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Abstract. An ELMy ASDEX Upgrade plasma equilibrium is reconstructed taking into account
the bootstrap current. The peeling mode stability of the equilibrium is numerically analysed
using the GATO [1] code, and it is found that the bootstrap current can drive the plasma peeling
mode unstable. A high-n ballooning mode stability analysis of the equilibria revealed that, while
destabilizing the peeling modes, the bootstrap current has a stabilizing effect on the ballooning
modes. A combination of these two instabilities is a possible explanation for the type I ELM
phenomenon. A triangularity scan showed that increasing triangularity stabilizes the peeling modes
and can produce ELM-free periods observed in the experiments.

1. Introduction

ELMs (edge localized modes) are short bursts of particles and energy at the edge plasma,
observed in H-mode (high confinement) plasmas. No steady-state H-mode has been achieved
without ELMs. The type I ELMs investigated in this paper are detrimental to the divertor plates.
On the other hand, ELMs can offer a way to improve particle circulation while sustaining a good
heat confinement. All this makes the understanding the ELMs essential for future reactors.
However, the ELM phenomenon has still eluded a solid physical model.

Connor et al [2] have proposed an ELM model for limited circular plasmas. In this
model, the ELM cycle starts with the development of the edge pressure pedestal. The growth
of the pedestal stops at the ballooning stability limit. Due to the pressure pedestal, the
bootstrap current, which is proportional to the pressure and temperature gradients, starts to
grow. Eventually, the bootstrap current destabilizes an ideal peeling mode causing an ELM
crash and the loss of the edge pressure pedestal.

Since the ELMs occur at the edge, an accurate reconstruction of the plasma equilibrium
at the edge is important when analysing this phenomenon. While small in the core plasma,
the bootstrap current is significant at the edge. In particular, in the H-mode, where steep
gradients exist near the separatrix, the bootstrap current cannot be ignored in the equilibrium
reconstruction.

In this paper, the role of the bootstrap current on plasma stability is investigated and
the proposed model for the ELMs is tested in realistic ASDEX Upgrade geometry using
experimental plasma profiles. The role of the ballooning instability is also addressed. Finally,
triangularity is studied as a means to control the ELMs.
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2. Bootstrap current in equilibrium calculations

A standard free-boundary, separatrix-defined equilibrium is determined as a solution of

R2∇ · ∇�
R2

= −2πµ0RjT (1)

where � is the poloidal flux, and the toroidal component of the current density is given by

jT = µ0

4πR

dJ 2

d�
+ 2πR

dp

d�
(2)

Here J is the poloidal current and p the plasma pressure.
The standard way of calculating a plasma equilibrium is to prescribe functions dJ 2/d�

and dp/d� and to solve the Poisson problem (1). Usually, it is possible to obtain the function
dp/d� from the experiments, but the poloidal current function is not known. Therefore, some
assumptions about the dJ 2/d� term have to be made. If the bootstrap current can be ignored,
the poloidal current profile is independent of the temperature and pressure profiles. However,
at the plasma edge, where the gradients and the bootstrap current are large, this assumption is
not valid.

An equilibrium including bootstrap current can be solved from equation (1) by conceiving
dJ 2 = d� as expressed by the flux surface-average 〈j · B〉. Starting from the definition of
the magnetic field, Ampère’s law, and equation (1), it is possible to derive an expression

〈j · B〉 = 〈B2〉 dJ

d�
+ µ0J

dp

d�
〈j · B〉 =

∫ ∫
j · B〈j · B〉 dS

|∇V | . (3)

Here, the surface-averaged magnetic field 〈B2〉 and its components are

〈B2〉 = µ0(LPJ
2 + LTI

2) 〈BT〉 = µ0LPJ
2 〈B2

P〉 = µ0LTI
2 (4)

where I is the toroidal current, and LP and LT are the inductance coefficients

LP ≡ µ0

4π2
〈1/R2〉 LT ≡ 4π2µ0

〈|∇V |2/R2〉 . (5)

Using (3), the expression dJ/d� can be eliminated from the (2) and we obtain

jT = 2πR

{
B2

T

〈B2〉
〈j · B〉
µ0J

+

(
1 − B2

T

〈B2〉
)

dp

d�

}
. (6)

We have thus eliminated dJ/d� from the expression for jT. However, jT still depends on J
itself as well as on the toroidal current I . They can be solved, if 〈j · B〉/µ0J is given. Taking
the flux surface average of (1) and using (3), we can derive two ordinary differential equations
for I and J :

dI

dV
= 〈B2

T〉
〈B2〉

〈j · B〉
µoJ

+

(
1 − 〈B2

T〉
〈B2〉

)
dp

d�
(7)

1

2

dJ 2

dV
= LRI

〈B2
T〉

〈B2〉
{
−〈j · B〉

µ0J
+

dp

d�

}
. (8)

