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Symbols and definitions

A magnetic vector potential

a nodal value of the magnetic vector potential

B magnetic flux density, coefficient related with rotor bar equations

C capacitance

e unit vector (e), electromotive force in electrical machine (dψ/dt)

E electric field strength

F coefficient related with field and winding equations

f frequency

G coefficient related with the circuit equations

H magnetic field strength

I effective RMS value of current

i current, index

J current density, Jacobian, moment of inertia

j index

K coefficient related with the connection of the windings

k index of a time step

L inductance

l length

M coefficient related with the connection of the windings

N number of turns or nodes

n number of phases or rotor bars, rotational speed

P coefficient related with the connection of the windings, power

p number of pole pairs

Q coefficient related with winding equations

R resistance

r residual function

S cross section area, coefficient related with field equations

s slip

T torque

t time

U effective RMS value of voltage

u line-to-neutral voltage

v line-to-line voltage
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W coefficient related with phase winding equations

x general variable

z coordinate axis

α cutoff frequency of the high-pass filter used in numerical integration

γ number of symmetry sectors in the finite element mesh

∆ difference

θ angular position of rotor

λ weight function

ν reluctivity

σ conductivity

φ electric scalar potential

ψ magnetic flux linkage

Ω integration area

ω angular frequency

Subscripts

b rotor bar

c capacitance

e end winding

f field

g grid

L load

m mechanical

max maximum

min minimum

N rated value

n node

neg negative

pos positive

r rotor

s stator

sc short circuit

w winding

z z-axis

0 coefficient referring to the previous time step

∆ increment
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Superscripts

abs absolute

circ circuit parameter approach

cur current output approach

D delta connection

dir direct coupling

dyn dynamic

k current time step

k− 1 previous time step

meas measured

n iteration step

rel relative

T transpose

Y star connection

Abbreviations

AC alternating current

DC direct current

DFIG doubly-fed induction generator

DTC direct torque control

FEM finite element method

RMS root mean square

TR transformer

Vectors are typed as lowercase bold italic, for examplea. Matrices and vector fields are typed
as uppercase bold italic, for exampleS, H. Independent variables are denoted by prime, for
examplex′.

MATLAB and SIMULINK are registered trademarks of MathWorks, Inc. FLUX2D id a regis-
tered trademark of Cedrat. Maxwell2D and SIMPLORER are registered trademarks of Ansoft
Corporation. FEMLAB is a registered trademark of Comsol, Inc.
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1 Introduction

During the past few decades, the numerical computation of magnetic fields has gradually be-
come a standard in electrical machine design. At the same time, the amount of power electro-
nics coupled with electrical machines has continuously increased. The design of converters and
electrical machines has traditionally been carried out separately, but the demands for increa-
sed efficiency and performance at lower cost push the product development activities towards a
combined design process. Especially in large motor drives and variable-speed generators, both
machine and converter must be individually tailored to worktogether and thereby guarantee
the best possible performance for the application. In such atask, a combined simulation envi-
ronment, where the magnetic field analysis of the electricalmachine is coupled with a detailed
model of the converter is required.

The finite element method (FEM) currently represents the state-of-the-art in the numerical mag-
netic field computation relating to electrical machines. The converter models are generally
composed of relatively simple electrical circuits and a control system with varying complexity.
In the scope of this thesis, a typical motor or generator can be modelled with high accuracy
by two-dimensional FEM, which is coupled with the circuit equations for the windings. The
converter circuits usually contain a few passive circuit elements, such as inductors and capa-
citors, and also switching components, which are often modelled as ideal switches. For such
circuits, coupling with the FEM computation is quite simpleand reported widely in the litera-
ture. The control systems, on the other hand, are nowadays based on complex estimators and
feedback loops, and they are typically implemented by digital signal processors. Consequently,
the control system simulation is usually carried out in system simulators, like SIMULINK,
using very simple analytical models for electrical machines.

In order to achieve the desired system-simulation environment for electrical machine and con-
trolled converters, the FEM computation must be coupled with the circuit and control simula-
tion. For this purpose, new knowledge about the coupling mechanisms is required. Based on
the previous studies and comparative analysis of newly developed methods, this thesis aims at
proposing an optimal methodology for coupling the FEM models of electrical machines with
external circuits and closed-loop control systems.

1.1 Overview of the coupled field-circuit problems

In the following literature review, the coupled field-circuit problems are studied from the vi-
ewpoint of electrical machines and converters. The main field of interest is the coupling of
two-dimensional finite element analysis with the circuit and control equations. In the early
1980’s, formulations for such coupling were developed for modelling voltage-supplied electri-
cal machines. Inclusion of external circuits with power electronics was presented widely during
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the late 1980’s and early 1990’s. However, most of the studies concerned rather simple geo-
metries and circuits, because the computational facilities were limited and most of the authors
had to develop the program codes themselves. Together with the increasing computational
power and development of the software, the complexity of themodelled systems has also incre-
ased. Nowadays, the trend is to model large systems as a whole, including electromagnetics,
thermal fields, kinematics and control systems. However, there is still a lot of work ahead to
achieve this goal and the coupling mechanisms need to be studied further.

The formulations, terminology and numerical methods in thefield-circuit problems are discus-
sed by Tsukerman et al. (1993). The most usual approach is themagnetic vector potential
formulation with filamentary and solid conductors. The filamentary conductors, sometimes re-
ferred as stranded conductors, consist of several turns of thin wire carrying the same current. In
order to simplify the analysis, the eddy currents in filamentary conductors are not taken into ac-
count, but a constant current density is assumed. In the solid conductors, or massive conductors,
eddy currents represent a significant part of the total excitation and they cannot be omitted from
the analysis.

The numerical solution of the coupled problem is generally accomplished directly or indirectly.
The difference lies in, whether the field and circuit equations are solved simultaneously or
sequentially. Eustache et al. (1996) have discussed the coupled problems more generally, espe-
cially pointing out the benefits and applicability of indirect coupling procedures. When the time
constants in the subdomains differ significantly from each other, it is advantageous to decouple
the domains and utilize different time steps. Another major advantage is that the decoupled
models can be constructed separately by the experts in different fields. Hameyer et al. (1999)
classified several types of coupled problems on the basis of physical, numerical or geometrical
coupling. When considering the coupling between magnetic fields and electrical circuits, the
coupling is physically strong, which means that they cannotbe considered separately without
causing a significant error in the analysis. However, they can be analyzed indirectly in the case
of different time constants. In this thesis, similar definitions are adopted for strong, weak, direct
and indirect coupling, as presented in the references mentioned above.

1.1.1 Numerical methods

The numerical methods for the solution of strongly coupled problems with finite elements are
studied extensively in the literature. In the time-stepping analysis of FEM-based nonlinear dif-
ferential equations, the solution process requires methods for modelling the time-dependence,
handling the nonlinearity and solving the resulting systemof equations. Many aspects of this
process are discussed by Albanese and Rubinacci (1992), for example.

The simple difference methods, like backward Euler, Galerkin or Crank-Nicholson, are the most
commonly used methods for the time-stepping simulation. While these utilize results from two
adjacent time steps, there are also numerous multi-step methods performing numerical integra-
tion over several time steps and providing higher accuracy.When phenomena of substantially
different time scales are coupled together, the problem is mathematically considered as stiff.
Most of the multi-step methods usually fail for such problems, but the implicit difference met-
hods often converge. Further discussion on stiff problems is presented by Gear (1971).
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For nonlinear equations, an iterative scheme is required for the numerical solution. The classical
Newton-Raphson method, with its several modifications, is used widely for this purpose, as well
as the block iterative Picard methods (Cervera et al., 1996; Driesen et al., 2002). In order
to improve the convergence, the iteration is often damped byrelaxation procedures, which
are discussed by several authors (Nakata et al., 1992; Fujiwara et al., 1993; O’Dwyer and
O’Donnell, 1995; Driesen et al., 1999; Vande Sande et al., 2003).

The final system of equations arising from the finite element method is typically sparse, sym-
metric and positive definite. When coupled field-circuit problems are considered, however, the
system of equations is indefinite and often ill-conditioned. This must be taken into account in
choosing suitable methods for preconditioning and factorization (De Gersem et al., 2000).

1.1.2 Modelling electrical machines by field and circuit equations

In the finite element model of an electrical machine, the magnetic field is excited by the cur-
rents in the coils. However, it is often more appropriate to model the feeding circuit as a voltage
source, which leads to the combined solution of the field and circuit equations. At first, time-
harmonic formulations using complex variables were presented for sinusoidal supply; later on,
approaches for time-stepping simulation were derived in order to model arbitrary voltage wa-
veforms or transients. The phase windings in the stator and rotor are generally modelled as
filamentary conductors, and the rotor bars in cage inductionmachines or damper windings in
synchronous machines are modelled as solid conductors witheddy currents.

Williamson and Ralph (1983) modelled an induction motor witha constant voltage source,
assuming uniformly distributed sinusoidal currents in thestator and rotor coils. The model
was extended by including eddy currents in the formulation (Williamson and Begg, 1985), and
introducing a time-stepping methodology for cage induction machines (Williamson et al., 1990)
and wound-rotor induction machines (Smith et al., 1990). The coupling between the magnetic
field and the feeding circuit was accomplished by coupling impedances, which were determined
by the finite element method and inserted into the circuit equations. In nonlinear cases, the
correct inductance values were determined iteratively from the field and circuit equations.

Most of the approaches for modelling electrical machines were based on the direct coupling
between the field and circuit equations. Shen et al. (1985) coupled the eddy-current formula-
tion with circuit equations and applied the method on a shaded-pole motor, assuming sinusoidal
variation of the field and circuit variables, and linear characteristics of the iron parts. After
including the nonlinearity of the iron and impedances of theend-ring, the method was also
applied to a cage induction machine using either the time-harmonic (Vassent et al., 1991a) or
time-stepping approach (Vassent et al., 1991b). Strangas and Theis (1985) presented a time-
stepping approach for analyzing a shaded-pole motor. They coupled the field equations directly
with the circuit equations of the stator coils, shading rings and the rotor cage. The same method
was also applied to a cage induction motor (Strangas, 1985) and a permanent magnet motor
(Strangas and Ray, 1988). A similar method was also presentedby Preston et al. (1988) and
applied to an induction motor. Arkkio (1987) presented a methodology for analyzing cage in-
duction machines using both time-harmonic and time-stepping approaches. This methodology
is also the computational basis for this work and is described thoroughly in Chapter 2.
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1.1.3 Coupling with external circuits

Based on the approaches for electrical machines presented above, the inclusion of external
circuits is relatively simple, since it only requires adding new elements into the circuit equations
of the windings. For this purpose, many authors have presented general methods, in which any
circuit models composed of resistors, inductors, capacitors, diodes or other semiconductors
can be coupled with the electromagnetic model of the electrical machine. The mathematical
formulations for the circuit equations are usually based onloop currents or nodal voltages, but
most of the formulations combine both approaches. The main reason for this is that the currents
of filamentary conductors and inductances, as well as the voltages of solid conductors and
capacitances, are the most natural selections for unknown variables in the coupled formulation,
and therefore result in the minimum number of equations.

Meunier et al. (1988) presented a generalized formulation for coupling two-dimensional finite
element analysis with solid or filamentary conductors usingsinusoidal voltage or current sour-
ces. Lombard and Meunier (1993) developed the method further for time-stepping analysis
allowing resistive and inductive components in the external circuit. The unknown variables of
the formulation were the magnetic vector potential, current in the filamentary conductors and
inductors, and voltage drop over the solid conductors. Tsukerman et al. (1992) presented a simi-
lar approach, allowing also capacitors in the external circuit. However, the voltage drop over the
capacitance was not included as an unknown variable but integrated from the current instead.
Salon et al. (1990) developed a method, which also takes movement into account, and Bedrosian
(1993) developed an indirect method, which separated the finite element and circuit equations
in order to gain a more efficient simulation by retaining the sparsity and positive-definiteness of
the finite element matrix.

Many authors have considered the field-circuit coupling from the circuit theoretical point of
view. The methods presented by Sadowski et al. (1995) and Charpentier et al. (1998) were based
on the state-space approach, where the inductor currents and capacitor voltages were considered
as the unknown variables in the circuit model. Similar equations were also obtained using the
modified loop approach (Väänänen, 1994) and the modified nodal approach (Wang, 1996; Costa
et al., 2000). Väänänen (1996) formulated the field equations to represent a multiport circuit
element, which was coupled to the electric circuit by the currents and voltages of the filamentary
and solid conductors. Abe and Cardoso (1998) coupled the fieldand circuit equations by a
special nodal formulation presented originally by Dommel (1969), in which the inductors and
capacitors were modelled as current sources in parallel with a variable resistor. Fu et al. (2004)
presented both nodal and loop formulations, which were applied to several example cases. The
selection of the appropriate formulation was case-dependent, since additional equations were
introduced in the nodal formulation by the filamentary conductors, and similarly in the loop
formulation by the solid conductors.

1.1.4 Coupling with power electronics

The simulation of power electronics together with electrical machines can be carried out in
several ways. The simplest approach is to define the supply voltage waveform with respect
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to time or position and use this pre-defined supply in the simulation. However, modelling
the real interaction between the electrical machine and theconverter also requires models for
the semiconductors. Usually, the switching elements are represented in the circuit model as
binary-valued resistors, the value of which depends on the state of the switch. A distinction
is often made between diodes and externally controlled switches because of the differences in
defining the switching instant. In the simulation of diodes,the time step must be adapted to
the switching instants in order to prevent negative overshoots in the current. For the externally
controlled switches, synchronization of the time steps is simple, since the switching instants are
already known in advance.

Arkkio (1990) simulated a cage induction motor and a frequency converter, in which the voltage
waveform was determined before the simulation. Preston et al. (1991a) used a similar approach
for the simulation of a switched reluctance motor drive, where the excitation current was defined
according to the rotor position. In the simulation of a synchronous generator and rectifier, the
field and circuit equations were decoupled and solved iteratively, and a procedure for searching
the switching instants in the rectifier was introduced (Preston et al., 1991b).

Piriou and Razek (1988) modelled the operation of a diode by means of an exponential function
and applied it to the simulation of a simple circuit consisting of a magnetic coil, voltage source
and diode. Later on, the method was extended for rotating machines and three-dimensional geo-
metries (Piriou and Razek, 1990a; Piriou and Razek, 1990b; Piriou and Razek, 1993). Väänänen
(1994, 1996) modelled the diodes by a resistance in parallelwith a controllable current source,
providing a smooth transition region between the conducting and non-conducting states. The
controllable switches were modelled in the same manner, butthe switching instants had to be
defined before the simulation. The method was applied to the simulation of a switched re-
luctance motor drive, a permanent magnet generator and a rectifier, and a cage induction motor
supplied by a frequency converter.

Williamson and Volschenk (1995) simulated a generator and arectifier using the same approach
that had previously been applied to induction machines (Williamson et al., 1990; Smith et al.,
1990). The diodes were modelled as binary-valued resistorsand the time steps were selected
according to the rate of change in the magnetic properties and the switching instants of the
rectifier.

