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Abstract
The inverse scattering problem for the plasma wave equation

[
∂2

t −4+q(x)
]
u(x, t) = 0

in three space dimensions is considered in this thesis. It is shown that, under certain
assumptions about the potential, the time domain scattering problem can be formulated
equivalently in the frequency domain. Time and frequency domain techniques are com-
bined in the subsequent analysis.

The Blagoveščenskiı̆ identity is generalised to the case of scattering data, assuming
an inverse polynomial decay of the potential. This identity makes it possible to calculate
the inner product of certain solutions of the plasma wave equation at a given time, if
the corresponding incident waves and the scattering amplitude are known. In the case
of a compactly supported potential, these inner products can be calculated for the time
derivatives of all solutions.

In the remaining part of the work, the potential is assumed to be compactly supported.
A variant of the boundary control method is used to show that using appropriate superpo-
sitions of plane waves as incident waves, it is possible to excite a wave basis over a com-
pact set. Letting this set shrink to a point, the Blagoveščenskiı̆ identity provides pointwise
information about the solutions. When substituted into the plasma wave equation, this
yields a method for solving the inverse problem.
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1 Introduction
The wave equation with potential

∂2
t u(x, t)−4u(x, t)+q(x)u(x, t) = 0, x ∈ R

n, t ∈ R (1.1)

is known as the plasma wave equation, since it models the propagation of electromag-
netic waves in low-density plasma under certain conditions, or in the ionosphere [Bal72,
Bud61, DR85, JA79, New85]. One of the most elementary models of classical mechanics
modelled by (1.1) is the propagation of waves in an elastic medium [MF53].

The plasma wave equation is closely related to the quantum-mechanical Schrödinger
equation through the Fourier transform with respect to time [New85, RDC85]. Alter-
natively, it would be possible to start with the frequency domain equation, which also
models acoustic scattering [CK98], and view the time domain wave equation formulation
as a tool for analysing it.

Perhaps more importantly for a mathematician, however, (1.1) is one of the simplest
non-trivial perturbations to the wave equation, and thus a good starting point for the analy-
sis of the inverse scattering problem for linear hyperbolic second order partial differential
equations.

The direct scattering problem is, given the real-valued potential q and an incident free
space wave, to find the solution of (1.1) that asymptotically coincides with the incident
wave in the distant past. The inverse scattering problem consists of determining the po-
tential function q from some measurement data of the solutions. In our case, the data will
be the full frequency domain scattering amplitude for all directions and all frequencies.

There are other types of inverse scattering problems, too; in particular those of scat-
tering from obstacles and electromagnetic scattering. Much of their theory is similar to
that of scattering from a potential [PS02]. The inverse scattering problem also has close
connections to various other inverse problems, including inverse problems in bounded do-
mains for the Schrödinger and conductivity equations [Cal80, SU87, Nac88, AP03]. We
shall not consider these questions in this study.

We shall restrict ourselves to the three-dimensional case, which may be seen as the
most relevant for real world situations. In many respects, the two-dimensional and the
general case are similar to the three-dimensional one, but in some crucial places, the 3D
case is simpler to handle. In particular, Lax-Phillips scattering theory is simpler in an odd
number of space dimensions; this is related to Huygens’ principle, which states that when
the number of space dimensions is odd, wave fronts in empty space cease to affect a point
when they have travelled past it. The fundamental solution of the Helmholtz equation also
has useful properties in three dimensions.

