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Modeling Pilot’s Sequential Maneuvering Decisions
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The paper presents an approach toward the off-line computation of preference optimal flight paths against given
air combat maneuvers. The approach consists of a multistage influence diagram modeling the pilot’s sequential
maneuvering decisions and a solution procedure that utilizes nonlinear programming. The influence diagram
graphically describes the elements of the decision process, contains a point-mass model for the dynamics of an
aircraft, and takes into account the decision maker’s preferences under conditions of uncertainty. Optimal trajec-
tories with respect to the given preference model are obtained by converting the multistage influence diagram into
a discrete-time dynamic optimization problem that is solved with nonlinear programming. The initial estimate for
the decision variables of the problem is generated by solving a set of myopic single stage influence diagrams that
anticipate the future state of the aircraft only a short planning horizon ahead. The presented solution procedure

is illustrated by a numerical example.

1. Introduction

N this paper, an approach for modeling and solving an aircraft

trajectory optimization problem by the methods of decision anal-
ysis (see Refs. 1-3) and nonlinear programming (see, e.g., Ref. 4) is
introduced. The approach consists of a multistage influence diagram
model’ representing the sequential maneuvering decisions of a pi-
lot against a hostile aircraft obeying a given air combat maneuver
and a new off-line solution procedure for such a model. Hence, the
approach provides a framework for a single decision maker to find
an optimal flight path with respect to his or her preferences.

The proposed approach offers a new way to incorporate a real-
istic preference and uncertainty model into flight-path optimization
problems and optimal trajectory planning in other application areas
as well. It enables a pilot to be involved in the modeling process
because the graphical representation of influence diagrams is easily
understood by individuals with a little decision theoretic and math-
ematical background. As far as the authors know, this is the first
application of influence diagrams that contains an explicit model of
the dynamic decision environment, which is here represented by a
set of difference equations.

Traditionally, in flight-path optimization problems, the decision
dynamics is taken into account with the methods of optimization*®
and dynamic game theory.” Usually flight paths that maximize or
minimize a given explicit objective or cost function are sought. For
example, minimum time trajectories for a single aircraft (e.g., see
Refs. 8 and 9) can be calculated by using optimal control theory®
as well as nonlinear programming.'” For an overview on aircraft
trajectory optimization problems, see, for example, Ref. 9.

The literature on optimization theory seldom pays attention to the
structure of performance criteria that model the preferences of hu-
man decision makers. However, this topic needs to be studied more
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carefully, for example, by developers of air combat simulators, be-
cause an essential part of a simulator is the model that imitates the
decision-making process of a pilot. Approaches suggested earlier in
the literature include knowledge-based expert systems,'"1? heuris-
tic value-driven systems,'*!* or discrete dynamic games.'>!® These
models predict the future situation of the combat only a short plan-
ning horizon ahead. Thus, they do not produce optimal trajectories
but rather myopic control commands.

The influence diagram, invented by Howard and Matheson,’ is
a tool from decision analysis for modeling and solving Bayesian
decision problems. In such problems, the subjective probability in-
terpretation (e.g., see Ref. 17) is applied, and the goodness of the de-
cision alternatives’ consequences is measured by the von Neumann—
Morgenstern utility.!® Influence diagrams represent decision
problems as a graph of nodes and arcs. They allow quantitative anal-
ysis of uncertain and multiple attribute decision problems. Influence
diagrams are closely linked to decision trees (e.g., see Ref. 3) that
originate from the theory of game trees or games in extensive form,
first defined by von Neumann and Morgenstern'® (see also Ref. 7).

The multistage influence diagram used in this paper is based on
the model developed in Ref. 19. In this model, a single maneuvering
decision is not affected by the upcoming decisions because the future
states of the aircraft are anticipated for a short planning horizon,
one decision interval, ahead. Hence, this model is called a single-
stage influence diagram. Its solution provides myopic maneuvering
decisions that are optimal with respect to the given preference model
and the available information.

To compute control sequences that are better with respect to the
overall goals over the total flight time, the influence diagram must
be able to predict the future states of the combat further than one
decision stage ahead. In this paper, the interaction of several suc-
cessive maneuvering decisions is taken into account by constructing
a multistage influence diagram that offers a way to model and an-
alyze sequential decision problems (see Refs. 1 and 20). The new
extended model contains components describing the preferences of
the pilot, uncertainty, as well as the decision and aircraft dynam-
ics. It associates a probability and a utility measuring the overall
preferences with each combat situation and allows a possibility to
determine optimal foresighted flight paths against a given adversary
trajectory with respect to the preferences of the pilot.

Traditional solution methods of influence diagrams>-2'?? produce
the best value for the decision variable as a function of the infor-
mation available at the decision instant, that is, the solution is in
a closed-loop form. However, these solution methods require an
enormous computational effort when a multistage influence dia-
gram with several decision alternatives and stages is to be solved.
Hence, in practice, the length of the time horizon must be limited.
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Here, the computational difficulties are overcome by convert-
ing the multistage influence diagram into a discrete-time dynamic
optimization problem that can be solved off-line using nonlinear
programming methods (see Ref. 4). In the optimization over time,
the sequence of the myopic single-stage closed-loop solutions is
used as an initial estimate. In this way, preference optimal maneu-
vering decisions maximizing the overall utility are obtained. The
best decision alternatives are now chosen without knowing the ex-
act outcome of the different uncertainties at the decision stages, that
is, the solution is in an open-loop form.

The paper is organized as follows. First, a short introduction to
influence diagrams and their solution methods is given. In Sec. III,
the sequential maneuvering problem is structured and modeled by
a multistage influence diagram. In Sec. IV, first, the generation of
myopic solutions using the single-stage influence diagram is intro-
duced. Then, a dynamic discrete-time optimization problem repre-
senting the multistage model is formulated. In Sec. V, the solution
procedure of the multistage influence diagram is demonstrated by
a numerical example. In Sec. VI, the structure of the overall ob-
jective function, stability of control policies, and the utilization of
the approach are discussed as well as improvements for refining the
structure of the model are suggested. In addition, ideas related to
the extension of the approach to game situations are given. Finally,
concluding remarks appear in Sec. VIIL.

II. Influence Diagrams

An influence diagram® is a directed graph that consists of a set
of nodes and arcs. The nodes include decision, deterministic, and
random variables, and the arcs represent functional or probabilistic
dependencies as well as the available information. A chance node
contains a continuous or discrete random variable. An arc leading
into a chance node implies that the probability distribution of the
random variable depends on its predecessors. In addition, it can de-
note time precedence. A decision node contains a set of decision
alternatives or a continuous decision variable. An arc into a deci-
sion node indicates that the values of the node’s predecessors are
known at the time the decision is made. A deterministic quantity or
variable is modeled by a deterministic node whose value is either a
constant or a function of its inputs. A utility node includes a utility
function that expresses the preferences of the decision maker and
evaluates the outcomes of decision alternatives.

