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Abstract
An MHD stability analysis of the edge plasma shows that in highly triangular
plasmas, the increasing global βp has a stabilizing effect on the low-n
instabilities that trigger edge localized modes (ELMs). The improved stability
allows the access of higher edge pressure gradients before the ELM is triggered.
At the same time, the edge plasma moves closer to the high-n ballooning mode
stability boundary. The stability changes can explain why the high value of βp

helps to access smaller ELMs.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In a tokamak fusion reactor, high power load on divertor plates can cause unacceptable
erosion and should therefore be avoided. High confinement (H-mode) plasmas are usually
characterized by ELMs that release plasma particles and energy from inside the separatrix
into the scrape-off-layer (SOL) in short (t < 1 ms) bursts. These intense energy bursts are
especially detrimental to the divertor. The erosion is reduced if the ELMs are completely
eliminated or at least their amplitude lowered.

The most dangerous ELMs are Type I or ‘giant’ ELMs that release several per cent of
the plasma energy in each burst. Operation with smaller Type III ELMs significantly reduces
divertor loads, but unfortunately the confinement in plasmas with Type III ELMs is worse
than in those with Type I ELMs. Most probably, Type III ELMs are not a suitable operating
regime for a fusion reactor. Compared with the Type I ELMs, the Type II or ‘grassy’ ELMs
have significantly lower energy loss per ELM, while the plasma confinement is maintained at
the same level. They offer the possibility of operating the tokamak fusion reactor with good
edge confinement and small ELMs.

Connor et al [1] have proposed a model where Type I ELMs are caused by a coupled
peeling–ballooning instability driven by the interplay between the edge pressure gradient and
the edge current. The model has been found to produce results for ASDEX Upgrade Type I
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Figure 1. The density (——) and temperature (- - - -) profiles as a function of normalized radius
in ASDEX Upgrade shot 15865 at 5.0 s.

ELMy plasmas in agreement with the experimental observations [2]. Recently, on JT-60U, it
has been observed that the edge stability is improved in high triangularity plasmas, when βp is
increased [3]. Additionally, high βp is found to facilitate the access to plasmas where the giant
Type I ELMs are replaced by smaller grassy ELMs [4]. In this paper, we use the ELM model
to study the edge stability changes when the global βp is increased. Following the model,
in the stability analysis, we concentrate on low- to intermediate-n peeling–ballooning modes
and high-n ballooning modes, because, in addition to ASDEX Upgrade, these instabilities are
found to explain the Type I ELM triggering DIII-D and JT-60U [5] as well.

2. Investigated plasma equilibria

We investigate the effect of the core βp on the edge stability by starting from an equilibrium of
an experimental plasma that displays Type I ELMs. We artificially increase the core pressure,
but keep the edge profiles unchanged. We also vary the shape of the plasma to see if the effect
of the increased βp depends on the plasma shape. Figure 1 shows the profiles for electron
temperature and density as a function of ρ = √

ψN where ψN is the normalized poloidal
flux. The profiles are taken from ASDEX Upgrade shot #15865 at 5.0 s and smoothed for the
equilibrium reconstruction. For ions, we assume Ti = Te. In this shot, the plasma current is
0.8 MA and the toroidal magnetic field is 2 T. The geometric major radius is 1.67 m and the
minor radius is 0.50 m. The triangularity of the plasma is 0.42 and elongation 1.69. The global
βp in this discharge is 1.1.

The edge stability is determined by the pressure gradient, the magnetic shear and the current
gradient. These are connected so that the magnetic shear depends mainly on the current
density—the higher the current density, the lower the shear. At the edge of the plasma,
the bootstrap current dominates the inductively driven current because of the very steep
pressure gradient of the edge transport barrier. We include the bootstrap current in the
equilibrium calculation using an analytical formula for the flux averaged parallel bootstrap
current 〈 j · B〉/(µ0J ) given by Sauter et al [6]. Figure 2 shows the pressure gradient and the
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Figure 2. The pressure gradient for the plasma with no ITB and the current density with and
without bootstrap current included in the equilibrium reconstruction.
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Figure 3. The density profiles used in the βp scan.

flux surface averaged toroidal current density with and without bootstrap current near the edge.
In the stability analysis, we vary the amount of the bootstrap current that is taken into account
in the equilibrium reconstruction. This can be interpreted as the gradual current build-up prior
to an ELM.