A straightforward approach to solving the inverse problem would be to simply calcu-
late the potential from the plasma wave equation:

q(x) =
4u(x, t)−∂2

t u(x, t)
u(x, t)

. (1.2)
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This formula, however, immediately gives rise to two questions:

1. How do we determine the values of u from the scattering data?

2. How can we make sure that the denominator does not vanish?

A large part of this thesis will be devoted to answering these questions.
The text is organised as follows: The remaining part of Section 1 introduces the direct

and inverse scattering problems in more detail, and sets out some notation. In Section 2,
we derive a few estimates for the solutions of (1.1) and related equations, and show that
the direct problem can be formulated equivalently in the frequency domain, and further
as the Lippmann-Schwinger integral equation or through the wave operator. In Section 3,
we derive a variant of the Blagoveščenskiı̆ identity, which allows us to calculate inner
products of solutions of (1.1), at any fixed time t0, from scattering data. If we choose
these solutions in such a way that they are supported in a small neighbourhood of a point
x0 ∈ R

3, these inner products will give information about the behaviour of u near (x0, t0),
answering Question 1 above. The fact that this is possible is shown in Section 4 for the
case of a compactly supported potential, using a variant of the boundary bontrol (BC)
method [Bel90, BK92b, Bel97], which we call scattering control, as there is now no
boundary, but instead, control is done using solutions of the scattering problem. This
will also provide an answer to Question 2 above. Varying x0 and t0, we can find u, and
eventually solve the potential q as in (1.2); this will be done in detail in Section 5.

Although the method we present gives formulae for the reconstruction of the potential,
it involves passing to the limit many times and analytic continuation. For this reason, it
may not be feasible for practical reconstruction.

When deriving the Blagoveščenskiı̆ identity, it is sufficient to assume that the potential
q and its first derivatives are real-valued and bounded, that they decay at a certain inverse
polynomial rate, and that the corresponding Fredholm operator is injective at zero fre-
quency. When proving the control property and solving the inverse problem, however, we
also assume the potential to be compactly supported and once continuously differentiable,
and that there are no bound states, i.e., negative eigenvalues of the Schrödinger operator
−4+q.

The unique solvability of our inverse scattering problem has already been known
for some time [Fad56], also for single frequency data [NK87, Nov88, Ram87, Ram88,
Ram89, SU87] and for certain classes of non-compactly supported potentials [Nov94,
ER95]. The present study, however, provides a novel approach that lends itself to gener-
alization in several directions.

Firstly, it might be possible to relax the assumptions and to cover the case of non-
compactly supported potentials as well, since one of the principal tools, the Blagoveščen-
skiı̆ identity, does not depend on this assumption. Our problem is also formally strongly
overdetermined, with 5-dimensional data (scattering amplitude A : S2×S2×R→ C) and
a 3-dimensional unknown (q : R

3 → R). In many cases it is known that fixed energy data
(which are (2n− 2)-dimensional) determine the n-dimensional potential uniquely, and
fewer data might thus suffice here, too.
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Secondly, our principal tools — the Blagoveščenskiı̆ identity and the control method
— are quite geometrical in nature. It would be interesting to attempt to extend the results
obtained here to more general geometries and equations. The prospects for this appear
promising, as earlier variants of these tools have been developed and applied in such
contexts [KKL01]. Already in their present form, our version of the Blagoveščenskiı̆
identity may prove useful in other applications.

Scattering can also be viewed in the differential geometric framework [Mel94, Mel95].
By compactifying the manifold, the far field can be transformed into boundary values of
the solution, the radiation field [Fri80, Fri01]. Unique continuation from the boundary can
then be used to solve the inverse problem if the metric is not too singular at the boundary.
This technique was used by Sá Barreto to solve the inverse scattering problem for an
asymptotically hyperbolic manifold [SB, Ali84]. An asymptotically Euclidean manifold,
however, may be too singular for this method, and the present method could prove to be
useful [SB03].

The main contributions of this study are:

1. the generalization of the Blagoveščenskiı̆ identity to the scattering case (Theorems
3.11 and 3.12)

2. the introduction of sources simulated by scattered waves (Theorem 4.8) and their
use to show the scattering control property (Theorem 4.10)

3. as an application of the Blagoveščenskiı̆ identity and scattering control, the deriva-
tion of a new reconstruction method for a compactly supported potential which
could be developed further to more general settings (Theorem 5.4).

A substantial amount of technical work was also needed for relating the time and fre-
quency domain formulations for scattering to each other, since the spaces that are natural
for one formulation are not as natural for another. All calculations for which references
are not given were done independently of the existing literature, but most of the results
are probably not new, in particular those in Section 2.

