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Abstract
We investigated the differences between type I and type II edge localized modes (ELMs) in ASDEX Upgrade using
the MHD stability analysis. When plasma conditions are changed from typical type I ELMy conditions to type II
ELMy conditions, the character of the edge instabilities change. With increased triangularity and edge safety factor,
the low-n peeling–ballooning mode becomes more stable and more localized to the edge region. We find the same
mode localization effect in almost double null configuration. When the plasma density is increased, the access
to the second stability of the high-n ballooning modes is closed. The changes in the stability properties give a
qualitative explanation to the observed small amplitude of the type II ELMs.

PACS numbers: 52.35.Py

1. Introduction

For a tokamak reactor operating in the high confinement
mode (H-mode), such as ITER, high power load on divertor
plates can cause unacceptable erosion and should therefore
be avoided. H-mode plasmas are usually characterized by
edge-localized modes (ELMs) that release plasma particles
and energy from inside the separatrix into the scrape-off-layer
(SOL) in short bursts. From the SOL the energy is transported
to the divertor plates along field lines. Since the phenomenon is
fast (t < 1 ms), the high power load on targets during an ELM
poses a threat to the reliable quasi-steady state operation of a
tokamak. However, while detrimental to the divertor plates,
ELMs can help to control the plasma density and impurity
accumulation. Therefore, the control of the ELM behaviour is
of great importance for a tokamak reactor.

The type I or ‘giant’ ELMs, observed in most H-mode
plasmas, are large in amplitude, and thus the most detrimental
to the divertor plates. In ITER the type I ELM energy may
exceed the threshold for divertor target ablation by a factor
of 5 [1].

The type II or ‘grassy’ ELMs show potential to operate a
tokamak with good confinement and efficient impurity exhaust
without damaging the divertor plates. The energy lost in a
single type II ELM is significantly lower than in a type I
ELM. Respectively, the ELM frequency of type II ELMs is
usually higher than that of type I ELMs for similar heating and
collisionality.

The type III ELMs are also small in amplitude. However,
the plasma confinement in type III ELMy plasma is poor.
Therefore, combining the type III ELMs and high β is difficult
and, thus, they are not considered in this paper.

The fundamental mechanisms behind the ELM phe-
nomenon is not known. Several possible explanations have
been given [2]. The model presented for type I ELMs by
Connor et al [3] and expanded by Snyder et al [4] for other
ELM types is used here as a working model. In this model,
the type I ELMs are triggered by coupled peeling–ballooning
mode MHD instabilities. After an ELM crash, the plasma edge
pressure gradient starts recovering until it reaches the high-n
ballooning mode boundary. Then, on a slower (resistive)
timescale, the edge bootstrap current builds up. The bootstrap
current destabilizes the peeling–ballooning mode and causes
an ELM crash.

In an earlier study [5], the Connor model was studied by
carrying out a stability analysis for type I ELMs in ASDEX
Upgrade. It was found that the edge pressure gradient is indeed
limited by the ballooning mode between ELMs, when the edge
current is low. When the bootstrap current builds up, the
plasma can access the 2nd stable region. The analysis also
showed that the increasing bootstrap current destabilizes the
low-n (n ≈ 3–4) peeling–ballooning mode. In the stability
analysis, the mode numbers of the unstable modes agreed with
the experimental values. Although the linear stability analysis
naturally cannot directly predict the repetition frequency of
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the ELMs, the stability analysis results were able to explain
the observed type I ELM precursors.

In this paper, using the same model, we now expand
the stability analysis to type II ELMs in ASDEX Upgrade.
Experimentally, it has been observed that when the plasma
conditions are changed, the ELM behaviour also changes. In
particular the change from type I to type II ELMs is observed as
triangularity, edge safety factor and density are increased and
the plasma is moved close to double null configuration. First
the pure type I ELMs change to mixed ELMs with both large
and small amplitude ELMs and finally to pure type II ELMs [6].
In addition to the direct changes in the equilibrium, like shaping
and increasing the edge q, there are also indirect changes.
When plasma approaches the double null configuration, the
local shear increases in the region close to the second x-point.
The increased edge density combined with constant pressure
leads to increased collisionality that decreases the bootstrap
current. Due to the changes in the equilibrium, the character
of the MHD instabilities in the edge plasma change as well.
The changes in the edge stability properties can be used to
explain the changes in the ELM behaviour.