We modify βp by creating an artificial internal transport barrier (ITB) in the density profile.
The effect on the edge stability is the same, if instead the temperature profile is modified. The
shape of the plasma is kept unchanged and the magnetic axis moves outwards according to
the Shafranov shift. The density profiles used and the corresponding βp values are shown in
figure 3.
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Figure 4. (a) The plasma perturbation of the n = 3 peeling–ballooning mode for ASDEX Upgrade
shot #15865 at 5.0 s. (b) Fourier decomposition of the radial perturbation, X = ξ · ∇ψ .

3. Stability analysis

We analyse the edge plasma stability changes for both low- to intermediate-n peeling–
ballooning modes and high-n ballooning modes as βp is increased. In ASDEX Upgrade,
n = 3 precursors have been observed for Type I ELMs [8]. Therefore, the main emphasis here
is on the analysis of the changes in the behaviour of the n = 3 mode with the change in βp.

3.1. Low- to intermediate-n stability at high triangularity

In the ideal MHD stability analysis for the low- to intermediate-n (1 � n � 8) modes we use
the GATO code [7]. Computational limitations restrict us from studying even higher mode
numbers. The conductive wall is assumed to be far from the plasma. Since the instabilities are
very localized, the wall has a very small effect on them in any case and no change in stability
was found for a few selected cases that were studied with a realistic ASDEX Upgrade wall.
GATO cannot handle a separatrix in the plasma. Therefore, we cut away 0.02% of the flux
from the separatrix. We investigated the effect of the cut-off and found that 1% of the flux
had to be cut from the plasma to see changes in the stability. It is, therefore, unlikely that the
stability boundaries presented here are significantly different in a true separatrix plasma.

In the stability analysis, we increase βp by raising the core pressure. For each value of βp

we also vary the amount of bootstrap current that was included in the equilibrium reconstruction
to find the stability boundary. With fixed edge temperature and density profiles, this bootstrap
current fraction (percentage of the full bootstrap current given by the formula in [6]) determines
the current in the edge region.

The n = 1 and n = 2 modes are stable in the entire investigated range of equilibria with
the exception of the lowest value of βp with the highest value of current. Therefore, they
are excluded from the results. The mode structure of an n = 3 peeling–ballooning mode for
βp = 1.1 and 100% bootstrap current fraction is shown in figure 4. A comparison between
n = 3 and n = 8 mode widths is shown in figure 5, where the sums over all the Fourier
components of the radial displacement are plotted. As can be seen, the mode structure gets
gradually narrower with increasing mode number. In a convergence test, we found that a grid
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for n = 3 (——) and n = 8 (- - - -) modes.
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Figure 6. The convergence study for two plasmas and two mode numbers showing the growth
rate as a function of the inverse grid size 1/(Nψ × Nχ ). The growth rates of the n = 3 mode are
multiplied by 5.

of Nψ ×Nχ = 200 ×400 flux surfaces and poloidal angles for n = 3 and 300 ×600 for n = 8
were sufficient to determine the stability. The convergence of the n = 3 and n = 8 modes is
illustrated in figure 6 where the growth rates are plotted as a function of the grid size for two
plasmas, one that is stable and the other that is unstable against both modes.

We find the driving mechanism of the instability by comparing two equilibra with different
edge pressure gradients. The reference equilibrium (profiles shown in figure 1) has the
maximum flux surface averaged pressure gradient of 520 kPa m−1. In the other equilibrium,
we steepen the temperature gradient in the edge region so that the maximum flux surface
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Figure 7. The growth rate of the n = 3 peeling–ballooning mode as a function of toroidal current
in the pedestal region (ρ > 0.96) for two values of maximum pedestal gradient.

pressure gradient is increased by 40% to 730 kPa m−1. The core profiles and global values
of βp are identical. We compare the equilibria by varying the edge current and analysing the
stability against the n = 3 mode. The result of the stability comparison is illustrated in figure 7.
It can be seen that both the increase of the edge current and the increase of pressure gradient can
destabilize the edge plasma. Therefore, the instability is driven by both the pressure gradient
and the current density.