Sadowski et al. (1993) presented a field-circuit simulationof a load-commutated inverter sup-
plying a permanent magnet motor. Switches were modelled as binary-valued resistors, and the
converter operation was divided into conduction and commutation sequences. The resistance
and inductance values in the phases were changed according to the states of the switches. The
method was developed further and the state-space approach was adopted (Sadowski et al.,
1995). Kuo-Peng et al. (1997) developed a general method using an automatic procedure to
construct the state-space equation for arbitrary circuit topologies and demonstrated the method
by simulating a fly-back converter with a saturable transformer. Linear forces and movement
was included for modelling contactors (Kuo-Peng et al., 2000) and, finally, the method was
extended for rotating machines by taking into account the polyphase structures and rotational
movement (Oliveira et al., 2001; Oliveira et al., 2002).
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1.1.5 Coupling with closed-loop control systems

Inclusion of a closed-loop control system within the field-circuit model has not been studied
very widely, since implementing the feedback loop into the time-stepping analysis is a rather
complex task. The basic scheme is to synchronize the time steps with the control system, which,
in turn, controls the switching components of the converter. The most common approach is to
pass the output data from the field-circuit simulation aftereach time step to the control system,
which makes the decision to set the switching state for the next step. Naturally, this causes a
one-step delay in the operation of the control system, but the error is usually negligible due to
the discrete characteristics of the controlled converter circuit. Another possibility is to couple
the control system equations directly with the field and circuit equations, when the switching
instants are not governed by the time stepping, but the time steps will be adapted according to
the desired control.

Demenko (1994) used direct field-circuit coupling to simulate a permanent magnet motor drive
with a simple control strategy, where the speed and positionof the rotor were used for con-
trolling the switches after each time step. Ito et al. (1997)simulated a similar system by
coupling the field analysis indirectly with the circuit and mechanical equations. The control
logic was also based on the angular position, but no details were presented. In the study of Ahn
et al. (2000), vector control of the current was coupled withthe field-circuit analysis of a linear
induction motor by running the vector control model betweenthe time steps. Ho et al. (2001)
modelled a current hysteresis controller with a brushless DC motor drive in a similar manner,
but an adaptive time-step control was added in order to keep the current within the hysteresis
limit. A similar approach was also applied by Jabbar et al. (2004) to a spindle motor drive with
a current hysteresis controller.

Kuo-Peng et al. (1999) included the closed-loop control systems into the software for coupled
field-circuit simulation, and applied the method to a nonlinear coil and transistor inverter with a
current hysteresis controller. As a continuation, Roel Ortiz et al. (2001) presented an approach
in which the control signals for the switches are generated during the simulation and the time
steps are automatically adjusted according to the control.The method was applied to a saturable
inductor and a full bridge inverter with sliding mode control. Manot et al. (2002) presented an
application of the method to model an induction heating device supplied by a resonant converter.

1.1.6 Software for coupled simulation

In most of the studies, the software used for the computationhas been developed in universities
for research purposes. The main reasons for this are the lackof suitable commercial software
with a reasonable price and the need to modify the program code freely. In many cases, the
development of a finite element code was started in 1970’s or 1980’s and then constantly deve-
loped to suit the current research interests. However, commercial FEM software is nowadays
available with various possibilities of coupling the field analysis with circuits or other fields,
but they are still not always suitable for university research due to unaffordable licence fees and
confidential computational algorithms or program code.
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One of the first commercial field analysis software with circuit coupling was FLUX2D by
Cedrat, which had a connection with the system simulator SIMPLORER. Later on, the link with
SIMPLORER was cancelled, but coupling between FLUX2D and SIMULINK is now available
(Cedrat, 2005). Another major contribution to commercial software is carried out by Ansoft,
presenting coupling between Maxwell2D and SIMPLORER (Ansoft, 2005). In addition, An-
sys, MagneForce and Infolytica provide software performing circuit simulation together with
finite element analysis (Ansys, 2005; MagneForce, 2005; Infolytica, 2005), and Comsol provi-
des FEMLAB, a multiphysics software for coupling any fields that can be described by partial
differential equations (Comsol, 2005). Naturally, there are numerous software vendors that are
not included in this study, but usually they are not activelyoperating in the field of electrical
machines or do not provide the field-circuit coupling.

1.2 Aim of the work

The original motivation for this work was to simplify the procedure of modelling and simulating
electrical machines and controlled power electronics. In this thesis, therefore, a methodology
is presented for coupling two-dimensional FEM computationof electrical machines with the
system simulator SIMULINK. The main objective is to providemethods for constructing a
large-scale simulation model in SIMULINK, with the FEM computation included as a simple
functional block representing the electrical machine. Thebenefits obtained by such a methodo-
logy are ease of model construction and simulation, flexibleoptions for post processing and the
possibility of extending the finite element analysis for experts in power electronics or control
systems without a comprehensive knowledge of FEM computation.

Another important goal of the work is to explore the couplingmechanisms between the magne-
tic fields, circuits and control systems. Two numerical approaches will be presented: the current
output approach and circuit parameter approach, and their applicability for such a task will be
evaluated. The results obtained in this work will be analyzed in order to find an optimal en-
vironment and methodology for the simulation of coupled magnetic fields, circuits and control
systems.

1.3 Scientific contribution

The scientific contribution of this study comprises the following:

1. A methodology for coupling time-stepping finite element analysis with a system simulator
is presented.

2. The development and evaluation of two numerical couplingmethods based on current
output or circuit parameters.

3. A simulation of closed-loop control systems with the finite element analysis using diffe-
rent time steps for the subdomains.
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4. Confirmation of the applicability of the methodology by examples relating to real indust-
rial applications.

5. The proposal of an optimal environment and methodology for coupled simulation of mag-
netic field, circuits and control systems.

1.4 Outline of the thesis

The aim of this chapter is to introduce the topic, relevant literature and the contents of the thesis.
Chapter 2 reviews the computational methods for the finite element analysis and presents the
two coupling methods, current output approach and circuit parameter approach.

In Chapter 3, the accuracy of the circuit parameter approach is evaluated by simulating a doubly-
fed induction generator and comparing the results to those obtained by directly coupled simu-
lation. Chapter 4 presents an example of a cage induction motor with compensation capacitors
and a simple grid model. The example is used for evaluating both the current output approach
and the circuit parameter approach by comparing the simulation results with each other and
directly coupled simulation. Chapter 5 presents two examples of frequency converter supply,
which are based on real industrial applications. Both the current output approach and circuit
parameter approach are used for the simulation and their performance is analyzed.

The results are discussed in each chapter and gathered together in Chapter 6, in which an optimal
environment and methodology for coupled simulation of magnetic field, circuits and control
systems is also proposed. Finally, the conclusion of the thesis is presented in Chapter 7.
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2 Computational methods

This chapter describes the computational methods that are used in simulating the example cases
in the following chapters. The finite element model for electrical machines, combining the
magnetic field equations with the voltage equations of the windings, is coupled with external
circuit equations using either direct or non-iterative indirect coupling. Two different approaches
are presented for indirect coupling: the current output approach and circuit parameter approach,
both of which are also implemented for SIMULINK.

2.1 Finite element model for electrical machines

In the model of the electrical machine, the magnetic field in the iron core, windings and air gap is
solved by the two-dimensional finite element method and coupled with the voltage equations of
the stator and rotor windings. The resulting equations are solved by a time-stepping approach,
while the Newton-Raphson iteration is utilized for handlingthe nonlinearities.

2.1.1 Equations for magnetic field and windings

Two-dimensional quasi-static magnetic field

The magnetic field in an electrical machine is governed by Maxwell’s equations

∇ × H = J (2.1)

∇ × E = −
∂B
∂t

(2.2)

where

H is the magnetic field strength

J is the current density

E is the electric field strength

B is the magnetic flux density.

It is assumed that the polarization and displacement currents are negligible because of the low
frequencies used with the electrical machines. Therefore,those components are omitted from
(2.1) and the analysis is referred to as quasi-static.
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Using the reluctivityν, we have the material equation

H = νB (2.3)

whereν is a material-dependent, possibly nonlinear function of the magnetic field. If the mate-
rial is not isotropic,ν must be replaced by a tensor taking into account the effect of the magne-
tizing direction. The magnetic vector potentialA defines the magnetic flux density as

B = ∇ × A (2.4)

and the substitution of (2.4) and (2.3) into (2.1) gives the fundamental equation of the vector
potential formulation for magnetic field

∇ × (ν∇ × A) = J (2.5)

The two-dimensional model is based on the assumption that the magnetic vector potential and
current density have onlyz-axis components and their values are determined in thexy-plane

A = A (x, y) ez (2.6)

J = J (x, y) ez (2.7)

whereez denotes the unit vector in thez-axis direction. As a result, (2.5) becomes

−∇ · (ν∇A) = J (2.8)

Source of the field

Although the two-dimensional analysis is utilized, let us first consider a general case. The
current density on the right-hand side of (2.5) can be determined from the material equation

J = σE (2.9)

whereσ is the conductivity. Combining (2.2) with (2.4) gives

∇ × E = −
∂

∂t
∇ × A (2.10)

which is satisfied by defining the current density as

J = −σ
∂A
∂t
− σ∇φ (2.11)

whereφ is the electric scalar potential.

For solid conductors in the axial direction, for instance rotor bars in cage induction machines or
synchronous machines, the gradient of electric scalar potential in (2.11) can be defined as

∇φ =
∂ub

∂z
ez = −

ub

lb
ez (2.12)
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whereub denotes the voltage across the rotor bar andlb is the total length of the bar. Accor-
dingly, the current density in rotor bars is

Jb = −σ
∂A
∂t
+ σ

ub

lb
(2.13)

For phase windings with several coils in series, the eddy current approach (2.11) would lead to
extremely inconvenient models due to the high number of thinconductors in each slot. In such
cases, the skin effect is excluded and the current density is

Jw =
Nwiw
Sw

(2.14)

whereNw is the number of turns in a coil,iw the current in the coil andSw the cross section of
the coil area.

Material properties

The magnetic properties of the laminated iron core are modelled by the reluctivityν, which is
a single-valued nonlinear function of the flux densityB, thus excluding the effect of magnetic
hysteresis from the analysis. Since the eddy currents are greatly reduced by the laminated
structure, the conductivity is set to zero in the laminated iron core.

The shaft and pole shoes, which are typically made of alloy steel, are modelled as conductive
iron with a nonlinear magnetization curve. In order to modelthe eddy currents, the current
density is given by (2.11), when the gradient of electric scalar potential is zero.

Resulting from the analysis above, the magnetic field in different materials can be presented in
the form

−∇ · (ν∇A) =







































0 in air and laminated iron

Nwiw/Sw in phase windings

−σ ∂
∂t A+ σub/lb in rotor bars

−σ ∂
∂t A in conductive iron

(2.15)

Stator and rotor windings

The computational model of the electrical machine can be greatly improved by coupling the
circuit equations of the stator and rotor windings with the two-dimensional field equation (2.15).
In the circuit equations, the dependence between current and voltage is solved and the circuit
quantities are coupled with the magnetic field by means of fluxlinkage. Also, the end-windings
outside the core region are modelled by including an additional inductance in the circuit model.

In a cage rotor, each rotor bar requires its own equation. Integration of the current density in a
rotor bar (2.13) over its cross sectionSb gives

ib = −
∫

Sb

σ
∂A
∂t

dS +
∫

Sb

σ
ub

lb
dS (2.16)
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When constant conductivityσ and uniform cross section areaSb are assumed in the bar and the
bar-end inductanceLbe is included, the above equation can be presented in the form

ub = lb

∫

Sb

∂A
∂t

dS + Rbib + Lbe
dib
dt

(2.17)

whereRb denotes the resistance of the bar including the end region. All the rotor bars are
connected by short-circuit rings in both ends of the rotor core. This is taken into account by
defining the end-ring resistanceRsc and the end-ring inductanceLsc

usc = Rscisc+ Lsc
disc

dt
(2.18)

whereusc andisc are vectors of voltage and current in the end-ring that connects the bars to each
other. Details of the end-ring model are presented by Arkkio(1987).

The phase windings in the stator or rotor consist of several coils connected in series and distri-
buted in several slots in the stator or rotor core. When the number of positively oriented coil
sides isNpos and the number of negatively oriented coil sides isNneg, integration of the current
density over all the coil sides in a phase winding gives a voltage equation

uw = lw























Npos
∑

n=1

Nwn

Swn

∫

Swn

∂A
∂t

dS −
Nneg
∑

n=1

Nwn

Swn

∫

Swn

∂A
∂t

dS























+ Rwiw + Lwe
diw
dt

(2.19)

wherelw is the length of the coils in the core region,Nwn is the number of turns in the coil side
n andSwn is the cross section area of the coil siden. Voltageuw is applied to the whole winding
and currentiw flows through all coils that belong to the phase winding. ResistanceRw includes
all coils and the end region outside the iron core.Lwe is the inductance outside the core region.

Finite element method

Several different methods can be utilized in the numerical solution of the magnetic field equation
(2.15), such as reluctance networks, the boundary element method, finite difference method or
finite element method. In this work, the numerical analysis is based on the finite element method
(FEM). The two-dimensional geometry is covered by a finite element mesh, consisting of first-
or second-order triangular elements. If possible, the cross section of the electrical machine
is divided inγ symmetry sectors, from which only one is modelled by FEM and symmetry
constraints are set on the periodic boundary.

In the finite element method, the approximation for the vector potential is

A =
Nn
∑

j=1

λ jaj (2.20)

whereNn is the total number of free nodes in the finite element mesh,λ j the shape function
associated with nodej andaj the magnetic vector potential in nodej. For nodes located on the
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outer surface of the stator, the vector potential value is fixed to zero. Therefore, these nodes are
not included in the computation.

The shape functionλ j has value 1 at nodej and 0 at all the other nodes. Between the nodes
in the surrounding elements, the shape function is fitted by first- or second-order polynomials,
depending on the order of the elements. Outside the associated elements, the value of a single
shape function is zero.

The numerical field equation is derived by Galerkin’s method, where (2.15) is multiplied by
shape functions and integrated over the whole finite elementmesh. Details of the method are
presented by, for example, Silvester and Ferrari (1990). For nodei, we get

∫

Ω

















Nn
∑

j=1

(

ν∇λi · ∇λ jaj + σλiλ j
∂aj

∂t

)

− σλiub − λi
Nwiw
Sw

















dΩ = 0 (2.21)

whereΩ represents the whole area of the finite element mesh. It should be noted, however, that
the last three terms of (2.21) are only present in the areas whereσ, ub or iw is defined and has
non-zero values.

The same approximation (2.20) is also applied to the windingequations (2.17) and (2.19). The
resulting equations are

ub = lb

∫

Sb

Nn
∑

j=1

λj
∂aj

∂t
dS + Rbib + Lbe

dib
dt

(2.22)

uw = γlw

Nn
∑

j=1























Npos
∑

n=1

Nwn

Swn

∫

Swn

∂aj

∂t
dS −

Nneg
∑

n=1

Nwn

Swn

∫

Swn

∂aj

∂t
dS























+ Rwiw + Lwe
diw
dt

(2.23)

whereγ is the number of symmetry sectors in the finite element mesh.

