetrates a
potential barrier V (x) is in the WKB approximation given by the expression

P = exp

{
−4π

h

∫ x2

x1

√
2m(V (x) − E)dx

}
. (2.3)

In the theory of Simmons [16], this leads to a low-voltage conductance per
unit area of a tunnel junction having the barrier height V0, width d, and area
A:

(RT A)−1 =
e2
√

2mV0

h2d
exp

(
−2d

√
2mV0/�

)
. (2.4)

Quite often one wants to maximize both EJ and EC . This leads to the
maximization of their product which turns out to be independent of junction
area. Using Eqs. (2.4) and (5.2) we have
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EJEC =
e2
√

2mV0∆ exp
(−2d

√
2mV0/�

)
16εrε0h

. (2.5)

Inserting the values V0 = 2 eV, ∆ = 0.2 meV, εr = 4 in Eq. (2.5) (note that
it is not very sensitive to these parameters), we find EJEC ∼ 6 or ∼ 1.5
for d = 0.5 nm or 0.6 nm, respectively. This is roughly the thickness of
a single molecular layer of Al2O3, and hence it seems that EJEC � 1 is
impossible to achieve using Al. As will become apparent below, this limit
has probably been reached in our samples. Recently, similar figures for the
junction resistivities were reported in Ref. [17].
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Figure 2.7: Resists used for fabricating L-SET samples. The silicon wafer in
(a), (b) and (d) was ”High purity silicon”, 1800-3900 Ohm cm from Topsil.
Only substrates (a) and (d) resulted in good devices.

We used two different resists and several substrates for sample fabrication.
Those used in the L-SET experiment (see Sec. 5) were as shown in Fig. 2.7.
Resist (c) had a nearby Nb ground plane in order to reduce cross-coupling
from gates. The average tunnel oxide parameters resulting from use of the
two tested resists, PMMA/MAA and ZEP/PMGI, are listed in Table 2.1.

resist RT A (in units of kΩ × 100nm2) EJEC (K2)
PMMA/MAA 6 ± 3 2.1 ± 1.8
ZEP/PMGI 22 ± 10 0.5 ± 0.2

Table 2.1: Average tunnel junction resistivity parameters, and their standard
deviation, for the two tested resists. For discussion, see text.

For the L-SET samples, we used a quite minimal oxidation of 40-80 mTorr
for 30-40 s. Resistivity was not found to noticeable depend on the exact
oxidation pressure or time. We conclude that ZEP/PMGI (substrate (b))
resulted in a EJEC four times lower than that for PMMA/MAA, likely due
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to thicker oxide caused by stronger outgassing of the former resist. It would
be unlikely, using this resist, to successfully fabricate an L-SET having both
EJ and EC high enough.

The measured and functioning samples of the L-SET experiment are listed
in Table 2.2. In addition, there was one sample measured which did not
indicate any gate modulation. We believe it had one junction short-circuited.

L-SET sample A B C D E

resist (Fig. 2.7) b a d c a
RSET (kΩ) 4.2 9.6 22 17.5 22
EJ (K) 3.5 1.6 0.65 0.87 0.68
EC (K) 0.17 0.92 5.4 2.3 2.6
EJ/EC 20 (max) 1.7 0.12 0.38 0.26
EJEC (K2) 0.62 1.5 3.5 2.0 1.8
EC/∆ 0.07 0.4 2.2 0.9 1.0
min L∗

J (exp., nH) 8 19 260 65 66
min L∗

J (theory, nH) 5.1 15 47 33 43
∆L∗

J/(min L∗
J) (exp., %) 0 16 50 20 340

∆L∗
J/(min L∗

J) (theory, %) 0 15 760 190 320
L (nH) 3 7.4 34 28 28
C (pF) 22 8.4 1.6 2.7 1.2
Cc (pF) 0.72 0.72 0.23 0.5 0.5
gate period − 2e e e 2e
f0 (MHz) 610 614 646 570 726
fp (max, MHz) 707 723 690 735 870
Qi 13 18 27 15 16
QL (at min L∗

J) 11 15 26 12 9
Pc (exp., dBm) −102 −116 − −117 −112
Pc (theory, dBm) −96 −104 −109 −108 −112

sq (exp., e/
√

Hz) − 2.0E-3 − 6E-4 7E-5

sq (theory, e/
√

Hz) − 5E-4 8E-6 4E-5 3E-5

sq (exp. anharm., e/
√

Hz) − 1.4E-4 − 1E-4 3E-5

Table 2.2: Summary of parameters and experimental results of the measured
L-SET samples and their tank LC oscillators. For samples C and D, the small
values of L∗

J were cut off due to quasiparticle poisoning.

Determination of the important parameters in this experiment is not en-
tirely straightforward. Here, EC is deduced from the total surface area of the
tunnel junctions (SEM image), assuming a specific capacitance of ∼ 0.4−0.5
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Figure 2.8: Left: SEM image of an L-SET sample (E). Layer thicknesses
are indicated. The Cu traps were in contact with the leads 5 µm from the
junctions. Right: An earlier L-SET sample placed into a holder.

fF for 100 nm2 [18]. The shunting capacitance C was formed by a bonding
pad, or by a cm-sized metal-coated chip connected by bonding for samples
A and B. The inductance L consisted of a surface-mount (SM) Cu-wire in-
ductor and the bond wire (the latter contributing 5− 10 nH), or only of the
bond wire (samples A and B). The coupling capacitor Cc was a ceramic SM
capacitor [19], or an interdigital one patterned directly on-chip (sample C).

It was estimated that the figures of the SM capacitors reduce by 15%
when cooled. The value of L can also be determined quite accurately as
the sum of the SM inductor and the piece of bond wire (∼ 10 nH/cm). The
capacitance C is difficult to determine independently, but once the resonance
frequency f0 is checked, it can be easily calculated. In this way, we expect
an accuracy of about 10 − 20% for the listed parameter values.

Values for the observable SCPT Josephson inductance L∗
J , and its mod-

ulation depth, are extracted from the measured frequency of the Joseph-
son plasma resonance fp (using Eq. (5.10)), assuming it is determined by
Ltot = L ‖ L∗

J .
For the L-SET sample E (Fig. 2.8 (a)), it was attempted to make the

superconductor energy gap ∆ on the island larger than that in the leads in
order to suppress quasiparticles to a minimum [20]. Since ∆ is expected to
enhance with reducing grain size [21], island of the SCPT was deposited only
9 nm thick. The island was also deposited first such that it would become
dirtier than the leads due to a worse vacuum [22, 23]. Both factors tend to
increase ∆. However, it is questionable whether the procedure had any effect.
Although sample E was notoriously free from quasiparticle poisoning even in
time-averaged measurements, so was also sample B which was not fabricated
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following the special recipe.
In certain applications [24,25] it would be highly advantageous to employ

an NIN tunnel junction in contrast to SIS. The latter almost unavoidably
results when using a process based on oxidation of Al. Accordingly, we
developed a lithographic NIN process based on oxidation of titanium [26,
27]. Superconductivity of Ti got suppressed below 100 mK because Ti films
became very disordered even though they were deposited under UHV, ∼ 10−8

mBar. We demonstrated the method by fabricating a working SET out of
Ti, as detailed in Publication [P2] .

2.3 Superconducting proximity effect

In our samples, non-superconducting (normal, N) metal is often placed within
a mesoscopic distance from the superconducting junctions being studied. It
is therefore important to understand its possible negative impact on super-
conductivity.
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Figure 2.9: Experimental layout used in the study of the inverse proximity
effect, and the measured differential conductance, with best fits to theory
(solid lines). For discussion, see text.

We characterized the ”inverse proximity effect” using tunnel spectroscopy
[25,28]. Electronic density of states (DOS) was measured close to a transpar-
ent interface with an N metal (copper), or F metal (ferromagnet, nickel). The
case of F is interesting also because some measurements [29, 30] indicated a
possibility of a long-range proximity effect into F, in contrast a simple model.
F results from our experiments were reported in [P1] . For N, the data is dis-
played in Fig. 2.9. We found that in both cases, the DOS shows a clear
signature of the inverse proximity effect up to a distance of ∼ ξS from the
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interface. The interfaces were made without delay, using the normal sample-
fabrication process in UHV. Here, ξS =

√
�D/(2∆) is the coherence length of

the superconductor in the dirty limit. In our Al films, we calculated ξS ∼ 160
nm using the measured diffusion constant D = levF /3 ∼ 0.016 m2/s, where
le � 30 nm, and vF ∼ 1.57 × 106 m/s.

The fit curves in Fig. 2.9 were calculated from the DOS using thermal
smearing at Teff = 260 mK owing to heating due to the probing current.
The bulk probe (2) was well fitted to the BCS DOS ∝ |E|(E2−∆2)−1/2. For
probe (1), the DOS was calculated [31] using quasiclassical Green’s function
theory [32, 33], similarly as in [P1] . Non-ideality of the interface was taken
into account by the interface parameter rb = RB/Rξ, where RB is resistance
of the interface, and Rξ is the resistance of a piece of N lead having the length
ξS. Here we used rb = 3 which was in agreement with values estimated from
the sample. However, the fit of curve (1) is poor below the gap. The subgap
fits well with as large as rb = 10, however, the BCS peaks do not.

We interpret that the poor fit is due to intermixing of Cu and Al close
to the interface. Although bulk interdiffusion even at RT is known to occur
only at a distance of at most a few tens of nm, the significantly more rapid
grain boundary interdiffusion can reach saturation levels of approximately 1
% of Al in Cu at RT [34, 35]. The amount of Al in Cu would increase the
extent of proximity effect into N, thus reducing the inverse effect.

Based on these findings we conclude that the inverse proximity effect
is unlikely to have an adverse influence on the superconducting properties
provided that the SN contact is located several µm away.
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Chapter 3

Conventional Josephson effect

THE description of the tunneling of supercurrent is based on the two
Josephson equations [3]:

I = IC sin(ϕ) (3.1)

ϕ̇ =
2e

�
V. (3.2)

The first equation is actually only a statement of the explicit form of the
supercurrent-phase relationship. Significant deviations from the sin(ϕ) form
can occur, for instance, if the tunnel resistance is very small, and Eq. (3.1)
should then be replaced by a more appropriate one taking into account higher
harmonics [36, 37]. Equation (3.2), however, arises from the very basics of
quantum mechanics and holds for any junction.

The AC Josephson effect has been known since the original paper by
Josephson. A related phenomenon, Shapiro steps [38], which forms the basis
of a voltage standard, is thoroughly studied as well (see, e.g., the reviews
in Refs. [39–41]). However, as we shall shortly discuss, some important as-
pects of the AC Josephson effect seem to have escaped explicit notice in the
literature.

3.1 The concept of ”critical voltage”

Let us start the discussion by considering a Josephson junction (JJ), bi-
ased with an AC current of magnitude at most the critical current, I(t) =
I1 sin(ωt), where I1 ≤ IC . Phase then evolves as ϕ(t) = sin−1 (I(t)/IC), and

voltage is obtained as V (t) = �/(2e) ˙ϕ(t). Altogether, we find for the voltage
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V (t) =
�

2e

d

dt
sin−1

(
I1

IC

sin(ωt)

)
=

�

2e

I1

IC

ω cos(ωt)√
1 − (I1/IC)2 sin2(ωt)

. (3.3)

Let us now consider the special case of a critical AC current flowing
through the JJ, i.e., I1 = IC . As discussed below, this is an important
situation experimentally. For the AC voltage corresponding to the critical
AC current we then have from Eq. (3.3)

VC(t) =
�ω

2e

cos(ωt)

| cos(ωt)| =
�ω

2e

(
4

π

∑
k=1,3,..

1

k
sin (kωt)

)
. (3.4)

The result is a square wave of amplitude �ω/(2e), and the last form is its
Fourier expansion.

It is interesting to note that unlike the critical current, the critical voltage
VC does not depend on junction-specific properties, but is universal to all JJ’s
independent of their structure or transmission.

In experiment, we are mostly interested in voltage at the basic frequency;
therefore, we take the 1st Fourier component of Eq. (3.4), and thus for current
bias,

VCI =
2�ω

πe
. (3.5)

A full current bias may not be realized in practice. A similar calculation
can be done, first of all, for a voltage biased JJ, with V (t) = V1 sin(ωt),
which yields ϕ(t) = 2e/�

∫
V (t′)dt′ = 2e/(�ω)V1 cos(ωt). When inserted into

I = IC sin(ϕ), this gives

I(t) = IC sin

(
2e

�ω
V1 cos(ωt)

)
. (3.6)

Critical current is reached when the argument of the sine in Eq. (3.6) reaches
the value π/2. This happens at the critical AC voltage for voltage bias,

VCV =
π�ω

4e
, (3.7)

whereupon the current has a somewhat rounded square-wave form I(t) =
IC sin (π/2 cos(ωt)).

It is also important to consider what the critical voltage is in the most
general case when neither current nor voltage AC bias is realized. This can
be done numerically in the scheme of Fig. 3.1.
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I(t) V(t) = V1 cos(ωt+φ1) +
        + V2 cos(2ωt+φ2) + ...

VACsin(ωt)

R

IC

Figure 3.1: Schematic of a JJ in series with a voltage generator and a resis-
tance R.
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Figure 3.2: Critical voltage of a JJ as a function of the series resistance R
computed numerically in the circuit of Fig. 3.1.

A convenient measure of the biasing scheme is the ratio of the external
impedance to the JJ linear impedance b ≡ 2eRIC/(�ω) which vanishes for
a voltage bias, equals 1 at a maximally mixed bias, and diverges at current
bias. The outcome of a calculation run using harmonic balance with 20
upper tones in the Aplac circuit simulator is shown in Fig. 3.2. According
to the calculation, the critical voltage interpolates smoothly between Eqs.
(3.5), (3.7) as a function of biasing.

A few waveforms of the critical voltage and critical current are plotted
in Fig. 3.3. Note that although VC occasionally exceeds 1, its first Fourier
component does not.