A. Example

A simple one-stage decision situation is first considered. A single-
stage influence diagram modeling this problem is shown in Fig. 1.
It consists of decision, chance, and utility nodes. The decision alter-
natives are d; and d,, and the chance node has the outcomes x; and
x;. The arcs imply that the chance node is independent of the other
nodes. Thus, only the probabilities P (x;) and P (x,) have to be as-
sessed. The utility function u(d;, x;) depends on both the decision
and chance nodes.

Next, a situation where decisions are made in several stages, and
both decision variables and probability distributions are discrete,
is considered. A multistage influence diagram that is essentially
a chain of single-stage influence diagrams represents the decision
problem of this type. An example of a multistage decision process
is shown in Fig. 2.

There are two alternatives at both decision stages d! and di, i =1,
2. Here, the superscript refers to the decision stage. The direction of
the arc between the decision nodes shows the chronological order

Outcomes: Xy, X,
Probabilities: P(x,), P(x,)

Decision

Alternatives: d;, d,  Utility function: u(d;, x;)

Fig. 1 Example of a single-stage influence diagram.
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Fig. 2 Example of a multistage influence diagram.

of the decisions. The arc leading from the first chance node into the
second decision node implies that the first chance node’s outcome
is known at the second decision stage. The first chance node is inde-
pendent, but the second one depends on the outcome of the previous
chance node. Therefore, the conditional probabil_ities P(xi2|x]1.), i,
j =1, 2, are needed. At each stage, the utility u#'(), i=1,2,is a
function of the decision and the outcome of the chance node. The
aggregated utility u() is the sum of the individual utilities.

B. Solution Methods

Influence diagram analysis results in a probability distribution for
the utility of each decision alternative. The most desirable decision
alternative is selected on the basis of these distributions. One pos-
sible criterion is to maximize the overall expected utility (e.g., see
Ref. 2). In general, the solution procedures provide the expected util-
ity maximizing alternatives directly. If necessary, the probability dis-
tributions of utility can be computed during the solution procedure.

Howard and Matheson® introduce a way to solve an influence
diagram by converting it into a decision tree (e.g., see Ref. 3) and
solving this tree. In fact, any influence diagram can be converted
into a symmetric decision tree and vice versa, although the trans-
formation might require the use of the Bayes’ theorem (e.g., see
Ref. 17). This is illustrated by a simple example in Ref. 19. A more
detailed description on the correspondence of influence diagrams
and decision trees is given in Ref. 1. The modification procedure
has been automated in the existing decision support software (e.g.,
see Ref. 23). The influence diagram and tree representations of de-
cision problems have different advantages. The diagrams provide a
compact representation, but they have shortcomings in asymmetric
decision problems (see Ref. 24). The problems of this type can be
presented in detail by decision trees, but they tend to become very
large in complex problems.

When an influence diagram to be resolved contains only discrete
decision variables and probability distributions, the most straight-
forward way to solve the corresponding decision tree is the roll-
back procedure (e.g., see Ref. 1). It is an application of dynamic
programming? and proceeds in reverse chronological order from
the leaf nodes toward the root node. The expected utility is calcu-
lated at each chance node, and at each decision node the decision
alternative with the highest expected utility is selected. As a result,
the branch of the tree leading to the highest expected utility is found.
The use of the rollback procedure is illustrated by a simple example
in Ref. 19. Shachter?' presents an alternative solution method in
which influence diagrams need not be converted into decision trees.

Multistage influence diagrams can also be converted into deci-
sion trees, but the size of the tree increases rapidly with the num-
ber of stages. Solving large models with the rollback procedure is
practically impossible. Thus, alternative ways to analyze sequen-
tial decision models have been developed. In recursive methods?>26
the structure of a decision tree is described by using the so-called
next node functions. Then, decision alternatives with the highest ex-
pected utility can be calculated recursively. An approach that allows
dynamic programming to be applied within the influence diagram
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framework is suggested in Ref. 20. The traditional recursive equa-
tion of dynamic programming needs not be set up, but the curse of
dimensionality (e.g., see Ref. 25) still persists. Warburton?” moves
away from recursive techniques and presents an alternative solution
methodology. In this approach, a decision tree is converted into a set
of linear and integer optimization problems. This technique offers a
method to analyze tradeoffs among competing objectives, and thus
the utility functions are not needed explicitly.

Influence diagrams can also be employed in problems with con-
tinuous decision variables and/or continuous probability distribu-
tions. The most straightforward way to solve such a diagram is to
discretize the continuous variables and then apply the methods just
discussed. However, if the model contains several continuous vari-
ables, they must be discretized coarsely enough to keep the problem
size reasonable. Unfortunately coarse approximations can lead to
inaccurate results.

If a diagram contains discrete decision variables and continuous
probability distributions, it can be solved approximately by Monte
Carlo simulation (see Ref. 28). The results give approximate distri-
butions of the expected utility for each decision alternative. If the
decision variables are continuous, approximate distributions can be
calculated for discrete values of the variables. It is impossible to de-
termine distributions related to all possible values of the continuous
decision variables. Thus, the result of the analysis depends on the
discretization.

Stonebraker and Kirkwood? present an approach for analyzing
decision trees and influence diagrams with continuous variables us-
ing nonlinear programming. It is a generalization of the method
presented in Ref. 22, which solves decision models containing dis-
crete variables. In this approach, the formulation of a sequential
decision model is based on the use of next node functions. Then, the
recursive calculation of expected utilities is carried out with a non-
linear optimization method. Although the approach is appealing, it
cannot be applied directly to an influence diagram that contains sev-
eral decision stages and complicated interdependencies between the
elements because the reformulation is a complex task and numerous
optimizations are needed in the solution procedure.

C. Solution Example

Accurate results of small influence diagrams with continuous
variables can be calculated by the rollback procedure. To demon-
strate the connection of influence diagrams and decision trees as
well as the use of nonlinear programming, the preceding two-stage
diagram is considered. The discrete decision alternatives d; and d?,
i =1, 2, are replaced with continuous decision variables that are de-
noted by d' and d?. The decision-tree representation of this model
is shown in Fig. 3.

When the two-stage decision tree is solved with the roll-
back procedure, the expected utilities of the second chance node
EUXd', d?),i=1,2, where i refers to the outcome x; of the first
chance node, are calculated as

EU,g(dl,dz) _ P(Xﬂx,-l)[ul(dl’xil) + uz(dZ’)mz)]

P @ x) ()],

Decision 2

Decision 1

Decision 2

The optimal value of the second decision variable is then determined.
The optimal solutions d>"(d', x)), i = 1, 2, are obtained by solving
d*(d',x}) = argmax EU}(d", d°), i=12 (@2

d
The maximization determines the optimal value of the second deci-
sion variable as a function of the first chance node’s outcome and the

first decision variable. When proceeding toward the root node, the
next step is to calculate the expected utility at the first chance node:

EU'(d") = P(x})EU}[d".d* (d". x})]
+P(q)EU[d", d* (d". x})] 3)

where EU[d", d* (d', x])] is the expected utility with the given
d" and the optimal value of the second decision variable determined
by Eq. (2). Finally, the optimal value of the first decision variable is
obtained by solving the optimization problem

d" :argn}jelleUl(dl) )

The solution of Eq. (2) must be obtained in a closed form in order
to be able to express Eq. (3) explicitly and further to apply the roll-
back procedure. If the closed form does not exist, the solution of
the influence diagram could be determined by solving a bilevel op-
timization problem (see Ref. 30) in which the objective function (4)
is maximized subject to constraints consisting of the maximization
operations given by Eq. (2).