2.1.2 Transient time-stepping simulation

Numerical integration

The field and winding equations are coupled directly and solved in time-domain using constant
time steps denoted by∆t. The time derivatives are modelled by trapezoidal approximation,
in which the derivative is determined as a mean value from twosuccessive steps. Whenxk

represents any variable at the current time step andxk−1 is the same variable at the previous
step, the derivatives are approximated by

dxk

dt
+

dxk−1

dt
≈

2
∆t

(

xk
− xk−1

)

(2.24)

The equations for the time-stepping simulation are derivedby adding the equations from two
successive steps together and replacing the derivatives with expression (2.24). The method
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itself is very simple, and it has not been necessary to utilize more sophisticated methods as
no accuracy or convergence problems have occurred. Using this approach, the field equations
(2.21) are formed for each node in the finite element mesh, therotor bar equations (2.22) are
formed for each rotor bar in the solution sector and the phasewinding equations (2.23) are
formed for each phase winding in the stator or rotor. The resulting group of equations can be
presented as residual functions

rf = Sak + FT
b uk

b + FT
wsK

T
wsi

k
ws+ FT

wrK
T
wri

k
wr (2.25)

+ S0ak−1 + FT
b uk−1

b + FT
wsK

T
wsi

k−1
ws + FT

wrK
T
wri

k−1
wr = 0

rb = Fbak + Buk
b − Fbak−1 + Buk−1

b + Qb0ik−1
b = 0 (2.26)

rws = KwsFwsak + KwsWsKT
wsi

k
ws+ Qwsv

k
ws (2.27)

− KwsFwsak−1 + KwsWs0KT
wsi

k−1
ws + Qwsv

k−1
ws = 0

rwr = KwrFwrak + KwrWrKT
wri

k
wr + Qwrv

k
wr (2.28)

− KwrFwrak−1 + KwrWr0KT
wri

k−1
wr + Qwrv

k−1
wr = 0

wherea is a vector containing the nodal values of the magnetic vector potential,ub a vector of
the rotor bar voltages,iws a vector of the stator phase currents andiwr a vector of the rotor phase
currents. In general, subscript ‘f’ refers to the magnetic field, ‘b’ to the rotor bars, ‘ws’ to the
stator phase winding and ‘wr’ to the rotor phase winding. Superscriptsk andk − 1 refer to the
current and previous time steps, respectively.

The coefficient matricesS andS0 are nonlinear functions of vector potential, defined as

Si j =

∫

Ω

[

ν
(

ak
)

∇λi ·∇λ j +
2σ
∆t
λiλ j

]

dΩ (2.29)

S0,i j =

∫

Ω

[

ν
(

ak−1
)

∇λi ·∇λ j −
2σ
∆t
λiλ j

]

dΩ (2.30)

where the reluctivityν(a) is determined from the vector potential separately for eachelement,
depending on the flux density and material. The conductivityσ has a non-zero value only in
rotor bars and shaft. The dimensions ofS andS0 areNn× Nn, whenNn is the number of free
nodes in the finite element analysis.

For the rotor bars, matrixFb is defined as

Fb,i j = −
1
lb

∫

Ω

σλ jdΩ (2.31)

when nodej belongs to rotor bari. Otherwise, the entries ofFb are zero. The dimension ofFb

is nb× Nn, wherenb is the number of rotor bars in the solution sector. MatricesB andQb0 are

B =
∆t

2lbRb

{

1+
Rb

2

[(

Rsc+ 2
Lsc

∆t

)

1+
(

Rbe+ 2
Lbe

∆t

)

Mb

]−1

Mb

}

(2.32)
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Qb0 =
∆t
2lb

1−
∆t
2lb

[(

Rsc+ 2
Lsc

∆t

)

1+
(

Rbe+ 2
Lbe

∆t

)

Mb

]−1

(2.33)

·

[(

Rsc− 2
Lsc

∆t

)

1+
(

Rbe− 2
Lbe

∆t

)

Mb

]

whereRsc andLsc are the resistance and inductance between adjacent rotor bars in the short-
circuit ring and, respectively,Rbe andLbe are the resistance and inductance of the bar end outside
the iron core. The unit matrix is denoted by1 and the connection matrixMb is

Mb =
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(2.34)

with the dimensionnb× nb. The entries in the upper right corner and lower left corner are 1
for negative symmetry constraint and−1 for positive symmetry constraint in the finite element
mesh. The rotor bar currentikb is determined after the field solution from

ikb = −
[(

Rsc+ 2
Lsc

∆t

)

1+
(

Rbe+ 2
Lbe

∆t

)

Mb

]−1

(2.35)

·

{

1
2

Mb

(

uk
b + uk−1

b

)

+

[(

Rsc− 2
Lsc

∆t

)

1+
(

Rbe− 2
Lbe

∆t

)

Mb

]

ik−1
b

}

For phase windings in the stator or rotor, the matrixFw is defined as

Fw,i j = −

∫

Ω

λ jdΩ (2.36)

when nodej belongs to phase windingi and zero otherwise. The dimension ofFw is nw× Nn,
wherenw is the number of phases.

In the star connection, the connection matrixKw is

Kw =
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(2.37)

andMw is

Mw =


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with the dimensionnw−1× nw for both. In the delta connection, bothKw and Mw are unity
matrices with the dimensionnw× nw.

MatricesW, W0 andQw are

Wii = −
Rw,i∆t + 2Lwe,i

2γlw
(2.39)

W0,ii = −
Rw,i∆t − 2Lwe,i

2γlw
(2.40)

Qw =
∆t

2γlw
Mw (2.41)

W andW0 are diagonal matrices with dimensionsnw× nw.

The vector of magnetic flux linkagesψk
w in the phase windings can be determined from the field

solution by

ψk
w = γlwFwak (2.42)

It should be noted that the definitions of the currents dependon the connection. In the star
connection, the current vectoriw containsnw−1 independent line currents and the last component
is determined from Kirchhoff’s current law, because the sum of the currents has to be zero.In the
delta connection, the elements ofiw are the currents in the phase windings, which are different
from the line currents. The elements of the voltage vectorvw are always line-to-line voltages.

Nonlinear iterative solution

Due to the characteristics of the iron core, equations (2.25)–(2.28) form a nonlinear system of
equations that is solved by the iterative Newton–Raphson approach. The solution is based on
the Jacobian and the residuals, which are determined at eachiteration step and used for solving
the incremental changes in the variables. The iteration is finished when the increments in the
simulation variables per iteration step fall below the convergence limit.

Resulting from the stages described above, the final system ofequations for the nonlinear time-
stepping simulation of the electrical machine is
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where the superscriptn denotes the iteration step. The JacobianJ(a) is defined at each iteration
step by

Ji j = Si j +

∫

Ω

Nn
∑

k=1






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







∂ν
(

ak,n
)

∂aj
∇λi ·∇λk

















dΩ (2.44)

and the residual functions are determined by (2.26)–(2.28)using values from then:th iteration
step.
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Motion and electromagnetic torque

Unless a constant speed is assumed, the movement of the rotorduring time steps is solved from
the equations of motion

J
dωm

dt
= Te− TL (2.45)

ωm =
dθm
dt

(2.46)

whereJ is the moment of inertia,ωm is the angular speed andθm is the angular position of the
rotor. Te is the electromagnetic torque andTL is the load torque. The new position of the rotor
is determined at the beginning of each time step and a new meshis created in the air gap.

The electromagnetic torque is determined by the virtual work principle

Te =
∂

∂θm

∫

Ω

(∫ H

0
B · dH

)

dΩ (2.47)

where the integration areaΩ covers only the air gap. The implementation for finite element
analysis follows the approach presented by Coulomb (1983), in which the virtual movement is
determined by means of a coordinate transformation matrix without altering the air-gap mesh.

Initial state

The initial magnetic field for the time-stepping simulationis determined by complex time-
harmonic analysis (Arkkio, 1987). The simulation variables and sources are determined by
sinusoidal harmonic components, while a complex notation with amplitude and phase is used
for the variables. An effective reluctivity is considered, as described in (Luomi etal., 1986).

The resulting AC field solution is transformed into a DC field by taking the real values of the
variables and replacing the effective reluctivity with the absolute reluctivity. However, the field
solution obtained does not exactly correspond to the real initial field, but a steady state can
usually be reached after simulating a few periods of the supply frequency.

All information about the finite element mesh, materials andmagnetic field are stored in a text
file. The file contains the coordinates of the nodes, association between the nodes and elements,
material characteristics, values of vector potential and current density, dimensions and para-
meters of the electrical machines and some other parametersthat are required for the FEM
computation.

2.2 Direct coupling of field and circuit equations

The most reliable, but not very user-friendly, method for coupling external circuit equations
with the FEM equations (2.25)–(2.43) is to formulate a single system of equations modelling the
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whole system. All the equations will be solved simultaneously and the mathematical coupling
between the equations is strong. This approach, called direct coupling, is used for verification
and evaluation of the indirect methods presented in Sections 2.3 and 2.4. The coupled field-
circuit equations are later presented in detail for the casestudies, whereas only basic principles
are discussed here.

Typical circuit connections in the phase winding of an electrical machine comprise resistors,
inductors, capacitors and different types of power electronic switching components. In this
thesis, however, ideal switch models are utilized. The fundamental equations for resistanceR,
inductanceL and capacitanceC in multi-phase systems are

u = Ri (2.48)

u = L
di
dt

(2.49)

i = C
du
dt

(2.50)

whereu andi represent the vectors of voltage and current. The connection between the circuit
elements and electrical machine can be modelled by connection matrices, as (2.37) or (2.38).

In direct coupling, the circuit equations must be formulated separately for each case using the
same methods for numerical integration and nonlinear iteration. With the trapezoidal approx-
imation utilized in the finite element analysis, the fundamental circuit equations (2.48)–(2.50)
become

uk
− Rik + uk−1

− Rik−1 = 0 (2.51)

uk
−

2
∆t

Lik + uk−1 +
2
∆t

Lik−1 = 0 (2.52)

ik −
2
∆t

Cuk + ik−1 +
2
∆t

Cuk−1 = 0 (2.53)

The final system of equations, naturally, requires as many additional equations as there are
additional independent variables, but a Jacobian is not required in a case of linear circuit models.
An example with detailed equations is presented in Chapter 4.

2.3 Coupling by the current output approach

2.3.1 FEM model as a functional block

In the current output approach, the FEM model of the electrical machine is represented by a
functional block, solving (2.25)–(2.28). Figure 2.1 presents a schematic of the block, in which
the line currentsiws and iwr are solved from the phase voltagesvws andvwr in the stator and
rotor. The load torqueTL is also given as an input, unless a constant mechanical speedis
considered. The additional outputs are the electromagnetic torqueTe, mechanical speedωm,
angular positionθm and flux linkagesψws andψwr in stator and rotor phase windings. For a
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Figure 2.1: FEM model of the electrical machine as a functional block.

cage rotor, no inputs or outputs are required, because thereare no connections with the external
circuit.

Since the FEM block represents a voltage-controlled current source, coupling with external
circuit models is straightforward. Using the current output approach, the whole circuit model is
formulated as a block diagram, which is an ideal approach formodelling frequency converters,
for example, or other controlled systems. Nevertheless, block diagrams are inconvenient for
passive components, like resistors, inductors or capacitors. Because of this, even simple circuit
models may result in complex diagrams using this approach.

2.3.2 Implementation for SIMULINK

The functional block of Fig. 2.1 is implemented for SIMULINKas an S-function (Kanerva,
2001). The program code is written in Fortran and linked withMATLAB by predefined subrou-
tines that are required to create a functional block for SIMULINK (Simulink, 2005). Those
subroutines define the sampling times, inputs, outputs and state variables for continuous or
discrete computation.

As described in Section 2.1, constant time step∆t is used in the FEM computation. The samp-
ling time of the FEM block is set to that value, but the step sizes are not limited elsewhere
in the model. As a result, models run with major and minor timesteps and the mathematical
coupling between the FEM model and the external model is weak. This gives flexibility in the
model construction and the possibility of setting individual sampling times in different parts of
the model, resulting in an effective usage of computation resources for simulation. Naturally,
this also requires careful analysis and knowledge of the physical system on the part of the user.

The input and output variables are defined as stated above andare updated discretely at the
major steps as set for the finite element analysis. The average of the input voltage from two
adjacent steps is replaced by a single value taken from the middle point between the steps. This
is not equivalent to the selected trapezoidal integration method, but it has not caused any pro-
blems with accuracy or convergence. During the minor time steps, the output remains constant.
The state variables are not required at all, because the vector potential and current are solved
explicitly inside the FEM block.



30

initialization

parameters

initial field

solution

final field

solution

simulation

workspace

.

.

.

simulation

variables

.

.

.

Figure 2.2: Schematic of the data transfer between the FEM block and SIMULINK.

The data transfer between the FEM block and SIMULINK is illustrated in Fig. 2.2. Before the
simulation, the initialization parameters are stored in a file, from which the FEM block reads the
parameters before the first time step. The initial state of the magnetic field is also restored from a
separate file at the same time. During the time-stepping simulation, the simulation variables are
passed directly back and forth between the FEM block and SIMULINK. After the simulation,
the magnetic field is stored in a file with the same format as theone with the initial field. The
simulation variables can be stored in MATLAB’s workspace or in a separate file.

2.4 Coupling by the circuit parameter approach

2.4.1 Electromotive force and dynamic inductance

The concept of the circuit parameter approach can be clarified by means of an example of a
rotating coil. The magnetic flux linkageψ is defined as the product of inductanceL and current
i

ψ (i, θ, t) = L (i, θ) i (θ, t) (2.54)

whereθ is the angular position. The inductance is a function of current and position due to
magnetic saturation, saliency and slotting. The current changes with time, but has also a de-
pendence on position, representing the transformation between rotating and stationary frames
of reference. Hence, the time derivative of the flux linkage is

dψ
dt
=

(

∂L
∂i
∂i
∂t
+
∂L
∂θ

∂θ

∂t

)

i + L

(

∂i
∂θ

∂θ

∂t
+
∂i
∂t

)

(2.55)

By reordering the components, (2.55) can be presented in the following form:

dψ
dt
=

(

L +
∂L
∂i

i

)

∂i
∂t
+

(

∂L
∂θ

i + L
∂i
∂θ

)

∂θ

∂t
(2.56)
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On the other hand,

dψ
dt
=
∂ψ

∂i
∂i
∂t
+
∂ψ

∂θ

∂θ

∂t
= Ldyn∂i

∂t
+ e (2.57)

By identification of (2.56) and (2.57), the components multiplying the current derivative in
(2.56) together form the dynamic inductanceLdyn, while the rest is considered as the electro-
motive forcee, which is directly proportional to the angular speed. The final form of (2.57)
is similar to the linear circuit model, but now the magnetic saturation is included in the in-
ductance and the effects of saliency and slotting are included in the electromotive force. Further
discussion about the definitions of inductance is presentedby Demerdash and Nehl (1999).

For a system withnw phase windings, the parameters are defined in matrix form. The dynamic
inductanceLdyn

w comprises the self and mutual inductances of all phase windings; its dimension
is nw×nw. The electromotive forceew is defined as a vector withnw components.

The mutual inductances between stator and rotor windings, as well as the inductances of the
rotor bars with short-circuit rings, are not included inLdyn

w for better accuracy. It was found
that the discrete movement of the rotor in time-stepping simulation caused a significant error
in the mutual inductances. Instead, the effects relating to coupling between the stator and rotor
are contained inew. For a cage rotor, only the stator inductances are present inLdyn

w in order to
keep the size of the matrix reasonable. The error caused by this simplification is discussed in
Chapter 4.

BesidesLdyn
w and ew, the model of the electrical machine includes coil resistances and end-

winding inductances. In the circuit parameter approach, the coil resistances form a diagonal
matrix Rw and the end-winding inductances are added in the diagonal ofLdyn

w . Hence, the
electrical machine satisfies the voltage equation

Mwv = Kwew + KwLdyn
w KT

w
diw
dt
+ KwRwKT

wiw (2.58)

where Mw and Kw are the connection matrices defined in Section 2.1, modelling the star or
delta connection.