In order to appreciate these results in a wider scope, let us next examine
in more detail a JJ biased both by DC and AC voltages, V (t) = VDC +
V1 sin(ωt). Phase evolves in time as ϕ(t) = 2e/(�ω)V1 cos(ωt) + 2e/�VDCt.
Current through the JJ is I(t) = IC sin(ϕ(t)), which can be evaluated using
trigonometric expressions and the following formulas



22 Conventional Josephson effect

0.0 0.5 1.0 1.5 2.0
-5

-4

-3

-2

-1

0

1

2

3
I 1

/I
C

2π/ω
0.0 0.5 1.0 1.5 2.0

-5

-4

-3

-2

-1

0

1

2

3
 

V
1
/V

C
V

2π/ω

b=0

0.1

1

10

100

1E3

inf

b=0

0.1

1

10

100

1E3

inf

Figure 3.3: Waveforms of critical current and critical voltage of a JJ at
different biasing schemes as denoted. The curves have been shifted vertically
for clarity.

sin (A cos(ωt)) = 2
∞∑

k=0

(−1)kJ2k+1(A) cos ((2k + 1)ωt) (3.8)

cos (A cos(ωt)) = J0(A) + 2
∞∑

k=1

(−1)kJ2k(A) cos (2kωt) (3.9)

where Jk are Bessel functions of the first kind and of order k. An important
expression is then obtained for the current [39],

I(t)/IC = 2 cos

(
2e

�
VDCt

) ∞∑
k=0

(−1)kJ2k+1

(
2e

�ω
V1

)
cos ((2k + 1)ωt) +

+ sin

(
2e

�
VDCt

) [
J0

(
2e

�ω
V1

)
+ 2

∞∑
k=1

(−1)kJ2k

(
2e

�ω
V1

)
cos (2kωt)

]
,

(3.10)

which yields, for instance, a DC current at DC voltages satisfying VDC =
k�ω/(2e). This is the phenomenon of Shapiro steps which is easily detected
in a standard DC transport measurement when the JJ is irradiated with
microwaves. The amplitude I0,k of the kth DC current step depends on the
drive strength as

I0,k/IC = Jk

(
2e

�ω
V1

)
. (3.11)
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Let us now examine the case of a pure AC bias, VDC = 0. Then the 2nd
term in Eq. (3.10) drops out, and the currents Ik at the basic frequency k = 1
and at all its higher harmonics are simply

Ik/IC = 2Jk

(
2e

�ω
V1

)
, for odd k, (3.12)

while the even harmonics are zero. A useful quantity is the impedance of the
JJ at the basic frequency,

Z1 =
V1

I1

= i
V1

2ICJ1

(
2e
�ω

V1

) , (3.13)

where the imaginary unit means that the current has a π/2 phase shift with
respect to the voltage bias. The inverse of Eq. (3.13) is the admittance Y1,
and it generalizes to the admittance at an arbitrary harmonic:

|Yk| =
Ik

V1

=
2ICJk

(
2e
�ω

V1

)
V1

. (3.14)

The JJ impedance, Eq. (3.13), is asymptotically periodic with respect
to the drive amplitude V1 with the period 4 VCV at large V1. Note also
that Z1 changes sign twice per period, in other words, alternates between
inductive and capacitive reactance, as seen in Fig. 3.4. We define a ”switching
voltage” VS � 2.44 VCV (note that it is different from the critical voltage) to
correspond to the first maximum of Eq. (3.13). At VS, the JJ impedance is
very high. In the experiment on the inductively shunted junction (Chapter
5) this is the value of the AC drive voltage V1 when the resonance frequency
meets f0.

The periodicity of the current with respect to V1 can be seen to bear
similarity with the well-known Shapiro steps. While the Shapiro steps appear
in the DC current for certain DC voltages, there now occurs correspondingly
a periodic structure in the AC response.

The described new phenomenon, let us call it ”AC waves”, cannot be
observed directly in usual DC measurements. However, the predicted phe-
nomenon was clearly detected in the measurements done in this thesis, which
exclusively probe the system at the drive frequency.
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Figure 3.4: Absolute value of the JJ impedance, Eq. (3.13), plotted as a
function of drive amplitude. Dashed lines mark areas where Im(Z1) is nega-
tive. The critical voltage VCV and switching voltage VS are indicated. The
rhs scale shows the impedance in Ω if IC = 50 nA and ω/(2π) = 1 GHz.

3.2 Experimental studies of driven Josephson

junctions

In the experiments, the driven Josephson plasma resonance [42–44] was stud-
ied in the same experimental setup as the L-SET (see Figs. 2.6, 5.1). The ap-
pearance of the high-drive AC response in this scheme is calculated similarly
to the response of the L-SET circuit, that is, the JJ impedance, Eq. (3.13) is
inserted into the circuit formulae, equivalent of Eq. (5.7). Note that although
in experiment we have an SCPT (double junction) in contrast to a single JJ,
the former behaves effectively as a single, gate-tunable junction having the
effective Josephson inductance L∗

J .
Let us now discuss the (AC) voltages in the L-SET circuit, Fig. 5.1 (a),

using the same notation: ZR is the resonator impedance without the coupling
capacitor Cc, while Z is the total impedance when looking from the feedline.
Vin (Vout) is the amplitude of the incoming (outgoing) voltage wave, and VR

is the voltage amplitude over the JJ.
It is important to realize that the physics as described previously is de-

termined by VR, while in experiment we are aware only of Vin.
Let us denote V0 = Vin + Vout = (1 + |Γ|)Vin. Division (or typically,

amplification) of the voltages by the resonator used in the L-SET is then
VR = V0Z/ZR, and hence

VR

Vin

= (1 + |Γ|)
∣∣∣∣ZR

Z

∣∣∣∣ =

∣∣∣∣ 2ZR

Z + Z0

∣∣∣∣ , (3.15)
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Figure 3.5: Contrast-enhanced plot portraying the AC-waves, here in arg(Γ)
(the L-SET sample B) around the tank circuit resonance at f0 = 614.3 MHz.

where we have used Eq. (2.1) for Γ. The voltage division, Eq. (3.15), is
sensitive to the frequency and the internal quality factor Qi of the resonator,
which complicates the analysis. In the case relevant for our experiment,
Eq. (3.15) reduces to a simple formula. At VR � VCV , Qi ∼ 1000 is very
high and constant (because the dissipation within the SCPT is effectively
cancelled), and the resonator becomes strongly overcoupled. It holds then at
f = f0 that Re(ZR) � Im(ZR). Also, since Z ∼ 0, Im(ZR) = (ωCc)

−1 and
Eq. (3.15) yields

VR = Vin
2

ω0CcZ0

. (3.16)

When this is inserted into Eq. (3.13), the response, such as the AC waves,
can be easily calculated as a function of the drive amplitude Vin.

The experimental data in Fig. 3.5 serves to verify the existence of the
AC waves. The waves are curved because the voltage amplification decreases
rapidly on both sides around f0 (see Fig. 5.8).

In Fig. 3.6 (a), there are plotted data at a fixed frequency, and at two
values of L∗

J . In accord with theory, the period does not noticeably depend
on L∗

J . The data also verifies the concept of a critical voltage. The linear
regime of plasma resonance ends at VC ∼ 1 µV. The phase jumps roughly at
VS ∼ 2 µV. From Eq. (3.7) we find VCV = 2.4 µV for ω/(2π) = 730 MHz. The
measured value is low probably because of noise, see Sec. 5, which causes a
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Figure 3.6: arg(Γ) plotted as a function of drive amplitude at fixed f0 = 614.3
MHz, and at two extreme DC gate values. The inset is a magnification
showing the AC waves of a JJ.

kind of ”premature switching” having a direct correspondence to DC-biased
junctions [45–47], as discussed in [P8] .

In Fig. 3.6 (b) is shown a corresponding calculation of the AC waves above
the switching voltage VS. When comparing theory and experiment, one sees
that the theory predicts a period too large by a factor of 2. This can be due
to the fact that the value of Vin is difficult to determine in experiment. Here
it was deduced from the cable attenuation measured at room temperature,
minus a 3 dB decrease towards the base temperature. The biasing scheme,
though it alternates between voltage and current bias, however, should only
have a minor effect according to the calculations (see Fig. 3.2).

Though some discrepancy remains, based on the qualitative similarity,
we are confident that we have detected the new phenomenon describe above,
the ”AC waves” of a Josephson junction.
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Chapter 4

Quantum mechanics of
superconducting junctions

ALTHOUGH Josephson tunneling is a truly quantum-mechanical phe-
nomenon in its microscopic origin, the degree of freedom due to quan-

tum interference, the phase difference ϕ, typically obeys classical equations
of motion [40]. This means that the operator properties of ϕ are of little
significance. This was the approach of the previous Chapter 3.

However, it was realized in the 80’s that ϕ can itself behave quantum-
mechanically if disturbances from the environment are sufficiently attenu-
ated [48, 49]. ϕ is then called a secondary macroscopic quantum variable.
This limit was first encountered in Josephson junctions in the form of macro-
scopic quantum tunneling of the phase [50–52]. Energy-level quantization
was discovered a few years later [53,54].

In mid 90’s it was verified indirectly in several experiments [55–57] that
the ground state of a small superconducting grain can be a coherent super-
position of macroscopically distinct states, a property predicted earlier by
Averin and Likharev [58]. The latest breakthrough took place in 1999, when
the time control a secondary macroscopic quantum state of the Cooper-pair
box was demonstrated by Nakamura et al. [59]. This landmark work initi-
ated an intense research aiming on constructing a quantum computer (see,
e.g., Ref. [60]) based on the quantum states of Josephson junctions. These
aspects are discussed in some detail in Secs. 5.4.1 and 6.2.

4.1 Single junction

A single JJ having the capacitance C and Josephson energy EJ (Fig. 4.1)
has the Lagrangian function
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ϕ C, EJVB

Z
+Q
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Figure 4.1: Schematics of a single Josephson junction in an electrical circuit
having the impedance Z.

L =
Q2

2C
+ EJ cos(ϕ). (4.1)

In Eq. (4.1), we have implicitly chosen the last term as the potential energy.
This is common practice though not the only possibility, since we are here
dealing only with an analogy to mechanics. We choose the phase ϕ as the
canonical coordinate. It is related to the magnetic flux through

ϕ =
2π

Φ0

Φ (4.2)

The ”momentum” conjugate to ϕ is, according to definition, pϕ = ∂L/(∂ϕ̇) =
QΦ0/(2π). Using the definition of the Hamiltonian, H = pϕϕ̇ − L, we im-

mediately find H = Q2

2C
− EJ cos(ϕ). Note that simply writing H = T − V

does not make it immediately clear that charge and phase are the canonical
coordinates, or, in what follows, the operators that do not commute.

According to the established recipe of canonical quantization, QΦ0/(2π)
and ϕ are then replaced by the operators Q̂Φ0/(2π) and ϕ̂ that obey the
commutation relations presented by Anderson [61][(

Φ0

2π

)
Q̂, ϕ̂

]
=

[
Q̂, Φ̂

]
= i� ⇒

[
Q̂, ϕ̂

]
= 2ei. (4.3)

Eq. (4.3) means that the charge on a JJ and the phase difference across it
are canonically conjugate variables in the same way as the momentum and
the position of a particle are. This result was later justified to hold in spite
of the inevitable coupling to microscopic sources of dissipation [62].

Defining phase as a time integral of voltage, ϕ = (2π/Φ0)
∫ t

0
U(t′)dt′,

Eq. (4.3) can be shown to hold not only for a JJ, but also more generally in
electric circuits. The expectation values of charge and phase then obey the
uncertainty principle
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Figure 4.2: Energy bands of a single JJ calculated from Eq. (4.7). In (a),
operation sequence of the Bloch Oscillating Transistor (BOT, see Sec. 4.3.2)
is also shown.

∆Q ∆ϕ ≥ e. (4.4)

Equation (4.4) can have substantial consequences if, by some means, fluc-
tuations of either charge or phase are forced close to zero. This squeezing
of quantum fluctuations of one quadrature at the expense of the other (see
further discussion in Sec. 4.3) is another possibility to see secondary macro-
scopic quantum effects in a JJ, in addition to energy level quantization. This
effect was observed experimentally in JJ systems in the late 80’s [63–65].

Using Q̂ = −2ei ∂
∂ϕ

, the quantized Hamiltonian of a JJ is [66,67]

Ĥ =
Q̂2

2C
− EJ cos(ϕ̂) = −4EC0

∂2

∂ϕ̂2
− EJ cos(ϕ̂), (4.5)

where the single-junction charging energy is defined by EC0 = e2/(2C). In-
serting the Hamiltonian into the Schrödinger eigenvalue equation ĤΨ = EΨ
we obtain the Mathieu equation

4EC0
∂2Ψ(ϕ)

∂ϕ2
+ (EJ cos(ϕ) + E) Ψ(ϕ) = 0. (4.6)

Using a = E/(4EC0), −2p = EJ/(4EC0), and Φ(ϕ) = Ψ(2ϕ), this can be cast
in the standard form of a Mathieu equation: y′′(z)+ [a−2p cos(2z)]y(z) = 0,
and we get

Φ′′(ϕ) +

(
E

4EC0

+
EJ

4EC0

cos(2ϕ)

)
Φ(ϕ) = 0. (4.7)

The eigenvalues of Eq. (4.7) are the standard Mathieu function [68] charac-
teristic values a(q, p), where q ∈ [−∞,∞]. The new parameter q is called
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”quasicharge”. A few of the lowest bands are plotted in Fig. 4.2 for two
EJ/EC0 ratios.

4.2 Cooper-pair transistor

A superconducting SET, or Bloch transistor, hereafter called the single Cooper-
pair transistor (SCPT) [56,69,70], consists of two small Josephson junctions
(Fig. 4.3). We denote by CΣ = C1 +C2 +Cg the island total capacitance, and
d reflects the small asymmetry of the junction resistances. Unfortunately, dif-
ferent notations for EJ and EC exist in the literature. Here, by EJ (with
d = 0) we mean the Josephson energy of one junction, and EC = e2/(2CΣ)
is the total charging energy of the SCPT.

ϕ2 (1+d)EJC2

VI

Vg

VB

C1 (1-d)EJ

Cg

ϕ1

Figure 4.3: Schematics of the single Cooper-pair transistor. The junctions
are allowed asymmetrical in their Josephson energies and capacitances.

Potential energy of the system in Fig. 4.3 is due to the Josephson energy:

V = −EJ(1 − d) cos(ϕ1) − EJ(1 + d) cos(ϕ2). (4.8)

The phase across the transistor ϕ = ϕ1 + ϕ2 is assumed to be a classical
control parameter, which means that the environment should have a suffi-
ciently low impedance to fix the phase. A second quantity which does not
have such a constraint is defined as θ = 1

2
(ϕ2 − ϕ1). We choose θ as the

canonical coordinate. Its conjugate variable pθ is then a number operator
corresponding to the excess number of particles on the island.