The rollback procedure can also be applied in the analysis of mod-
els with continuous probability distributions. Then, at each chance
node the expected utility is calculated by integrating the product of
a probability density function and a utility function.

D. Open- and Closed-Loop Solutions

Let us point out the differences between closed-loop and open-
loop solutions. Assume that one is dealing with an n-stage de-
cision process and searches for the optimal decision sequence
d',d?, ..., d". Consider first an open-loop solution. Using the def-
inition of Ref. 25, all of the decisions d', d?, ..., d" are then made
at stage 1, without knowing the outcomes of the chance nodes in the
chain. In a closed-loop solution, the value of the decision variable d*
is selected at the latest possible moment. Hence, a decision at stage k
is made only after the outcomes of the chances before that stage are
known. The rollback procedure as well as the other aforementioned
solution approaches produce closed-loop solutions.

The solution technique based on rollback and nonlinear optimiza-
tion is applicable, if the number of decision stages as well as the
number of discrete outcomes of chance nodes is not very high. How-
ever, the solution of large sequential decision models contains nu-
merous optimization problems or amultilevel optimization problem.
Furthermore, it might be impossible to find a closed-loop solution
in an analytical form that is required, for example, in the recursive
approach.”

A preference optimal open-loop solution is obtained by searching
the sequence of decision variables such that the cumulative expected
utility over all decision stages is maximized. In the example of the

PO XYy, x,)+u(d?, x,2)
P(x,2| ;1) ul(d!, x,H)+u?(d?, x,%)
POGCIXGY_ uid!, x,))+ud(d, x,2)
P(x,2| x,)) ul(d!, x,)+u(d?, x,?)

Fig. 3 Two-stage decision tree with continuous decision variables d! and d2.
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previous subsection, the optimization problem to be solved is

2 2
g}ﬁZZP(xi)u%dﬂx,ﬂ) 3)

i=1k=1

Here the probabilities P (x?) can be solved using the formula of total
probability. It can be shown (see the Appendix) that Eq. (5) can be
expressed equivalently as

max P (x| )EUT(d',d*) + P(x}) EU5(d", d°) (6)
dl,d?

Note that Eq. (6) is similar to Egs. (1-4), but now the optimal values
of the decision variables are chosen concurrently. Therefore, in the
determination of the optimal open-loop solution of multistage influ-
ence diagrams only one nonlinear optimization problem is solved.

III. Multistage Influence Diagram Model
for Maneuvering Decisions

The basis for the modeling of the pilot’s sequential maneuvering
process is a single-stage influence diagram presented in Ref. 19.
This model represents the single maneuvering decision of a pilot
who is engaged in a duel between two aircraft using guns as their
weapons. The maneuvering decision is modeled by assuming that
the decision-making process of the pilot consists of the following
steps:

1) Observe the state of the adversary.

2) Predict the future state of the adversary based on the available
observations.

3) Predict the future states of own aircraft that can be reached by
feasible maneuvering alternatives.

4) Evaluate possible future states of the combat.

5) Find an optimal maneuvering alternative in this state.

6) Implement the maneuver, return to step 1.

The maneuvering decision process involves different sources of
uncertainty, like state measurements, adversary’s goals and perfor-
mance, and conflicting objectives. Such issues have been analyzed

Opponent’s

State at t, ]

in detail in the model constructed in Ref. 19. In this paper, a sim-
plified version of the model is used as the basic building block.
Here, the state measurement is assumed exact. The impact of pos-
sible uncertainty could be modeled, for example, by using normal
probability distributions (for details, see Ref. 19).

The flying actors are now called the decision maker and the op-
ponent. The first term refers to the actor whose maneuvering is
optimized. The other one is a nonreacting actor obeying a prede-
termined trajectory. The decision maker is assumed to have two
objectives that are, in the order of importance, as follows: 1) avoid
the opponent’s weapons and 2) achieve a firing position.

Because of the gun duel, an aircraft is in a firing position whenever
it is close behind the other. In other words, the decision maker tries
to avoid situations where the opponent can acquire a tail position
and, at the same time, aims at reaching the opponent’s tail.

The decision maker’s sequential maneuvering process is modeled
by connecting several simplified single-stage models together. The
resulting multistage influence diagram, shown in Fig. 4, represents
n sequential maneuvering decisions that are made at time instants
t;=iAt,i =0,...,n— 1. Here, the time between two decisions At
is called the decision interval.

The successive maneuvering decisions of the decision maker are
represented by the nodes Maneuver at #;, i =0,...,n — 1. Each
node has a continuous control vector C; = [n;, i;, u;]", where the
subscript denotes the decision stage. The variables of the control
vector refer to the load factor, the bank angle, and the throttle setting.
The values of these variables cannot be chosen freely because of the
constraints set by the pilot and the aircraft itself. The load factor has
lower and upper limits n; € [n™", n™*], and the throttle setting can
vary between zero and one. In general, the limits of the load factor
depend on the altitude and the velocity, but here they are assumed
constant. The arcs leading into the decision nodes show that, at each
decision instant, the decision maker knows the momentary state of
his or her own aircraft, the momentary state of the combat, and the
current threat assessment.

The deterministic nodes State at ¢;,i =0, . . ., n, contain the state
vector of the decision maker’s aircraft X; = [x;, ;, h;, vi, vi, xi1'»
where the variables refer to the x range, the y range, the altitude,

Opponent’s
State at t,

Opponent’s Opponent’s
State at t, State at t,
Maneuver Maneuver
att, " att
State at State at
) 4
Combat Combat
State State
att, att,

Threat Situation
Assessment

Threat Situation

Assessment
att, att,
Situation
Evaluation

att,

Maneuver - Maneuver
att, att,,
State at R State at
b :
1
1
|
Combat : Combat
State ' State
1
att, : att,
1
|
1
:
'
Threat Situation , Threat Situation
Assessment : Assessment
'
att, ! att,
1
i
. . ' . .
Situation ' Situation
Evaluation ! Evaluation
att, ' att,
1
'
'
:/
Situation
Evaluation

Fig. 4 Multistage influence diagram for a sequence of n maneuvering decisions.
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the velocity, the flight-path angle, and the heading angle. The fea-
sible region of stationary flight is defined by the minimum altitude
constraint

H(hj) = h™ —h; <0 )
the minimum velocity constraint
V(y)=v""—y; <0 3)
and the maximum dynamic pressure constraint
O (hi, v) = 5phi)v} — g™ <0 ©))

where p(h;) is the air density.