2.4.2 Extraction of the circuit parameters

The circuit parametersLdyn
w andew are determined from the field solution at each major time

step. The finite element analysis is run as described in Section 2.1 and the model is linearized at
the operating point for the parameter calculation. This is done by fixing the Jacobian (2.44) and
reluctivities for each element to correspond with the magnetic field distribution at the moment.

After fixing the magnetic properties, an incremental current iw∆ is applied in each phase win-
ding, one by one. The resulting change in the vector potential a∆ is calculated from the linear
system of equations (2.43), where the Jacobian (2.44) holdsthe value from the last iteration
step of the nonlinear solution. This ensures that the calculated inductance is incremental, thus
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representing the tangent of the magnetization curve. The incremental flux linkageψw∆ for all
phase windings is determined by (2.42) and the entries ofLdyn

w are

Ldyn
i j =

ψw∆,i

iw∆, j
(2.59)

The same procedure is repeated for each phase winding, whichmeans that the determination
of the dynamic inductance matrix fornw phase windings requiresnw additional solutions of the
linear system of field equations.

The electromotive forceew is determined by subtracting the effect of the current derivative from
the total flux derivative

ew =
dψw

dt
− Ldyn

w
diw
dt

(2.60)

where the derivatives are approximated by

dψw

dt
≈
ψk

w− ψ
k−1
w

∆t
(2.61)

diw
dt
≈

ikw− ik−1
w

∆t
(2.62)

This approach was chosen, because the flux derivative versusangular position could not be
determined in a way that would correspond with the definition(2.59) of dynamic inductance. It
was discovered that if the parametersLdyn

w andew are defined by methods not corresponding with
each other, a significant error is generated in the results when the phase currents are integrated
from the voltage equation (2.58).

2.4.3 Implementation for SIMULINK

Implementation of the circuit parameter approach for SIMULINK is similar to the implementa-
tion of the current output approach, but the outputs are different. Figure 2.3 presents a functional
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Figure 2.3: FEM model of the electrical machine as a functional block with circuit parameters
as output.
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block of the FEM model, in which the outputs are the dynamic inductance, phase resistance and
electromotive force. Naturally, the signals consist of thesingle elements of the matrices or
vectors, but are illustrated as concatenated signals for simplicity. The resistanceRw is normally
constant throughout the simulation, whereasLdyn

w andew are updated at each time step defined
for the FEM computation.

The connection of the FEM block with external circuit modelsrequires coupling of the voltage
equation (2.58) with the circuit equations of the external model. In SIMULINK, the resulting
equations are formulated as a block diagram. Nevertheless,it should be noted that the circuit
parameter approach doesn’t necessarily require block diagram structures, but it could also be
implemented for other types of simulators using different approaches for modelling electrical
circuits.

2.5 Conclusion

In this chapter, the computational methods were presented for modelling and simulation of
electrical machines and external circuits. The magnetic field in the electrical machine is mo-
delled by two-dimensional FEM and solved together with the circuit equations of the windings.
The external circuit model is coupled with the electrical machine model either directly, when
all the equations are solved simultaneously in the common system of equations, or indirectly in
SIMULINK, using the current output approach or circuit parameter approach.

In the current output approach, the phase currents of the electrical machine are solved together
with the magnetic field, when the supply voltages are given asinputs. In the circuit para-
meter approach, the electrical machine is characterized bythe electromotive force, dynamic
inductance and resistance, which are solved by FEM at each time step for the given supply
voltages. Both the approaches are implemented as S-functions representing functional blocks
in SIMULINK.

In the following chapters, the methods are applied to different case studies concerning electrical
machines, circuits and control systems. The simulation results obtained by the different methods
are compared with each other in order to draw conclusions about their accuracy and applicability
to different cases.
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3 Case study: doubly-fed induction
generator

In this case study, a 1.7 MW wound-rotor induction generatoris modelled by FEM and coupled
with SIMULINK by the circuit parameter approach (Section 2.4). The stator and rotor windings
of the generator are supplied by ideal sinusoidal voltage sources, and the system is simulated
in steady state and during a voltage dip in stator supply. Thesimulation results are compared
with the results obtained by directly coupled field and circuit equations. The purpose of this
chapter is to verify the theory and implementation of the circuit parameter approach, evaluate
the accuracy of the method, and analyze the effect of the time step length on the results.

3.1 Description of the system

3.1.1 Finite element model of the generator

The ratings of the doubly-fed induction generator are presented in Table 3.1. There are four
poles and three phases in the stator and rotor windings. The maximum rotor voltageUr,max

corresponds to the locked-rotor operation and defines the transformer ratio between stator and
rotor, together with the rated stator voltageUs,N. The amplitude and phase of the rotor voltage
is adjusted according to the rotational speed and power factor.

The finite element mesh of the generator covers one quarter ofthe cross section, as illustrated
in Fig. 3.1. The mesh consists of 949 nodes forming 1848 linear triangular elements. Linear
elements are utilized in the presented simulations in orderto reduce the computation time. In
the test simulations, it was also found that neither the order of the elements nor the density
of the mesh significantly affected the results. The stator and rotor windings are modelled as
series-connected coils with uniform current density. The coupled field-circuit equations of the
generator are similar to (2.25)–(2.44) on pages 24–26, except that there are no rotor bars in the
model.

T 3.1: R   - 

PN rated power 1.7 MW

Us,N rated stator voltage 690 V (delta)

Ur,max maximum rotor voltage 2472 V (star)

fN rated stator frequency 50 Hz

nN nominal speed 1500 rpm
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Figure 3.1: Finite element mesh of the doubly-fed inductiongenerator.

3.1.2 Electrical supply

The supply voltage of the generator is sinusoidal and symmetric in both stator and rotor. In real
applications, the rotor phase winding is usually connectedto a frequency converter or adjustable
resistor, but sinusoidal waveforms are used here in order toprovide a better basis for comparison
between the computational methods.

The stator supply frequency is 50 Hz and the rotor supply frequency is determined by the slip.
When the number of pole-pairs isp, the angular speed of the rotorωm and the stator supply
frequencyfs, the rotor supply frequency is

fr =

(

1−
p · ωm

2π fs

)

fs (3.1)

where the sign offr determines the phase order of the sinusoidal rotor voltages. For positive
values of fr, the phase order is the same in the stator and rotor and the magnetic field induced
by the rotor currents also rotates in the same direction as the stator field. For negative values of
fr, the phase order in the rotor is the opposite.

The amplitude of the rotor supply voltage is determined by the turns ratio between the stator
and rotor, slip and the voltage drop in the impedance of the rotor winding. Generally, the rotor
voltage is directly proportional to the rotor frequency, but also the voltage drop in the winding
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needs to be considered. At the beginning of the simulation, the phase angles of the stator and
rotor voltages are set to zero and the mechanical power is determined by the angular position of
the rotorθm. The values for stator and rotor voltages, angular position, slip and electrical power
describing the initial state of different operating points are presented in Table 3.2.

In the time-stepping simulation, sinusoidal voltages withconstant amplitude and frequency are
applied until there is no visible fluctuation in the current.A sudden voltage dip is applied in
the stator by changing the amplitude of the stator voltage, whereas the frequency and the phase
remain. The rotor voltage and the rotational speed are preserved during the fault. An example
of the supply voltage in stator and rotor at slips= −50% is presented in Fig. 3.2, where a 50%
voltage dip is introduced in the stator voltage att = 20 ms.

T 3.2: P        

slip −10% −10% −50% −50%

power 0 MW 1.7 MW 0 MW 1.7 MW

Us [VRMS] 690 690 690 690

Ur [VRMS] 235 249 1245 1250

θm [deg] −77.5 −81.5 −79.8 −82.3
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Figure 3.2: Supply voltages in stator and rotor for slip s= −50%, where a 50% voltage dip is
introduced in the stator voltage at t= 20 ms.
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3.2 Simulation models

3.2.1 Circuit parameter approach

Using the circuit parameter approach, the doubly-fed induction generator is governed by the
circuit equation

Mwv = Kwew + KwLdyn
w KT

w

di′w
dt
+ KwRwKT

wi′w (3.2)

wherev is the vector of line-to-line supply voltages in the stator and rotor windings
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ew is the vector of electromotive forces in the stator and rotorwindings
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andi′w is the vector of independent currents in the stator and rotorwindings

i′w =
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In (3.5), the current in the delta-connected stator windingis denoted byiDws and current in the
star-connected rotor winding byiYwr. Because of the star connection, only two of the three rotor
currents are considered as independent variables. The connection matricesMw andKw are
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and the matricesLdyn
w andRw for the dynamic inductance and coil resistance are
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The subscripts ‘s’ and ‘r’ in the above equations refer to thestator and rotor, and the numbers
from 1 to 3 refer to the phases.

Implementation for system simulator

The block diagram of the mathematical system is depicted in Fig. 3.3. The parametersew, Ldyn
w

and Rw are determined at the major time steps by the S-function, which performs the FEM
computation as described in Section 2.4. The supply voltagev is given as an input for the
S-function and the phase currentiw is solved at the minor time steps from (3.2) by numerical
integration

di′w
dt
=
(

KwLdyn
w KT

w

)−1 (
Mwv − Kwew − KwRwKT

wi′w
)

− αi′w (3.10)

where a high-pass filter with cutoff frequencyα is used for drift compensation.

It should be noted that the parameterα is purely related to the numerical integration, which
is by nature an open-loop integration in Simulink. In such a case, even negligible numerical
errors will accumulate in the integrand, since there is no feedback signal to cancel the error.
The parameter must be selected in such a way that it removes the erroneous drifting, which
typically occurs at much lower frequency than is present in the signal, but it must not interfere
with the actual signals. It was observed that an appropriatevalue forα is about one tenth of
the fundamental frequency in the steady-state simulation.During the voltage dip simulation,
however, the compensation is not used in order to preserve the DC components in the currents.
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Figure 3.3: Simulation model of the doubly-fed induction generator using the circuit parameter
approach.

3.2.2 Direct coupling

The direct coupling between the magnetic field equations andthe circuit equations of the phase
windings is used here for verification. The phase currents instator and rotor are solved from
(2.43) together with the magnetic vector potential using the line voltages as input variables.

Since there are no external circuit elements connected to the windings, there is no difference
between the direct coupling and the current output approachin terms of numerical computation.
Therefore, the simulation model is implemented using the current output approach, as depicted
in Fig. 3.4.

FEM

current

output

v

K
w

 T

i'w

i
ws1

i
ws2

i
ws3

i
wr1

i
wr2

i
wr3

v
s12

v
s23

v
s31

v
r12

v
r23

v
r31

D

D

D

Y

Y

Y

Figure 3.4: Simulation model of the doubly-fed induction generator using the current output
approach, in which the field and circuit equations of the generator are coupled directly.
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3.3 Simulation results

The system described above was simulated in steady-state operation and during a symmetric
fault in the stator supply using both the circuit parameter approach and direct coupling. The
FEM model was composed of linear elements in all simulations. The results obtained by the
circuit parameter approach were compared with the results of the directly coupled simulation
in order to evaluate the accuracy of the circuit parameter approach in different cases. In this re-
spect, the direct coupling represents the correct and verified method of simulation, even though
the results might differ from the actual measurements.

3.3.1 Steady state

The steady-state operation of the generator was simulated at full load (1.7 MW) and no load
(0 MW), when the slip was−10% and−50%. The supply voltages in the stator and rotor are the
same as presented earlier in Table 3.2. In the circuit parameter approach, the FEM computation
was processed with 100µs time steps, which are later referred to as major steps. The circuit
equations of the windings were simulated with minor steps, the length of which were 10µs.
The cutoff frequencyα used in the numerical integration had the value 15 Hz for the stator
current and zero for the rotor current. In the direct coupling, the field and circuit equations were
simulated with common 100µs time steps.

The initial state for the time-stepping simulation was estimated by time-harmonic analysis,
where complex variables were used. After the initialization, the time-stepping simulation was
continued until the phase currents were stable. For simplicity, a constant angular speed was
assumed.

The differences between the circuit parameter approach and the direct coupling are illustrated
in Table 3.3, whereicirc denotes the effective (RMS) value of the steady-state current obtained
by the circuit parameter approach andidir is the corresponding value from the directly coupled
simulation. The absolute difference between the results is denoted by∆iabs and the relative
difference with respect to direct coupling is∆irel. The results show that the absolute difference

T 3.3: C   -      
  

slip −10% −10% −50% −50%

power 0 MW 1.7 MW 0 MW 1.7 MW

st / rt st / rt st / rt st / rt

icirc [A] 135 / 117 1186/ 361 119/ 115 738/ 240

idir [A] 144 / 117 1204/ 361 118/ 115 756/ 243

∆iabs [A] −9.5 / −0.1 −18.5/ −0.5 +0.7 / +0.1 −17.9/ −2.4

∆irel [%] −6.6 / −0.1 −1.5 / −0.04 +0.6 / +0.1 −2.4 / −0.3
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in the stator current varies with the slip or load, giving quite acceptable values for all cases. In
the rotor current, the difference is smaller and also dependent on the frequency.

In addition to the amplitude difference, a slight phase difference is also present in the currents.
This is illustrated in Fig. 3.5, where the difference is plotted as a function of time for the case
with −50% slip and 1.7 MW power. The stator current difference varies around zero producing
a difference in both phase and amplitude. In the rotor current, there are some DC components in
the difference, because no high-pass filtering was used in the rotor current integration. A closer
analysis of the differences is presented in Section 3.3.3.

The simulations were run on a desktop computer with a 500 MHz Pentium III processor. Using
the direct coupling, the computational time required for the simulation of one time step was
0.22 seconds and there were an average of 6.5 iterations per time step. With the circuit parameter
approach, the number of iterations per step was approximately the same, but the computational
time was about 25 per cent higher than it was for the direct coupling. This is mainly due to the
numerical integration carried out in Simulink. Since the FEM computation is programmed in
Fortran and compiled for Simulink as an S-function, its execution time does not significantly
differ from the corresponding stand-alone application.

3.3.2 Voltage dip in stator

The transient operation of the generator was simulated by applying a symmetric 50% or 100%
voltage dip in the stator voltage, when the rotor supply continued with the same amplitude and
frequency. The faults were applied in each of the steady-state conditions described above. The
major and minor steps were 100µs and 10µs as above, but the parameterα was set to zero
in order to preserve the DC components that are present by nature in sudden faults. As in the
steady-state simulation, a constant angular speed was alsoassumed in the fault simulation.

The results from the circuit parameter approach and direct coupling were again compared with
each other; the results are presented in Tables 3.4 and 3.5. Since the fault currents do not any
more have constant amplitude, the analysis is only carried out for the maximum peak current
after the fault. According to the results, the absolute difference still remains in the same range
as it was in the steady-state simulation, even though the current value is more than ten times
higher. Therefore, the relative difference between the circuit parameter approach and direct
coupling is practically negligible.