Phases over the junctions can now be written as ϕ1 = 1
2
ϕ − θ, and ϕ2 =

1
2
ϕ + θ. Making this change of variables in Eq. (4.8) we find

V = −2EJ cos (ϕ/2) cos(θ) + 2dEJ sin (ϕ/2) sin(θ). (4.9)

Electric field energy in the three capacitors is the kinetic energy:

T =
1

2
C1V

2
I +

1

2
C2(VB − VI)

2 +
1

2
Cg(Vg − VI)

2. (4.10)
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We substitute Eq. (4.10) with VI = �/(2e)ϕ̇1 = �/(2e)(1
2
ϕ̇ − θ̇), and VB =

�/(2e)ϕ̇. The momentum conjugate to θ is by definition pθ = ∂L/(∂θ̇) =
∂T/(∂θ̇). Here, the Lagrangian is L = T −V . Calculating pθ using Eq. (4.10)
and solving for θ̇ we get

θ̇ =
ϕ̇(C1 − C2 + Cg) − 2CgVg(2e)/� + 2pθ(2e)

2/�
2

2CΣ

. (4.11)

We aim at the Hamiltonian H = pθθ̇ − L. We insert Eq. (4.11) into
Eq. (4.10), and after substantial algebra the result simplifies into

H =
((2e)pθ/� − CgVg)

2

2CΣ

− 2EJ cos
(ϕ

2

)
cos(θ)+

+ 2dEJ sin
(ϕ

2

)
sin(θ) − 1

2
CgV

2
g ,

(4.12)

where it is assumed that VB = 0. The case of small bias corresponds to
making the Born-Oppenheimer approximation [71], so that the fast degrees of
freedom (θ, pθ) are assumed to be decoupled from the slow ones controlled by
the external circuit. This is quite well justified, since the relevant frequencies
we use for driving ϕ in the experiment on the inductively read Cooper-pair
transistor (L-SET, see Sec. 5) are of the order ∼ 1 GHz, while the scale for
the fast variables is ∼ EC ∼ 20 GHz.

pθ and θ are then substituted via the number and phase operators, n̂ ≡
2p̂θ/� and θ̂, respectively. We further define the reduced gate voltage qg ≡
CgVg/e. Then,

Ĥ = EC(n̂−qg)
2−2EJ cos

(ϕ

2

)
cos(θ̂)+2dEJ sin

(ϕ

2

)
sin(θ̂)−1

2
CgV

2
g . (4.13)

For numerical diagonalization, the Hamiltonian is usually written in the
eigenbasis of n̂ which is denoted as |n〉. Using exp(±iθ̂)|n〉 = |n ± 1〉 and
dropping the constant term in Eq. (4.13), the Hamiltonian of an SCPT is
written as

Ĥ =
∑

n

{
EC(n − qg)

2|n〉〈n| −
(
EJ cos

(ϕ

2

)
− idEJ sin

(ϕ

2

))
|n〉〈n + 1|

−
(
EJ cos

(ϕ

2

)
+ idEJ sin

(ϕ

2

))
|n + 1〉〈n|

}
,

(4.14)
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which is convenient for numerical calculations. The required number of
charge states is at least n > max{5, EJ/EC}. Note that asymmetry in the
junction capacitances cancels in Eq. (4.14). The asymmetry in Josephson
energies, d �= 0, turns out to lift the degeneracy between the bands n = 0
and n = 1 at ϕ = ±π, qg = ±1, and it is important only for EJ/EC � 1.
A gallery of the first two bands of an SCPT at different EJ/EC is shown in
Fig. 4.4.

Provided EJ/EC � 1, Eq. (4.14) with d = 0 can be diagonalized analyt-
ically using a two charge state restriction [72]. The band energies are then
given by [70]:

E0,1 = EC(q2
g − 2qg + 2) ∓

√
(EJ cos(ϕ/2))2 + (2EC(1 − qg))

2 (4.15)

More or less direct evidence of the band structure due to macroscopic
quantum coherence of charge has been obtained in experiment since the mid-
90’s in the frequency domain [57,69,73]. Corresponding properties have also
been demonstrated for the phase degree of freedom [74,75].

4.3 Environmental effects on Cooper-pair tun-

neling

In the previous two sections, quantum mechanics of Cooper-pair tunneling
was discussed without paying attention to the external impedance Z (as in
Fig. 4.1), thus in effect putting Z = 0. However, in practice this condition
is never fully satisfied. At the relevant frequencies ∼ 1 K/h ∼ 20 GHz, Z is
typically real and of the order the impedance of free space

√
µ0/ε0 ≈ 377 Ω,

and thus the interaction and energy exchange between tunneling Cooper
pairs and the environment can add significant terms into the Hamiltonian.
A full quantum-mechanical treatment of the system of the JJ plus the circuit
is then needed [76].

4.3.1 P (E)-theory

It can be shown that the probability P (E) that a tunneling Cooper pair
exchanges an energy E with Z is [77,78]

P (E) =
1

2π�

∫ ∞

−∞
dt exp [4J(t) + iEt/�] , (4.16)

where the phase correlator J(t) ≡ 〈ϕ(t)ϕ(0)〉 − 〈ϕ(0)ϕ(0)〉 becomes
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Figure 4.4: Two lowest energy bands E0 and E1 of the single Cooper-pair
transistor, calculated from Eq. (4.14), for the indicated EJ/EC ratios. Ex-
cept for the lowest graph on the rhs (d = 0.2), all the graphs are for symmetric
SCPT, i.e., with d = 0.
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J(t) = 2

∫ ∞

0

dω

ω

Re(Z(ω))

RK

{coth(�ω/(2kBT ))[cos(ωt) − 1] − i sin(ωt)} .

(4.17)
The tunneling current of Cooper pairs can now be expressed as

I(V ) =
πeE2

J

�
(P (2eV ) − P (−2eV )) , (4.18)

where the first and the second terms represent the tunneling Cooper pair
emitting or absorbing the energy E = 2eV , respectively.

We thus see that via the phase correlation function, Eq. (4.17), the tun-
neling supercurrent carries information about the spectrum of environmental
dissipation [79, 80]. This has been applied in [P4] to study the energy levels
of a mesoscopic SQUID.

4.3.2 Applications of an isolated junction

The band structure of a single JJ becomes particularly apparent if charge
fluctuations are suppressed by a high resistance of the environment, Re(Z) �
RQ = h/(4e2) � 6.5 kΩ. According to the uncertainty principle, Eq. (4.4),
phase is then strongly fluctuating. The Coulomb blockade of Cooper-pair
tunneling is important under these conditions [81–83]. Transport involves
a cycle of Bloch oscillations [67, 84], where the quasicharge oscillates back
and forth in the first Brilloun zone. The voltage across the JJ, VI = dE/dq,
oscillates also. However, if VI < max(dE/dq) ≡ VCB, which defined the
Coulomb blockade voltage VCB, the current does not flow.

The Bloch oscillating transistor (BOT)

A low-noise current amplifier based on ”band engineering” of a secondary
macroscopic quantum degree of freedom, namely the discussed band structure
of an isolated JJ, was suggested in Ref. [85] and implemented as a part of
this work in [P3] . Further analysis of the device is in Refs. [86–88]. The
operation sequence of the BOT was illustrated previously in Fig. 4.2 (a),
which is used here as a reference.

In short, the cycle of Bloch oscillations (1) becomes occasionally stopped
if Zener tunneling (2) to the second band happens, where the system re-
mains Coulomb blockaded (3) if the transport voltage is suitably chosen, i.e.,
if Vc < VCB. The cycle of Bloch oscillations can be recovered by injecting a
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Figure 4.5: (a) Schematics of the Bloch oscillating transistor (BOT); (b)
measured input impedance, compared to the presented model. The active
bias region is around −0.6 mV where the quantities peak.

quasiparticle into junction (4), because this corresponds to relaxation. Cur-
rent gain β0 = ∆Ic/(∆IB) comes from the number Bloch oscillation cycles,
each transferring a charge of 2e, triggered by a single quasiparticle.

The actual device consists of a JJ, an SIN junction, and a high resistance
Rc � RQ to suppress fluctuations of charge on the JJ. The SIN junction
serves as the injection junction of the control quasiparticles mentioned, and
therefore it is the logical input of the device.

Next we will briefly show how the BOT can be handled as a general three-
terminal device, neglecting its exotic internal operation principle. With the
symbol definitions as in Fig. 4.5 (a), we get

RcIc = Vc − VI (4.19)

RT IB = VB − VI (4.20)

The input impedance is defined as Zin = ∂VB/(∂IB). We find ∂VB/(∂IB) =
RT + Rc∂Ic/(∂IB), and hence

Zin = RT + β0Rc. (4.21)

Equation (4.21) is compared to experimental data in Fig. 4.5 (b). The values
of Zin and β0 were measured by applying a small AC excitation and mea-
suring the response in accord to the definition of the quantities. A good
agreement of independently determined β0 and Zin shows that BOT is a de-
vice with an ”intermediate” input impedance around ∼ 1 MΩ, in between
the corresponding values for the SET [89] (high |Zin| ∼ 1 GΩ), and the
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SQUID [90] (low |Zin| ∼ 1 Ω). This makes it suitable for general readout
applications in mesoscopics, where quite often the impedance levels are in
the range considered.

Noise spectroscopy

Conductance in the blockade region, VI < VCB, is highly sensitive to fluctu-
ations. The conductance has been predicted to increase as a power law as a
function of temperature [91] having an exponent of 2ρ−2, where ρ = Rc/RQ,
due to noise in Rc. Therefore, if ρ � 1, conductance is highly sensitive to
noise and can be used for noise detection in general [92]. Recently, the study
of higher moments of noise [93–95] has attracted a plenty of attention, since
noise provides further information, not carried by the first moments (the
average voltage and current), of the transport processes [96].

An intuitively appealing picture for noise detection using a Coulomb-
blockaded JJ is then to add a noise temperature TN due to the external noise
to the physical temperature T . Conductance would then be proportional to
∝ (T + TN)2ρ−2. In the case that the external noise is shot noise, as in the
setup of Fig. 4.5 (a), where the SIN junction serves as the shot noise source,
the contribution JN(t) to the phase correlator due to the shot noise is [97]

JN(t) =
πIB

e

(
Rc

RQ

)2 ∫ ∞

0

dω

ω2

cos(ωt) − 1

1 + (τω)2
, (4.22)

where τ = RcC. Consequently, TN = eIBRc/(2kB).
However, in the relevant case ρ � 1, the simple picture fails because of

asymmetry (the non-Gaussian property) of the shot noise. Indeed, as shown
in Ref. [98], the effect of the shot noise then becomes sensitive to exactly
these properties and can be used for their study. The following effects are
expected according to the theory [98]; the increase of zero-bias conductance
G from a ”background” G0 should be linear in the shot noise power:

G = G0 +
π5/2

32
√

2 ln(ρ)

(
EJ

EC0

)2
e

EC0

ρ3/2|IB|. (4.23)

The conductance should also become asymmetric such that there is an ex-
tremum at the transport voltage Vc given by

Vc = sign(IS)
2EC0 ln(ρ)

π2eρ
. (4.24)

Although the shot noise pulses do not flow through the JJ, they act as a kind
of conveyor belt to make the JJ conduct during them. The third effect hence
carries the name ”ratchet effect”, and it contributes a DC current
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IDC =
π2

32

(
EJ

EC0

)2

ρIB. (4.25)

It is worth pointing out that the present method does not allow to separate
the effect of the different higher moments 〈δIn〉 where n > 2, but it provides
the important information that some of them are non-zero.

In order to observe the delicate effects of shot noise in experiment, special
attention should be paid to filtering of external noise. Indeed, in a setup other
than that in Fig. 2.2, which was lacking a low-temperature voltage division
and powder filters, the ratchet effect was found to be masked by external
noise.

In the best DC configuration, Fig. 2.2, all of the three mentioned effects
were observed, in a fair agreement with the expectations, as reported in
[P11] . The good agreement provides overwhelming evidence of the picture
of uncorrelated, non-Gaussian shot noise.

4.4 Interband (Landau-Zener) tunneling

A two-level quantum system may change its state if the level spacing ω01 =
E1−E0 depends on time [99,100] (note that in Ref. [100], the minimum band
gap is denoted by 2V ). The probability of this (Landau-) Zener tunneling is:

PZ = exp

(−π(�Ω01)
2

2�Dϕ̇

)
(4.26)

where Ω01 is the minimum of ω01 in the parameter space, and D = � ∂ω01/∂ϕ.
Operation principle of the BOT (Sec. 4.3.2) is based on using this basic prop-
erty of two-level quantum systems. For a single isolated JJ, the probability
of Zener tunneling becomes exponentially small if EJ/EC0 � 1 because ω01

grows.
In a second device application discussed in this work, namely the L-SET

(see the next chapter), non-adiabaticity would be harmful for operation in the
regime of small oscillations. Since the operation of the L-SET happens close
to qg = ±1 and ϕ = ±π, where the two lowest bands 0 and 1 of a symmetric
SCPT are degenerate and hence ω01 is small, adiabaticity is an important
issue to consider. In Fig. 4.6 (a) we plot the quantities Ω01, Ω2

01, and D
computed numerically from the two lowest bands of SCPT, at the optimal
gate DC working point which maximizes the L-SET transfer function. We
may see that D reduces faster towards small EJ/EC than Ω2

01.
We thus have the somewhat counterintuitive result that in the case of the

L-SET, Zener tunneling is exponentially suppressed in the most interesting
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and difference of their derivatives (D), at the L-SET optimal working point;
(b) the corresponding Zener tunneling probability supposing a 2π p-p drive.
Full lines: fp = 1 GHz. Dashed lines: fp = 5 GHz.

case of low EJ/EC (Fig. 4.6 (b)), and is therefore of little harm for the LSET
in the regime of small oscillations.
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Chapter 5

Quantum inductance

JOSEPHSON junctions store energy in the form of inertia of the flow of
Cooper pairs. Thereby, they can be used as reactive circuit components.

Whether a circuit containing JJs appears as an inductive or capacitive re-
actance, depends on the point of observation in the circuit, and whether
the drive is in the linear regime or not. From the Josephson equations we
find V = �İ/(2eIC cos(ϕ)) which means that a JJ behaves as a nonlinear
inductor,

LJ(ϕ) =
�

2eIC cos(ϕ)
. (5.1)

Let us denote the value LJ(ϕ = 0) simply by LJ . The following linear-regime
relations are useful:

EJ =
h∆

8e2RT

(5.2)

IC =
2e

�
EJ =

2π

Φ0

EJ =
π∆

2eRT

(5.3)

LJ =
�

2eIC

=
Φ0

2π

1

IC

=

(
Φ0

2π

)2
1

EJ

(5.4)

In general, a system which has an inductance defined via V = Φ̇ = Lİ
may feature an arbitrary dependence of the energy on phase E(ϕ), where
ϕ = (2π/Φ0)Φ (for a classical JJ, E(ϕ) = −EJ cos(ϕ), but quantum effects
may renormalize this expression as shown in the following). Changes of flux
and energy are then related by dE = IdΦ. We then have immediately

L =

(
d2E

dΦ2

)−1

=

(
Φ0

2π

)2 (
d2E

dϕ2

)−1

. (5.5)
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In the rest of this chapter, we will apply this general concept of inductance
to a secondary quantum-mechanical object, namely the band structure of
the single Cooper-pair transistor. Relying on these results, we will establish
a device application for extremely sensitive and fast measurement of the
electric charge. We call this device ”L-SET” (L for inductive), much in the
same way as the inductively read nonhysteretic RF-SQUID [101–105] has
been coined ”L-SQUID” [90].

5.1 Inductance of the single Cooper-pair tran-

sistor

In short, the principle of the L-SET is to tune the resonant frequency of the
circuit shown in Figs. 2.6 and 5.1 (a) by gate modulation of the effective
Josephson inductance L∗

J of an SCPT:

L∗
J =

(
Φ0

2π

)2 (
d2E0

dϕ2

)−1

. (5.6)

Here, we have supposed adiabatic operation at the lowest energy band E0

of the SCPT. The SCPT is coupled in parallel to an LC oscillator reso-
nant at the frequency f0 = 1/(2π)(LC)−1/2, roughly at 600 MHz in our
experiments. The total system has a gate-dependent plasma resonance at
fp = 1/(2π)(LtotC)−1/2 > f0, where Ltot = L ‖ L∗

J .

L C

Cc

Z0
R

LJ* L C
R R

,C
,

(a) (b)

ϕ
LJ*

VR

Vin

Vout

Z, Γ VB

ZR

Figure 5.1: (a) The L-SET circuit; (b) an equivalent circuit (without bias).