1.1 Time domain scattering
Consider the scattering problem, where a free space wave ui is sent in. Here “free space”
means that ui solves the wave equation without potential,

∂2
t ui(x, t)−4ui(x, t) = 0 (1.3)

for all x ∈ R
3, t ∈ R. A special class of incident waves are the eventually incoming, or

more precisely a-incoming, waves, which are those satisfying the condition (see Figure 1)

ui(x, t) = 0 when |x|< a− t. (1.4)

The Cauchy data, i.e., the values of a free space solution and its time derivative at any in-
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Figure 1: Incoming solution satisfying (1.4).

stant, contain all information about the solution: if the data are known, the wave equation
(1.3) can be solved with these initial conditions. These Cauchy data will be called a wave
at time t.

Lax-Phillips scattering theory [LP67] tells us that each free space solution ui, whose
gradient and time derivative are square integrable at any time, has a unique translation
representation h ∈ L2(R×S2), given by the formula

h(s,ω) =
1

8π2

[
∂s

Z

x·ω=s+t
∂tui(x, t)dS(x)−∂2

s

Z

x·ω=s+t
ui(x, t)dS(x)

]

=
1

8π2

[
∂sR [∂tui(·, t)] (s+ t,ω)−∂2

s R [ui(·, t)] (s+ t,ω)
] (1.5)

for any t ∈ R. Here and later on, dS is the standard surface measure on the sphere, and

R f (s,ω) =
Z

x·ω=s
f (x)dS(x)

is the Radon transform [Hel99]. The wave is given in terms of its translation representa-
tion as

ui(x, t) =
Z

S2
h(x ·ω− t,ω)dS(ω)

∂tui(x, t) =
Z

S2
∂sh(x ·ω− t,ω)dS(ω);

(1.6)

this explains the name. Clearly if h is supported in (−∞,−a]×S2, the wave satisfies the
a-incoming condition (1.4). Conversely, if supph⊂ [−b,∞)×S2, the wave is eventually
outgoing, or b-outgoing, i.e., u(x, t) = 0 when |x|< t +b. Actually for a = 0, this is also
a necessary condition [Hel99, Corollary I.7.4].

Now since there is a potential, the incident wave ui does not solve the plasma wave
equation (1.1), but if it is corrected by a suitable scattered wave us, the total wave u =
ui + us may be a solution. Thinking of this scattered wave as physically arising from
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Figure 2: An a-incoming (left) and b-outgoing (right) wave as a superposition
of plane waves.

interaction of the wave with the potential, it is natural to require it to be causal. By
causality, we mean roughly speaking that us may only depend on the past: the plasma
wave equation (1.1) can be written

[
∂2

t −4+q(x)
]
us(x, t) =−q(x)ui(x, t),

and we say that us is causal if us(x0, t0) depends on the right hand side only in the back-
ward light cone {

(x, t) ∈ R
3×R

∣∣ |x− x0| ≤ t0− t
}
.

A precise definition is given in terms of the advanced fundamental solution of the wave
equation: us is causal if and only if

us(x0, t0) =−
Z t0

−∞

1
4π(t0− t)

Z

|x−x0|=t0−t
q(x)u(x, t)dS(x)dt

=:−
[
E+ ∗ (qu)

]
(x0, t0).

(1.7)

This convolution makes sense if q is compactly supported and ui (and thus u) is incom-
ing: then suppqu ⊂ [−M,∞)×BM for some M > 0, which together with the fact that
suppE+ ⊂ [0,∞)×R

3 yields that the mapping

suppE+× supp(qu) 3
(
(x, t),(y,s)

)
7→ (x+ y,s+ t) ∈ R

3+1

is proper [Hör90, p. 104]. Also if q decays fast enough, this formal convolution converges
for sufficiently quickly decaying u; this will be shown in Theorem 2.24.
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The frequency domain analogue of the the integral equation (1.7), which will shortly
be introduced, is known as the Lippmann-Schwinger equation. For this reason, we call
(1.7) the time domain Lippmann-Schwinger equation and formulate the following:

Time domain direct scattering problem: Given the potential q and an incident wave
ui, determine a causal scattered wave us such that u = ui + us satisfies the time domain
Lippmann-Schwinger equation (1.7).