In Figure 3.6, the current waveforms and the difference between the methods are presented for
−50% slip and 1.7 MW power. Again, the results show an approximately constant difference in
the phase and amplitude during the whole fault.
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Figure 3.5: Stator and rotor currents in steady state (P= 1.7 MW, s= −50%) obtained by
circuit parameter approach, and absolute difference in the currents compared with the direct
coupling.
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T 3.4: C           

slip −10% −50% −10% −50%

voltage dip 50% 50% 100% 100%

st / rt st / rt st / rt st / rt

icirc [A] 12360 / 3150 13022/ 3756 29670/ 7165 31688/ 8721

idir [A] 12369 / 3150 13033/ 3765 29673/ 7165 31694/ 8731

∆iabs[A] −8.9 / +0.05 −11.2/ −9.0 −2.9 / +0.05 −6.1 / −10.2

∆irel [%] −0.07/ +0.00 −0.09/ −0.07 −0.01/ +0.00 −0.02/ −0.03

T 3.5: C           

slip −10% −50% −10% −50%

voltage dip 50% 50% 100% 100%

st / rt st / rt st / rt st / rt

icirc [A] 12782 / 2991 13112/ 3852 29958/ 7135 31685/ 8789

idir [A] 12744 / 2992 13103/ 3858 29912/ 7135 31670/ 8796

∆iabs[A] +37 / −0.3 +8.7 / −6.3 +45.6/ −0.2 +14.8/ −7.4

∆irel [%] +0.29/ −0.00 +0.07/ −0.05 +0.15/ −0.00 +0.05/ −0.02

3.3.3 Effect of the simulation parameters

In the analysis presented above, the major and minor steps were kept constant through all the
simulations. Therefore, the differences between the computational methods could not be ana-
lyzed thoroughly, which meant that additional simulationswith altered parameters had to be
run for selected cases in order to get a proper insight into the numerical methods and their
differences.

Minor steps

Figure 3.7 presents a close-up of the stator current waveforms obtained by the directly coupled
simulation and the circuit parameter approach when the length of the minor step is either 10µs
or 100µs. The major step is 100µs in all cases.

When the minor step in the circuit parameter approach is 10µs, the output is smoother than
in the directly coupled simulation, but there is a clear difference in both amplitude and phase.
As the minor step is increased into an equal value with the major step, the current waveform
follows very closely the directly coupled simulation, but the delay of one major step remains.

This phenomenon can be explained simply by the separation ofthe field and circuit equations
in the circuit parameter approach: When the parametersLdyn

w andew are determined by FEM,
the computation is based on time instantstk−1 andtk, referring to the previous and current time
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Figure 3.6: Stator phase currents after 100% voltage drop instator (P= 1.7 MW, s= −50%)
obtained by the circuit parameter approach, and absolute difference in the currents compared
with the direct coupling.
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Figure 3.7: Influence of the minor step size on the stator current.

steps. However, the circuit model (3.2) in the system simulator receives this information at time
instanttk and utilizes it from that point onward, causing the one-stepdelay.

The size of the difference can be slightly adjusted by changing the minor step size, but the origin
of the problem remains and cannot be removed, since the coupling is non-iterative. Adding
an iteration loop between the FEM computation and the systemsimulator would change the
situation, but the method would also become much more complex and would not any more
provide any significant advantage over direct coupling.

Major steps

Based on the previous analysis of the minor steps, it is clear that decreasing the length of the
major steps would also decrease the difference between the methods. This is also shown in Fig.
3.8, which presents examples of the same period of simulation with either 50µs or 200µs steps
for the FEM computation. The minor step size was 10µs in both the cases.

When considering the appropriate step length for the direct coupling, the harmonic contents of
the supply voltage and phase current are the most relevant factors. In order to model the slot
harmonics properly in this case, the length of a step should be 100µs or less.

3.4 Discussion

In this case study, the FEM model of a doubly-fed induction generator was used for verifying
the indirect field-circuit coupling by the circuit parameter approach, in which the magnetic field
equations are represented by circuit parametersLdyn

w and ew and the circuit equations of the
windings are simulated separately from the field equations using the above parameters. The
supply voltages in the stator and rotor windings were considered as ideal and sinusoidal in
order to ensure that any differences in the results truly originated from the method itself. The
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Figure 3.8: Influence of the major step size on the stator current.

verification was based on a comparison between the simulation results obtained by the circuit
parameter approach and the direct coupling of the field and circuit equations.

Agreement with the direct coupling was good, but there were also some differences that can be
explained by the non-iterative indirect coupling. Accordingly, the results justify the following
conclusions:

1. The theory and implementation are correct in the circuit parameter approach.

2. The non-iterative indirect coupling causes a delay of onemajor step, which can be ad-
justed by the step size but cannot be removed.

In practice, however, the model is always more complex than the presented example and it is
therefore necessary to consider, whether the one-step delay is crucial at the system level. In
the case of passive circuits, the proper selection of the step size probably suffices, but some
control system models might be sensitive to such a delay. Nevertheless, these topics cannot be
answered by means of the presented example, but will be discussed in the following chapters.

Since one of the reasons for developing new approaches instead of direct coupling is to simp-
lify the process of model construction, this example case should be evaluated from the users’
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point of view also. In this respect, the implementation for SIMULINK is troublesome, since
the circuit models must be presented as block diagrams. However, the methodology itself is
applicable to other types of simulators that could provide different kinds of possibilities. The
numerical integration by open-loop integrators is also problematic because of drifting, but that
problem can be solved by proper compensation or filtering. Inthis work, the drift compensation
is not analyzed in detail, since the subject is not within thescope of the thesis.

As mentioned in the introduction, the original motivation for separating the solutions of field
and circuit equations has been the convenience of large-scale system modelling. Because of its
simplicity, this example does not provide much insight intothat aspect; however, the examples
presented in the following chapters do focus more on system-level simulation.
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4 Case study: cage induction motor with
compensation capacitors

In this case study, a 37kW three-phase cage induction motor is connected directly to the grid,
while the reactive power is compensated by a capacitor bank.The stator of the cage induction
motor is in the star connection and the capacitors are in the delta connection. The cage induction
motor is modelled by FEM and the field computation is coupled with the circuit model by
the current output approach (Section 2.3), circuit parameter approach (Section 2.4) and direct
coupling (Section 2.2). The simulation results are validated by laboratory measurements. The
purpose of this chapter is to study the performance of the current output approach and circuit
parameter approach in the simulation of electrical machines and passive circuit elements.

4.1 Description of the system

4.1.1 FEM model of the cage induction motor

Table 4.1 presents the ratings of the cage induction motor. The number of phases is three, the
number of poles is four and there are 40 non-skewed rotor bars. The finite element mesh of the
motor consists of 960 nodes forming 1510 linear triangular elements, as illustrated in Fig. 4.1.

T 4.1: R     

PN rated power 37 kW

UN rated voltage 400 V (star)

IN rated current 73 A

fN rated frequency 50 Hz

nN nominal speed 1470 rpm

4.1.2 Circuit model

Cage induction motor

The circuit model of the cage induction motor is based on the FEM equations defined in Chap-
ter 2. When considering the current output approach or directcoupling, the electromotive force
ews in the following analysis corresponds to the vector potential derivative in the stator winding
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Figure 4.1: Finite element mesh of the cage induction motor.

equation. In the circuit parameter approach, the definitionof ews is slightly different, but the
equations are in the same form.

When an ideal voltage supply is assumed, the circuit equationof the stator winding in star
connection is

uws = ews+ Rwsiws+ Lws
diws

dt
(4.1)

whereuws is the stator voltage vector,iws the stator current vector,Rws the stator resistance
matrix andLws the stator inductance matrix. Because the sum of the stator currents is zero in
the star connection, one of the currents can be eliminated from the equations by

iws = KT
wsi
′

ws (4.2)

wherei′ws is the vector of independent stator currents and the connection matrixKT
ws for a three-

phase system is defined by
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If the neutral is not connected, line-to-line voltagevws is known instead of line-to-neutral voltage
uws. In such a case, we can use the relation
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vws (4.4)

or, in simpler form,

Kwsuws = Mwsvws (4.5)

By combining equations (4.1), (4.2) and (4.5), the circuit equation of the cage induction motor
becomes

Mwsvws = Kwsews+ KwsRwsKT
wsi
′

ws+ KwsLwsKT
ws

di′ws

dt
(4.6)

Grid and compensation capacitors

Figure 4.2 presents the circuit model of the whole system with grid and compensation capaci-
tors. The grid is modelled as a simple Thevenin equivalent, wherevgs is the grid voltage,Rgs

the line resistance andLgs the line inductance. Now we can define the stator voltage as

Mwsvws = Mwsvgs− KwsRgsKT
wsi
′

gs− KwsLgsKT
ws

di′gs

dt
(4.7)

After connecting the compensating capacitors, more equations are needed. Currentics through
the capacitanceCws in the delta connection is

ics = Cws
dvcs

dt
(4.8)
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Figure 4.2: Circuit model of the cage induction motor, grid and compensating capacitors.
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wherevcs is the voltage andics the current of the capacitors in the delta connection. In order to
relate the capacitor current with the currents in grid and stator, a transformation similar to (4.5)
is needed. Combining (4.8) with Kirchhoff’s current law gives

PwsKT
wsi
′

ws− PwsKT
wsi
′

gs+ KwsCwsKT
ws

dv′cs

dt
= 0 (4.9)

wherev′cs is the vector of independent capacitor voltages and the connection matrixPws is

Pws =















1 0 0

1 1 0















(4.10)

Setting the stator voltagevws equal to the capacitor voltageKT
wsv
′

cs and coupling (4.6), (4.7) and
(4.9) gives the system of equations

Kwsews+ KwsRwsKT
wsi
′

ws+ KwsLwsKT
ws

di′ws

dt
− MwsKT

wsv
′

cs = 0 (4.11)

KwsRgsKT
wsi
′

gs+ KwsLgsKT
ws

di′gs

dt
+ MwsKT

wsv
′

cs = Mwsvgs (4.12)

PwsKT
wsi
′

ws− PwsKT
wsi
′

gs+ KwsCwsKT
ws

dv′cs

dt
= 0 (4.13)

To sum up, equation (4.6) governs the cage induction motor with the ideal voltage supply. In
order to model the whole system containing the cage induction motor, grid and compensating
capacitors, the solution of equations (4.11), (4.12) and (4.13) is required.

4.2 Simulation models

4.2.1 Current output approach

Equation (4.6) is already included in the FEM computation when the current output approach is
used for the coupling. Therefore, the simulation with the ideal voltage supply is straightforward.
As Fig. 4.3 shows, a sinusoidal voltage signal is given as input for the FEM block and a current
signal is obtained from the output. There are no feedback loops in the system and the model is,
as a matter of fact, equivalent to the directly coupled model.

The simulation model for the system with grid and compensating capacitors (4.11)–(4.13) is
presented in Fig. 4.4. The state variables in the system are the grid currenti′gs and the capacitor
voltagev′cs. Their values are obtained by numerical integration from

di′gs

dt
=
(

KwsLgsKT
ws

)−1 [
Mws

(

vgs− KT
wsv
′

cs

)

− KwsRgsKT
wsi
′

gs

]

− αi′gs (4.14)

dv′cs

dt
=

[

(

KwsCwsKT
ws

)−1
PwsKT

ws

(

i′gs− i′ws

)

]

− αv′cs (4.15)

while the stator currenti′ws is defined by the FEM block. The high-pass filter with cutoff fre-
quencyα is used for drift compensation, as in Section 3.
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Figure 4.3: Simulation model of the cage induction motor withideal voltage supply using the
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Figure 4.4: Simulation model of the system consisting of theFEM model of cage induction
motor, grid and compensating capacitors using the current output approach.

4.2.2 Circuit parameter approach

The simulation model for the cage induction motor with an ideal voltage supply using the circuit
parameter approach is presented in Fig. 4.5. The motor is modelled by the electromotive force
ews, resistanceRws and the dynamic inductanceLdyn

ws . These parameters are obtained at each
time step from the FEM block and used in the circuit model based on (4.6).

When the whole system with grid and compensating capacitors is modelled, both currentsi′ws

andi′gs and capacitor voltagev′cs are required as state variables and therefore they are subject to
numerical integration. Besides (4.14) and (4.15), the stator current is integrated from

di′ws

dt
=
(

KwsLdyn
ws KT

ws

)−1 [
MwsKT

wsv
′

cs− Kwsews− KwsRwsKT
wsi
′

ws

]

− αi′ws (4.16)

The simulation model for a system simulator is presented in Fig. 4.6.
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Figure 4.5: Simulation model of the cage induction motor withan ideal voltage supply using
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Figure 4.6: Simulation model of the system consisting of theFEM model of cage induction
motor, grid and compensating capacitors using the circuit parameter approach.

4.2.3 Direct coupling

The directly coupled field and circuit equations of the system are formulated in order to verify
the results of the current output approach and the circuit parameter approach. The simulation
method is the same as described in Section 2.1, but the external circuit equations are added into
the system of equations. The cage induction motor is modelled by (2.25), (2.26) and (2.27)
on page 24 and the external circuit is modelled by (4.12) and (4.13). Applying the trapezoidal
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approximation for the derivatives gives

rf = Sak + FT
b uk

b + FT
wsK

T
wsi
′k
ws (4.17)

+ S0ak−1 + FT
b uk−1

b + FT
wsK

T
wsi
′k−1
ws = 0

rb = Fbak + Buk
b − Fbak−1 + Buk−1

b + Qb0ik−1
b = 0 (4.18)

rws = KwsFwsak + KwsWsKT
wsi
′k
ws+ QwsK

T
wsv
′k
cs (4.19)

− KwsFwsak−1 + KwsWs0KT
wsi
′k−1
ws + QwsK

T
wsv
′k−1
cs = 0

rgs = KwsGgsKT
wsi
′k
gs− QwsK

T
wsv
′k
cs+ Mwsvk

gs (4.20)

− KwsGgs0KT
wsi
′k−1
gs − QwsK

T
wsv
′k−1
cs + Mwsvk−1

gs = 0

rcs = KwsQ
T
wsi
′k
ws− KwsQ

T
wsi
′k
gs+ KwsGcsKT

wsv
′k
cs (4.21)

+ KwsQ
T
wsi
′k−1
ws − KwsQ

T
wsi
′k−1
gs − KwsGcsKT

wsv
′k−1
cs = 0

where (4.17)–(4.19) characterize the cage induction motorand (4.20)–(4.21) represent the grid
and compensation capacitors. CoefficientsS, S0, Fb, Fws, B, Ws, Ws0, Qb0 andQws are determi-
ned in Section 2.1.2 on pages 24–25, and connection matricesKws andMws are determined by
(4.3) and (4.4), respectively. CoefficientsGgs, Ggs0 andGcs are defined by

Ggs,ii = −
Rg,i∆t + 2Lg,i

2γlws
(4.22)

Ggs0,ii = −
Rg,i∆t − 2Lg,i

2γlws
(4.23)

Gcs,ii =
Ci

γlws
(4.24)

wherelws is the length of the coil andγ the number of symmetry sectors in the finite element
model.

Using the nonlinear Newton–Raphson iteration, the field and circuit variables are solved from
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which is an extension of (2.43) on page 26.
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4.3 Simulation results

In order to see the difference between the methods, the system was modelled at different levels
of complexity. At first, the cage induction motor was connected to an ideal supply only in order
to evaluate the circuit parameter approach with respect to direct coupling. The ideal model was
simulated in steady state and during start-up. In the simulation of the whole system with grid
and capacitors, the current output approach was also utilized and all the three methods were
compared with each other using several different values for the external circuit parameters.

4.3.1 Ideal voltage supply

Simulation with the ideal sinusoidal voltage supply was carried out by the circuit parameter
approach and direct coupling. Again, the current output approach is equivalent to the direct
coupling, since the model does not contain any additional circuit elements besides the stator
winding. The effective value of the supply voltage was 400 V and the frequencywas 50 Hz. In
the circuit parameter approach, the FEM computation is processed at 50µs major steps and the
circuit model is integrated at 10µs minor steps. The time step in the directly coupled simulation
was 50µs. The cutoff frequencyα for the numerical integration was 15 Hz in the steady-state
simulation. When simulating the start-up of the motor,α was set to zero.