In Fig. 5.2 we plot the second derivative of E0 with respect to the phase.
According to Eq. (5.6), L∗

J is inversely proportional to this quantity. As seen
in the figure, L∗

J can have a sharp dependence on both control parameters,
ϕ and qg. Here, however, the phase dependence is not relevant because ϕ is
used for drive.
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Figure 5.2: Second derivative of E0 with respect to ϕ of the SCPT lowest
band, at EJ/EC = 0.167 (left) and EJ/EC = 1 (right). The axes have been
truncated before qg = ±1 and ϕ = ±π to avoid divergencies.

If we choose L � L∗
J and EJ/EC � 1, fp in the L-SET layout is highly

sensitive to the gate charge qg, easily having a peak-to-peak modulation of
hundreds of MHz. This may be appreciated by examining Figs. 5.3 (a) and
5.4 (a) which display the gate dependence of L∗

J .
Note that a simple way of interpreting the inductance modulation as

arising from the well-known gate modulation of the critical current of an
SCPT [69,70,106,107], giving rise to modulation of the Josephson inductance
via the first form of Eq. (5.4), is not correct. The critical current I∗

C and
the Josephson inductance L∗

J of an SCPT are not linked as simply as in
Eq. (5.4) which holds only for a sinusoidal energy vs. phase relationship, and
deviations from it are significant if EJ/EC � 1.

5.2 L-SET circuit

Charge detection is performed by exposing the L-SET circuit, via the cou-
pling capacitor Cc, to monochromatic microwaves of an amplitude Vin and a
frequency ∼ fp. The voltage reflection coefficient Γ, Eq. (2.1), then depends
on the impedance of the circuit,

Z =
1

iωCc

+

(
iωC +

1

iωL
+

1

iωL∗
J

+
1

R

)−1

, (5.7)

and the reflected voltage wave Vout = |Γ|Vin cos(ωpt + arg(Γ)) consequently
carries information about L∗

J . Notice that the tank resonator is not similarly
necessary for doing an impedance match as in the RF-SET. Namely, at low
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Figure 5.4: (a) Josephson inductance at ϕ = 0 of a typical SCPT made of
Al (EJ × EC = 1.8 K2). The curves are for the same values of EJ/EC as in
Fig. 5.3 (a), but now from bottom to top. (b) L∗

J at different values of phase
bias, for EJ/EC = 1.8.

energies when the SCPT behaves as an inductance, typically L∗
J ∼ 10−50 nH,

its impedance is close to the typical transmission line impedance Z0 = 50 Ω
for fp ∼ 1 GHz.

The resonator has, nevertheless, an important role in filtering out the
noise both at low and high frequencies. Without filtering, even thermal
noise of Z0 at T = 50 mK, over B = 10 GHz, would cause noise δVin =
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√
4kBTZ0B ∼ 1µV. Depending on the circuit, this would then convert into

a voltage over the SCPT of the order the critical voltage VCV (see Eq. 3.7),
which is clearly intolerable.

It can be useful to convert the actual L-SET circuit, loaded by the exter-
nal 50 Ω via the coupling capacitor (Fig. 5.1 (a)) into an equivalent parallel
resonator (Fig. 5.1 (b)). Component values of the equivalent circuit are given
by

C ′ =
Cc

ω2C2
c Z

2
0 + 1

� Cc (5.8)

R′ = Z0

(
1 +

1

ω2C2
c Z

2
0

)
� 1

ω2
0C

2
c Z0

. (5.9)

The resonant frequency is shifted from ω0 = (LtotC)−1/2 because Cc becomes
approximately added in parallel with C as shown in Fig. 5.1. By differenti-
ation we get dω0/(dC) = −ω0/(2C), and a relation is written for the loaded
resonance frequency ωp = ω0 − dω0 = ω0(1 − dC/(2C)):

fp = f0

(
1 − Cc

2C(Z2
0(2πfp)2C2

c + 1)

)
� f0

(
1 − Cc

2C

)
. (5.10)

If Cc < 0.1C, the last form of Eq. (5.10) is accurate to within 0.5 %. A further
correction is due to finite quality factor, which decreases fp in Eq. (5.10) by

a factor α ≡
√

1 − 1
4Q2

L
� 1 − 1

8Q2
L
, which implies here, however, a shift of

only a few hundred kHz for a typical QL ∼ 15.
A short expression of the full loaded resonance frequency, accurate enough

for all calculations does not seem to exist. In practice, it is calculated nu-
merically from the first form of Eq. (5.10), multiplied by α (note that QL

depends on fp).
Classical dynamics of the phase ϕ in the L-SET setup can be understood

using the concepts of the familiar RCSJ model [108,109]. Now, however, there
is a parabolic background UL = Φ2/(2L) (we also define EL = Φ2

0/(8π
2L))

in the potential due to the shunting L (see Fig. 5.5), and in the absence of a
bias the potential is

U = UL + E0 � Φ2
0

8π2L
ϕ2 − E∗

J cos(ϕ). (5.11)

Note that this is not exact because even the lowest band of the SCPT deviates
from sinusoidal, but the error is typically a few %. It has been discovered in
this work that a ”switching” resembling that of a DC-biased junction happens
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Figure 5.5: Potential experienced by the fictitious phase particle in the L-
SET setup, with three (two) lowest bands of the SCPT included on left (on
right). Left: Eq. (5.11) plotted using parameters of sample B (E∗

J/EL ∼ 1.0);
Right: Classical picture of the phase dynamics. ”Anharmonic mode” of non-
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in the ”RCLSJ” -model (similar findings in a slightly different system were
recently reported in Refs. [110, 111]). Now, however, the phenomenon is in
AC, and it happens at a certain critical voltage (not current) given by Eqs.
(3.4), (3.5), depending on the biasing scheme. The dynamics are analyzed
in more detail in Publications [P7] and [P8] in terms of experimental data,
analytical calculations, and simulations.

5.3 Charge sensitivity

We will now consider the charge sensitivity sq possible to achieve using the
L-SET. We treat only the regime of harmonic oscillations (accurate consid-
erations of sensitivity in the ”anharmonic” mode are left for future research).
The way to think is in accord to the analysis presented in the literature for
the sequential tunneling SET, or for that in the RF-SET mode [112–115].

We aim at finding out what would be the noisy gate charge (with the
amplitude spectral density sq) that would cause the amount of voltage noise
detected in our spectrum analyzer. In other words, we convert the detected
voltage noise (amplitude spectral density sV ) to the input of our L-SET.

In principle, one could read either amplitude or phase of the reflected
wave. Here we find that the optimal figures of merit are the same for both
cases; therefore, we concentrate on the amplitude readout which allows for an
important analytical derivation. We suppose the detection of one sideband.
For amplitude readout, we thus have to evaluate [P10] , [115]
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sq =
sV

∂Vout

∂qg

=

√
2kBT ∗

NZ0

Vin
∂|Γ|
∂qg

(5.12)

where T ∗
N is the equivalent noise temperature referred to 1st stage amplifier

input, consisting of noise due to both the resonator itself, and the amplifier
contribution TN . As argued in [P10] , the sample noise is negligible, that is,
T ∗

N � TN .
Unfortunately, the analysis turns out to be complicated, for two main

reasons. First, the circuit is more complex than in the RF-SET for instance.
Second, the modulation depth of the SCPT Josephson inductance is a non-
trivial function which needs to be calculated numerically from the band struc-
ture of a SCPT, for a given EJ/EC . The final results are not easy to interpret
in terms of simple arguments.

5.3.1 Transfer function

We begin by decomposing the ”gain” derivative in the second form of Eq. (5.12)
into terms that are conveniently substituted for terms due to the tank circuit
and SCPT:

∂|Γ|
∂qg

=
∂|Γ|
∂ωp

∂ωp

∂L∗
J

∂L∗
J

∂qg

. (5.13)

The last derivative ∂L∗
J/∂qg in Eq. (5.13) is due to the SCPT band structure.

It is useful to scale it into dimensionless form. Then it will be called the
electrometer gain, or transfer function. Several possible normalizations exist;
we will mention two of them.

g ≡ ∂L∗
J

∂qg

e

LJ0

=
∂

∂qg

(
∂2E0

∂ϕ2

)−1
e

LJ0

(5.14)

is scaled according to the minimum (vs. gate, at qg = ±1; see Fig. 5.4 (a)),

LJ0 ≡ min
(

∂2E0

∂Φ2

)−1

of the SCPT Josephson inductance. It is the derivative

of inductance modulation of Fig. 5.3 (a), and its gate dependence is plotted

in Fig. 5.3 (b). Alternatively, g ≡ ∂L∗
J

∂qg

e
L∗

J
, which is scaled according to the

value of SCPT Josephson inductance at the (best) operation point.
As evident in Fig. 5.3 (a), (b), the gain has a strong gate dependence

and it also grows rapidly for EJ/EC � 1, when the Coulomb effect is strong.
We denote its maximum value with respect to gate by gm, that occurring at
the values of qg marked by circles in Fig. 5.3. As seen in Fig. 5.6 (a), gm

grows fast, like (EJ/EC)−1 at low EJ/EC , which favors a low EJ/EC for a
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Figure 5.6: Important quantities to L-SET performance. (a) Two possible
definitions of the electrometer gain; (b) Ratio of the Josephson inductance of
SCPT to the ”bare” Josephson inductance of a classical single junction, for
two important gate DC values: qg = ±1 (LJ0), and that giving the maximum
gain.

most sensitive device. The rapidly growing L∗
J towards low EJ/EC , as seen

Figs. 5.6 (b) and 5.7, nevertheless, to some extent cancels the benefit of the
growing gain.
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Figure 5.7: Numerical values of SCPT Josephson inductance LJ0 and L∗
J for

Al (left) and Nb (right). Also shown is the ”bare” single junction value LJ .

The amplitude of the incoming wave Vin in Eq. (5.12) is related in a
complicated manner to VR, the voltage over the SCPT (see the discussion
preceding Eq. 3.15):

VR = Vin

∣∣∣∣ 2 ZR

Z + Z0

∣∣∣∣ . (5.15)

Here, Z is the impedance of the whole resonator, Eq. (5.7), and ZR is the
impedance of the parallel resonator only (without Cc). The voltage division,
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Eq. (5.15), is illustrated in Fig. 5.8.
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Figure 5.8: Voltage ratio in the L-SET circuit, Eq. (5.15), plotted for sam-
ples A, B and E. The curve labelled B’ is for sample B in the high-drive
”anharmonic” mode, with Qi ∼ 200. In addition, the dashed curve is for:
Qi = 40, L = 100 pH, C = 300 pF, Cc = 2 fF (see the beginning of Sec.
5.3.5).

5.3.2 Analytical calculation for critical coupling

Fortunately, analytical expression for the charge sensitivity in amplitude
readout can be derived in an important limit. We assume critical coupling
Z = Z0 (in practice, a suitably chosen Cc). Though it is not obvious based
on the following analysis, this also turns out to be the optimal tank circuit
for any kind of SCPT. We will examine the stated optimality later on using
numerical calculations.

Since we assumed critical coupling, half the power is dissipated in the
resonator, and hence R = Qi/(ωpC) = R′, and QL = 1/2Qi. Using Eq. (5.9),
we find

Cc =

√
C

ωpQiZ0

. (5.16)

Similarly, 1/(iωpCc) + ZR = Z0, and thus ZR = Z0 + i/(ωpCc). Equation
(5.15) then becomes

VR = Vin

√
1 +

1

ω2
pC

2
c Z

2
0

≈ Vin

ωpCcZ0

= Vin

√
Qi

ωpZ0C
. (5.17)
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Here, the second form holds for a reasonably large Qi, and for the last form,
we have substituted the condition for Cc from Eq. (5.16).

In the linear regime (harmonic mode), the best sensitivity is obviously at
the largest possible value of the probing voltage Vin where linearity still holds
reasonably well. This is the case when an AC current of critical peak value
flows through the SCPT, and the phase swing is π peak-to-peak. Then, VR

in Eq. (5.17) equals the universal critical voltage of a Josephson junction,
Eq. (3.7), VCV = π�ωp/(4e), and we get

Vin =
π�ω2

pCcZ0

4e
� π�ω

3/2
p

√
Z0C

4e
√

Qi

, (5.18)

which is a rather strong function of ωp due to (1) decreasing voltage ampli-
fication, Eq. (5.17), and (2) increasing VCV .

Also the three derivatives in Eq. (5.13) have to be evaluated at critical
coupling. For the second derivative we easily find, using ωp = (LtotC)−1/2,

∂ωp

∂L∗
J

=
1√
C

1

2(L∗
J)2

√
1/L + 1/L∗

J

. (5.19)

The first derivative ∂|Γ|/∂ωp in Eq. (5.13) means that the more change in
Γ for a given change in ωp, the better, as illustrated in Fig. 5.9. It improves
with increasing quality factor, and weakens with increasing ωp.

In the book of Kajfez [116], a formula has been derived for Γ close to
resonance:
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Γ �
[
1 − 1

1 + iQL2ω−ωp

ω0

]
, (5.20)

which reduces to Γ � iQL2(ω − ωp)/ω0 and yields

∂|Γ|/∂ωp = 2QL/ω0 � Qi/ωp. (5.21)

Note that this results contradicts a ”rule of thumb” that the FWHM of
a resonance is frequency divided by the loaded quality factor. The basic
rule does not hold because we are not dealing with the response directly.
Equation (5.21) holds reasonably well also clearly off from critical coupling.
For arbitrary coupling, the value of QL could also be easily evaluated using
Q−1

L = ωpLtot/R + ωpLtot/R
′, and we find QL = Qi/(Qiω

3
pC

2
c Z0Ltot + 1).

Observe the discontinuous phase jump in Fig. 5.9 at ω = ωp; the sharp
feature is peculiar to critical coupling, but it does not give advantage for
detection because the reflected signal is zero, or vanishingly small. Note also
that the reflected signal being small does not matter for amplitude readout,
because then only the change is important.

In the remaining expressions, L∗
J should be understood as its value at the

optimum gate operation point. Through insertion of Eqs. (5.18), (5.19) and
(5.21) into Eq. (5.12), C and Z0 cancel, and we are left with a rather sim-
ple expression for the charge sensitivity in this particular case of amplitude
readout and critical coupling:

sq =
8e(L∗

J)2
√

1
L

+ 1
L∗

J

√
2kBTN

gmπ�LJ0

√
ωpQi

[CLASSICAL] (5.22)

in units of [e/
√

Hz]. Clearly, it is best to omit the shunting inductor, i.e.,
L → ∞ in the classical case. Also, the operation frequency should be high. If
an alternate gain definition is used g ≡ ∂L∗

J

∂qg

e
L∗

J
, a particularly simple formula

can be derived for the ultimate sensitivity:

sq =
8e

√
2kBTNL∗

J

gπ�
√

ωpQi

[CLASSICAL] (5.23)

5.3.3 Quantum corrections to the sensitivity

An important issue still needs to be addressed. Equation (5.18) holds strictly
in the limit of a classical oscillator. In our case, however, typically �ωp ∼
kBT , and quantum effects may play a role. Energy due to vacuum fluctu-
ations EQ = 1

2
�ωp can be comparable to the energy required to drive the
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L-SET oscillator into the nonlinear regime. This is equivalent to say that
quantum phase fluctuations become of the order 〈π〉, or, that phase becomes
more or less delocalized.