2. Equilibrium reconstruction

In the equilibrium reconstruction, plasma pressure and poloidal
current are needed to solve the Grad–Shafranov equation. The
pressure profile can be obtained from the experiment, but
the current profile is not usually measured directly. However,
the edge current plays an important role in the stability of the
edge plasma. Therefore, in order to draw any conclusion
from the modelling, the edge current in the reconstructed
equilibrium must have the same response to the plasma
condition changes as the actual plasma current. The accuracy
of the core current profile is not equally critical, since it has
little effect on the very localized instabilities at the edge.

In the H-mode pedestal region, the bootstrap current
dominates the inductively driven current because of the steep
pressure gradient. The bootstrap current was included in
the equilibrium calculation using an analytical formula for
the flux averaged parallel bootstrap current 〈 j · B〉/(µ0J )

given by Sauter et al [7]. In the core, we assume the
inductively driven current to dominate, and choose its profile
to fit to the available core q-profile information (qaxis ≈ 1.1).
The total plasma current is kept at the experimental value.
Using these boundary conditions together with the measured
density and temperature, it is possible to create self-consistent
equilibria for stability analysis. The self-consistent bootstrap
current equilibrium reconstruction has an additional advantage
allowing realistic stability studies by artificially varying
density and temperature profiles. Furthermore, the current
diffusion to the edge region between the ELMs is relatively
slow compared to the return of the H-mode pedestal. It is
possible to simulate this by including less than 100% of the
bootstrap current in the equilibrium reconstruction.

We take the density and temperature profiles and the
plasma shape for the studied equilibria from the experiment
(ASDEX Upgrade shot no 11991 at 2.0 s, I = 1.0 MA,
BT = 2.0 T, the profiles shown in figure 1). The error in the
profiles is 10%. The profile for the effective charge number
(Zeff ) is assumed flat with a value of 1.2.
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Figure 1. The temperature (- - - -) and density (——) profiles used
in the equilibrium reconstruction as a function of the poloidal flux.
Te = Ti is assumed.

In the stability analysis, we vary the plasma parameters
to see the effect of each factor on the stability. In addition,
we analyse two shots (nos 15865 and 15863, both with I =
0.8 MA, BT = 2.0 T) with almost identical plasma profiles, but
slightly different shapes. These shots are chosen because one
(no 15865) displayed type I ELMs and the other (no 15863)
type II ELMs.

3. The type II ELM condition effects on the ELM
model

It has been shown that the the stability analysis of ASDEX
Upgrade type I ELMs gives results consistent with Connor’s
model for ELM triggering [5]. Here, the stability analysis
is extended to conditions where smaller type II ELMs
are observed. In ASDEX Upgrade, the requirements for
achieving high frequency, low amplitude type II ELMs are high
triangularity, high q95, almost double null configuration, and
sufficiently high density [6]. Also in JT-60U high triangularity
and edge safety factor are found to suppress the giant ELMs [8].
We include all these factors in the stability analysis and study
each of them independently using the ideal MHD stability
code GATO [9] for peeling–ballooning modes with low and
intermediate toroidal mode number (n � 8). Most of the
analyses are done for n = 3 because in the experiment, n ≈ 3
and 4 precursor activity was observed for both type I and type II
ELMs [6,10]. The IDBALL code is used forn = ∞ballooning
modes.

In the calculations, the conductive wall is assumed to be
far from the plasma. Since the modes have very localized
structure, a more realistic treatment of the wall structures
would have little effect on the results.

3.1. Triangularity and edge safety factor

To investigate the effect of the triangularity and edge safety
factor on the edge stability, we take the earlier type I ELM
study as a starting point. We modify the equilibrium by
changing the plasma shape and q-profile while keeping the
density and temperature profiles unchanged. Type I ELMy
plasma is characterized by low triangularity (δ < 0.3) and low
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safety factor at the edge (q95 < 4.5). To simulate type II ELMy
plasma conditions we increase both the triangularity and q95

(δ = 0.45, q95 = 5.0). The triangularity is increased by
shaping the plasma using the poloidal coils and the q-value by
increasing the toroidal magnetic field. The stability analysis
shows that when the triangularity and q95 are increased, the
edge pressure gradient and, consequently, also the bootstrap
current at the edge can be increased 30% higher before plasma
becomes low-n peeling–ballooning mode unstable. The result
agrees with the stability calculations for n = 5 mode for
triangularity scans in DIII-D [11] as well as low-n mode
stability analyses in JET [12] and JT-60U [13]. The higher
stability limit also agrees qualitatively with the observed high
pedestal pressure in ASDEX Upgrade in high triangularity
discharges [14].