Figure 4.7 presents the waveforms of the steady-state stator current at no load, half load
(18.5 kW) and full load (37 kW). When the methods are compared, the shapes of the wave-
forms differ slightly, although the agreement is excellent in terms ofamplitude and effective
value.

Figure 4.8 presents the current during the start-up with no load, also obtained by the circuit
parameter approach and direct coupling. The difference between the methods is presented as
a separate plot, since it would not be visible otherwise. According to the results, the absolute
difference remains in the range from−15 A to+15 A, regardless of the current amplitude.

The influence of the minor step size is illustrated by Fig. 4.9. As observed with the doubly-fed
induction generator, changing the size of the minor steps changes slightly the results, but does
not greatly improve the accuracy. In this case, however, thedifference between the waveforms
is more visible. Possible reasons for this could be smaller ratings and the cage winding in the
rotor. As described in Section 2.4.1, the damping effect of the cage winding is only present in
the electromotive force that is held constant between the major steps. Therefore, the numerical
integration of the current does not incorporate the rotor bars, but only the dynamic inductance of
the stator winding. On the other hand, the agreement in the results is still satisfactory regardless
of the simplified approach.
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Figure 4.7: Steady-state stator current at no load, half load (18.5 kW) and full load (37 kW)
obtained by circuit parameter approach and direct coupling.
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4.3.2 Grid and compensating capacitors

The simulation of the whole system model with grid and compensating capacitors is carried
out by the circuit parameter approach, current output approach and direct coupling. The supply
voltage, time steps and cutoff frequency for the numerical integration had the same valuesas the
steady-state simulation above. Two different grid models and three values for the compensating
capacitance were used in the simulation. In the following, grid 1 refers to the parametersLg =

1 mH, Rg = 2.2 mΩ and grid 2 to the parametersLg = 7 mH, Rg = 35 mΩ. In terms of short-
circuit power, grid 1 corresponds to 500 kVA and grid 2 to 70 kVA. The capacitance values are
C1 = 67µF, C2 = 134µF andC3 = 200µF, which correspond to 10, 20 and 30 kVAr reactive
power, respectively. The parameter values are selected to correspond to the laboratory setup
that was used for experimental validation of the simulationmodels (Section 4.4).

Table 4.2 presents the effective (RMS) values of stator currentis, grid currentig and stator
voltagevs, obtained by the circuit parameter approach (circ), current output approach (cur) and
direct coupling (dir). In general, both current output approach and circuit parameter approach
agree well with the direct coupling, except in the cases producing very low grid current (typed
in boldface). Furthermore, a closer inspection reveals that the results obtained by the current
output approach are slightly closer to the results of directly coupled simulation.

The differences between the methods are also illustrated in Fig. 4.10, which presents the wa-
veforms of the stator current, grid current and stator voltage during one period of the supply
frequency, when the motor is connected to grid 2 and capacitanceC2 and operates at full load.
In addition, detailed plots of the results are presented in Fig. 4.11.

The results obtained by the different methods are very similar in terms of both the effective
values and waveforms, but it is also shown that the methods are not equivalent to each other.
There is a clear distinction between the direct and indirectcoupling because of the one-step
delay between the FEM computation and circuit simulation, but the two indirect approaches
produce almost identical waveforms. Nevertheless, inspection of the effective values in Table

T 4.2: C   ,     

grid 1: no load grid 2: no load grid 1: full load grid 2: full load

C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3

icur
s [A] 27.2 28.8 30.4 22.9 29.1 38.0 66.1 68.9 69.4 52.2 56.7 61.5

icirc
s [A] 27.2 28.8 30.3 22.8 29.5 38.1 67.8 70.6 71.7 52.8 57.2 62.2

idir
s [A] 27.5 28.9 30.5 23.4 29.2 38.1 66.3 68.0 69.5 51.2 56.5 62.0

icur
g [A] 13.0 1.6 14.9 9.7 1.3 9.8 60.0 59.8 58.8 47.3 48.1 53.4

icirc
g [A] 13.1 4.3 15.8 9.8 6.2 12.75 62.7 63.5 64.3 48.8 50.7 57.1

idir
g [A] 13.2 0.9 14.7 10.3 0.4 9.5 59.6 57.0 57.3 45.6 47.4 52.0

vcur
s [V] 393 400 408 363 400 436 386 397 401 309 334 365

vcirc
s [V] 393 400 408 363 397 434 386 397 401 308 331 359

vdir
s [V] 393 400 408 361 399 436 386 394 401 306 336 369
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Figure 4.10: Comparison of the stator current, grid current and stator voltage obtained by
direct coupling, circuit parameter approach and current output approach.
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4.2 reveals that the current output approach is slightly closer to the direct coupling in most
cases.

Another observation from Table 4.2 is the big difference in the grid current values, when the
motor operates at no load and the reactive power is totally compensated by the capacitors (typed
in boldface). In such a case, the current mostly flows betweenthe stator and the capacitors, and
the grid current is a subtraction of two nearly equal currents, and therefore sensitive to even
small differences.

In terms of the computational time, the comparison between the methods shows clear distinc-
tions. Using a desktop computer with a 500 MHz Pentium III processor, the required simulation
time for one time step was 0.22 seconds with the direct coupling, 0.39 seconds with the cur-
rent output approach and 0.50 seconds with the circuit parameter approach. For each method,
there were approximately 6 iterations per time step in the FEM computation. Therefore, the
differences in total computation time relate clearly with the complexity of the block diagrams
implemented in Simulink.

4.4 Experimental validation

In order to validate the simulation models, a correspondinglaboratory setup was constructed
and measured under different conditions. The measured results were compared with the results
of the directly coupled simulation in terms of effective values and waveforms.

4.4.1 Test setup

The schematic of the laboratory setup is presented in Fig. 4.12. The cage induction motor M1
was supplied by one of the synchronous generators G1 or G2 andloaded by the DC generator
G3. The reactive power was compensated by three similar capacitor banks C1, C2 and C3 that
were connected to the stator of M1 by separate switches.

Torque

transducerG1

G2

G3M1
Power

analyzer

C1

Voltage

isolator

Transient

recorder C2 C3

Grid current

measurement

Grid current

measurement

Figure 4.12: Schematic of the laboratory setup used for measuring the cage induction motor
with compensating capacitors.
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The characteristics of the generators G1 and G2 correspond as closely as possible to grid 1 and
grid 2 used in the simulation models. However, both of the generators had automatic voltage
control systems that kept the stator voltage nearly constant regardless of the capacitance value
in the stator. The DC generator G3 was supplied by a thyristorrectifier with speed control and
excited by a constant field current.

The stator voltage was measured between phases A–B and C–B by aTektronix A6907 voltage
isolator. The currents in the grid and stator were measured from phases A and B by a LEM
LT-300 Hall sensors. The effective values were calculated from the measured waveforms and
double-checked by a NORMA D6100 power analyzer. The shaft torque and rotational speed
were measured by a HOTTINGER T30FNA torque transducer, but the results were only used
for ensuring the correct operation point of the system. The waveforms of the results were stored
by a KONTRON WW700 transient recorder. The temperature of the cage induction motor was
measured at the end-windings and outer surface of the statorcore in order to ensure that the
conditions do not change during the measurements.

4.4.2 Measured results

Using a 400 V supply voltage with 50 Hz frequency, the steady-state operation of the system was
measured at no load and full load with one, two or three capacitor banks in the stator. However,
generator G2 was not applicable for the full load, because the required field current would
have been over the ratings. The results are presented in Table 4.3, together with corresponding
results from the directly coupled simulation. Because of theautomatic voltage control in the
laboratory setup, not all the simulation results are fully comparable with the measurements. For
those cases, in which the measured and simulated stator voltages are close to each other, the
stator currents are also close enough to show the validity ofthe FEM model. The differences
in the grid current are in the same range, except for the no-load cases with full compensation.
However, these cases were also shown to be problematic in thecomparison of the direct and
indirect simulation methods above.

Figure 4.13 shows an example of the waveform comparison, when the motor was supplied by
generator G1, operating at full load, and the reactive powerwas compensated by capacitance

T 4.3: E          
  

G1: no load G2: no load G1: full load

C1 C2 C3 C1 C2 C3 C1 C2 C3

imeas
s [A] 28.6 28.6 28.6 28.4 28.0 29.4 66.6 66.6 66.6

idir
s [A] 27.5 28.9 30.5 23.4 29.2 38.1 66.3 68.0 69.5

imeas
g [A] 15.3 3.8 14.9 15.6 4.5 14.9 59.7 55.5 55.6

idir
g [A] 13.2 0.9 14.7 10.3 0.4 9.5 59.6 57.0 57.3

vmeas
s [V] 397 397 398 393 391 394 394 397 397

vdir
s [V] 393 400 408 361 399 436 386 394 401
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Figure 4.13: Measured and simulated waveforms of stator current, grid current and stator
voltage.

C2. The comparison shows that both the amplitudes and phases ofthe stator voltage and the
currents are nearly the same in the measured and simulated results.

4.5 Discussion

In this example, the FEM model of the cage induction motor wasconnected with the circuit
model of a grid and compensating capacitors. The system was simulated by the current output
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approach and circuit parameter approach, both of which utilize an indirect coupling between
the FEM model and the external circuit model. The results of each approach were compared
with the results of directly coupled simulation, showing good agreement. In addition, the FEM
model with directly coupled circuit equations was validated by experimental results.

Based on the results of this example, the conclusions of Chapter 3 can be extended as follows:

1. The applicability of the circuit parameter approach is also shown for electrical machines
with cage rotor.

2. Both the current output approach and circuit parameter approach are applicable for non-
iterative indirect coupling with external circuit models.

3. The difference between the waveforms obtained by indirectly and directly coupled simu-
lation is visible, but not significant in most cases.

As distinct from the previous example, it is now possible to evaluate the interaction between
the models of the electrical machine and the external circuit. Regardless of the good agreement
between indirect and direct coupling, the observed differences reveal that even a simple circuit
model is rather sensitive to any inaccuracy in the computation. This can be explained by con-
sidering the magnetic field and electrical circuit as two domains of the electromagnetic system,
having strong physical coupling by nature. Separation of the domains for non-iterative simula-
tion breaks the physical coupling by introducing a delay of one time step between the field and
circuit models. Therefore, the length of the time step must be chosen carefully considering the
time constants in the physical system, in order to keep the accuracy at a reasonable level.

The comparison between the indirect approaches did not reveal significant differences in the
accuracy. When considering the applicability and flexibility in model construction, however,
the approaches differ from each other to some extent. In general, modelling circuit equations in
a system simulator is not as simple as it would be in a circuit simulator. Similarly, the current
output approach is more convenient to use in a system simulator, but the circuit parameter
approach would be more appropriate in a circuit simulator. Hence, selection of the approach for
indirect coupling should be based on the software to be used for the circuit simulation.

On the basis of the above conclusions, the most appropriate approach for combining a FEM
model with electrical circuit simulation is still direct oriterative coupling, which preserves the
strong coupling between the field and circuit domains. Nevertheless, implementation of a new
circuit topology always requires new circuit equations, which are tedious to write manually
in the program code. The process can be simplified by automatic construction of the coupled
equations, as presented by Väänänen (1996) or Kuo-Peng et al. (1997). In some cases, however,
coupling with an external simulator provides such flexibility for model construction that it is
truly advantageous to utilize the indirect approaches instead of direct coupling. Examples of
such applications are presented in the next chapter.
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5 Case studies of controlled frequency
converter supply

This chapter reviews two case studies concerning frequencyconverter models coupled with
the finite element analysis. In the first case, an induction motor drive using the direct torque
control (DTC) algorithm is modelled in SIMULINK and coupled with the FEM computation
by the current output approach. The second case presents an application of a doubly-fed induc-
tion generator in a variable-speed wind turbine, in which the rotor is supplied by a frequency
converter and protected against sudden faults by a passive crowbar. The system is modelled
in SIMULINK and the coupling with the FEM computation is carried out by both the current
output approach and the circuit parameter approach, givinga comparative analysis. The pur-
pose of this chapter is to show that indirect coupling, especially by the current output approach,
provides good results with complex frequency converter models.

5.1 Induction motor drive with detailed DTC algorithm

This example presents the simulation of a 2 MW cage inductionmotor drive with a detailed
control system model corresponding to a real product (ACS6000) as closely as possible. The
drive model is implemented in SIMULINK and the coupling withthe FEM model is carried out
by the current output approach. The system was simulated in steady state and compared with
an analytical model and experimental results, showing goodagreement. The work was carried
out in co-operation between the university and an industrial partner, and is originally reported
in (Kanerva et al., 2004).

5.1.1 Background

This study was accomplished in co-operation between the university, the drives manufacturer
and the machine factory. The main objectives of this case were the validation of the method
by experiments and creation of the coupled simulation environment providing opportunity to
share the expertise between the designers of frequency converters and electrical machines. In
this case, the model of the frequency converter was created by the drives manufacturer and the
FEM model of the motor was provided by the machine factory. Therefore, it was possible to
obtain close agreement between the simulation model and thereal application. The contribution
of the author of this thesis has been to provide the computational methods for the finite element
analysis, and, together with other parties, to analyze the results and draw conclusions.
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5.1.2 Description of the system model

The fundamental structure of the drive model is similar to the basic scheme of the direct tor-
que control (DTC) (Takahashi and Noguchi, 1986; Depenbrock,1988), but the digital control
system is modelled in detail by several discrete functions on different time levels, as in the real
application. Figure 5.1 presents the top level schematic ofthe drive model, showing the main
functions for torque control and speed control modes. Originally, the simulation model was
developed for an analytical motor model, but the FEM model was simply included by replacing
the block of the analytical motor model with the block of the FEM model. The fundamental
time step for the frequency converter model was 12.5µs; its multiples were used in the parts of
the model requiring slower sampling. The major step for the FEM computation was 100µs; the
coupling was accomplished by the current output approach. The selection of the time steps is
based on finding an optimum between reasonable simulation time and adequate accuracy.

The cage induction motor in the drive system has 3 phases, 6 poles and 86 non-skewed rotor
bars. The ratings of the motor and the frequency converter are presented in Table 5.1. The
finite element mesh of the machine comprises 13143 nodes and 6518 quadratic elements, as
illustrated by Fig. 5.2.

A. Inverter and DC link

The 3-level inverter is modelled as a set of ideal

switches, which can connect the phase voltages to either

plus, neutral or minus potential of the DC links. Fig. 2

gives a rough overview. The switching pattern is given by

the drive control. The status of the switches together with

the phase currents determines the currents in the DC bus

bars of the DC link. The current in the neutral bus bar is

used to calculate the potential of the neutral point of the

DC link. The phase voltages transferred to the motor

terminals are defined by DC link voltages and switching

pattern.

B. Analytical motor model and load

The analytical motor model is used for simulations that

will be compared to the FEM-based motor model. It is

based on the well-known space vector representation of the

asynchronous machine. It uses both the stator and the rotor

fluxes as state variables. The following features are present

in the model:

 constant air-gap and sinusoidal flux distribution along

the air-gap

 no iron losses

 resistances and inductances are independent of

frequency and temperature

 the magnetizing inductance can saturate with

increasing main flux

The model needs phase voltages and speed as inputs and

produces phase currents and air-gap torque as outputs.