In terms of energy, the threshold energy of delocalization is of the order
∼ E∗

J = (Φ0/2π)2(L∗
J)−1 which, as we emphasize, is significantly smaller at

low EJ/EC than the ”bare” single junction EJ due to quantum suppression
of Josephson tunneling. We get E∗

J = 1
2
�ωp if L∗

J ∼ 300 nH and ωp ∼ 1
GHz. Using Fig. 5.7, this high L∗

J is met at EJ/EC ∼ 0.06, or ∼ 0.02, for an
SCPT made out of Al or Nb, respectively. These fundamental limits were
calculated for L � L∗

J .
Even before this ”switching” into nonlinear regime happens, quantum

noise has the effect of reducing the detector performance because less energy
can be supplied in the form of drive, that is, Vin in Eq. (5.12) is lower. This
can be calculated in a somewhat semiclassical manner as follows. Energy
of the oscillator is due to the drive (ED) and noise (we stay in the linear
regime):

E =
Φ2

O

8π2Ltot

ϕ2 = ED + EQ =
Φ2

O

8π2Ltot

(ϕD)2 +
1

2
�ωp (5.24)

where the phases are in RMS, ϕ is the total phase swing, and ϕD is that due
to drive. Solving for the latter, we get

ϕD =

√
ϕ2 − 4π2�ωpLtot

Φ2
0

. (5.25)

Now, Eq. (5.25) is to be evaluated when the total swing ϕ corresponds to crit-
ical drive. This was defined in Sec. 3 to take place at the ”critical” amplitude√

2ϕC = π/2. Critical voltage is simply proportional to ϕC : VCV ≡ γϕC ,
where γ = �ωp/(2e) and γ = 4�ωp/(π

2e), for voltage and current bias, re-
spectively, from Eqs. (3.7) and (3.5). The critical voltage is then reduced by
the factor

β ≡ VD,C

VCV

=
ϕD,C

ϕC

=

√
2
√

ϕ2
C − 4π2�ωpLtot/Φ

2
0

ϕC

=

√
1 − 32�ωpLtot

Φ2
0

. (5.26)

Note that VD,C → 0 at large Ltot or at large ωp. Ltot becomes large at low
EJ/EC . We thus expect there to be an optimum with respect to both ωp

and EJ/EC .
We now proceed identically as when arriving at Eq. (5.22), but substitute

Vin in Eq. (5.18) by βVin. The fully correct form of Eq. (5.22) taking into
account zero-point fluctuations is finally
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sq =
8e(L∗

J)2
√

1
L

+ 1
L∗

J

√
2kBTN

βgmπ�LJ0

√
ωpQi

, (5.27)

where β is from Eq. (5.26). This expression should be used when evaluat-
ing the ultimate performance of L-SET. The classical result, Eq. (5.22), is
valid when the occupation number of the oscillator � 1. Equation (5.27)
is, unfortunately, quite complicated. Only one tendency is evident: charge
sensitivity improves as the inverse square root of Qi. The best EJ/EC is not
easy to determine. Considering Fig. 5.6, we see the following. The gain gm

in the denominator grows like (EJ/EC)−1. However, L∗
J in several places in

Eq. 5.27 grows as well (as ∼ (EJ/EC)−0.4), but LJ0 does not change a lot.
Nonetheless, by differentiation with respect to ωp and L, we find that the

absolute minimum of Eq. (5.27) occurs when the following relation holds:

ωp =
Φ2

0(L
∗
J + L)

64�L∗
JL

(5.28)

This minimum value turns out to be independent of L:

sQL
q =

64
√

2e(L∗
J)2

√
2kBTN

gπ
√

�Φ0LJ0

√
Qi

. (5.29)

In other words, whatever shunting L we choose, we achieve the ultimate
charge sensitivity sQL

q when operating at the frequency given by Eq. (5.28).
It is also evident that L∗

J should be small. At a given EJ/EC , this happens
if EJEC is high. However, one should stay below EC < ∆ to avoid quasiparti-
cle poisoning [117,118]. In practice, this limitation prohibits EJ/EC � 0.2 in
the case of a good Al SCPT. Sample E, see Table 2.2, came in fact very close
to this limit. By using materials with high ∆, nevertheless, the quasiparticle
threshold is substantially relieved and even lower EJ/EC can be usable.

5.3.4 Optimization of charge sensitivity

Next we display quantities which are numerically optimized from the original
Eq. (5.12) without any assumptions regarding the coupling strength. To illus-
trate the effect of the operation frequency, we plot a number of characteristic
curves, each at different ωp, in Fig. 5.10.

We see that the optimal charge sensitivity is reached around EJ/EC �
0.2...0.3, almost independent of drive frequency, and only weakly depending
on ∆. At smaller EJ/EC , operation frequency (Fig. 5.11) matters a bit more.
The caustic of the curves in Fig. 5.10 is the ultimate limit of Eq. (5.29) (the
small difference is due to numerics).
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Figure 5.10: Numerically optimized (from Eq. (5.12)) charge sensitivity
for L-SET, at the following operation frequencies (from top to bottom):
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Figure 5.11: Optimal operation frequency of the L-SET from the point of
view of charge sensitivity, c.f. Eq. (5.28).

As discussed in [P10] , Eq. (5.27), with L = ∞, predicts the optimal
sensitivity correctly down to the quantum regime.

By direct numerical calculations we find that the minimum is reached
always at critical coupling, Z = Z0. In an wide number of numerical evalu-
ations, we have found no exceptions to this tendency. A similar conclusion
holds also for the RF-SET [119] and hence it seems rather universal.

We conclude that with present Qi of ∼ 20, sq ∼ 10−5e/
√

Hz is reachable



5.3 Charge sensitivity 53

with an Al SCPT and a system noise of 3 K (almost independent of the
operation frequency). Using Nb [120–122] and a realistic 1 K [123] would
yield sq ∼ 3 × 10−6e/

√
Hz. By increasing Qi to ∼ 1000 and using a SQUID

amplifier [124] which have the best demonstrated TN � 200 mK [125, 126],
the sensitivity would improve to the level of sq ∼ 10−7e/

√
Hz, which figure

of merit is better than that of any other electrometer considered. We note
that in the present experiment, see Sec. 5.5, Qi ∼ 20 likely due to the effect
of external noise.

5.3.5 Discussion on sensitivity

A relevant question is whether the detector performance would improve, and
how much, by choosing a different L. It would be particularly interesting
to operate with a very small L when doing reactive readout of the charge-
phase qubit (see Sec. 5.4), because of the more efficient shunting of phase
fluctuations. We note that although the power levels are substantially higher
when L � L∗

J (the voltage ratio VR/Vin, Eq. 5.15, becomes < 1, see the
dashed curve in Fig. 5.8), sensitivity decreases because the modulation of
Ltot becomes vanishingly small.

Referring to Fig. 3 in [P10] , which displays the sensitivity as a function
of detuning L and Cc off from the optimum, we see that close to optimal
values, the dependence is weak. Continuing the figure down to L = 100
pH, we calculate as good as sq ∼ 6 × 10−4e/

√
Hz, for the same Cc and Qi.

Thereby, we expect promising prospects for operating also with a strong
inductive shunting.

As stated above, the best detector performance is at critical coupling.
One might naively think of further reducing, maybe significantly, the power
dissipation in the resonator itself (at the expense of perhaps a bit reduced
sensitivity), by heavily overcritical coupling. Then, |Γ| ∼ 1 but phase changes
by 2π, and it is feasible if Cc ∼ C. The procedure does not help, nonetheless.
Simply, in-resonator power dissipation PD,C = V 2

CV /(2R) does not depend
on the coupling. Moreover, since the best detector performance is at critical
coupling, PD,C would only increase at a given sensitivity.

All the above analysis was performed without phase bias, that is, at
〈ϕ〉 = 0. As seen in Fig. 5.4 (b), the inductance modulation can be a lot
stronger with a phase bias. However, it is questionable whether this gives a
real advantage for detection, because the maximum tolerable drive strength
is reduced as well.

Thus far, operations were supposed to take place at the gate DC value
which maximizes the transfer function, i.e., yields g = gm. To be accurate,
the optimum sensitivity is not at this point, but typically some % towards the
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degeneracy, qg = ±1. This is because a lowering L∗
J offers a slight advantage

over a reducing gm. However, the difference is only a few %, and can be
neglected in practice.

By numerical investigations we found that readout of arg(Γ) offers within
numerical accuracy the same optimized figures of merit as the discussed read-
out of |Γ|.

5.4 Quantum measurement

The L-SET configuration could potentially be used for several fundamentally
different operations or measurements in the quantum limit. This section
contains plausible ideas that are still at the level of speculation because
experimental verification is lacking.

5.4.1 Nondestructive readout of the charge-phase qubit

For some years, the control of quantum states of mesoscopic superconducting
junctions has been a subject of intensive research. These ”superconducting
qubits” may offer a controllable approach to implement a real quantum infor-
mation processing. The first suggestions in this field are due to Bouchiat [72]
and Shnirman et al. [127] in 1997. Since then, various qubits based either
on the charge or phase degree of freedom have been proposed [128–134], and
implemented [59, 135–140]. So far, two coupled superconducting qubits (or
equivalent) have been successfully operated [141–144].

The L-SET setup might qualify as an integrated qubit plus a detector,
much in a similar fashion as suggested by Zorin [145] in a different readout
scheme. It has become clear that the measurement of qubits must be done
avoiding quasiparticle generation [146, 147]. The L-SET ”internal qubit”
would naturally be read by measuring inductance which depends on whether
the SCPT (qubit) is in the lowest band (qubit state |0〉), or in the first
excited band (qubit state |1〉). This design would implement a highly non-
invasive readout of the charge-phase qubit [135], since the physical structure
is basically the same, although in the L-SET the shunting L is typically larger.
In fact, the property of low back-action, as discussed below, could make
the scheme come close to a QND (Quantum Non-Demolition) measurement
[148–151].

For example, if EJ/EC ∼ 1 and at the degeneracy point ϕ = 0, qg =
±1, then according to Fig. 5.12, the qubit state |1〉 would correspond to
an inductance ∼ −35 nH, while the state |0〉 has ∼ 20 nH (Fig. 5.4). By
choosing L suitably, the total inductance Ltot would then be either very small,
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Figure 5.12: Josephson inductance in the 1st excited band at ϕ = 0 of a
typical SCPT made of Al. Negative values are marked by dashed lines.

or ∼ 2L, depending on the qubit state. This would result in a huge difference
in fp, or, in practice, a high sensitivity in a CW reflection measurement.

The discrimination (or measurement) time needed to pick up enough
information to distinguish |0〉 from |1〉 is

Tm =
s2

V

(∆Vout)2
=

2kBTNZ0

V 2
in|∆Γ|2 . (5.30)

Using Vin ∼ 1 µV, and |∆Γ| ∼ 1 (see the experimental data, Fig. 5.16 (a),
where the two absorption dips due to positive and negative inductance, corre-
sponding to the two lowest bands, show up clearly), we get Tm ∼ 3 ns. Hence
the measurement time is rather limited by the oscillator response time (� 10
ns).

To calculate the SNR achievable in this design, we will estimate the re-
laxation time (ΓR)−1 of the state |0〉 or |1〉 into a thermal mixture state,
when the measurement is on. Both the qubit operations and the measure-
ment are supposed to be performed at qg = ±1 and 〈ϕ〉 = 0 (notice that the
measurement involves a sinusoidal drive in the phase direction).

Dephasing and relaxation are determined by the fluctuations in direction
and magnitude of the effective ”magnetic field” 2EJ cos(ϕ/2)�x+4EC(1−qg)�z
formed by the two control parameters, ϕ and qg. The angle between the
field and the z-axis is denoted by Θ; sin(Θ) ≡ 2EJ cos(ϕ/2)/(�ω01), where
�ω01 = E1 − E0. Thus, Θ = π/2 at the degeneracy point, and Θ → 0 at
qg = 0. If qg is tuned by an amount ∆qg off from the degeneracy, using
Eq. (4.15) we find cos(Θ) = 2∆qqEC/(EJ cos(ϕ/2)) if EJ/EC � 1.

By reducing coupling to the charge control line, the effects of fluctuations
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in the gate lead can be made negligible. However, for the fluctuations of ϕ,
the case is not so. The relaxation rate is then determined by the spectrum
of voltage fluctuations at the level-spacing frequency ω01 [152–154]; ΓR ∝
s′2V (+ω01). Here, s′2V is the unsymmetrized power spectral density,

s′2V = �ωRe(ZS)

[
coth

(
�ω

2kBT

)
+ 1

]
(5.31)

where ZS = (1/(iωLtot) + iωC + 1/R + 1/(Z0 + 1/(iωCc)))
−1 is the impedance

seen by the SCPT between its source and drain (Fig. 5.13). In Ref. [155], it
is evaluated that

ΓR �4πE2
J

�2ω01

Re(ZS(ω01))

RK

×

×
{

cos2(Θ)
[
sin2

(ϕ

2

)
+ d2 cos2

(ϕ

2

)]
+

4d2E2
J

�2ω2
01

} (5.32)

At the degeneracy point, Eq. (5.32) reduces to

ΓR � 2πd2EJ

�

Re(ZS(ω01))

RK

. (5.33)

Eq. (5.33) means that a symmetric (d = 0) SCPT is decoupled from fluctu-
ations due the environment (in the first order) at this point.
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Figure 5.13: Real part of the impedance ZS seen by SCPT in L-SET circuit.
All the curves are computed using the values fp = 850 MHz, L∗

J = 45 nH.
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Now, the measurement involves a sinusoidally varying ϕ. At the degen-
eracy point Θ = π/2, the term in front of square brackets in Eq. 5.32 is
zero, and the relaxation rate would again be given by Eq. 5.33. In practice,
however, qg cannot be tuned arbitrarily accurately to the degeneracy, but it
remains offset by an amount ∆qg. Then, the effect of ϕ varying from ϕ = 0
due to the measurement becomes the most important source of relaxation.
Eq. 5.32 yields

ΓR � 2πEJ

�

Re(ZS(ω01))

RK

(
2EC

EJ

∆qg

)2 〈
tan2(ϕ/2)

〉
. (5.34)

Here, we have neglected terms containing d2. Performing a simple average
between ϕ = −π/2...π/2 we find

ΓR � 1.7EJ

�

Re(ZS(ω01))

RK

(
2EC

EJ

∆qg

)2

. (5.35)

To estimate numbers in a real situation, let us take d = 0.1, EJ/EC = 0.5
and EJ = 1 K. From Fig. 5.13 we see Re(ZS) ∼ 0.1 Ω at the level spacing
frequency f01 ∼ 10 − 50 GHz. Using Eq. (5.35) we find ΓR � 10 µs. Even in
a real situation, relaxation due to the external circuit and the measurement
is thus negligible, and an amplitude SNR of ∼ 103 in qubit measurement is
possible.

To gain further confidence that the relaxation caused by the measurement
is negligible, we note that the measurement drive has no effect on the high-
frequency spectrum - it just contributes a narrow peak at fp. We also note
that the mixing of power to the higher harmonics is only tens of % at the
optimal drive level, as discussed in [P10] . Especially, since ω01 � ωp, the
drive should not contribute to the high-frequency spectrum. This is in a
striking contrast to the sequential tunneling SET, where a white spectrum
of shot noise results.