Another time-domain formulation for the scattering problem is in terms of the wave
operator [LP67, RS79]

Ω± = lim
t→∓∞

W1(−t)W0(t),

where W0 and W1 are the propagators

W0(t) :
(

ui(·,s)
∂tui(·,s)

)
7→
(

ui(·,s+ t)
∂tui(·,s+ t)

)
W1(t) :

(
u(·,s)

∂tu(·,s)

)
7→
(

u(·,s+ t)
∂tu(·,s+ t)

)
,

the definition being independent of s ∈ R. This operator and its relation to the integral
equation formulation above will be investigated in Section 2.3.

1.2 Frequency domain scattering
The Fourier transform with respect to time of any solution u of (1.1) is defined for inte-
grable functions by1

û(x,k) = F
(
u(x, ·)

)
(k) =

Z ∞

−∞
eiktu(x, t)dt,

and for tempered distributions u ∈ S ′ by duality, as usual. Assuming that u ∈ S ′, we see
that û clearly solves, in the sense of distributions, the frequency domain plasma wave
equation, or the Schrödinger eigenvalue problem2

(
−4− k2 +q(x)

)
û(x,k) = 0, x ∈ R

3, (1.8)

1We make this, somewhat less common choice of the plus sign in the exponent. This allows us to keep
the time domain solution u as the starting point and still get the usual signs in the Sommerfeld radiation
condition (1.10). The inverse Fourier transform is then, for integrable functions,

f̌ (x, t)u(x, t) = F−1( f (x, ·)
)
(t) =

1
2π

Z ∞

−∞
e−ikt f (x,k)dk.

2If we now make the inverse Fourier transform with respect to the variable k2 instead of k, we arrive at
the time-dependent Schrödinger equation

[
−i

∂
∂t
−4+q

]
ψ = 0.
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for all wave numbers k ∈ R. This frequency domain formulation is often taken as the
starting point because of its significance in quantum-mechanical scattering. When deal-
ing entirely in the frequency domain, the wave number k is usually viewed as fixed, corre-
sponding to a time harmonic wave with a single frequency k/2π. We shall now, however,
combine frequency and time domain techniques, and therefore need all frequencies k ∈R.

Most results about frequency domain scattering mentioned below can be found in
[CK98] for classical solutions and compactly supported potentials q. Some generaliza-
tions are derived later in this thesis.

The Fourier transform of the incoming wave ûi(x,k) = F(ui(x, ·))(t) clearly satisfies
the Helmholtz equation

(−4− k2)ûi(x,k) = 0, x ∈ R
3. (1.9)

In the frequency domain, the direct scattering problem thus becomes: Given the potential
q and the incident field ûi satisfying (1.9), find the scattered field ûs such that û = ûi +
ûs satisfies (1.8). The causality condition of ûs translates to the Sommerfeld radiation
condition

∂ûs

∂r
− ikûs = o

(
1
r

)
as r := |x| →∞ (1.10)

uniformly in all directions of x̂ := x
r .

Frequency domain direct scattering problem: Given the potential q and a solution ûi of
(1.9), find ûs such that û = ûi + ûs satisfies (1.8) and the Sommerfeld radiation condition
(1.10).