In addition to the stabilizing effect, the eigenfunction of
the unstable mode becomes narrower. This is shown in figure 2
for n = 3. Lower mode numbers (n = 1, n = 2) remain stable
even with increased edge pressure gradient. It should be noted
here that neither of the factors (δ or q95) alone is sufficient to
make the eigenfunction of the instability narrow, but both are
required. On the other hand, increasing triangularity improves
the plasma stability against low-n peeling–ballooning modes
even when q95 is kept fixed.

The triangularity has very little effect on the ballooning
stability except for the very edge (normalized poloidal flux
ψ > 0.98). If the density is kept low, both the plasma with
high triangularity (δ = 0.45) and low triangularity (δ = 0.15)
have second stability access in the steepest pressure gradient
region (0.94 < ψ < 0.98) with the experimental density
and temperature and self-consistent bootstrap current. Only
in the very edge (ψ > 0.98) does the pressure gradient of
the low triangularity plasma become limited while the high
triangularity plasma stays in the second stable region.

The normalized pressure gradient α increases with the
increasing q because α ∼ q2. However, the second stability
access depends only on the shear (sufficiently low shear opens
the access), and if the second stability access is open, α is not
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Figure 2. Fourier analysis of the eigenfunctions of the radial
displacement for the n = 3 peeling–ballooning mode for different
q95–δ combinations. Each curve represents the eigenfunction of a
single poloidal mode number. Low-q95 = 4.3, high-q95 = 5.0,
low-δ = 0.15, high-δ = 0.45.

limited by the n = ∞ ballooning mode at all. Therefore,
varying q95 has no effect on the second stability access of
the edge ballooning modes as long as the edge shear remains
unchanged in such a variation.

Assuming that the instability removes edge plasma in
a region of a width proportional to its eigenfunction width,
increasing triangularity and edge safety factor would imply
reduced loss of plasma during an ELM crash. However, since
the stability is also improved, higher edge pressure gradient and
bootstrap current is required to destabilize the low-n peeling–
ballooning mode. If the pressure gradient is not limited by the
n = ∞ ballooning mode, the triggered ELM crash can happen
at a higher value of pedestal pressure. This could actually
lead to a larger loss of plasma, if the low-n peeling–ballooning
mode is indeed the main cause for the loss of plasma during an
ELM. However, if the pressure gradient becomes limited by the
ballooning mode, while the stability boundary for low-n modes
remains high, the low-nmodes will never become unstable, and
the only unstable modes are those with higher n. They have
narrower mode width than the low-n modes and the resulting
ELM would be small. Therefore, in order to achieve small
plasma losses, the changes in low-n peeling–ballooning mode
stability must be accompanied by the closing of the second
stability access for n = ∞ ballooning modes, for instance, by
increased shear.

It must be noted that because of the geometry of
the device, the position of the shaping coils in particular,
increasing triangularity by using shaping coils necessarily
moves the second x-point closer to the separatrix. Therefore,
the triangularity effect on the stability can be partly due to the
double null effect that we will also show to have similar effect
on the stability.

3.2. Density

The density has an indirect effect on the edge stability through
the bootstrap current. If the pedestal pressure is assumed fixed,
increasing density lowers temperature. This in turn increases
the plasma collisionality at the edge and, thus, reduces the
bootstrap current without lowering the pressure gradient. This
has a stabilizing effect on the low-n peeling–ballooning mode.
The stabilizing effect of the high density is shown in figure 3,
where the pressure is kept fixed and temperature and density
are varied for two different plasma shapes. The stabilizing
effect of increased density on the low-n peeling–ballooning
modes applies both to single and double null configurations.