The presented readout method would be particularly important for a
qubit having a strong inductive shunt which offers more immunity to phase
noise [156]. If L = 100 pH, we computed that in Eq. (5.30), |∆Γ| ∼ 0.1,
and Vin ∼ 10 µV, and hence the measurement time is comparable to that
discussed previously. Therefore, the readout would also work even with an
almost mesoscopic loop size.

5.4.2 Back-action in charge measurements

Let us now discuss an issue conceptually very different from the internal
qubit, that of measuring charge on the gate capacitor. This operation mode
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of the detector has been discussed in detail in this thesis. So far, however,
we have only treated the ”output” noise. This treatment is valid only in the
limit where the SCPT gate is driven with a voltage source of zero internal
impedance, that is, a classical source. In this case, potential fluctuations of
the SCPT island, the back-action, will not affect the measurement accuracy
[89].

For practical purposes, however, the source is a mesoscopic object having
a clearly finite source impedance. Then, the back-action from the L-SET will
affect accuracy of the measurement, and the back-action will also potentially
disturb the system by inducing relaxation.

Let us denote the island charge by QI , island voltage by VI , and their
amplitude spectral densities by sQI and sV I , respectively. The back-action
charge noise, the ”input” noise, is due to fluctuations of the island potential
[106,157]. We define the input energy sensitivity:

εI =
sQI

2CΣ

=
1

2
CΣ s2

V I . (5.36)

Next, one should calculate sV I . Definitely, fluctuations on the SCPT island
are due to voltage fluctuations sV across the SCPT. The question is, how
sV causes sV I , in particular, when the measurement is on (sinusoidal phase
swing). The issue is quite involved. Here sV I is not one half of sV as
one might naively assume, but one must think in terms of the SCPT band
structure:

VI =
dE

dqg

. (5.37)

Now, fluctuations of ϕ couple to VI so that dE/dqg depends in general on
ϕ. Only at ϕ = 0, there is no dependence. Therefore, if ϕ fluctuates, so
does dE/dqg = VI . sV is computed in the L-SET circuit according to the
fluctuation-dissipation theorem [158], with the symmetrized power spectrum
(ω > 0):

s2
V = 2�ωRe(ZS) coth

(
�ω

2kBT

)
(5.38)

Using sV , the amplitude spectral density sϕ is obtained as sϕ = 2e
�ω

sV . Ex-
amples of the spectra are shown in Fig. 5.14.

The frequencies relevant to back-action are those at which the signal is
read, namely low frequencies � fp. Nonlinear dependence of dE/dqg on
ϕ (see Fig. 5.15) mixes the spectrum, centered around fp, partially into
the low frequencies. We now make the following rough, worst case estimate
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Figure 5.14: Calculated spectra of voltage fluctuations across the SCPT in
the L-SET setup (left), and the corresponding curves for phase fluctuations
(right).

of the low-frequency back-action by estimating it with the noise around fp.
Using Fig. 5.15, we observe that in a linear approximation, if ϕ has an RMS
fluctuation 〈ϕ〉 ∼ 0.5 rad which is a typical quantum-limited value, then VI =
dE/dqg fluctuates between about −1.50 EC/e... − 1.45 EC/e, at EJ/EC =
0.17. Denoting the peak-to-peak fluctuation of VI , ∼ 0.05 EC/e, by k EC/e,
we thus have

sV I ∼ kEC

e
sϕ =

2kEC

�ω
sV . (5.39)

and

sQI = CΣSV I =
2CΣkEC

�ω
sV ⇒ εI =

2CΣ(kEC)2

(�ω)2
s2

V (5.40)

Inserting CΣ = 1 fF, EC = 1 K, sϕ = 5×10−5 rad/
√

Hz (Fig. 5.14), we obtain
sV I ∼ 0.2 nV/

√
Hz. This number is an order of magnitude lower than the

typical figures for a sequential tunneling SET [159, 160], where wide-band
shot noise dominates the spectrum. The low back-action of the L-SET is
important for several research applications.

From Eq. (5.40) we find the input energy sensitivity εI ∼ 0.2 �. The
full energy sensitivity is given by (neglecting correlation between εO and εI)
by [161]

ε =
√

εOεI , (5.41)

where the uncoupled energy sensitivity is εO = s2
q/(2CΣ). From Fig. 5.10 we

get for an Al SCPT sq/
√

TN � 8 × 10−6e/
√

K Hz, and thus εO ∼ 8 TN�/K.
Finally, ε ∼ 0.6 � at TN = 0.2 K. According to the rough estimate, thereby,
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the L-SET comes close the Heisenberg limit ε = 1
2
� for phase-insensitive

linear amplifiers [161–164] (this restriction does not hold, however, in the
parametric mode of the L-SET, see Sec. 5.6).

Notice also how the uncertainty principle is ”forced” upon in the scheme:
one can substantially improve εO by increasing Qi, but this decreases εI

because Re(ZS) simultaneously increases.
A detailed analysis which takes properly into account the frequency de-

pendence of the island spectrum, as well as the operator properties of the
island quantities [160,165], would be worth the effort.

5.5 Experimental results and analysis

In this section we review experimental data measured in the L-SET config-
uration. We show data mostly from our two best samples, B and E. Some
data from sample A has been displayed in [P7] and [P8] . All the measured
and functioning samples, and a summary of their measurements, are listed
in Table 2.2 (Sec. 2.2).

In all the shown L-SET responses, including those displayed in publica-
tions, a background ripple of a couple of dB has been subtracted for clarity.
The ripple was due to reactance of the LC filters and circulators. The back-
ground was constructed from either low-power or high-power response, or in
some cases, combined from them.

The responses have also been normalized by making the reasonable as-
sumption that considerably off the resonance, |Γ| = 1. Note that it is difficult
to obtain this information directly from the experiment. Rare points where
it seems that |Γ| > 1 are due to failures in the normalization.
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While starting the L-SET experiments, it was difficult to make the plasma
resonance match the quite narrow frequency window ∼ 600 − 900 MHz set
mostly by the circulators. The problem was circumvented by installing the
shunting inductor, because the tank resonance could then be seen all the
way during cooldown. Indeed, we often experienced contact problems which
caused the signal to disappear, and it saved a lot of wasted time to recognize
this at an early stage.

5.5.1 The need for noise isolation

Let us first briefly emphasize the need for an isolator (or circulator, backwards
isolation S12) between the sample and the amplifier chain. Part of the back-
action noise of the 1st stage amplifier is dissipated in the sample:

PD = S12kBTN

∫
dω

(
1 − |Γ(ω)|2) . (5.42)

The integrand is peaked around ωp. PD should be much less than the dissi-
pated power that makes the junction switch:

PD,C =

(
VCV√

2

)2
1

R
=

π2
�

2ωp

32e2QiLtot

. (5.43)

Note that this quantity differs from the critical power PC . PD,C is the power
dissipated in sample when it is probed with PC . In the case of critical cou-
pling, PC = 2 PD,C . Otherwise, PC needs to be computed using Eq. (5.15).

Without isolator, i.e., S12 = 1, we get PD/PD,C ∼ 1.2 and ∼ 10 for
samples B and E, respectively, which are clearly unacceptable values. With
S12 = −15 dB (a modest number for a single device), these numbers are 0.03
and 0.5. The latter is not OK (therefore, we installed a second circulator in
series when measuring sample E).

5.5.2 Gate modulation of the Josephson plasma reso-
nance

Sample E had quite a low EJ/EC ∼ 0.3. Therefore, the Coulomb effect is
strong, and we expect a 300 % modulation of the Josephson inductance, and a
strong gate dependence of the system resonant frequency fp. The resonance
is visible in the reflection measurement as the well-known absorbtion dip
around fp. Indeed, the resonance moves as much as 115 MHz as seen clearly
in Figs. 5.16, 5.17 which show the experimental data. The values of fp (Fig.
5.18 (a)), inferred from the measured position of the resonance dip, also
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reasonably fulfill the theoretical expectation of the gate modulation pattern
calculated from Eq. (5.10).
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Figure 5.17: Data of Fig. 5.16 plotted as isosurfaces (sample E).

An interesting feature in Figs. 5.16 and 5.17 is a second, weaker resonance
dip at a frequency smaller than f0. The second resonance also moves with
qg, and forms almost a mirror image of the main plasma resonance w.r.t.
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the location of f0. The second resonance must correspond to a negative
inductance, which, as seen in Fig. 5.12, is a characteristic property of the 1st
excited band of the SCPT. A calculation of fp for the two lowest bands is
plotted in Fig. 5.18 (b). By comparing to experiment (Fig. 5.17), the reader
can verify that the second resonance is due to the excited band.
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Figure 5.18: (a) Gate modulation of the L-SET resonant frequency for sam-
ples E and B. Theoretical predictions are plotted with full lines, and esti-
mated error margins with gray. For discussion, see text. (b) predicted fp for
sample E, for the two lowest energy levels of the SCPT.

Influence of external noise

Some questions concerning the data can still remain. The measured values
of L∗

J are regularly some 20 − 30 % larger than expected. This is seen in
Fig. 5.18 (a) where the values of fp are detectably low within the error bars,
and in Table 2.2. One may also wonder why the SCPT is in an excited state
for a significant part of time quite uniformly for all gate values, although no
high-frequency pumping had been applied. The latter cannot solely be due
to Zener tunneling, which was found in Sec. 4.4 to be insignificant except at
the degeneracy points.

Third, we see that in all the samples, Qi has been not more than ∼ 20.
This corresponds to about 10 Ω in series with the SCPT [166]. Because Qi

increases strongly in most samples at higher drive when the SCPT current
channel becomes effectively blocked (see [P6] ), we are assured that the dissi-
pation is residing within the SCPT. Notice that the SCPT tunnel resistance
2 RT ∼ 10−20 kΩ does not shunt the resonator, because the BCS gap acts as
an exponential barrier for quasiparticle tunneling at voltages and frequencies
� ∆.
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We interpret that the mentioned non-idealities are due to external noise
whose source is not clear. Noise around fp would increase L∗

J due to non-
linearity. At a much higher frequency, noise would cause excitation and
relaxation, and hence also dissipation which would reduce Qi.

5.5.3 Detector performance

Charge sensitivity of the L-SET was measured by applying to the gate a
small sinusoidal signal of frequency fm and magnitude ∆qRMS ∼ 0.01 e, and
measuring the height of the amplitude-modulated sidebands such as those in
Fig. 5.19 (a) by spectrum analyzer over a resolution bandwidth B = 1 kHz.
The (amplitude) signal-to-noise ratio SNR was determined as the ratio of the
sideband height to the noise floor. The RMS charge sensitivity is then given
by

sq =
∆qRMS

SNR
√

B
(5.44)

(neglecting that in fact there is also phase modulation which complicates the
analysis).

Input bandwidth of the L-SET is expected to be ∼ fp/QL. For the
harmonic (anharmonic) mode, this amounts to ∼ 80 MHz (∼ 100 MHz) for
sample E, based on QL deduced from the measured frequency response. We
made a direct measurement, Fig. 5.19 (b), where we stepped fm. In the
harmonic mode, we got about one half (40 MHz) of the expectation, after
which the response rapidly weakens 20 dB/decade. In the anharmonic mode,
the band does not end sharply, but a very usable sq ∼ 10−4 e/

√
Hz is reached

at 100 MHz. In both modes, the detector gives some signal even at 300 MHz.
In fact, the charge sensitivities in Fig. 5.19 (b) were not directly measured,

only the height of the side bands. We then made a reasonable approximation
by scaling these values according to a separately measured sensitivity.

The best charge sensitivities for each of the samples were listed earlier, in
Table 2.2. The numbers were limited by a white noise whose level agreed with
the supposed amplifier noise. The measured values are typically somewhat
weaker than predicted. For samples C and D, the difference is large, and is
clearly attributable to quasiparticle poisoning (see further discussion in Sec.
5.7).

However, samples B and E come to within a factor of ∼ 2 from the
prediction. The rest is easily explained as being due to noise: the maximum
slope of gate modulation for sample E (Fig. 5.18 (a)), for example, is one
half of the expected, likely due to the unwanted excitation. Also, because
the maximum energy one can supply to the oscillator is limited, less energy
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Figure 5.19: (a) Sample B: typical spectrum measured when gate DC was
tuned to g � gm (gray), and g ∼ 0 (black); (b) Sample E: Illustration of the
measured L-SET charge sensitivity as a function of input signal frequency.
For discussion, see text.

can be supplied in the form of drive if low-frequency noise energy is present,
similarly as in Eq. (5.24). This also agrees with the measured critical voltage
being clearly less than expected (see Sec. 3.2) for most of the samples.

The 1/f properties of the L-SET were quite similar to previous single-
electron devices [167–169]); 1/f noise extended up to a few hundred kHz.
For sample B, however, interesting and highly complex 1/f properties (Fig.
5.20) were seen at nonlinear drive. The data were measured using mixer
phase detection (amplitude readout gave qualitatively similar results). We
also used a gate marker signal of ∼ 0.15 eRMS, at fm = 300 kHz, and stepped
the gate DC. Notice how 1/f behaves non-monotonically with respect to
drive strength. Sometimes the noise source is residing at the detector output
and sometimes at the input. This is seen in that in some graphs, the noise
level does not depend on gain (height of the marker). In the last graph (−97
dBm), noise (the bump around 30 kHz) occurs solely in the output.

We argue that the peculiar 1/f features are due to chaotic Josephson
dynamics [170–172]. Although it is clear that this type of noise would be
highly detrimental for applications of the ”anharmonic” mode, such effects
were not seen in (the best) sample E. The nonlinear dynamics apparently
depend sensitively on the E∗

J/EL ratio.

5.5.4 The regime of anharmonic oscillations

Next we display data measured at higher drive amplitudes, in the ”anhar-
monic” operation mode of the L-SET. As seen in Figs. 5.21, 5.22 and 5.23,
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significant gate modulation persists much beyond the end of the linear regime
which is roughly at the critical power PC � −116 dBm or −112 dBm, for
samples B and E. Gate modulation was observed clearly up to a drive that
corresponds to a peak-to-peak swing of 50 × 2π.

As seen in the experimental data, mainly what depends on gate is the
coupling strength (depth of the resonance dip). At high Qi, coupling is quite
sensitive to Qi, Eq. (5.17). Therefore, changes in dissipation in the SCPT
affect Qi which affects coupling. To account for a 20 % change in coupling
as in the data at the last row of Fig. 5.23, for example, Qi should change
between about 120 and 90.

In contrast to the RF-SET, the anharmonic mode is hence not directly
based on the control of dissipation, but rather, it relies on inducing a large
change in coupling via a small change in dissipation. We also stress that the
voltages are still in the µV range, and hence no quasiparticles are created.
Also the power levels are extremely small: for sample E, the best sq =
3 × 10−5e/

√
Hz was measured at −110 dBm = 10 fW, which is far from the

typically pW range of an RF-SET yielding a similar performance.
Preliminary attempts were made to explain the dependence of the high-

drive response on L∗
J . Two explanations were tested. First, the effect could be

due to interband transitions and relaxations, quite similar to operation of the
BOT (Sec. 4.3.2): The relaxation rate caused by quantum fluctuations in the
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environment depends sensitively on qg, Eq. (5.32). Another process is then
needed for excitation. This could be the Zener tunneling, the probability of
which becomes reasonably large at a high drive. This model fits qualitatively
some features in data, like the ”double-dip” structure around qg = ±1 at the
last row of Fig. 5.22. However, the relaxation rate required to explain the
dissipation and its changes seems large.