The integral equation formulation for this problem is the Lippmann-Schwinger equa-
tion:

ûs(·,k) =−Gk
(
qû(·,k)

)
, (1.11)

where Gkϕ = Φ(·,k)∗ϕ and

Φ(x,k) := Ê+(x,k) =
eik|x|

4π|x|

is the radiating fundamental solution to the Helmholtz equation, i.e.,−(4+k2)Φ = δ and
Φ satisfies the Sommerfeld radiation condition. The convolution in (1.11) is taken with
respect to the space variable x ∈ R

3 only.
The equivalence of the time domain direct scattering problem and these two frequency

domain direct scattering problems is shown at the end of Section 2.
The Sommerfeld radiation condition explains why the solution û(x,k) is written as a

function of k and not k2 or |k|: even though Equation (1.8) is the same for k and −k,
the Sommerfeld radiation condition (1.10) is not. However, when the potential is real
valued, solutions for negative k are essentially redundant: If û(x,k) is known for k ≥ 0,
û(x,−k) = û(x,k) gives the solution to (1.8), (1.10) for −k ≤ 0.
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Solutions satisfying the Sommerfeld radiation condition have the behaviour

ûs(x,k) =
eik|x|

|x| û∞s (x̂,k)+o
(

1
|x|

)
as |x| →∞,

where û∞s is the far field pattern. In the special case where the potential is compactly
supported and

ûs(x,k) =
eik|x|

|x| f (k)

for large |x|, we have an outgoing spherical wave

us(x, t) =
f̌ (t−|x|)
|x| ,

which is a natural example of an outgoing wave in the time domain. Assuming the k
dependence of the remainder term in the Sommerfeld radiation condition to be integrable,
the inverse Fourier transform gives

∂rus(x, t)+∂tus(x, t) = o
(

1
r

)
as r→∞,

uniformly in all directions and all t ∈ R. This condition is of course satisfied by the
outgoing spherical wave, assuming some regularity of f̌ :

(∂r +∂t)
f̌ (t−|x|)
|x| =− f̌ (t−|x|)

|x|2 − f̌ ′(t−|x|)
|x| +

f̌ ′(t−|x|)
|x| =− f̌ (t−|x|)

|x|2 .

The limiting absorption principle tells us that, instead of real k in the Lippmann-
Schwinger equation (1.11), we can consider the limit from the complex upper half plane:

Gk = lim
ε↘0

Gk+iε.

For ε > 0, the operator Gk+iε models a physical situation where absorption occurs in
addition to scattering. The limiting absorption principle now says that the no absorption
case is the limit of cases of weaker and weaker absorption. [Agm75]

Denote by F the Fourier transform with respect to x ∈R
3, defined for integrable func-

tions by3

F f (ξ) =
Z

R3
e−ix·ξ f (x)dx

3Now the sign in the exponent is the more usual one, in contrast to to definition of F . The inverse
Fourier transform is now for integrable functions

F−1 f (ξ) =
1

(2π)n

Z

R3
eix·ξ f (ξ)dξ.
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and for f ∈ S ′ again by duality. For ε > 0, the Lp convolution theorem tells that F
transforms the convolution by Φ in the Lippman-Schwinger equation into multiplication
by its Fourier transform, which will be calculated in Lemma 2.8. For the case of no
absorption, we must take the limit:

[F(Φ∗ f )] (ξ) = lim
ε↘0

(F f )(ξ)

ξ2− (k + iε)2 =:
(F f )(ξ)

ξ2− (k + i0)2 .

The inverse scattering problem is to determine the unknown potential q, when some
information about the scattered wave corresponding to each incoming wave ui is known.
This information is in our case the scattering data, i.e., the far field patterns

û∞s (x̂,k) = lim
r→∞

re−ikrûs(rx̂,k), x̂ ∈ S2, k ∈ R,

corresponding to different incident waves ui. More precisely, we use the scattering
amplitude A, which is the far field pattern corresponding to an incident plane wave:
A(ω, x̂;k) = v̂∞s (x̂,k;ω), where
[
−4− k2 +q(x)

]
v̂(x,k;ω) = 0
v̂(x,k;ω) = v̂s(x,k;ω)+ v̂i(x,k;ω)

v̂i(x,k;ω) = eikx̂·ω

∂v̂s(rx̂,k;ω
∂r

− ikv̂s(x,k;ω) = o
(

1
r

)
as r := |x| →∞, uniformly over all x̂ ∈ S2.