The driven process is described by the differential

equation of motion. A single inertia is used. The load

torque may follow several functions of the speed (constant,

linear, quadratic or mixed). The mechanical mass is driven

by the electromagnetic torque of the motor and gives the

speed as output.

C. Control

The control model describes speed/torque control using

a DTC algorithm. The main functions of the ACS6000

drive are implemented as discrete functions on different

time-levels to appropriately represent the behaviour of the

real drive. The detailed description of the DTC control

cannot be in the scope of this paper.

The top level of the SIMULINK environment is shown

in Fig. 3.

III. MODEL OF THE ASYNCHRONOUS MOTOR

A. Modelling by finite element method (FEM)

The FEM model of the motor is based on two-

dimensional finite element method and circuit equations of

the windings [1]. The magnetic field in the core region is

calculated using magnetic vector potential formulation, in

which the vector potential and current density have only z-
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Figure 5.1: Schematic of the detailed DTC drive model (Kanerva et al., 2004).
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T 5.1: R    

Cage induction motor Frequency converter

PN rated power 2 MW Pmax maximum power 9 MW

UN rated voltage 3150 V Umax maximum voltage 3300 V

IN rated current 436 A Imax maximum current 1645 A

fN rated frequency 40 Hz fmin. . . fmax frequency range 0. . . 75 Hz

nN nominal speed 792 rpm

Figure 5.2: Finite element mesh of the 2 MW cage induction motor.

5.1.3 Results

In order to study the agreement of the simulation model with the real drive application, the
system was simulated in steady state at 600 rpm rotational speed and full load. The simulation
was run for several periods of the fundamental frequency andthe Fourier analysis was applied
to the results in order to find out the harmonic contents of thevoltage and current waveforms.
Due to the stochastic nature of the control strategy, pure comparison of the waveforms does
not give much information, so the frequency components of the voltage and current are studied
instead.

The results obtained by the FEM model and analytical model were compared with the expe-
rimental results in terms of the frequency components. Figure 5.3 presents the voltage spect-
rum without the fundamental component, showing good agreement between measurements and
simulation by the both models. This shows that the analytical model is alone sufficient for
analyzing the control system itself. As illustrated by Fig.5.4, however, there is a clear dif-
ference between the analytical and FEM models in the currentspectrum. As compared with
the measurements, the results from the FEM model provide very close agreement with the real
drive. In addition, the impedance of the motor is calculatedfrom the frequency components and



68

10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

Harmonic number

A
m

pl
itu

de
 (

V
)

FEM model
analytical model
measurements

Figure 5.3: Comparison of the voltage spectrum obtained by the FEM model, analytical model
and measurements.
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Figure 5.4: Comparison of the current spectrum obtained by the FEM model, analytical model
and measurements.

presented in Fig. 5.5.

Besides the steady state, the transient operation was also tested by simulating rapid load
changes. Figure 5.6 presents the electromagnetic torque and the stator current when the load
is first increased from zero to nominal and decreased to half the nominal after 40 ms. In the
simulation with the FEM model, the control system responds very well to the changes.

5.1.4 Conclusion

The results of this example show the capability of the current output approach for coupling
the FEM model of the electrical machine with a frequency converter model and a closed-loop
control system. The operation of the drive system was purelybased on a stochastic closed-loop
control. In comparison with the static control presented widely in the literature, the simulation
model of this example requires proper feedback from the FEM computation to the converter
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Figure 5.6: Simulated electromagnetic torque and stator current during load steps.

model. It was shown that the implementation of such a closed-loop model is also possible when
indirect coupling is utilized between the FEM model and control system model. In addition, it
is possible to use a longer time step in the time-consuming FEM computation than is required
for the control system; when used, this provides a significant saving in simulation time with
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respect to the direct coupling.

Because the output of the inverter model is an ideal voltage source and the estimates for tor-
que and flux are based on the stator current, the current output approach is an ideal method for
coupling the FEM model within the system model. The effect of the one-step delay due to in-
direct coupling is not significant, because the current measurement in the actual control system
also works with a delay.

In this example, a real industrial application was modelledwith numerous details and the results
were validated by experiments. A special feature of this case is that the original drive model
was developed by an industrial partner as a part of the product development activity, and the
inclusion of the FEM model was simply carried out by replacing the analytical motor model
with the FEM block. This allows the designers of frequency converters and the designers of
electrical machines, typically working at different locations, to combine their expertise and
construct detailed simulation models for large systems.

5.2 Doubly-fed induction generator in a variable-speed wind
turbine

This case study presents the simulation of a doubly-fed induction generator in a variable-speed
wind turbine. The rotor of the generator is supplied by a frequency converter providing the
speed control, stator voltage control and power factor control. A crowbar circuit is connected
to the rotor for overcurrent protection. The system model isimplemented in SIMULINK and
both the current output approach and circuit parameter approach were used for coupling the
FEM model of the generator with the system model. The operation of the system was simulated
in steady state and during a symmetric grid fault. On the basis of the comparison between
the coupling methods and analytical generator model, it wasshown that the current output
approach was more stable and accurate than the circuit parameter approach. The example case
is originally reported in (Seman et al., 2004) and (Kanerva et al., 2005).

5.2.1 Background

In the background of this case were the regulations for wind parks, where several wind turbines
operate together like one large power plant. It was requiredthat a wind park must not be discon-
nected from the grid in the case of sudden voltage drop, if thefault lasts only for a short period
of time. Therefore, the manufacturers of the wind generators must know the consequences of
such faults and design the control systems that will not onlyprotect the generators but also
support the grid during short voltage dips.

A simulation environment was built for a doubly-fed induction generator, comprising models for
the generator, frequency converter and the control system.Originally, an analytical model was
used for the generator in order to ensure quick simulation for testing the influence of different
control settings. The analytical model was then replaced bythe FEM model, because it was
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necessary to have as accurate a model as possible for the fault simulation. On the other hand,
simulation with the FEM model also provides a good basis for evaluating the accuracy of the
analytical generator model and improving the model according to the results. The contribution
of the author of this thesis has been to provide the computational methods for the finite element
analysis, and, together with other parties, to analyze the results and draw conclusions.

5.2.2 Description of the system model

The schematic of the system is presented in Fig. 5.7. The gridis modelled by a sinusoidal
voltage source with an inductance and resistance in series,and the transformer (TR) model
comprises the short-circuit inductance, resistance and the leakage capacitance. The frequency
converter model comprises two back-to-back connected voltage source inverters and a DC link.
The stator-side converter is modelled as a simple first-order filter that controls the DC-link
voltage with a PI controller. The rotor-side converter is supplied from the common DC link
and the switches are assumed to be ideal. The control of the inverter is based on direct torque
control (DTC), where the estimates of flux linkage and torque are calculated from constant
equivalent circuit parameters and the currents obtained from the generator model. The over-
current protection circuit (crowbar) consists of a diode bridge, a resistor, and a thyristor that
connects the rectified rotor voltage to the resistor, when the fault occurs.

Models of the grid, transformer, frequency converter and crowbar are implemented in
SIMULINK, while the FEM model of the generator is coupled with the system model by both
the current output approach and circuit parameter approach. An analytical generator model with
constant parameters was used for the design of the control system and for comparison with the
FEM model. The generator is the same as presented in Table 3.1on page 34. In the simulation,
the major time step for the FEM computation was 50µs and the frequency converter model
was simulated using 0.5µs steps. In the circuit parameter approach, the minor time step for

ACDC

AC DC

Udc

Grid TR

DFIG

Crowbar

Figure 5.7: Schematic of the variable-speed wind turbine withdoubly-fed induction generator
(DFIG), rotor-side frequency converter, overcurrent protection circuit (crowbar), transformer
(TR) and grid (Seman et al., 2004).
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integrating the phase currents was 10µs. Again, optimal time steps were chosen to provide a
reasonable computation time and accurate results. It should be noted that even though there is a
significant difference in the minor and major time steps, no numerical problems were introdu-
ced. The parameters of the control system were tuned according to the test simulations with the
analytical generator model; the same settings were used in all the simulations.

5.2.3 Results

The system was simulated in steady-state, during a load stepand during a symmetric grid fault.
A constant rotational speed was assumed in all the cases because of the large moment of inertia
of the rotor and turbine. Figure 5.8 presents the stator current, rotor current and electromagnetic
torque in a transient from no-load to half-load operation, simulated by the current output ap-
proach. Due to the DTC algorithm, the rotor supply is controlled to produce the desired torque
in all operating conditions. As shown by the results, the obtained torque is very stable and the
response to the reference change is rapid.

Figure 5.9 presents the corresponding case simulated by thecircuit parameter approach. The
settings for the control system were the same as with the current output approach. With the
circuit parameter approach, however, the operation is not as stable and accurate as it is with the
current output approach. An obvious reason for this is the error in the phase current integration,
already reported in Section 3.3, which gives faulty information to the control system resulting
in visible oscillation in the stator current and electromagnetic torque. The effect on the control
is also illustrated by Fig. 5.10, which presents an example of the output voltage of the rotor-
side converter using both the current output approach and circuit parameter approach. The
switching in the latter case is very rapid, which is a result of faulty operation of the control.
This causes higher ripple in the rotor current, but also removes the small notches, as seen in
Fig. 5.8. However, the notches are not critical to the operation of the system, since the primary
control variable is the flux linkage.

The operation of the system during a sudden grid fault was also simulated. The amplitude of
the stator voltage was dropped to 35 % of the nominal value when the generator was running
at half load. Because of the fault, the control system disconnects the rotor-side converter and
the crowbar is triggered in order to protect the rotor winding. In the simulation, both the cur-
rent output approach and the circuit parameter approach were used for the FEM model, and
the results were compared with each other and the ones obtained by the analytical generator
model. Figure 5.11 presents the stator and rotor current obtained by all the three methods. The
difference between the analytical and FEM models is relatively large during the first periods,
because the analytical model does not include the effects of saturation and slotting. However,
the waveforms get closer as the transient decays. The difference between the current output
approach and the circuit parameter approach is also clear and can be explained in the same way
as the steady-state simulation.
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Figure 5.8: Stator current, rotor current and electromagnetic torque during a load step obtained
by the current output approach.
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Figure 5.9: Stator current, rotor current and electromagnetic torque during a load step obtained
by the circuit parameter approach.
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Figure 5.10: Output voltage of the rotor-side converter using current output approach (upper)
or circuit parameter approach (lower).

5.2.4 Conclusion

As in the drive example, a controlled system with a frequencyconverter supply was also pre-
sented in this case. Therefore, the conclusions presented in Section 5.1.4 also apply to this case,
confirming the applicability of the current output approachfor simulating such systems. In ad-
dition, the circuit parameter approach was also applied to the same system, but its performance
was not as good as that obtained with the current output approach. This is mainly due to the
error in the phase current, which was also presented in Chapters 3 and 4. Therefore, the circuit
parameter approach cannot be recommended for coupling controlled frequency converter mo-
dels with the FEM computation. Comparison with the analytical model showed that the FEM
model can provide more accurate results for simulating the consequences of sudden faults. On
the other hand, it was shown that a simple analytical model isaccurate enough for the control
system design, but the FEM model can be used for ensuring the correct operation of the system
during different transients and faults.
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Figure 5.11: Stator and rotor current during a symmetric stator fault obtained by the current
output approach, circuit parameter approach and analytical generator model.

5.3 Discussion

In this chapter, two examples relating to frequency converter supply of electrical machines were
presented. As the previous chapters concentrated on the basic electric circuits, the models in
these examples comprised mostly control systems. Since theswitching components in all cases
were modelled by ideal switches, there were practically no additional circuit equations to be
coupled with the FEM computation, but only the control system equations. Therefore, it can be
stated that this chapter presented FEM-control coupling instead of FEM-circuit coupling.

In both the examples, the current output approach was shown to be appropriate for simulating
coupled FEM-control models; however, the circuit parameter approach did not perform as well.
This can be explained by the direct or indirect coupling between the field and circuit equations.
In the current output approach, the field-circuit coupling is direct, whereas it is indirect in the
circuit parameter coupling. This causes an error in the phase currents, which was also discussed
in Chapter 3. In sensitive control systems, this error is large enough to cause oscillation and
inaccurate operation. However, it was shown that direct coupling is not necessarily required
between the FEM model and control system, since the indirectcoupling resulted in good re-
sponse and accurate simulation. This can be explained by thefact that the physical coupling
between the control system and electromagnetic system is actually weak, since the actions in
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the control system and the response of the electromagnetic system always follow each other in
a chain and there is always a delay between the actions.

The examples presented in this chapter also emphasize the main benefits of the indirect
coupling. Since the models of the real frequency converter are relatively large and complex,
it is convenient to construct the models in a system simulator software with a graphical user
interface. By using the current output approach, inclusion of the FEM model into the conver-
ter model is as simple as using an analytical model. Another major advantage of the indirect
coupling is the possibility of using different time steps in the control system model and the
FEM model. In the presented examples, the time steps for the control system were remarkably
shorter than for the time-consuming FEM computation, whichresulted in computation-effective
simulation.

The computational time was not analyzed, because there wereno corresponding cases to be
compared with. The time required by the FEM computation would have been similar to the
cases presented in Chapters 3 and 4, but the simulations were run by another computer. In
both case studies, the control system models were implemented for SIMULINK as compiled
S-functions written in C or Fortran. Therefore, the simulation time was significantly shorter
than it would be with corresponding models constructed fromsingle blocks.

Based on the results of the case studies and the above discussion, the following conclusions can
be drawn in reference to the frequency converter supply:

1. The current output approach is shown to be suitable for simulating electrical machines
with frequency converters; this has been validated by experimental results.

2. Simulation of closed-loop control systems with a FEM model of an electrical machine
does not necessarily require direct coupling.

3. The applicability of the method was proved by modelling real applications and studying
actual problems in co-operation with industrial partners.

4. The circuit parameter approach is not recommended for simulating controlled frequency
converters with electrical machines.

Finally, it should be noted that both the examples in this chapter were based on real applications,
and also that they were accomplished in co-operation with industry. The method for coupling
FEM computation with the frequency converter models has proved to be useful for the industrial
partners and provided them with new knowledge.
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6 Discussion

The aim of this chapter is to summarize and discuss the results of this thesis. The current output
approach and the circuit parameter approach are analyzed interms of their suitability for mo-
delling and simulating electrical machines with circuits and control systems. The significance
of the work is evaluated with respect to the literature reviewed in Chapter 1. On the basis of
the results of this work and other research in this field, an optimal simulation environment and
methodology is proposed for large-scale systems consisting of electrical machines, circuits and
control systems.

6.1 Summary of the results

Two different approaches were presented for coupling the time-stepping finite element analysis
with a system simulator SIMULINK. Because of the indirect coupling, it is possible to build the
whole large-scale model in SIMULINK, whereas the FEM model of the electrical machine is
represented by a functional block with a few input and outputvariables. The main advantages
achieved by such coupling are the simple model construction, when separate parts of the system
can be designed by experts in different fields and coupled simply in the simulator software, and
the possibility of using different time steps for the FEM computation and the rest of the system,
which results in computationally effective simulation.