The arcs pointing to the state nodes imply that the current state
depends on the control and the state at the previous decision in-
stant. This relationship is taken into account with a three-degrees-of-
freedom point-mass model that describes the motion of the aircraft.
The equations of motion consist of nonlinear differential equations
that are discretized using the Euler method. Hence, the evolution of
the state is represented by the difference equations

Xi+1=Xf+f(Xi,C,')At, i=0,...,n—1 (10)

where
f&Xi, C) =

V; COS Y; COS X;
v; COS ¥; Sin ;

v; sin y;

1
—{u; Tnax[hi, M (hi, v;)] — D[h;, vi, M(h;, v;), n;]} — gsiny;
m

g
= (n; cos p; — cosy;)
Vi
g nisin

v; COSYy; (11)

The aircraft mass m and the gravitational acceleration g are assumed
constant. The Mach number M () as well as the density of the air are
computed on the basis of the International Standard Atmosphere.
Tmax () denotes the maximum available thrust force. The drag force
D() depends on zero-lift and induced drag coefficients, and it is
assumed to obey a quadratic polar. For the details of the model, see
Ref. 9.

The predetermined trajectory of the opponent is given by the
deterministic nodes Opponent’s State at #;, i =0, ..., n. Each node
contains the state vector X0 = [x0F, yOF hOP vOFf, yOF xOr1"
that is the true value of the opponent’s state at time instant #;. The
meaning of the variables is same as in the decision maker’s state
vector. The arcs connecting the opponent’s state nodes represent
their chronological order.

The momentary state of the combat at time ¢ is defined by the
states of the aircraft. It is described by the combat state vector
CS:=l[a}, 02, B, di, Ah;, AV, i, v?]" (see Fig. 5) computed in
the deterministic Combat State at ¢; node. The first elements of the
vector are the angle between the line of sight (LOS) and the decision

Fig. 5 Variables of the combat state vector.

maker’s velocity vector, called the deviation angle,
a = arccos {[(xiop — x,-) cos y; cos x; + (y,.OP - y,-) cos y; siny;

+ (h?F = hy)siny ] /d;} (12)

the angle between the LOS and the opponent’s velocity vector, called
the angle off,

o? = arccos {[(x[(”’ — xi) cos y,2F cos x 2 + (y[OP - y,-)

x cos y2F siny,%F + (hiOP —h) sinyiop]/d,»} (13)
the angle between the velocity vectors of the aircraft
Bi = arccos (cos ¥: cos x; cos 27 cos xF

+ cos y; sin y; cos y,.OP sin yl.OP + sin y; sin )/iOP) (14)

and the distance between the aircraft

a =60 ) 0 ) (- n)as)

The energy difference of the aircraft is taken into account by the
difference between the altitudes

Ah; = h0P — b, (16)
and the difference between the squares of the velocities

A = (v07) =0 (17)
In addition, the altitude /; and the square of the velocity v? of the
decision maker’s aircraft are taken as combat state variables.

The chance nodes Threat Situation Assessmentat;,i =0, ..., n,
infer the threat situation from the decision maker’s point of view.
Each node contains a discrete random variable ®; whose outcomes
are associated with the given relative geometry of the combat. The
possible outcomes are as follows: ®; = neutral, 8;; ®; = advantage,
6,; ®; = disadvantage, 65; and ®; = mutual disadvantage, 6,.

At the decision instant ¢;, the decision maker’s belief on the threat
situation is described by the probabilities P (®; =6,), P(®; =6,),
P(®; =65), and P(®,; =6,) such that

i:P(G),-:f)k):l

k=1

They are calculated on the basis of the current combat state and
the probabilities of the previous threat node. The probabilities
P(®;=6),k=1,...,4, can be considered as the prior belief for
the next decision moment # ;. The posterior belief of this stage is
formed after the value of the combat state CS; . ; is observed, and it
is given in the chance node Threat Situation Assessment at#; ;. The
posterior probabilities are determined by using the Bayes’ theorem,

P(®1=0) = P (011 =6 |A' =0,

AZZO[i2+1,D:d[+|)
15(®f+1 :ek)p(a,'l+1sai2+1vdi+l‘®i+l =9k)

22:1 ﬁ(®i+1 =9k)P(0l,-1+1»a,-2+1,di+1|®i+1 = 9k)

PO =0)p(e), 0y dia |01 =6))
S PO =00p(a)y 0 i[O = 6)
k=1,...,4, i=0,....,n—1 (18)

where the prior probabilities P(®; ,; =#6;) are equal to the previ-
ous posterior probabilities P(®; =6;), and A', A%, and D are the
continuous random variables for the deviation angle, the angle off,
and the distance. Their conditional joint probability density is p(-|-).
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A', A%, and D are assumed to be conditionally independent given
®i 1= Qk. ThUS,

plody 0f 1. dic11®;41 =6) = par (o 4,]®i 41 =)

XPA2(01,~2+1|@1'+1 =9/c)PD(di+1|®i+1 =0k) 19

where the time-invariant likelihood functions p.(:|®; .| =6;) rep-
resent the distributions of A', A2, and D under the supposition that
the outcome of the Threat Situation Assessment at ¢; , | node is 6.
The sketch of the likelihood functions used in this study is shown
in Fig. 6.

The outcome “advantage” of the threat assessment refers to a
situation where the decision maker is reaching or has reached the
opponent’s tail. Then, there are high probabilities that the angles are
small and the distance is short, and these probabilities increase when
the angles and the distance get close to zero. The “disadvantage”
outcome stands for an inverse situation: the likelihood functions
increase when the angles approach to 180 deg and the distance ap-
proaches zero. If the aircraft are close to each other and, at the same
time, fly toward each other, the outcome of the threat assessment is
assumed to be “mutual disadvantage.” High probabilities are now as-
sociated with a small value of the deviation angle and the distance as
well as a large angle off. The “neutral” outcome implies that the air-
craft move from away each other or are wide apart. The probability
of a large deviation angle and a small angle off is high. The likeli-
hood function of the distance is constant. Whenever the distance is
long, its other likelihood functions give low probabilities. Thus, in
the situation of this type, the probability of the neutral outcome, ob-
tained from Eq. (18), becomes close to one regardless of the angles.

6= Neutral
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1 2
/_\ . ( p .
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The combat situation is evaluated separately at each stage by a
utility function u( ), calculated in the deterministic Situation Evalua-
tionatf;,i =1, ..., n,nodes. The utility function reflects the pilot’s
preferences and, in practice, evaluates the possible consequences of
the maneuvering alternatives. The preferable actions of the decision
maker depend on the threat situation as well as on the state of the
combat. Thus, the utility is a function of each component of the
combat state vector and the outcome of the threat assessment. In
practice, four different utility functions are used, and each of them
is associated with the particular outcome of the threat assessment
node. The utility functions are

U0, CS) Zu (0. of @2, B di, A, AV, i, v7) = wh ul (o))
+ wé2u§2 (Otiz) + wféu/@(ﬁf) + whuk (@)

+ wghukAh(Ahi) + wguugu (Av,-z) + wi‘luﬁ (hy) + wﬁuﬁ (vz)

k=1,...,4, i=1,....,n (20)

Here u.* is a single-attribute utility function that maps an attribute
onto a utility scale such that the best value of the attribute has a
utility of one and the worst has a utility of zero. Positive weights w*
sum up to one and represent the importance of the attributes.