A second possibility is that the dynamics could be similar to the (hys-
teretic) RF-SQUID [39,90,173]. For hysteresis to appear, it is required that
the hysteresis parameter βL = 2π(LI∗

C/Φ0) > 1. In our samples βL varies
as a function of qg between 0.5...1.0 and 0.2...1.3 for samples B and E, re-
spectively, However, it is not fully clear if even the largest values are > 1
(considering error margins). More work is clearly needed to properly explain
the ”anharmonic mode”.
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5.6 Phase-sensitive detection

A parametric amplifier is a system which converts energy from a ”pump”
frequency to a different signal frequency [174–176]. A means of storing energy
is required, which in electrical applications is a capacitor or an inductor. The
conversion of power between frequencies can either be created through non-
linearity (intermodulation), or by parametric excitation which phenomenon
takes place in children’s swing for example.

In general, parametric amplifiers are a phase-sensitive amplifiers, that is,
they amplify more one quadrature of an input signal than the other. In the
quantum regime, this property has been used to demonstrate the squeezing
of quantum noise by a Josephson junction parametric amplifier based on a
classical junction [177,178].

Josephson parametric amplifiers based on intermodulation gain have been
studied quite extensively since the late 1960’s [178–183]. However, to our
knowledge, no experimental demonstrations whatsoever of a Josephson para-
metric device based on parametric excitation have been presented. Here we
show how a mesoscopic analog of the Inductive Kinetic Amplifier (IKA) [184] 1,
based on pumping of the effective Josephson energy of a JJ, can be imple-
mented in the same scheme as the L-SET.

The original IKA proposal employs flux modulation of EJ(Φ) of SQUID
junctions, however, here we achieve the same effect by gate modulation of
E∗

J(qg) in the L-SET. Taking the modulation be E∗
J(qg) = E∗

J0−∆E∗
J cos(πqg),

we get from the classical equation of motion of the L-SET, Eq. (1) in [P7] ,
a linearized equation

C
�

2e
ϕ̈ +

�

2eR
ϕ̇ +

Φ0

2πLtot

ϕ +
2π

Φ0

∆E∗
J cos(πqg)ϕ = Iext, (5.45)

where qg = ∆qg cos(ωmt), Iext is the carrier excitation, and the modulation
amplitude ∆qg > 1. Eq. 5.45 can be cast in the form of Mathieu equation
which describes a parametric amplifier, similar to Ref. [184].

The schematics is shown in Fig. 5.24. Via the gate of the SCPT, we
modulate L∗

J at a frequency of ω0/2 and with a high amplitude ∼ 5 − 10 e.
The system is probed by a reflection measurement quite similar to the L-
SET. The reflected carrier signal at roughly the tank circuit frequency ω0

is detected by a mixer. In order to see the dependence on the phase of the
carrier wave, we modulate the local oscillator (LO) phase ∆θ before detection.
As a final stage of the experiment, we also applied a low-frequency (fm) signal
to the gate.

1We propose the name MIKA (Mesoscopic IKA) for the new concept.
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Figure 5.24: Setup when L-SET is used as a parametric amplifier. The effec-
tive Josephson energy of the SCPT is pumped via gate at half the resonant
frequency ω0/2.

We first characterized the setup as a reflection amplifier to the carrier at
∼ ω0. At very low carrier amplitudes, parametrically generated reflection
gains as high as 15 dB were observed. As seen in the left panels of Fig. 5.25,
the gain depended on the DC value of qg. The right panels of Fig. 5.25 display
the reflection gain at a fixed ω0/(2π) = 614.3 MHz as a function of the LO
phase. We observe substantial amplification as well as deamplification.

We carried out several test to verify the authenticity of the observations.
A simple explanation that the parametric gain would simply be due to cross-
coupling from the gate to bias the SCPT, thus in fact making the device to
work as an ordinary Josephson parametric amplifier and not as an IKA, was
ruled out by repeating the ω0/2 pumping at the input side, via the coupling
capacitor. No parametric excitation was observed this way. However, some
cross-coupling is inevitable, and it can make the approximation sin(ϕ) � ϕ
used to arrive at Eq. 5.45 not fully sound.

To test that the observed phase dependence is not solely due to the 2nd
harmonic generated through intermodulation of the gate pump signal, we
repeated the measurement with only the gate pump applied. In this case, no
phase dependence was seen.

To go further, we measured the phase dependence of a small-amplitude
gate marker signal at fm = 30 kHz. The detection was now performed from
the amplitude-modulated carrier at the frequency f0 ± fm. We observed
phase dependence also of this gate marker signal, see Fig. 5.26. However,
the charge sensitivities were not improved. This is understandable since
the charge sensitivity is limited by the maximum amount of energy in the
oscillator, scale of which is set simply by E∗

J . Pumping cannot increase this
value.

We also demonstrated squeezing of noise at the frequency of the reflected
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Figure 5.25: Sample B: Measured parametric gain in the L-SET setup, with
an ω0/2 pump applied to the gate. Carrier power = −130 dBm. Each row
is with certain qg. Left column: frequency response in the active region
for parametric excitation, around ω0/(2π) = 614.3 MHz. Right column:
corresponding phase-sensitive gain at ω0 as a function of the LO phase ∆θ,
with pump (black) and without pump (gray).

carrier, ω0. As discovered in Sec. 5.5.3, the noise is fully dominated by a
low-frequency noise which is mixed to ω0, i.e., by the 1/f background charge
noise. In Fig. 5.26 (b) we show the sine and cosine quadrature components
of the measured noise at three different values qg. We thus see that even
400 % squeezing of 1/f noise is possible. Though this squeezing is only
that of classical noise, i.e., its amount is far more than that limited by the
uncertainty principle, it can provide a route to reduce the effect of 1/f noise
by putting the noise into one quadrature only.

As a summary of this section, we have demonstrated for the first time
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Figure 5.26: Sample B: (a) Gate signal amplitude measured as a function of
the LO phase ∆θ. (b) squeezing of 1/f noise at the drive frequency ω0, for
three values of qg.

parametric amplification in a truly mesoscopic device. The experiment also
constitutes the first observation of parametric effects in a charge measure-
ment. Moreover, we have demonstrated squeezing of 1/f charge noise. The
findings are likely to have impact on future exotic quantum measurements
in the solid state.

5.7 Quasiparticle poisoning

It has been known since the first experiments on the Cooper-pair transis-
tor [185] that its gate periodicity changes sensitively from 2e to e due to
disturbances in the form of, for example, temperature or external noise
[69,117,186–188]. If the period is 2e, all the single-electron excitations (quasi-
particles) on the island are paired, whereas the e case corresponds to the
presence of a single unpaired electron on the island, and hence to an energy
higher by ∆.

In thermal equilibrium it holds that below temperatures T ∼ 300 mK
in a typical sample, there are no unpaired electrons if EC < ∆ [69]. This
is because, as seen in Fig. 5.27 (a), the ”quasiparticle band” is the amount
∆ higher than the lowest band. In our L-SET experiment, samples B and
E fell below this limit (E only marginally in fact), and, indeed, they were
purely 2e. The periodicity was tested by raising temperature. Sample D was
e, which we attribute to external noise since the LP1000 filter in Fig. 2.6 was
lacking.

The following discussion is based on the experimental data from sample
C. Here, EC > ∆, but the period should, nevertheless, be partially 2e. In
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Figure 5.27: (a) The scheme of pulsed measurements used for real-time mon-
itoring of quasiparticle poisoning (see text), the lowest arrows refer to Fig.
5.30. The bands are as for sample C (EC/∆ ∼ 2); (b) Sample C: an individ-
ual quasiparticle tunneling event (between the arrows) detected in real-time
in the L-SET, and an ensemble average showing the exponentially decaying
envelope.

the experiment, however, only e was seen if we swept Vg slowly. By faster
sweeping of Vg we managed to turn the gate response noticeably towards
2e (Fig. 5.28) at sweep rates of already ∼ 10 kHz (per gate period). This
indicates the timescale of significant quasiparticle poisoning is as low as in
the sub-millisecond range.

The dynamics of the quasiparticle poisoning was studied in more detail
by direct measurements of the quasiparticle tunneling rate as a function of
qg. Via a coaxial cable, we applied to the gate a 100 Hz square-wave voltage
about the gate point qg0, see the inset of Fig. 5.27 (a). The square wave
signal had a fast rise time of about 100 ns, and hence the system will follow
non-adiabatically the present energy band until a quasiparticle tunneling,
slower than the rise time, makes it to relax.

Employing this configuration in the experiment, we undoubtedly saw in-
dividual events of single-electron tunneling (see see Fig. 5.27 (b)). An average
over an ensemble of ∼ 105 events for each qg0 was then measured in order
to determine the statistics of the tunneling process as a function of the gate
point. Examples of data obtained this way are shown in Fig. 5.29 (a). The
fit to an decaying exponential is faultless as seen in Fig. 5.29 (b). To our
knowledge, this is the first time the simple picture of tunneling in a meso-
scopic junction has been verified accurately in a direct measurement. Single-
electron events, such as that in Fig. 5.27 (b), however, have been observed
in time-domain several times previously [189–191].
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Finally, in Fig. 5.30 we display the directly measured relaxation time ΓR

as a function of gate. It is important to be careful as to how read the graphs.
The value of qg0 as indicated by the x-axes is the average, and the 1e peak-
to-peak square modulation happens about it, see Fig. 5.27 (a). The sharp
increases of quasiparticle tunneling rates are identified with the degeneracies
between the quasiparticle band and the lowest band, as indicated by the
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arrows in Figs. 5.30 and 5.27 (a). The small discrepancy can be due to
inaccuracy in the determination of EC/∆.

Interesting features are also the two different time constants in some of
the curves of Fig. 5.29 (a). These are also marked in Fig. 5.30, as twin data
points. We interpret that these are due to competition between relaxation
and excitation between the lowest band and the quasiparticle band.

The value of background charge was established by measuring a gate
sweep as in Fig. 5.28 and identifying the largest peaks with qg = ±1. A
possible drift was excluded since a similar calibration measurement at the
last stage gave the same result.
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Figure 5.30: Sample C: Quasiparticle relaxation times extracted from the
data measured in the configuration of Fig. 5.27 (a). The square pulse had a
peak-to-peak amplitude of 1e. (a) rising edge of pulse (towards positive qg);
(b) lowering edge of pulse (towards negative qg).
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Chapter 6

Quantum capacitance

IN the L-SET setup (Sec. 5) we have experimentally demonstrated driven
oscillations of the phase in an SCPT. Since the band structure of an SCPT

is actually a function of two external variables, the phase ϕ and the gate
charge qg, a natural question arises on the possibility of driven oscillations
in the direction orthogonal to phase, namely along qg-axis. In general, one
might also consider an arbitrary oscillatory pattern of motion involving both
directions [192–194].

If the voltage has to be increased by an amount dV in order to bring a
charge dQ into a system, the differential capacitance is

C =
dQ

dV
. (6.1)

If the electrostatic potential were originally V , the work so done is dE =
V dQ, which immediately yields an important relation

V =
dE

dQ
(6.2)

for a general dependence of energy E on charge Q. Differentiating Eq. (6.2)
with respect to Q and combining with Eq. (6.1) we find

d2E

dQ2
=

1

C
(6.3)

which means that the effective differential capacitance is the inverse second
derivative of energy with respect to charge.

The band energies of an SCPT depend on the (gate) charge, and an SCPT
is thus predicted to behave like a capacitance with respect to changes of the
gate charge. In order to calculate this effective capacitance Ceff , we have to
be careful in what is meant by gate charge. In Eq. (6.3), Q is a real charge on
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a capacitor. In the case of an SCPT, the commonly used parameter qg is not
a real charge, but just an acronym for qg = CgVg/e. The real charge on the
gate capacitor is Qg = Cg(Vg − VI), where VI = ∂E0/∂qg = 1/Cg(∂E0/∂Vg)
is the island voltage.

Using Eq. (6.1) with V = Vg and Q = Qg, we obtain:

Ceff =
∂

∂Vg

(CgVg − CgVI) = Cg − Cg
∂VI

∂Vg

= Cg − ∂2E

∂V 2
g

= Cg − C2
g

∂2E0

e2∂q2
g

= Cg −
C2

g

CQ

,

(6.4)

where we have defined a ”quantum capacitance” C−1
Q = ∂2E0/(e

2∂q2
g) due to

the SCPT band structure directly. In contrast to inductance, this quantity
is not directly observable. In order to see this, one must look into an SCPT
from the gate, and then one observes the Ceff in Eq. (6.4). It is the input
capacitance of an SCPT (and also of the single Cooper-pair box, see also Ref.
[195]). We also note that the observable capacitance is inversely proportional
to the ”quantum capacitance”.

In the following, we will plot quantities related to the quantum capaci-
tance and its phase dependence. We typically use both dimensionless units
for the general results, and compute numerical examples using typical values
in SI units as an aid for the quantum engineer.
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Figure 6.1: Second derivative with respect to qg of the SCPT 1st band, at
EJ/EC = 1 (left) and EJ/EC = 6 (right). The axes have been truncated
just before qg = ±1 and ϕ = ±π to remove divergencies. Compare with Fig.
5.2.

We begin by considering the dependence of the second derivative with
respect to gate charge, on both of the external parameters, see Fig. 6.1. As
evident, the observable capacitance has quite a strong dependence on both
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Figure 6.2: Second derivative with respect to gate charge of the SCPT 1st
band (left scales): (a) at different EJ/EC , without charge bias (qg = 0); (b)
at fixed EJ/EC = 1.27, but now stepping the charge bias. The right scales
are the observable capacitance Ceff − Cg, computed for illustration using:
Cg = 1.5 fF, EC = 1 K.

control parameters if EJ/EC > 1. It is also important to note that close to
qg = ±1, the capacitance even changes sign.

Modulation of the observable capacitance, Eq. (6.4), is displayed in Fig.
6.2 (the constant term −Cg was dropped). It may be useful to compare Figs.
6.2 (a) and 5.3 (a).

6.1 CSET

Since the input capacitance of an SCPT has a strong dependence on source-
drain phase difference ϕ, this dependence could be used for phase detection.
The device proposal, somewhat dual to the L-SET, is presented in [P9] . Here
we derive formulas for its detector performance, taking into account that we
are now using a notation different from that in [P9] for both EJ/EC ratio and
the gate charge. The correspondence is: EJ � EJ/2, EC � ECP /4, EJ/EC �
2EJ/ECP , between the present notation and that of [P9] , respectively.