The Fourier transform of the expression (1.6) of a free space wave in terms of its trans-
lation representation yields a Herglotz wave function, i.e., a linear combination of plane
waves

ûi(x,k) =
Z

S2
eikx·ωĥ(k,ω)dS(ω),

where ĥ ∈ L2(R×S2).
In addition to the far field, we shall also use a few lower order terms of the extended

far field expansions

Pûs(rx̂,k) = eikr
N

∑
j= jP0

UP
j (x̂,k)

r j +o
(

1
rN

)
, x̂ ∈ S2, k ∈ R, P ∈ {1,∂r,∂2

k ,∂r∂2
k}.

The mapping of the incident wave ui to the coefficients UP
j is called the extended scat-

tering data. These data will be only be a tool in an intermediate stage, for it turns out
that under appropriate conditions, the usual far field û∞s = U1

1 determines the lower order
coefficients.

The rest of this study will be devoted to developing tools for solving the inverse prob-
lem.
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1.3 Notation
In addition to the more standard notation and that already set out, we use the following.
We write A := B for A being defined as B. We also write

C+ := {z ∈ C | Imz > 0} upper half space

1U(x) :=

{
1, when x ∈U
0, when x 6∈U.

characteristic function

B(x0,r) := {x ∈ R
n | |x− x0|< r}, Br := B(0,r) open balls

Sn−1(x0,r) := {x ∈ R
n | |x− x0|= r}, Sn−1 := Sn−1(0,1) spheres.

Multi-indices α ∈ N
n (N = {0,1,2, . . .}) are used often, with

∂α =
∂|α|

∂xα1
1 · · ·∂xαn

n
, |α|= α1 + · · ·+αn.

We denote the unit vector in N
n ⊂R

n by e j = (0, . . . ,0,1,0, . . . ,0) with 1 in the jth place.
When estimating different quantities, we use the letter C to denote constants. Its value

may change from occurrence to occurrence, even within the same formula.
The evaluation of a distribution f with a test function g over X ⊂ R

n is written 〈 f ,g〉.
We sometimes also slightly abuse notation and write distributions with variables as in
δx0(y), in analogy with locally integrable functions, and write formal integrals

〈 f (x,y),g(x,y)〉x := 〈 f (·,y),g(·,y)〉 =:
Z

X
f (x,y)g(x,y)dx. (1.12)

This simplifies the notation when working in product spaces, as does ‖ f (s)‖X(s) := ‖s 7→
f (s)‖X . The “prototype” variable in R

n is x = rx̂ with r = |x| and x̂ = x/r. With a prototype
variable we mean one that we may sometimes introduce even if it has been omitted in
earlier stages of the calculations; also differentiations can be written with respect to this
variable. In R the prototype variable is t, in particular when referring to time. After the
Fourier transform with respect to x and t, the prototype variables are ξ and k, respectively.

The reflection operator with respect to time is written (R f )(x, t) = f (x,−t). The
projection operator is written π j : A1×·· ·×An 3 (x1, . . . ,xn) 7→ x j ∈ A j or sometimes πt
when t is the prototype variable of one of the factor spaces A j. The image of a set U ⊂ X
under an operator T : X → Y is written TU = {T x ∈ Y |x ∈ U}. The Banach space of
bounded linear operators from a Banach space X to a Banach space Y is written L(X ,Y ).

The inner product in a Hilbert space H is written ( f ,g)H. Most often we have H =
L2(X) with X ⊂ R

n and

( f ,g) := ( f ,g)L2(X) =
Z

X
f (x)g(x)dx. (1.13)

The notations (1.12) and (1.13) are also used for the respective right hand sides whenever
f and g are functions whose product is integrable. The Hölder conjugate exponent of
p ∈ [1,∞] is denoted by p′; this is the number for which 1/p+1/p′ = 1.
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1.3.1 Weight functions

We define the weight function

w(x) =
√

1+ |x|2 with x ∈ R
n for any n ∈ Z+. (1.14)

The notation 〈x〉 is used in many texts; we choose to write w(x) to simplify some notation.
The weight function will appear, for instance, in the weighted Lp norm

‖ f‖Lp
δ (X) := ‖wδ f‖Lp(X),

for δ ∈ R, 1≤ p≤∞ and measurable X ⊂ R
n. Obviously, we define

Lp
δ(X) =

{
f ∈ L1

loc(X)
∣∣‖ f‖Lp

δ (X) <∞
}

.