In Eq. (20), the overall utility is aggregated by calculating a linear
combination of the single utilities. In the decision science literature,
the form of aggregation of this type is called additive. It is a valid
representation when the attributes are mutually utility independent
(see Ref. 2). Otherwise, a multiplicative form can be used. It is
composed by adding product terms of the single utilities to the
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Fig. 6 Likelihood functions of the deviation angle, the angle off, and the distance.
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Table 1 Weights and objectives of the utility functions®

Attribute Weight Objective
Neutral
d 0.3 o0 — 0m
al 0.21 180 — 0 deg
a? 0.19 180 — 0 deg
h 0.15 00— ocom
v? 0.15 0 — oo m?/s?
Disadvantage
a? 0.34 180 — 0 deg
B 0.33 0 — 180 deg
d 0.33 0— com
Advantage
d 0.31 0,00 — 800 m
al 0.27 180 — 0 deg
a? 0.27 180 — 0 deg
Ah 0.09 —00,00 - 0m
Av? 0.06 —00, 00 — 0 m?/s?
Mutual disadvantage
o? 0.25 180 — 0 deg
o 0.21 0 — 180 deg
B 0.21 0 — 180 deg
d 0.18 00— ocom
h 0.08 0— ocom
v? 0.07 0 — oo m?%/s?

“For example, the objective co — 0 m related to the distance means
that short distances are preferred, that is, the single-attribute utility
function u;,(d) is decreasing and u;,(0) = 1, u;,(00) = 0.

additive utility function. When the underlying uncertainties have
been omitted, two attributes are independent, if the preference order
for the level of one attribute does not depend on the level of the other
attribute. Because each outcome of the threat assessment leads to the
particular utility function, the attributes of Eq. (20) seem to satisfy
this criterion. For example, if the threat situation is assumed to be
advantage, short distances are preferred regardless of the levels of the
other attributes. On the other hand, in a disadvantageous situation,
the values of the deviation angle and the angle off do not affect the
preference order for the levels of the distance because one prefers
long distances at all of the cases. For an example on the use of
multiplicative preference models, see Ref. 31.

The weights and the objectives in Eq. (20) are shown in Table 1.
In an advantage situation, the decision maker tries to reach or stay
at the opponent’s tail. Hence, the deviation angle, the angle off, and
the distance are assumed to be the most important attributes whose
relative importance is almost equal. The less important attributes
are the altitude and the velocity, which are aimed at matching with
the opponent’s aircraft. The values of the controls are selected such
that the angles, the velocity, and altitude difference are minimized,
and the distance is as close to 800 m as possible. If the outcome
disadvantage of the threat assessment has a high probability, the aim
is to avoid the front sector of the opponent’s aircraft regardless of
other factors, like the energy advantage. The angle off is minimized,
and the angle between the velocity vectors of the aircraft as well
as the distance between them is maximized. These attributes are
assumed to be equally important.

When the situation of the combat is disadvantageous for both
the actors, the main goal is to avoid the opponent’s front sector,
and the secondary goal is to maintain or even increase the energy
that could be utilized in the future. Here, the angles are the most
essential attributes. Their relative importance is slightly higher than
the importance of the distance. The energy factor is taken account
by maximizing the attributes / and v> whose weights are lower than
the other weights. In a neutral situation, the decision maker aims at
achieving the opponent’s tail sector and increasing the energy. The
importance of the distance is now the highest because the neutral
outcome refers often a situation where the aircraft are far away each
other. The second important attributes are the deviation angle and
the angle off. The lowest weights are associated with / and v? that
reflect the energy level. The attributes /2 and v could also be replaced

with Ak and Av?. Then, the importance of the energy advantage
should be evaluated.

The utility node Situation Evaluation contains the aggregated util-
ity function over all the decision stages of the diagram. It is the sum
of the single-stage utilities

JUi,...,U) =Y Uit CS)) @1

i=1

Finally, the definition of the multistage influence diagram needs
the initial state vector of the decision maker X, as well as the ini-
tial probability distribution of the threat assessment P(®=6;),
k=1,...,4.

IV. Solution Procedure

Assume that a human expert whose preferences and opinions are
captured into the influence diagram model is prepared to accept the
utility theoretical definition of rationality, that is, the axioms of the
utility theory (e.g., see Ref. 3). The optimal solution of the influence
diagram is then the sequence of controls that provides the highest
cumulative expected utility. The solution procedure for obtaining
such controls is introduced by utilizing the decision-tree represen-
tation of the multistage influence diagram shown in Fig. 7. Note
that there is a similar correspondence between the representations
in Figs. 2 and 3, as well as in Figs. 4 and 7.

The closed-loop solution of the decision tree cannot be ob-
tained because it is impossible to express the optimal value of
C;,i=1,...,n—1, as a function of the preceding control vari-
ables because of the nonlinearities in Egs. (10) and (18) and, on the
other hand, an n-level optimization problem is computationally in-
tractable. An approximate closed-loop solution could be obtained by
discretizing the continuous control variables. In general, 7 is so large
in aircraft trajectory optimization problems that the solution is time
consuming or even impossible by using available computers. Now,
the initial estimate of a preference optimal flight path, the myopic
closed-loop solution, is generated by shortening the time horizon of
the model and solving the single-stage influence diagram containing
discrete control variables at each decision stage.

In Sec. IL.D, the analogy between the simple model shown in
Fig. 3 and the optimization problem (5) is pointed out. Similarly,
there is an equivalent nonlinear optimization problem correspond-
ing to the decision-tree representation of the multistage influence
diagram. The objective function of the problem, the cumulative ex-
pected utility, to be maximized is

n 4
DY PO = 00U, CS) (22)

i=1k=1

It depends on the combat state and the threat probabilities. Hence,
the interdependencies that map the states of the aircraft into the
combat state as well as into the probabilities and the set of difference
equations describing the evolution of the decision maker’s state must
be taken as the constraints of the optimization problem. By using
the myopic solution as an initial estimate and solving the resulting
discrete-time dynamic optimization problem, the open-loop solution

U(s,U,(6,,CS,))
U(e,U,(6,,CS,))
U(e,U,(65,CS,))
U(e,U,(6,,CS,))

Fig. 7 Decision-tree representation corresponding to the multistage
influence diagram.
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that maximizes the cumulative expected utility over all the decision
stages is obtained.