The most important figure of merit is the transfer function which tells
the change of observable capacitance, Eq. (6.4), per a unit change of phase.
We aim at defining a dimensionless transfer function, or ”gain” gm which
indicates the linearized relative modulation of the quantity (here the capac-
itance) per one period of the control parameter (phase). Here we denote
directly its maximum value versus gate by gm. From Eq. (6.4) we have
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∂Ceff

∂ϕ
=

C2
gEC

e2

∂3(E0/EC)

∂ϕ∂q2
g

=
C2

gEC

e2
gm (6.5)

which serves as the definition of gm (Fig. 6.3). By comparing Figs. 5.6 and
6.3, we see that the strength of capacitance modulation as a function of
EJ/EC behaves opposite to that of inductance modulation which decreases
when EJ/EC grows.

In the following, we refer to the configuration of Fig. 1 in [P9] . The SCPT
is coupled to a resonant circuit formed by an inductor L and a shunting
capacitance C0. The total capacitance is thus C = C0 +Ceff , where typically
Ceff � C0 due to technological limitations. The capacitance modulation by
∆C = (∂Ceff/∂ϕ)∆ϕ in power units is defined as the information power:

Pi � QL

(
∆C

C

)2
f0e

2C

2C2
g

. (6.6)

Note a subtle issue here: the values of QL and f0 in Eq. (6.6) in general
depend on each other. Therefore, we substitute Eq. (6.6) with their expres-
sions. Using Eq. (6.5), QL = ωL/Z0 =

√
L/C/Z0, and assuming C � C0 we

obtain

Pi(∆ϕ) � g2
mE2

C∆ϕ2

4π Z0e2

(
Cg

C0

)2

. (6.7)

Phase sensitivity sϕ limited by system noise s2
N = kBTN is

sϕ =

√
sN

Pi(1rad)
= 2

√
πe

(
C0

Cg

) √
kBTNZ0

gmEC

� 4
√

πC0

√
kBTNZ0

gme
(6.8)
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where the last form of Eq. (6.8) follows from the assumption that at high
EJ/EC , charging energy is limited by the large gate capacitance ∼ 2 fF. This
is the ultimate limit with advanced junction fabrication (very thin oxide).
The predicted phase sensitivity is plotted in Fig. 6.4.

6.2 Qubit proposal

Similarly to the discussion in Sec. 5.4.1 on how the two lowest energy bands
E0 and E1 of the SCPT in the L-SET setup might constitute a qubit, these
two SCPT bands might work as a qubit also in the CSET scheme. The
CSET internal qubit would now be read through a capacitance measurement
via gate. In analogy to Fig. 5.12, CQ (and hence Ceff) has a substantial
dependence on whether the qubit is |0〉 or |1〉. Capacitive measurements
would offer the additional benefit of the possibility to use a higher EJ/EC

(more tolerance to 1/f [196]), and a stronger inductive shunting (similarly
as in the original charge-phase qubit design).

Another possibility is to use the CSET as a separate detector to measure
the state of the charge-phase qubit in the layout of Fig. 6.5. The procedure
is discussed in detail in [P9] .

In the rest of this chapter, we will focus in some detail on decoherence
in the setup of a separate qubit and a CSET detector, and show that the
system may qualify even better as a qubit and detector than the original
charge-phase qubit and its switching detector [135].

First of all, low power dissipation in the CSET detector means a low
rate of quasiparticle generation, which is essential for low back-action and
fast recovery from the measurement. Second, since the circuit is galvanically
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Figure 6.5: (a) CSET coupled to charge-phase qubit; (b) Illustration of the
impedance Z seen by the qubit (between points A and B). The values are
those used for calculating the impedances in Fig. 6.6.

isolated, it is free from external quasiparticle injection. Third, the system is
fully symmetrized with respect to the SCPT island also on the detector side.

6.2.1 Dephasing and relaxation

Dephasing (rate Γϕ) and relaxation (rate ΓR) are caused by fluctuations in
the control parameters qg and ϕ. Their combined effect is to make quantum
effects disappear at the decoherence rate

ΓD = Γϕ + ΓR/2. (6.9)

Either Γϕ or ΓR can thus be the bottleneck.
While qubit readout is off, decoherence comes from three primary sources:

(1) qubit gate lead; (2) qubit source-drain circuit; (3) 1/f background charge
noise. As we will argue below, each of these except (3) are negligible in the
proposed design of a separate qubit and CSET measuring device.

The effect of the qubit gate lead can be made as small as desired by
reducing Cg2. This operation is not likely to have adverse side effects.

In order to analyze issue (2) above, let Z denote the impedance seen by
the qubit between the points A and B in Fig. 6.5. The ultimate limit for
coherence is then set by Johnson-Nyquist noise, having the power spectrum
given by Eq. (5.38). For the single-junction Cooper-pair box [57], decoher-
ence due to the Johnson-Nyquist noise coupling through the gate has been
discussed widely in the literature (see, e.g., Refs. [127,153]). Now fluctuations
couple transversely, to the phase ϕ, what makes these well-known formulas
not directly applicable. Here we review and adopt the results derived in
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Ref. [155]. The formulas hold strictly only in the limit EJ � EC , but the
error is not expected to be large in our case EJ ∼ EC .

Due to low-frequency noise, memory of the initial phase of a superposition
state is lost at the dephasing rate Γϕ

Γϕ � Re(Z(0))

32πRK

kBT

�
sin2(Θ)

[
sin2

(ϕ

2

)
+ d2 cos2

(ϕ

2

)]
. (6.10)

At the relaxation rate ΓR, Eq. (5.32), an excited state undergoes a tran-
sition into the ground state. Equations (5.32), (6.10) mean that a symmetric
(d = 0) charge-phase qubit (here just a nickname for an SCPT), is decoupled
from its environment to the first order at the degeneracy point ϕ = 0, qg = 1
(Θ = π/2). At this working point, we get the previously stated Eq. (5.33),
and from Eq. (6.10):

Γϕ � d2Re(Z(0))

32πRK

kBT

�
. (6.11)

The quantity relevant for decoherence, Re(Z), is plotted in Fig. 6.6 as
a function of frequency. The (small) resistance r in the loop is a model
for radiative losses in the loop, in order to demonstrate that Re(Z) remains
small even when making a worst case estimate. An attractive property of the
proposed qubit design is apparent: Because of the symmetry of the circuit on
the detector side, noise from Z0 in the detector gate lead is only a common-
mode signal. This is equivalent to that Re(Z) = 0 in a fully symmetrical
case of similar detector junctions and the CS’s, and with r = 0.
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Figure 6.6: Re(Z) seen by the charge-phase qubit in the design of Fig. 6.5.
|Z| is also plotted for comparison (gray line). The curves are for different
values for the supposed small resistance r in the loop.
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Asymmetry of the whole structure weakens the noise protection property.
However, as a check that even in a realistic case Re(Z) remains small, Fig.
6.6 was calculated assuming a randomly chosen 20 % asymmetry in the in-
dividual component values (the result was not sensitive to the choice made).
Thereby, we conclude that Re(Z) � 1 mΩ both at low frequency (f < 1
GHz) relevant for dephasing, and at the level-spacing frequency (10 − 50
GHz) relevant for relaxation, if r = 0. Even with a pessimistic choice for
r = 1 Ω, we calculate from Eqs. (6.11) and (5.33), assuming a realistic
d = 0.1, that both Tϕ, TR > 1 millisecond.

Therefore, decoherence is probably limited by 1/f background charge
noise as often is the case with charge qubits [197–199]. This is the same
noise observed ubiquitously in single-charge devices, and it typically has a
spectrum

Sq(f) =
e2k

f
(6.12)

where k is in the range k ∼ 10−6...10−7 (Refs. [167–169]). Qubit coherence
is then proportional to [199,200]

exp

[
−8 cos2(Θ)

(
ECt

�

)2

k ln
(τ

t

)]
, (6.13)

where τ is the averaging time. Note that Eq. (6.13) is not an exponential
decay. However, we see that at the degeneracy point (Θ = π/2), coherence
is lost roughly at a rate

Γϕ,1/f �
√

8kEC cos(Θ)

�
� 2

√
8k

�

E2
C

EJ

∆qg, (6.14)

where for the last form we have used Eq. (4.15). Equation (6.14) yields
Tϕ,1/f ∼ 1 µs. Here we have assumed a reasonable accuracy ∆qg = 0.01
of gate charge adjustment from qg = 1. This number can be significantly
improved by using a higher EJ/EC .

As a summary of this section, we conclude that the coherence time of the
proposed qubit setup should not at least be inferior to the original charge-
phase qubit. As compared to the Saclay design, the proposed setup offers
the advantages of, first of all, non-dissipative readout, and also an even more
symmetrized and galvanically fully isolated circuit.
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Summary and outlook
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Figure 7.1: Frequency response of the L-SET (experimental data, sample B).

THIS work presents a study of a class of novel mesoscopic quantum ef-
fects, some of which even have quite an artistic appearance, see Fig. 7.1.

The field is considered from the points of view of both basic and applied
research, and methods of extremely sensitive measurements are introduced.
The findings are particularly important for quantum computation with su-
perconducting qubits. The concepts developed by the author may offer a
solution for performing a delicate quantum measurement on the qubit. Pre-
sumably, quantum information will to some extent replace digital information
in a distant future, in a manner much similar to how digital technology is
presently replacing analog technology. This thesis may hence be viewed as a
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contribution towards a ”quantum information society”.
In the field of basic research, the new procedures will be especially pow-

erful in their own discipline, namely in the study of mesoscopic electron
transport. At the most fundamental level of research, non-invasive quan-
tum measurements are needed in testing the basic theories of physics that
form the foundations of our world view. In particular, the interface between
the microscopic quantum coherent world and our macroscopic world is not
yet properly understood [201]. Quite soon hopefully, there will be experi-
ments in this direction, such as the test of Bell inequalities [202–204] on the
macroscopic scale.

One may also consider interdisciplinary applications. A scanning L-SET
could be employed to probe the molecular electronic structure which has
significance in biology, even in study of the mechanisms of life. Going fur-
ther, one might speculate with the detection of gravitational radiation, or of
charged elementary particles.
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Abstracts of publications

[P1] We study the electronic density of states in a mesoscopic superconduc-
tor near a transparent interface with a ferromagnetic metal. In our
tunnel spectroscopy experiment, a substantial density of states is ob-
served at sub-gap energies close to a ferromagnet. We compare our
data with detailed calculations based on the Usadel equation, where
the effect of the ferromagnet is treated as an effective boundary con-
dition. We achieve an excellent agreement with theory when non-ideal
quality of of the interface is taken into account.

[P2] A new method to fabricate non-superconducting mesoscopic tunnel
junctions by oxidation of Ti is presented. The fabrication process
uses conventional electron beam lithography and shadow deposition
through an organic resist mask. Superconductivity in Ti is suppressed
by performing the deposition under a suitable background pressure. We
demonstrate the method by making a single electron transistor which
operated at T < 0.4 K and had a moderate charge noise of 2.5 × 10−3

e/
√

Hz at 10 Hz. Based on nonlinearities in the current-voltage char-
acteristics at higher voltages, we deduce the oxide barrier height of
approximately 110 mV.

[P3] We used the band structure of a mesoscopic Josephson junction to
construct low-noise amplifiers. By taking advantage of the quantum
dynamics of a Josephson junction, i.e., the interplay of interlevel transi-
tions and the Coulomb blockade of Cooper pairs, we created transistor-
like devices, Bloch oscillating transistors, with considerable current gain
and high-input impedance. In these transistors, the correlated super-
current of Cooper pairs is controlled by a small base current made up
of single electrons. Our devices reached current and power gains on
the order of 30 and 5, respectively. The noise temperature was esti-
mated to be around 1 Kelvin, but noise temperatures of less than 0.1
Kelvin can be realistically achieved. These devices provide quantum-
electronic building blocks that will be useful at low temperatures in
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low-noise circuit applications with an intermediate impedance level.

[P4] We have experimentally studied the energy levels of a mesoscopic su-
perconducting quantum interference device (SQUID) using inelastic
Cooper-pair tunneling. The tunneling in a small Josephson junction
depends strongly on its electromagnetic environment. We use this fact
to do energy-level spectroscopy of a SQUID loop by coupling it to a
small junction. Our samples with strong quasiparticle dissipation are
well described by a model of a particle localized in one of the dips in
a cosine potential, while in the samples with weak dissipation we can
see formation of energy bands.

[P5] We discuss the theory of the radio-frequency single-electron transis-
tor and the measurements that use multiwalled carbon nanotubes as
active elements. Our devices made of plasma-enhanced chemical-vapor-
deposition nanotubes yield charge sensitivities of 10 − 20 µe/

√
Hz.

[P6] We demonstrate a sensitive method of charge detection based on radio-
frequency readout of the Josephson inductance of a superconducting
single-electron transistor. Charge sensitivity 1.4× 10−4e/

√
Hz, limited

by preamplifier, is achieved in an operation mode which takes advan-
tage of the nonlinearity of the Josephson potential. Owing to reactive
readout, our setup has more than two orders of magnitude lower dissi-
pation than the existing method of radio-frequency electrometry. With
an optimized sample, we expect uncoupled energy sensitivity below �

in the same experimental scheme.

[P7] Using a classical equation of motion, dynamics of the phase is ana-
lyzed in the Inductive Single-Electron Transistor (L-SET) which is a
promising new system suitable for quantum measurement with ultimate
sensitivity and low back-action. In a regime of nonlinear dynamics, a
shift of the oscillator resonant frequency is discovered which has a di-
rect analogy to the switching of a dc-biased Josephson junction into
voltage state. Results are reviewed for the predicted charge sensitiv-
ity, and it is shown that a performance challenging the best rf-SETs is
foreseeable with the new device.

[P8] Phase dynamics has been measured in a driven mesoscopic Josephson
oscillator where the resonance is tuned either by magnetic flux or by
gate charge modulation of the Josephson inductance. Phenomena are
analyzed in terms of a ”phase particle picture”, and by numerical circuit
simulations. An analogy to switching of a DC-biased junction into volt-
age state is discussed. Operation principle of the recently demonstrated
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Inductive Single-Electron Transistor (L-SET) based on the driven os-
cillator is reviewed. The obtained charge sensitivity implies that a
performance comparable to the best rf-SETs has already been reached
with the novel device.

[P9] We discuss how a single Cooper-pair transistor may be used to detect
the superconducting phase difference by using the phase dependence of
the input capacitance from gate to ground. The proposed device has
a low power dissipation because its operation is in principle free from
quasiparticle generation. According to the sensitivity estimates, the
device may be used for efficient qubit readout in a galvanically isolated
and symmetrized circuit.

[P10] We calculate the charge sensitivity of a recently demonstrated device
where the Josephson inductance of a single Cooper-pair transistor is
measured. We find that the intrinsic limit to detector performance is
set by oscillator quantum noise. Sensitivity better than 10−6e/

√
Hz

is possible with a high Q-value ∼ 103, or using a SQUID amplifier.
The model is compared to experiment, where charge sensitivity 3 ×
10−5e/

√
Hz and bandwidth 100 MHz are achieved.

[P11] We have investigated the influence of shot noise on the IV curves of
a single mesoscopic Josephson junction. We observe a linear enhance-
ment of zero-bias conductance of the Josephson junction with increas-
ing shot-noise power. Moreover, the IV curves become increasingly
asymmetric. Our analysis on the asymmetry shows that the Coulomb
blockade of Cooper pairs is strongly influenced by the non-Gaussian
character of the shot noise.