The increasing density has the opposite effect on the
n = ∞ ballooning stability. In figure 4, the ballooning
stability boundary for α (=2Rq2(dp/dr)/B2) is plotted for
two different densities. Again, we keep the pressure at the
experimental value (ASDEX Upgrade shot no 15863) and
decrease the temperature as the density is increased. The
increased density-temperature ratio increases the collisionality
(from ν∗e ≈ 2.8 at the top of the pedestal, to ν∗e ≈ 5.5) and
reduces the bootstrap current near the edge. In the low density
case, the second stability access is open in the entire pedestal
region, but in the high density case, the access is closed. It
must be noted that in order to close the second stability access
in the entire pedestal region, the density is increased by 30%.
However, even a more modest (10%) density increase can make
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Figure 3. The n = 3 peeling–ballooning mode growth rate as a
function of the pedestal density-to-temperature ratio. The value 1 is
the experimental value.
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Figure 4. The experimental α in the pedestal region (—— ——)
together with n = ∞ ballooning mode stability boundary at the
plasma edge for high (n̄ = 1.1 × 1020 m−3, ——) and low
(n̄ = 0.9 × 1020 m−3, - - - -) densities. The open gap from
ψ = 0.93 to 0.987 for the low density case represents access to
second stability.

the second stable region considerably narrower than in the
low density case. In this case, the second stability access is
achieved only between ψ = 0.95 and 0.96. Except for this
narrow gap, the access is closed in the pedestal region.

The closing of the second stability access by the high
collisionality means that in high density plasmas the edge
pressure gradient becomes limited by the ballooning mode.
For low density plasmas, the pedestal pressure gradient
is not limited by MHD instabilities until the bootstrap
current increases sufficiently to destabilize the low-n peeling–
ballooning mode. As shown in the previous section, in type II
ELM conditions (high δ and q95), the low-n stability boundary
allows a higher value for the pressure gradient. If the pressure
gradient is now limited by the high ballooning mode due to the

increased collisionality, it is possible that the wide low-nmodes
are entirely avoided, and the ELM is triggered only by an
intermediate-n peeling–ballooning mode with much narrower
radial extent. The resulting ELM then leads to a smaller loss
of plasma.

3.3. Closeness to double null

To investigate the significance of the closeness to the double
null we analyse two ASDEX Upgrade plasmas (nos 15863
and 15865) with almost identical density and temperature
profiles and δ = 0.42, q95 = 4.2, but one with slightly
closer to double null. These shots are chosen because one
of them (no 15865) has mixed type I and type II ELMs and
the other one (no 15863) pure type II ELMs. We complete the
analysis with an artificial plasma with the same profiles, but
in a full double null configuration. We determine the stability
boundary for the low- to intermediate-n modes by scaling the
edge temperature gradient and, thus, the pressure gradient and
indirectly also the edge bootstrap current. Since GATO can
use only closed field line configurations, plasma boundary
is moved ψ = 2 × 10−4 inside the separatrix to avoid the
x-point. The part that is cut away is very narrow. Therefore,
the high increased shears effect produced by the second x-point
is retained.

We find the double null configuration to have a stabilizing
effect on the low-n peeling–ballooning modes. The second
x-point creates a strong magnetic shear in its vicinity (just like
the first x-point). The increased shear eliminates the peeling–
ballooning mode near the x-points as can be seen in figure 5 for
an n = 3 mode. Figure 6 shows the growth rates for the n = 3
mode as a function of the maximum pressure gradient in the
pedestal region for the different configurations. The plasma
with type II ELMs has lower growth rate than the type I ELMy
plasma. The growth rate for a double null plasma is even
lower. However, as the mode number increases, the growth
rate increases in both plasmas. The higher the mode number,
the smaller the pressure gradient required to destabilize it. On
the other hand, the mode width decreases with the increasing
mode number. Consequently, the higher modes can directly
affect only a very narrow part of the plasma.

The double null configuration also makes the low- to
intermediate-n peeling–ballooning mode strongly localized at
the edge. The localization effect is prevalent irrespective of
the mode number. Even a small shift of the plasma towards
the upper x-point can lead to a significant change in the
eigenfunction width. This is shown for an intermediate-n
mode (n = 8) in figure 7. The vertical position of type I
and type II ELMy plasmas differ only by a few millimetres
at the midplane. On the top of the plasma, the type II ELMy
plasma is 8 cm closer to the second x-point.

The n = ∞ ballooning stability is also affected by the
double null. The shear at the low field side is increased only
little by the second x-point, but the most important shaping
effect is the slight widening of the second stability access.
However, when the density increases, the second stability
access closes also for the double null configuration just as in
the single null plasma. The density increase needed to close
the second stability access is increased by 10% the double null
configuration.
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Figure 5. The n = 3 peeling–ballooning mode structure for single
and double null plasmas. Both upper and lower x-point eliminate
the mode from their vicinity.