A. Myopic Solution

The solution of a myopic closed-loop maneuvering sequence is
first described. In the beginning, the opponent’s trajectory X2,
i=0,...,N,is given. Here, N defines the maximum number of
the decision stages as well as the maximum duration of the flight
Tmax = N At. In addition, the decision maker’s initial state X, and
initial probability distribution of the threat assessment P (®( = 6,),
k=1,...,4, must be fixed.

The myopic controls are generated at time instants #; =i Az,
i=0,..., by solving the influence diagram presented in Sec. III
in which the future states are predicted only one decision interval
ahead. During the solution, the distribution of the threat assessment
is updated such that the prior probabilities at the current stage are
associated with the posterior probabilities of the previous stage. The
evolution of the decision maker’s state is computed according to the
equations of motion.

The continuous control variables are replaced with discrete con-
trol alternatives in order to be able to avoid the use of nonlinear
programming. In this way, the initial estimate is found quickly be-
cause, in practice, the objective function is evaluated with all of the
feasible decision alternatives, and then the alternative leading the
highest expected utility is selected. In fact, the single-stage influence
diagram is being resolved in real time, but the computation time in-
creases linearly with the number of the single-stage diagrams to be
solved. The control alternatives are

n;(j) ni—1+ jnaAt
CA;(j, kD) = | k) | = [ i1 +kualt
u; () Ui 1+ lus At

jok I ={-=1,0,1} (23)

where n;(j), n;(k), and u; (I) refer to the values of the controls at
time ¢;. Similarly n; _y, u;_1, and u; _| refer to the values of the
controls that were used during the preceding decision interval for
the period At. The control rates of change 74, tia, and u  are fixed.
At time t;, the expected utility maximizing control alternative
CA; from among Eq. (23) is determined by solving the problem

4
Y PO =06

CA} = arg max

CA(j k1)
j,k,l:{—l,O,l) k=1
X Ui+1[9k7 CSi+1(Xi+1,X,O+P1)] (24)
subject to
Xi 1 =g(X].CA;. A1) (25)

P(©; 41 =6 =h[P(©; =60",CS; 1 (Xiy1, X7)]

i

k=1,...,4 (26)

CA; € [n™", n™] x [—00, 00] x [0, 1] 2n
HX;+1)<0 (28)
VXi+1) =0 (29)
0(Xi+1) =0 (30)

where the functions g, 4, H, V, and Q are given by Egs. (10), (18),
(7), (8), and (9), respectively, and the components of the vector
CS; 41 are obtained from Eqs. (12-17). X} refers to the optimal
state and P(®; =6,)*, k=1, ..., 4, the optimal probabilities that
are obtained with the optimal control CA;_, at the earlier time
instant #; _ 1, that is,

1

X; =g(X;_,.CA;_,. A1) (31)

and
P(®; =00)" =h[P(©;_ = 6,)",CS;(X;. X"")]
k=1,....4 (32

The problem (24-30) is solved at times #; until the terminal condition
T —
w(es (X, x07) ] =[(o) —«}). (B = Bp). (d; —dp)] <0 (33)

with the fixed upper limits oe}, By, and dy, is satisfied or the time ¢;
is equal to the maximum duration of the flight 7},,.x. The condition
(33) refers to a situation where the decision maker has achieved the
opponent’s tail. This gives us the number of the multistage model’s
decision stages n as well as the total duration of the flight nAt.
If the decision maker cannot achieve the desirable terminal state
within the maximum flight time, there is no a feasible initial estimate
considering to the terminal condition for the preference optimal
flight path. However, the resulting initial trajectory can be improved
with the help of the discrete-time dynamic optimization problem
in which the fixed flight time is equal to the maximum duration
of the flight.

B. Optimal Solution

Let us next move to the optimization over time. Assume that an
initial estimate satisfying Eq. (33) is generated. Then, the discrete-
time dynamic optimization problem corresponding to the present
multistage influence diagram is

n

4
max Y Y PO, = 0)U;[6,.CSi (X X77)] (34

i=1k=1
subject to
Xi 1 =8X;,C;, At) given Xy 35)
P(©i11 =6 =h[P(®; =6),CS (X1, X])]
given P(®y=6,), k=1,....,4 (36)
C; € [n™", n™] x [—00, 0o] x [0, 1]

i=0,....,n—1 (37)

HX,;)<0 (38)

V(X)) <0 (39)

0X) <0, j=1,...,n (40)
w[cs, (X, x27)] <0 1)
At >0 (42)

Here the vector X of the decision variables is defined by X =
[cr,....cr_ XTI, ..., X!, P(®,=0)),..., P(©,=0,), At]".
The opponent’s trajectory XI.OP is regarded as a given parameter. In
the original influence diagram model, the decision interval A¢ is
assumed constant, but here it is assumed to be free to enable solu-
tions that are optimal in their duration as well. The optimal decision
interval is implicitly defined by the terminal constraint (41).

Even if the initial estimate does not satisfy Eq. (33), the optimiza-
tion over time can be carried out. Then, the decision interval At is
fixed, and the total flight time n Az is equal to T},,«. The correspond-
ing optimization problem is similar to Eqs. (34—42) except At is not
a decision variable and the constraints (41) and (42) are omitted.

Once the initial threat assessment distribution is fixed, the threat
probabilities follow Eq. (36) and evolve deterministically. There-
fore, the dynamic optimization problem (34—42) is in fact determin-
istic, and an open-loop solution for it can be computed by nonlinear
programming techniques.
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V. Numerical Example

In the following, an example preference optimal flight path is cal-
culated. The discrete-time dynamic optimization problem is solved
by the NPSOL subroutine,*> which is a versatile implementation
of the sequential quadratic programming (SQP).* The SQP method
has proven to be an efficient and reliable approach for solving dis-
cretized dynamic optimization problems (see Refs. 8, 9, and 33).

The maximum thrust force and the drag coefficients in Eq. (11)
are approximated on the basis of tabular data that represent a generic
modern fighter aircraft. The load factor is limited into the interval
[-3,9]. In the example, 2™" is set to 500 m, v™" 50 m/s, and
q™ 80 kPa, respectively. The terminal limits for the combat state
in Eq. (33) are a‘f =80 deg, B =80 deg, and dy = 1800 m. The
relatively large limits of the load factor as well as of the terminal
condition are selected because in this way long flight times and
difficulties in the visualization of trajectories are avoided. The con-
trol rates of change used in the myopic solution are n, =1 1/s,
ua = 1rad/s, and un =0.5 1/s. The decision interval is 1 s.