Here LR is a ratio of inductances LT/LP.
Let us now consider the functions 〈j ·B〉/µ0J and dp/d� as given and 〈B2〉 as described

by equation (4). The solution of the subsequent nonlinear two-point boundary value problem
described by (7) and (8) leads to a complete determination of the right-hand side for the Poisson
problem (1): we prescribe I = 0 on the magnetic axis and J 2 = J 2

p at the plasma boundary,
and solve for I and J 2. The solution for J 2 can be used for the calculation of the current
density according to (2). If the total plasma current Ip is prescribed, we have more boundary
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Figure 1. Toroidal current density distribution of an
equilibrium with no bootstrap current (full curve) and if
the bootstrap current amounts to 13% of the total current
(dashed curve).

Figure 2. Fitted electron temperature (dashed curve)
and density (full curve) profiles used in the equilibrium
reconstruction. The ion temperature is assumed to be the
same as the electron temperature.

conditions than dependent variables, and therefore need one additional free parameter Cs in
〈j ·B〉 = 〈j ·B〉(Cs). Here,Cs represents the part of 〈j ·B〉 that contributes to the equilibrium
through I and J (equations (7) and (8)). The equations (7) and (8) can be augmented by

dCs

dV
= 0 (9)

so that we now have three variables and three boundary conditions.
In order to get the plasma equilibrium, we now need to prescribe only the flux surface-

averaged parallel current and the pressure gradient instead of dJ 2/d�. This makes the
bootstrap current equilibrium reconstruction possible. Part of the parallel current is due to
the inductively driven current 〈j · B〉CD/µ0J . In addition, it is possible to derive an analytical
expression for the bootstrap current 〈j · B〉bs/µ0J which depends only on the pressure and
temperature gradients and, thus, can be obtained from the experiments. Three models with
slightly different assumptions on the geometry and the collisionality were considered (the
Hirshman model and the Harris model in [3], and the Wilson model in [4]). It was found that
the differences between the results from different models were small. In the numerical studies
presented in this paper, the Wilson model was used:

〈j · B〉bs = peRBTx

D

(
c1

1

pe

dpe

dψ
+ c2

1

pi

dpi

dψ
+ c3

1

Te

dTe

dψ
+ c4

1

Ti

dTi

dψ

)
(10)

with

c1 = 4.0 + 2.6x

(1.0 + 1.02ν0.5∗e + 1.07ν∗e)(1.0 + 1.07ε1.5ν∗e)

c2 = Ti

Te
c1

c3 = 7.0 + 6.5x

(1.0 + 0.57ν0.5∗e + 0.61ν∗e)(1.0 + 0.61ε1.5ν∗e)

c4 =
(−1.17/(1 + 0.46x) + 0.35ν0.5

∗i

1.0 + 0.70ν0.5
∗i

+ 2.10ν2
∗iε

3

)
1

(1.0 + ν2
∗iε

3)(1.0 + ν2∗eε
3)

D = 2.4 + 5.4x + 2.6x2 (11)
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where x is the trapped particle fraction (≈ 1.46
√
ε), ν∗j is the collisionality of the particle

type j and ε is the inverse aspect ratio (a/R).
Figure 1 shows poloidal current density peaking at the edge as the bootstrap fraction of

the total current is increased. The inductively driven current profile was fixed so that the
equilibrium reconstruction gave q-profiles that agreed with experimental measurements as
closely as possible.

3. Peeling mode stability

Peeling modes are ideal current-driven MHD instabilities that are localized at the plasma
edge. Consequently, their stability depends on the current profile at the edge, which makes the
bootstrap current important in the stability analysis.

An ASDEX Upgrade (R = 1.6 m, a = 0.5 m) shot (shot No 11991) with type I ELMs was
analysed using the ideal MHD stability code GATO. Temperature and density profiles were
taken from the experiment and smoothed (figure 2), and the bootstrap current was included in
the equilibrium reconstruction as described above. For the stability analysis, the q-value on
axis was fixed slightly above one for all cases.

It was found that increasing the fraction of the bootstrap current caused plasma to become
peeling mode unstable (figure 3). For realistic values of bootstrap current, toroidal mode
numbers ranging from 3 to 6 were found unstable. In the figure, the n = 2 mode seems
marginally unstable, but the small value of the growth rate is at the limit of the numerical
resolution of the GATO code and it can be ignored. Only at very high values of bootstrap
current fraction does the n = 2 mode become really unstable. The unstable mode numbers
agree with the Mirnov coil observations of the type I ELM precursors [5]. Similar results were
obtained at DIII-D for peeling modes associated with ELMs [6].
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Figure 3. Peeling mode growth rates for three toroidal mode numbers (n = 1 is stable in the
whole range). The vertical lines represent calculated bootstrap currents by two alternative methods
(analytical, using Cs = 1 in equation (9) (full line) and transport calculations with the ASTRA [7]
code (dashed line). ASTRA uses the Hirshman model for bootstrap current calculations).
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4. Ballooning mode stability

The GATO analysis also revealed that the instability had a ballooning component. Using the
ballooning code GARBO [8], the tested equilibria were found to be high-n ballooning unstable
(figure 4). GARBO calculates the threshold pressure gradient for ballooning instability and
compares it with the experimental pressure gradient. Only low toroidal mode numbers (n < 7)
can be accurately identified experimentally in ASDEX Upgrade. Therefore, the high n-modes
cannot be distinguished in the precursors and a comparison with the numerical results is
difficult.