4. Conclusions

The above stability analysis allows for a qualitative
understanding of how the experimentally observed critical
parameters affect the ELM behaviour. We showed how the
stability properties of the edge plasma change, when the
plasma conditions are changed from those of type I ELMs
to those of type II ELMs. The most significant change is
the strong localization of the peeling–ballooning mode with
high triangularity, increased edge safety factor and moving
plasma closer to the second x-point. This effect applies to
all investigated mode numbers (n = 3–8). The even lower
mode numbers (n = 1 and 2) are not affected, since they are
stable in all cases. The stability boundary (as a function of the
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Figure 6. The n = 3 peeling–ballooning mode growth rate as a
function of the edge pressure gradient for plasmas with type I
(no 15865) ELMs, type II (no 15863) ELMs and for a double null
configuration.
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pressure gradient) of the n = 3 mode is also increased in type II
ELMy conditions. On the other hand, the instabilities with an
intermediate mode number (e.g. n = 8) were not stabilized,
but only the mode width became narrower in type II plasmas.

The non-linear development of the unstable mode was
not investigated, but we can assume that the effect that an
instability has on the plasma depends on its mode structure.
A radially extended mode should expel more plasma than a
narrow one. With this assumption the observed differences
between type I and type II ELMs can be explained using the
stability analysis results. Both type I and type II ELMy plasma
equilibria with self-consistent bootstrap current become first
unstable to an intermediate-n peeling–ballooning mode. The
instability has a narrow eigenfunction and affects only the

266



MHD stability analysis of type II ELMs

very edge of the plasma (ψ > 0.98). However, for type I
ELMy plasmas, the wide (radial extent 0.7 < ψ < 1.0) low-n
mode stability boundary is close to the stability boundary of the
intermediate-n modes. Thus, the low-n modes could become
destabilized as the very narrow mode removes plasma from
the edge and the pressure gradient becomes steeper. The wide
low-n peeling–ballooning mode can then remove significant
amount of plasma from the edge. On the other hand, the
type II ELMy plasmas are more stable against the low-n modes.
Furthermore, for type II ELMy plasmas the mode width of the
intermediate-n mode is narrower and, thus, the effect on the
edge profiles is smaller. The high density in type II ELMy
plasmas keeps the bootstrap current low in the pedestal region.
This closes the second stability access for ballooning modes
and keeps the pressure gradient limited. Consequently, type II
ELMy plasmas do not become unstable for low-n peeling–
ballooning modes that have a wide radial structure. The
pressure gradient is relaxed before the bootstrap current can
destabilize these modes. In an ELM crash triggered by a
narrow intermediate-n peeling–ballooning mode only a very
narrow part of the edge plasma is lost and the resulting ELM is
small in amplitude. The improved stability against the low-n
modes and the narrow mode structure of the intermediate-n

modes agrees with the qualitative type II ELM model presented
in [4].

Also the difference in repetition frequencies can be
explained by differences in plasma conditions. First, since
the type II ELM is small, less current is lost at the edge during
an ELM crash. Additionally, the higher resistivity in type II
ELMy plasmas (due to low temperature and high density at
the pedestal) increases the current diffusion in the edge region
making the current recovery after an ELM faster. When
the bootstrap current has recovered from the previous ELM
crash, the stability limit is reached again and another ELM is
triggered. The entire ELM cycle becomes faster as the current
diffusion increases and the ELMs occur more frequently.

The integrated effect of the changes in stability properties
and speed of the current diffusion is thus that the type II
ELMs are smaller and more frequent than type I ELMs just
as observed in the experiments. During the transition from

type I to type II ELMs, both types of ELMs are observed. In
this state, some of the intermediate-n modes can destabilize
the low-n modes, but not all. As the plasma becomes more
and more stable against the low-n modes, fewer and fewer
intermediate-n modes can lead to a wide low-n instability.
The type I ELMs become less and less frequent until they are
completely replaced by the smaller type II ELMs.

In the peeling–ballooning mode stability analysis, we
investigated mode numbers up to n = 8 because the run times
of the stability code become excessive in thorough analysis
of higher mode numbers. A few sample cases with n = 15
showed similar mode structure with n = 8 with even narrower
mode width and higher growth rate. Furthermore, in this
analysis, the plasma was assumed static without any flows.
Future investigations should consider higher mode numbers
and possible effects of sheared flows on the stability.
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