The initial states of the aircraft are chosen such that the opponent’s
tail position is reached, that is, the terminal condition (33) becomes
satisfied in both the myopic and optimal solutions. The state of the
decision maker is initially

Xo = 7000 m,

Yo = 5100 m, ho = 7000 m

vo = 200 m/s, o = 0 deg, and Xo = 0deg

and the given initial state of the opponent is

x&F = 5000 m, y&F = 5000 m, hd” = 6000 m

vd" =200 mps, vof = 0deg, and  x{¥ =0deg
On the predetermined trajectory, the opponent first increases and
then decreases the altitude and turns to the right by increasing the
velocity continuously. The initial states of the aircraft correspond
to a disadvantageous situation where the opponent is flying behind
the decision maker. The initial probability distribution of the threat
assessment is uniform: P (®y=6;) =0.25,k=1, ..., 4. Computa-
tional experience has shown that the effect of the initial distribu-
tion decreases rapidly, and it does not affect strongly the optimal
solutions.

The myopic closed-loop solution, the preference optimal open-
loop solution, and the fixed trajectory of the opponent are shown in
Fig. 8. The projections of the solutions in x, y; x, 4; and y, & planes
are presented in Fig. 9. The probability distribution of the threat as-
sessment for the optimal flight path is shown in Fig. 10 and for the
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Fig. 8 Optimal and myopic solutions together with the opponent’s
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myopic one in Fig. 11. The myopic solution gives the total flight time
of 66.0 s and the cumulative expected utility of 32.6 utility points.
The maneuvering decision was made 66 times during the gener-
ation of the myopic solution. Thus, the corresponding multistage
influence diagram consists of 66 decision stages. It is transformed
into an optimization problem with 859 decision variables and 1060
constraints. The final time of the optimal solution is 65.4 s, and the
optimal outcome is 37.9 utility points.
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Fig. 11 Probability distribution of the threat situation assessment in the myopic solution.

In the beginning of the flight, the decision maker correctly avoids
the front sector of the opponent by decreasing the altitude on the
optimal trajectory as well as by decreasing the altitude and turning to
the right on the myopic trajectory. The turn rate used on the optimal
trajectory is larger than on the myopic flight path. One can conclude
that this arises from the additional order in the dynamics given by
Eq. (23). In the beginning of the flight, the myopic controls, however,
do not approach the limits of the control constraints, which means
that the myopic solution could contain also tighter maneuvering.

Hence, the change in the utility points is not solely caused by the
control rate constraints.

Because of the tight turn on the optimal trajectory, the probability
of the disadvantage outcome of the threat assessment does not in-
crease above 0.1, whereas in the myopic solution this probability is
almost one at # =3 s (see Figs. 10 and 11). Thus, in the optimal so-
lution the possibility that the opponent reaches the tail position first
is reduced. Before 30 s, the probability of the mutual disadvantage
outcome is at its highest in the optimal case, and the disadvantage
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outcome dominates in the myopic case. After 30 s, the neutral out-
come achieves the highest probability in both solutions, but in the
optimal case the advantage outcome starts to dominate earlier.

On the preference optimal trajectory, the decision maker reaches
the tail position earlier. A reason for this can be that in the optimal
solution the decision maker flies a loop at a higher altitude than in
the myopic solution. Overall, the optimal open-loop solution has the
better value of the objective function, the firing position is achieved
faster, and the cumulative time the decision maker is under the threat
of the opponent’s weapons is shorter than in the myopic closed-loop
solution. The utility and likelihood functions sketched by the authors
seem to reflect the reality to some extent because the front sector
of the opponent is evaded and the advantageous terminal state is
acquired.

VI. Discussion

A. Objective Function

The goals of the decision maker are to avoid the opponent’s front
sector and to reach its tail position. One could suggest an objective
function that would measure the accomplishment of these goals at
the end of the flight only. Then, the influence diagram could give
solutions in which the tail position is reached at the terminal stage,
but the decision maker could stay in the disadvantageous area for a
long time during the flight. This is not desirable because in reality
the decision maker does not necessarily survive through the time
intervals where the disadvantage outcome of the threat assessment
dominates. Problems of this type are now avoided because the over-
all objective function (22) evaluates the combat state at all of the
decision stages. The decision maker aims at moving away from a
disadvantageous position although this movement does not improve
the chance to be on the opponent’s tail at the end of the flight.

At each stage, the overall objective function (22) is of the form

4
> P(©; = 60U, CS;)
k=1

The single-stage objective function can be interpreted as a scalar
cost function of a multiobjective optimization problem (e.g., see
Ref. 34) that is constructed by forming a weighted sum of objec-
tives and by requiring that the weights sum up to one. Here, the
four objectives U, (6;, CS;) to be maximized reflect the preferences
in different threat situations of the combat and the probabilities
P (®; =6) have the role of the weights.

The weighting method is a widely used approach for solving mul-
tiobjective optimization** and control®® problems. In this method,
first the preceding weighted sum is formed, and a set of efficient
solutions is obtained by solving the single objective problem with
different weight combinations. Finally, the best solution in the ex-
pert’s opinion is chosen from among the efficient ones.

In Eq. (22), the sum of the probabilities P(®; =6,), k=1, ...,4,
is one at each stage. Therefore, the optimal controls obtained by
maximizing Eq. (22) belong to the set of efficient solutions. Equa-
tion (18) updates the probabilities according to the likelihood prob-
abilities that reflect the opinions of a human expert. Thus, the re-
sulting controls at each decision stage can be interpreted as the best
efficient solution of the multiobjective problem subject to the given
likelihood functions.

Kelley et al.’ present the threat reciprocity concept for evaluating
maneuvering alternatives in a matrix game that models one-on-one
air combat. In such a game, the controls of the players are selected
such that each player attempts to drive the combat state into his
own target set without first being driven into the target set of the
adversary. These goals are similar to those of the decision maker
in the multistage influence diagram. In the threat reciprocity con-
cept, the relative importance of the goals depends on the combat
state. A similar approach is adopted in our model by calculating
the weights in Eq. (22), the threat probabilities, based on the state-
dependent likelihood functions. Hence, the relative importance of
the decision maker’s goals varies in a natural way as a function of
the combat state.

B. Stability of Solutions

The moving one-stage planning horizon technique is a suitable
way to solve a myopic control sequence, but it cannot be applied
for generating an initial estimate for all discrete-time trajectory op-
timization problems. If the time horizon is infinite, the result can be
an unstable and diverging initial estimate. Problems can also arise in
finite horizon problems where the objective function depends only
on the terminal state. Then, controls at early stages affect the value of
the overall objective via the dynamics determined by the state equa-
tions, but a well-defined objective function cannot be formulated
for the single-stage problems. A suitable objective function could
be formed by approximating the cost-to-go function that measures
the value of the overall objective function from a certain state and
time to the terminal state. However, the construction of the approx-
imation is not straightforward. Recently, however, a neurodynamic
programming approach®’ has shed some light onto the generation
of such approximations.

In the solution procedure of the multistage influence diagram,
the moving planning horizon technique produces stable solutions.
Because of the form of the objective function (24) and the short
planning horizon of the single-stage model, the state of the aircraft
cannot deviate excessively from the previous state. Divergence is
also restricted by an additional order in the dynamics introduced by
Eq. (23).