It is possible that, since the profiles were created with a slightly pessimistic assumption
(e.g. the Ti pedestal is as steep as the Te pedestal), the ballooning instability is due to an
unrealistically steep pressure gradient. However, the peeling instability is current driven, and
the uncertainty in the pressure profile does not affect it as much. Therefore, even if the bootstrap
current is slightly lowered due to the decrease in the pressure and temperature gradients, the
results presented in the previous section are still valid. The curves in figure 3 would only move
slightly to the right.
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Figure 4. High-n ballooning stability for shot No 11991 at 2.0 s for different bootstrap fractions.
Only the most unstable part is plotted. Other parts of the plasmas are stable. p′

crit is the threshold
pressure gradient for ballooning instability.

The ballooning analysis also revealed that, as the bootstrap current fraction is increased,
the stability improves. In figure 4 the stability of a plasma both without a bootstrap current and
with 4%, 13%, and 22% bootstrap current fractions are compared. Clearly, while the bootstrap
current has a destabilizing effect on the peeling modes, it stabilizes the ballooning modes. The
reason for the stabilizing effect is that, since we are investigating the edge of a strongly shaped
plasma, the decreasing shear (caused by the bootstrap current) may open a second stability
access.

5. Test case: triangularity

Two ASDEX Upgrade shots (shot No 11991 and shot No 11795) with similar plasma profiles
but with differing plasma shapes (figure 5) were analysed with respect to the peeling modes. In
addition to these, very high triangularity was investigated using experimental plasma profiles
(T , n), but adjusting the plasma shape to a much higher value of triangularity. The q-profiles of
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the two experimental cases are almost identical (q95 = 3.65 for shot No 11991 and q95 = 3.85
for shot No 11795). For the very high triangularity case, q95 = 4.4. It was found that increasing
the plasma triangularity stabilizes the plasma (figure 6). This agrees with the experimental
observations: long ELM-free periods have been detected in high triangularity (δ = 0.3–0.4)
but not with low (δ = 0.1–0.2) or medium triangularity (δ = 0.2–0.3) [9]. ELM frequencies
are also lower in the high triangularity shots.

Increased triangularity had very small effect on the ballooning stability. The bootstrap
current fraction scan for the ballooning stability of shot No 11795 was almost identical to that
of shot No 11991. The differences in the stability for most bootstrap current fractions were
less than 1%. Only for a high bootstrap current fraction (22%) was the ballooning stability of
the high triangularity shot (shot No 11795) better.
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Figure 5. Triangularity variation from δ = 0.24
(shot No 11991, full curve) to δ = 0.34 (shot
No 11795, dotted curve). The dashed curve
represents a discharge with extreme triangularity.
It was composed from shot No 11991 equilibrium
by increasing its triangularity artificially.

Figure 6. Growth rates of the n = 4 peeling mode for medium
(δ = 0.24) and high (δ = 0.34) triangularity. The extra data
point (δ = 0.38) represents an artificial equilibrium with extreme
triangularity.

6. Discussion

Unstable peeling modes were found for equilibria with a high bootstrap current fraction.
Neglecting the bootstrap current, the same plasma was found to be high-n ballooning unstable.
Increasing the bootstrap current fraction made the plasma marginally ballooning stable. So,
while destabilizing the peeling modes, the bootstrap current can improve the ballooning
stability by modifying the shear near the edge and possibly giving access to the second stability
region.

These numerical results calculated for realistic ASDEX Upgrade profiles and geometry
support the Connor model for type I ELMs that was created for circular limited plasmas.
Based on the numerical analysis of the instabilities, the Connor model appears feasible for
shaped plasmas as well. The plasma is at the ballooning stability boundary and the increasing
bootstrap current eventually drives the plasma peeling mode unstable. While the actual time
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sequence of the events remains unresolved, the analysis shows that both components (peeling
and ballooning) are present.

The plasma triangularity was found to have a stabilizing effect on the peeling modes
(higher bootstrap fraction was needed to drive the plasma unstable). The triangularity effect
on the ballooning stability was found to be negligible in the two shots that were analysed. The
increased stability agrees with the experimental observations and supports the proposition that
type I ELMs are triggered by the peeling mode instability.
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