When the core pressure and βp increase, the plasma equilibrium is altered. The bootstrap
current in the ITB gradient region increases, and of course, with a sufficiently large increase,
it affects the global stability of the plasma, but with a modest increase of βp, it has little
direct effect on the local edge stability. The effect on the edge equilibrium is caused by the
increased Shafranov shift that makes the flux surfaces more tightly packed on the low-field
side. The shift lowers the inverse aspect ratio (ε = a/R) on the outboard side. Since the ratio
of trapped to passing particles is approximately

√
2ε/(1 + ε), it is also reduced with increasing

Shafranov shift. The decreasing fraction of trapped particles lowers the flux surface averaged
bootstrap current 〈 j · B〉bs/(µ0J ) that dominates the inductively driven current in the edge
region. Figure 8 illustrates how the toroidal current profile at the midplane varies with βp. The
current peak on the low-field side is reduced with increased βp.

We integrate the current density over the poloidal cross-section area between two flux
surfaces and then differentiate with respect to ψN to get dI/dψN(ψN), where I is the toroidal
current. The edge profile of dI/dψN(ψN) is plotted in figure 9. The reason for the lower
toroidal current at high βp is the following. First, as explained above, the flux surface averaged
current is reduced by the smaller trapped to passing particle ratio. Second, since the flux
surfaces on the low-field side are closer together, the poloidal cross-section area between two
flux surfaces is also reduced there. At same time, the area between flux surfaces on the high-
field side is increased, but since the toroidal current density is much higher on the low-field
side, its contribution to the total current between two flux surfaces is much smaller than that
of the low-field side. Consequently, the integrated toroidal edge current between two flux
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Figure 9. The flux averaged toroidal current density dI/dψN in the edge region for four values of
global βp .

surfaces is reduced with increasing βp. However, as can be seen in figure 10, the q-profile in
the edge region varies little with βp.

In plasmas with high triangularity, in addition to the reduction of the current, the shifting
of the flux surfaces makes the curvature of the magnetic field more ‘favourable’ in the edge
region, i.e. the average κ · ∇p decreases. This is shown in figure 11, where 〈κ · ∇p〉 is plotted
as a function of the radius. The averaging is done along the field line around the poloidal plane.
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Figure 11. The driving term of the pressure driven modes (κ · ∇p) averaged over the poloidal
angle along the field line for high (δ = 0.42) and low (δ = 0.1) triangularities.

Since the low-n peeling–ballooning modes are localized in the edge (as was shown in
figure 5), the decreasing edge current and more favourable curvature with increasing βp has
a stabilizing effect on these modes as can be seen in figure 12. The plot shows the growth
rates of the n = 3 and n = 8 peeling–ballooning modes as a function of the bootstrap current
fraction for various values of βp. With increasing βp the stability boundary moves to higher
values of the bootstrap current, i.e. more bootstrap current is required for the destabilization of
the plasma at high βp than at low βp. With sufficiently high βp, both modes can be stabilized
even with 100% bootstrap current.

With the increasing mode number the ballooning (pressure driven) character of the mode
becomes more dominating. Therefore, the edge current has to be lowered more to stabilize
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Figure 12. Growth rate of the n = 3 and n = 8 peeling–ballooning modes for the plasma with high
triangularity (δ = 0.42) as a function of the bootstrap current fraction for various values of βp .

the mode with the lowest value of βp. Also, the growth rates of the unstable high-n modes
are higher than those of low-n modes, but on the other hand, the high-n modes are stabilized
to some extent by the finite gyro radius stabilization whose effect is proportional to the mode
number [9–11]. Unfortunately, this effect cannot be taken into account in GATO calculations.

With very high βp (in this case βp = 1.7), a global mode appears. It is a core mode that is
driven by the current at the steep pressure gradient region of the ITB. The radial mode structure
of this mode is shown in figure 13. It gives the limit of how much the edge stability can be
improved by increasing the core pressure.