Existing nonlinear programming methods usually have a large
convergence domain. Still, the initial estimate for decision variables
of an optimization problem cannot be chosen completely arbitrarily.
In the solution procedure, the myopic solution is used as the ini-
tial value of the decision maker’s controls, states, and probabilities,
which ensures reliable convergence when solving the discrete-time
optimization problem (34-42).

C. [Utilization of the Approach

Although a passive adversary aircraft flying a predetermined tra-
jectory is only considered and the computation is not real time, the
presented modeling and analysis approach gives information that is
valuable in the planning and evaluation of air combat maneuvers as
well as in the development of air combat simulators. For example,
a defensive basic fighter maneuver could be improved by using it
as the initial estimate and solving the preference optimal flight path
against a fixed pursuing trajectory. In addition, it is possible to ana-
lyze how a change in the adversary’s trajectory affects the optimal
maneuvering sequence.

The impacts of preference assessments on optimal flight paths
can be studied by solving the influence diagram repeatedly with
different utility functions. By comparing the resulting trajectories,
one can identify the functions that lead to the desired trajectory
or basic fighter maneuver. These functions can be embedded in a
single stage influence diagram that is a suitable real-time guidance
model for air combat simulators. This analysis could be automated
by adding a tool for modeling the preferences, like HIPRE,* to an
aircraft trajectory optimization software, like VIATO.

D. Model Improvements

The numerical example demonstrates that the influence diagram
model produces reasonable results for the pilot’s sequential maneu-
vering process. However, the accuracy and reality of the model can
still be enhanced by describing the preferences of a pilot and the
dynamics of an aircraft in more detail. The multistage influence
diagram approach is flexible with respect to such generalizations.

To increase the quality of resulting preference optimal flight paths,
the focus should be to improve the behavioral components. That is
the preferences and the behavior of pilots should be captured into the
multistage influence diagram by constructing the utility and likeli-
hood functions in cooperation with pilots. The motion of the aircraft
can be described more accurately by replacing the three-degrees-
of-freedom point-mass model with, for example, a six-degrees-of-
freedom model that also contains the equations of rotation. This ex-
tension would be rather straightforward, but it would also increase
the number of variables in the influence diagram. The myopic mov-
ing horizon technique still remains a reliable and fast way to produce
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an initial estimate for preference optimal flight paths. The more de-
tailed model of the dynamics would complicate the solution of the
dynamic optimization problem because of its size increases. For
reasons of accuracy, the equations of motion should be discretized
by using a higher-order scheme instead of Euler discretization. Nat-
urally an improved discretization scheme could also be applied in
the presented model to improve the accuracy of the solutions. The
Jacobian of the constraints and the Hessian of the Lagrangian are al-
most block diagonal in dicsretized dynamic optimization problems.
This allows the use of special algorithms for sparse matrices (e.g.,
see Refs. 33 and 39), which could decrease the computation times
needed in the optimization.

E. Generalizing the Approach into Games

The presented modeling and analysis approach can be extended
to a one-on-one air combat game in which both players aim simul-
taneously at capturing the adversary and avoiding being captured.
Encounters of this type have been modeled using the concept of a
two-target game (e.g., see Ref. 40). The extension of the multistage
influence diagram could offer a way to incorporate uncertainty and
preference models into a two-target game framework.

A game model can be formulated such that both the players are
modeled and controlled with an influence diagram. One way to
do this is to combine the multistage influence diagram modeling
the maneuvering problem from the decision maker’s viewpoint and
the diagram representing the opponent’s maneuvering process. The
information structure of such an influence diagram game can be
asymmetric or symmetric. In the former case, the decision maker
knows or assumes the objective and preferences of the opponent.
The latter information structure refers to a combat model where both
the players receive the same information on the game situation.

Open-loop solutions of the game models could be obtained with
the help of an extension of the introduced solution procedure. The
symmetric information leads to the solution of two discrete-time
dynamic optimization problems simultaneously. In the asymmetric
case, a bilevel discrete-time dynamic optimization problem results
(see Ref. 41).

A single-stage influence diagram game representing the maneu-
vering decisions in one-on-one air combat can also be resolved in
a closed-loop form. This could offer a new way to produce so-
called reprisal strategies®® that utilize the nonoptimal behavior of an
adversary.

VII. Conclusion

In an air combat, a pilot faces complicated multiobjective maneu-
vering decision problems. He or she has to evaluate maneuvering
alternatives whose outcomes are known only under conditions of
uncertainty. Multiple conflicting objectives as well as the uncertain
nature of the decision-making environment should be taken into
account in the planning of combat maneuvers. These features are
included in the presented multistage influence diagram. It offers a
new way to incorporate the structural model of the uncertainty and
the pilot’s preferences into trajectory optimization. Preference opti-
mal open-loop maneuvering sequences against given trajectories of
the opponent are obtained by converting the influence diagram into
a discrete-time dynamic optimization problem and solving it with
nonlinear programming. This new modeling and analysis approach
also provides a good basis for considering one-on-one air combat
models in which both players are active.

Appendix: Equivalence of Egs. (5) and (6)

This appendix shows the equivalence of Egs. (5) and (6). First, the
cumulative expected utility (CEU) is written according to Eq. (6):

CEU = P(x)EUXd', d*) + P(x})EUZ(d', d*)
= P(x){P(xf|x))[u' (@' x7) +u(a® x7)]

+ P () [u' (4 1)+ (@ 23) ]

+ P () {P(x ) [ (@' x2) + (@2 )]
+ P (2| [ (@' x) + (@ 23) ]}
= Ple)ful (@' ) [P (xi ) + P (3] ]
+ P (i) (@, 2) + P (3 xi)u (¢, 33) }
+ P (o) {u' (¢ ) [P () + P(|w)]
D)+ P (x3|x)u? (d*, x3) } (A1)
Here P (x?|x)) + P(x3|x}) =1,i =1, 2, and thus Eq. (A1) yields
CEU = P(x)[u!(d" x) + P (i |x))u* (. )
+ P () (@ 23) ]+ P () [u' (' x2)
+ P (xt|x))u? (a2, x7) + P (x3]xy)u?(d*. x3) ]
= P(xf)u' (', x})) + P(xy)u'(d", x3)
+[P(xt|x)) P (x)) + P(x7|x)) P (x}) Ju?(d®. x7)
+[P(3]x})P(x}) + P(x3|1)) P(x3) Ju?(d*. 53)  (A2)

Using the probabilities of the decision tree shown in Fig. 3, the
probabilities P (xlz) and P (x%) can be expressed as

P (x,z) =P (x,2 |x11)P (xll) + P(x,-2 ’le)P(le)
Combining Eqs. (A2) and (A3) gives

xll) + P(le)ul(dl,

le) + P (x,z)uz(dz, xlz)
2

+ P (x3)u? (a2, x3) = Z Z P(x)u' (d'. x}) (A4)

i=1k=1

that is the CEU according to Eq. (5).

]
P(

+ P(xf|x21)u2(d2, X

i=1,2 (A3)

CEU = P(x{)u'(d".
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