The current output approach is based on directly coupled field and circuit equations, resolving
the magnetic field in the cross section and the circuit quantities of the windings. In SIMULINK,
the functional block performing the FEM computation passesthe phase current values as out-
put, when the supply voltage values are given as input. The coupling with external circuits
and control systems using the current output approach was studied through examples involving
an induction motor with grid and compensation capacitors, an induction motor drive with a
frequency converter, and a doubly-fed induction generatorwith a frequency converter. The ap-
plicability of the method was shown in all cases, resulting in good accuracy and flexible model
construction.

In the circuit parameter approach, the coupling with SIMULINK is similar but the outputs of
the block are the electromotive force, dynamic inductance and resistance. These parameters are
included as a part of the external circuit model and are updated at each time step. Contrary to
the current output approach, the coupling between the magnetic field equations and the circuit
equations of the windings is indirect in this method. The accuracy of the circuit parameter
approach was studied by simulating a doubly-fed induction generator and a cage induction
motor with sinusoidal supply. In comparison with the results of the directly coupled simulation,
a clear difference was discovered due to the one-step delay in the coupling and the open-loop
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integrators utilized in the circuit simulation. The methodwas also applied in the cases involving
an induction motor with grid and compensation capacitors and a doubly-fed induction generator
with a frequency converter. In the case of grid and capacitors, the results were similar to those
obtained by the current output approach. In the case with a frequency converter, however, the
results were not satisfactory due to problems in the controlsystem model.

In order to draw some general conclusions from the results, the coupling mechanisms between
the magnetic field, circuits and control systems must be analyzed. The electromagnetic coupling
between the magnetic core of the electrical machine, windings and external circuits is physically
strong, which explains the differences between the two indirect approaches and the directly
coupled approach. Discrete operation of the switching components and control systems, ho-
wever, introduces a numerically weak coupling between the electromagnetic system and the
control system, which actually explains the good performance of the current output approach in
the examples involving controlled frequency converters. On the other hand, the unsatisfactory
performance of the circuit parameter approach in similar situations is mainly explained by the
errors in the current integration, which gives a faulty reference to the control system.

6.2 Significance of the work

This work contributes to the simulation of electrical machines, external circuits and control
systems, especially motors and generators connected with frequency converters. The main pro-
blem related to the simulation has been that, while each partof the system requires a different
modelling approach, suitable simulation software for coupling these subsystems has not been
available. The coupling between finite element analysis andcircuit simulation has been studied
widely, but the inclusion of closed control loops cannot anylonger be regarded as trivial. The
challenges in the control loop implementation are related to the coupling mechanisms and model
description. The direct coupling between the FEM computation and control systems requires
equal time steps for the whole system model, but the indirectcoupling would allow different
time scales for the subsystems. The type of coupling accurate enough for the coupled simu-
lation, however, has not been studied. Another issue of consideration is, whether the control
system model can be described as a block diagram or state graph and efficiently translated into
the format required by the coupled simulation software. In this work, solutions to these pro-
blems are sought from a combination of private FEM code and a commercial system simulator.

The new methods presented in this work are based on indirect coupling, the performance of
which is also compared with direct coupling. It is shown thatdirect coupling is required between
the magnetic field equations and the circuit equation of the windings, but indirect coupling is
adequate for controlled converter models. The applicability of the indirect coupling between
electrical machines and external circuits depends on the difference between the time constants,
and therefore it is subject to the studied case. The results of this work, however, support the
usage of indirect coupling in many cases and will possibly give rise to further studies in this
field.

In most of the references in this field, authors have utilizedprogram code owned by the univer-
sity. Commercial software is not always sufficient for the specific research interests and licence
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fees may be unaffordable, but they often provide excellent user interface and post-processing
routines. A combination of university code and commercial software, as presented in this work,
also combines the advantages. On the one hand, the program code for the finite element analysis
is optimized for electrical machines and can be modified if necessary; on the other, construction
of large-scale system models in SIMULINK is simple and thereare several block libraries and
functions available, including all functions and post-processing routines of MATLAB. Conse-
quently, the simulation models can be designed in collaboration between several experts, each
of whom is only responsible for one part of the overall simulation model.

Numerical coupling between time-stepping finite element analysis and circuit simulation has
been presented widely in the literature, and some references also include control systems in the
simulation model. However, the control systems presented for frequency converters have been
very simple and only operating in open-loop mode. The studies presenting closed-loop control
systems, on the other hand, have only considered simple inductors or relays. Using the current
output approach presented in this work, large control systems can be modelled together with
FEM in a relatively simple manner because of the flexible coupling with a system simulator
and the possibility of simulating each part of the model withdifferent time steps. As a result,
complex models of frequency converters including the closed-loop control system were coupled
with the FEM computation in the examples involving a drive application and a wind generator.
Similar cases have not been reported in the literature, since appropriate methods have not been
available earlier. In addition, the industrial partners involved with the example cases have been
satisfied with the methods and have also obtained new knowledge from the results.

The software related to this work was developed as a combination of specific FEM code and
SIMULINK, which naturally has required several tailored solutions in the programming. Ne-
vertheless, the methods themselves are universal and therefore applicable to other software, too.
Many circuit simulators or system simulators provide the possibility of linking existing program
code to the simulation. In this respect, this work will be an encouraging example, showing the
possibilities of coupling FEM code with commercial simulator software.

6.3 Optimal environment for the coupled simulation of
electrical machines, circuits and control systems

According to the literature review and the results of this work, it is possible to outline an optimal
simulation environment for electrical machines, circuit and control systems. A fundamental
assumption for doing so is that the emphasis of the simulation will be on the operation of the
whole system and the interaction between the components, aswell as on the behaviour and
design of each component separately. Therefore, the optimal solution must contain two or three
different tools operating firmly together. The finite element method is a natural choice for the
electrical machine, while the electrical circuits are mostfluently modelled by a circuit simulator
providing a user interface and an extensive component library. The control systems are usually
modelled as block diagrams, which may require a separate system simulator depending on the
features of the circuit simulator.

As stated earlier, direct numerical coupling, which requires strong interaction between the FEM
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Figure 6.1: Outline of an optimal methodology for a coupled simulation of electrical machines,
circuits and control systems.

computation and circuit simulation, is proposed for the field and circuit equations. To achieve
this, the computation of fields and circuits must be integrated, which has usually been the case
in the previous studies reported in the literature. Since the indirect coupling between the field-
circuit models and control systems is adequate, and even more efficient due to the different time
scale, an external simulator can be utilized for control system simulation.

To conclude the above discussion, outline of an optimal methodology for a coupled simulation
of electrical machines, circuits and control systems is presented in Fig. 6.1. The equations of the
magnetic field, windings and external circuits are coupled directly and solved in a FEM-circuit
simulator. The variables in the coupled system of equationsare the nodal values of magnetic
vector potentiala, the vector of currentsi and the vector of voltagesu. The control system is
modelled in a system simulator, which is connected indirectly with the FEM-circuit simulator by
the measurement signals and switch control signals. Becauseof the indirect coupling, different
time steps may be used in the FEM-circuit simulator and the system simulator.

For modelling the switching elements, several approaches can be used. Accordingly, the selec-
ted approach also affects the time-stepping scheme. If the switches are considered as binary-
valued resistors, the control signals are used for triggering the resistance value and forcing a new
time step for the directly coupled FEM-circuit simulation.A similar procedure is required when
the switching is modelled by changing the circuit topology.In such cases, a procedure for vari-
able time steps is required. In the approach utilized in the case studies of Chapter 5, however,
the control system and the switches are modelled together with the voltage source inverter; the
effects of the switching are thus present in the voltage input ofthe FEM model. Because the
inverter model is detached from the FEM model, the time stepsneed not be synchronized and
constant steps can be utilized.
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7 Conclusion

The aim of this study was to develop a simulation environmentfor electrical machines, circuits
and control systems. To achieve this, a methodology was presented for coupling finite element
analysis with a system simulator SIMULINK. Two indirect approaches were developed: the
current output approach and circuit parameter approach. Performance of both these methods
were studied by example cases of varying complexity.

The computational algorithms for modelling the magnetic field in the electrical machine are
based on a two-dimensional finite element method (FEM), coupled with the circuit equations
of the windings. The methods are implemented for SIMULINK asS-functions, which provide
functional blocks for the FEM computation. Because of the indirect coupling, time steps of
different lengths can be used in the model. Another benefit of using a system simulator is that
the large-scale system model can be composed of parts designed by several experts in different
fields and connected simply in the block structure.

The current output approach is based on direct coupling between the field and circuit equa-
tions relating to the cross section and windings of the electrical machine. In SIMULINK, the
electrical machine is represented by a block, which solves the phase currents from the given
supply voltages. In the circuit parameter approach, the electrical machine is characterized by
the electromotive force, dynamic inductance and resistance, which are solved by FEM at each
time step. The inputs for the functional block in SIMULINK are the supply voltages, while the
outputs are the above-mentioned circuit parameters.

In the first case study, a doubly-fed induction generator wasmodelled by FEM and simulated in
steady-state and fault operations using an ideal voltage supply. The results obtained by the cir-
cuit parameter approach were compared with those obtained by the directly coupled simulation,
revealing some differences due to the indirect coupling mechanism. In the circuit parameters
solved by FEM, there was a delay of one time step that cannot beremoved, but the error in the
simulation results can be decreased by shortening the time step.

In the second case study, the circuit parameter approach wasapplied to a cage induction motor,
giving results similar to those obtained for the doubly-fedinduction generator. The FEM model
of the cage induction motor was also coupled with an externalcircuit model comprising grid
and compensating capacitors. The system was simulated using the current output approach,
circuit parameter approach and directly coupled FEM-circuit model, and the simulation models
were validated by experimental results. The results obtained by the three methods were similar
but not identical, indicating that the indirect coupling ofthe field and circuit equations may give
results that are relatively accurate, but not as reliable asthe directly coupled simulation.

Two examples, relating to a motor drive and a wind generator with controlled frequency con-
verters, were also presented. In the first example, a FEM model of a cage induction motor was
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coupled with a detailed model of a frequency converter with direct torque control. The current
output approach was used for the simulation and the results were compared to measurements.
In the second example, a FEM model of a doubly-fed induction generator was coupled with
models of a frequency converter, grid, transformer, overcurrent protection circuit and a control
system. A simulation was run using both the current output approach and circuit parameter
approach. The results of both examples confirmed that the performance of the current output
approach was excellent in the coupled simulation of an electrical machine, frequency converter
and a closed-loop control system. The circuit parameter approach, however, was not suitable
for simulating such systems.

On the basis of the results and the literature study, an optimal environment was proposed for
coupled simulation of electrical machines, circuits and control systems. In such an environment,
there would be direct coupling between the field and circuit equations, and indirect coupling
between the field-circuit model and control system model. This could be accomplished by a
FEM-circuit simulator coupled indirectly to a system simulator.
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A Implementation of the FEM
computation in Simulink

This annex describes briefly how the numerical methods of Chapter 2 are implemented in
Simulink. The original Fortran code has been rearranged andsome new interfacing subroutines
have been programmed according to the specifications of Simulink. The following sections pre-
sent some general information about S-functions, the structure of the S-function for the FEM
computation and the methodology for the data transfer between the S-function and Simulink.
The objective of this annex is to provide some practical information for the researchers who
might be interested in combining their own code with Simulink.

A.1 S-functions in general

The purpose of an S-function is to describe the operation of afunctional block in Simulink using
Matlab’s command language, C, C++, Ada or Fortran. The detailed structure and operation of
the S-functions are presented in the documentation of Simulink (Simulink, 2005). However,
the most relevant features with respect to the FEM implementation are described briefly in this
section.

The computational routines inside the S-function must be formulated in terms of the discrete
or continuous state-space approach. The input, output and state variables are managed by
Simulink, but the data transfer routines and memory allocation must be programmed in the
source code of the S-function using specific subroutines that are delivered with Simulink.

The basic procedure of calling the S-functions is based on flag variables that invoke diffe-
rent operations during the simulation. Consequently, the S-function code must be organized
in subroutines performing the desired operations. The flagsand the corresponding operations
are listed below:

– flag=0: Initialization

– flag=1: Calculate the derivatives of the continuous state variables

– flag=2: Calculate the discrete state variables

– flag=3: Calculate the output variables

– flag=4: Determine the next sample time hit

– flag=9: End of the simulation
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When existing program code is transformed into an S-function, it is not always easy to formulate
the code according to the specifications of Simulink, because the number of variables cannot
be very high and the numerical algorithms of the original code do not necessarily match with
Simulink. It should be noted, therefore, that the implementation described in the following
section is a unique case and may not be directly applicable toother computational software.

A.2 S-function for the FEM computation

A.2.1 Exceptional concepts

The main objective of implementing the FEM computation as anS-function has been the
coupling with Simulink. Therefore, all the numerical algorithms have been conserved as clo-
sely as possible and only the inevitable modifications have been carried out. As a result, the
implemented S-function does not comply perfectly with the concept and rules of Simulink, but
it gives trustworthy results in comparison with the original program. In order to achieve this,
certain exceptional concepts were required as listed below:

– Internal variables: Although the time-stepping simulation is basically governed by
Simulink, the numerical algorithms are completely independent from the methods selec-
ted in Simulink. Accordingly, all the variables related with the computation are managed
inside the S-function using internal memory space, which isnot visible in Simulink.

– State variables: The natural choice for the state variables would have been the nodal
values of the magnetic vector potential, but it turned out that Simulink is not capable of
handling such a number of states. As a result, the vector potential values are considered
as internal variables.

– Direct feedthrough: In order to prevent any non-converging iteration loops in the model,
the output of the S-function must be delayed for one step withrespect to the input by
setting the parameter called ‘direct feedthrough’ to zero during the initialization. As a
result, however, Simulink does not send the input variablesfor the calculation of outputs
(flag=3), but the input values must be stored into the internal memory space during the
calculation of state variables (flag=2).

A.2.2 Outline of the implementation

Since the original FEM code (FCSMEK) is intended for stand-alone computation, it carries out
all the simulation stages including initialization, time stepping and storage of the results. When
the code is transformed into an S-function, the main programmust be split into separate subrou-
tines that are called by Simulink according to the flag variables. The following list describes
the main operations performed on different flag values:



92

– flag=0: At the beginning of the simulation, the input data and simulation variables are
read from the files and the internal variables of the S-function are initialized. In addition,
the number of inputs and outputs are determined at this stage. Although the state varia-
bles are not utilized in the analysis, one meaningless discrete state is defined in order to
manage the input variables at flag value 2.

– flag=1: Since there are no continuous states, this flag invokes no actions.

– flag=2: This flag is originally intended for calculating the discrete state variables, but is
now only used for storing the input variables into the internal memory.

– flag=3: This flag invokes the FEM computation. The computational routines remain
mostly unchanged, but now the analysis is only run for one time step.

– flag=4: The next sample time hit is based on the constant time step length, which is
defined during the initialization.

– flag=9: At the end of the simulation, the results are prepared for post processing and
stored into a file.

A.2.3 Data transfer methodology

As the simulation variables are managed by Simulink, they are transferred directly with the
function calls. However, the types and sizes of the input, output and state variables must be ca-
refully determined and sufficient memory must be allocated in the S-function. For this purpose,
a file template is delivered with Simulink in order to ensure the correct form of the code. The
data pointers and variables are handled by specific subroutines, which are also delivered with
Simulink.

Besides the simulation variables, which are passed at each time step, there are several parame-
ters that are only needed for initialization. These parameters are read from a specific file at the
initialization stage. In order to make the simulation more fluent, the custom masking proper-
ties of Simulink can be utilized in the creation of the parameter file. Details of this feature are
presented in the documentation of Simulink.
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