3.2. The effect of plasma shape

In earlier studies of ELMy ASDEX Upgrade plasmas [12,13], the plasma triangularity has been
found to improve the plasma stability against the low-n peeling–ballooning modes. We analyse
the stability of the equilibria with the same plasma profiles as above but with a different plasma
shape to investigate how the triangularity affects the stabilizing effect of the high core pressure.
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Figure 13. Fourier decomposition of the n = 3 peeling–ballooning mode displacement X = ξ ·∇ψ

in the plasma with βp = 1.7.
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Figure 14. Growth rate of the n = 3 peeling–ballooning mode for the plasma with low triangularity
(δ = 0.10) as a function of the bootstrap current fraction for various values of βp .

As can be seen in figure 14, at low triangularity, the low and high βp stability boundaries are
closer to each other and, thus, the stabilizing effect is reduced. The reason for the reduced
stabilizing effect in low-triangularity plasmas is that the flux surface averaged favourability of
the curvature, 〈κ ·∇p〉, is not affected by the shift of the flux surfaces like in high-triangularity
plasmas, as can be seen in figure 11. The only stabilizing effect from the increasing βp is then
due to the reduction of the edge toroidal current and naturally the stabilization effect becomes
weaker. This agrees qualitatively with the experimental observations at JT-60U, where the
improved stability is observed only at high triangularity [3].

On the other hand, the double null shape makes the plasma more stable requiring a higher
bootstrap current for the destabilization for all values of βp. The stabilizing effect of high βp

is similar to that of a normal high triangularity single null plasma.
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Figure 15. The n = ∞ ballooning mode stability boundaries (small symbols) and equilibrium
values (large symbols) in shear-α space on three flux surfaces for three values of βp .

3.3. Ballooning stability

We investigate the n = ∞ ballooning mode stability using IDBALL (based on methods
described in [14]). Figure 15 shows the ballooning stability boundaries and the equilibrium
points in the space where the normalized pressure gradient α(= −2 µ0Rq2(dp/dr)/B2) is
the x-axis and the magnetic shear s(= dq/dr r/q) is the y-axis. The quantities are evaluated
at the low-field side midplane. The ballooning stability is evaluated at three radial positions: at
the top of the pedestal (ρ = 0.964), at the location of the steepest pressure gradient (ρ = 0.982)
and between the steepest region and the plasma edge (ρ = 0.99), and 100% of the bootstrap
current is taken into account in all the equilibria. The increasing βp moves the equilibrium
point closer to the n = ∞ ballooning stability boundary, but at the steepest pressure gradient
region, all plasmas still have access to the second stability region.

4. Summary and discussion

For the high triangularity plasmas, the MHD stability of the edge plasma against the low-n
peeling–ballooning modes was shown to improve with fixed edge parameters as the core
pressure was increased. This is due to the decrease of the edge current and the more favourable



1270 S Saarelma and S Günter

average curvature. The stabilizing effect is smaller with low-triangularity plasmas. For the
n = ∞ ballooning mode the change in stability with global βp is smaller. The equilibrium
moves closer to the high-n ballooning stability boundary as βp increases.

Since we used a linear code in the analysis, the non-linear behaviour of the instabilities was
not investigated. Therefore, it is not possible to interpret exactly how the ELM phenomenon
changes with increasing βp. However, the improved edge stability of the high-βp plasmas with
high triangularity, would certainly have an effect on the ELM cycle. Because of the improved
stability, higher edge pressure gradients (that drives the destabilizing bootstrap current) should
be attainable before the ELM crash. This agrees with experimental observations.

Since the stability against low-n modes is improved with increasing βp and at the same
time the equilibrium moves closer to the high-n stability boundary, it is likely that the instability
that eventually triggers ELMs in the high-βp plasma has a higher mode number than in the
low-βp plasma. As was shown in figure 5, the increase in the mode number makes the radial
width of the instability narrower. Assuming that the ELM size is proportional to the radial
width of the triggering instability, the increase in the mode number of the triggering instability
could explain why the observed access to smaller ELMs is facilitated with the increase of βp.
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