Clearly
‖1‖Lp

ρ(Rn) = ‖wρ‖Lp(Rn) <∞ if 1≤ p <∞ and ρ <−n/p. (1.15)

The precise form of the weight function usually does not matter, and we shall some-
times use the equivalent forms

1+ |x| ∼max{1, |x|} ∼ w(x) w(x)ρ ∼ w(|x|ρ) when ρ≥ 0, (1.16)

which are easier to handle in some situations. We choose the form (1.14) as the definition,
because it is also smooth at the origin. This will give more flexibility when working with
weighted Sobolev spaces in Section 2.1. There we shall need the following estimate,
which would not hold, had we chosen w(x) = 1+ |x|.
Lemma 1.1. Let α ∈ N

n, δ ∈ R. Then

∂αw(x)δ =
|α|
∑
j=0

∑
|β|≤2 j−|α|

cα,β,δ, j,nw(x)δ−2 jxβ

for some constants cα,β,δ, j,n ∈ R. In particular,

|∂αw(x)δ| ≤Cα,δ,nw(x)δ−|α|. (1.17)

Proof. By induction: The claim is trivially true for |α|= 0. Assume that it is true for ∂a,
a ∈ N

n, and let α = a+ em. Then

∂αw(x)δ = ∂m∂aw(x)δ =
|a|
∑
j=0

∑
|β|≤2 j−|a|

ca,β,δ, j,n∂m

[(
1+ |x|2

) δ
2− j

xβ
]
.

Now

∂m

[
(1+ |x|2) δ

2− jxβ
]

= (δ−2 j)
(
1+ |x|2

) δ
2−( j+1)

xmxβ +
(
1+ |x|2

) δ
2− j ∂mxβ

= C1w(x)δ−2( j+1)xβ+em +C2w(x)δ−2 jxβ−em ,
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with C2 = 0 if βm = 0. These terms are of the required form, since j + 1 ≤ |a|+ 1 = |α|
and |β± em| ≤ |β|+ 1 ≤ 2 j−|a|+ 1 = 2( j + 1)−|α|. The estimate (1.17) follows from
the observation

∣∣w(x)δ−2 jxβ∣∣≤ w(x)δ−2 j|x||β| ≤ w(x)δ−2 j+|β| ≤ w(x)δ−|α|.

1.3.2 Convolution with respect to time

We shall sometimes want to smooth distributions u ∈ D′(R3×R) with respect to time
only. This can be done by convolving with respect to the time variable, defined for inte-
grable functions by

(
ψ∗t ϕ)(x, t) =

Z

R

ψ(x, t− s)ϕ(s)ds,

as usual. For distributions u ∈ D′(X×R) and v ∈ D′(Y ×R) with v compactly supported
with respect to the variable t ∈ R, we define for ϕ ∈C∞0 (X), ψ ∈C∞0 (Y ) and θ ∈C∞0 (R)

〈u∗t v,ϕ⊗ψ⊗θ〉 =
〈
u(x,s)v(y, t),ϕ(x)ψ(y)χ(t)θ(s+ t)

〉
x,y,s,t (1.18)

where χ ∈C∞0 (R) is such that χ≡ 1 in πt suppv. This defines the distribution u∗t v since
test functions of the above tensor product form are dense [Trè67, Thm. 39.2]; this fact
will be used repeatedly in what follows. In the case of integrable u and v, these definitions
agree: with the change of variable t = σ− s, σ = s+ t, we get

〈u∗t v,ϕ⊗ψ⊗θ〉 =
Z

X

Z

Y

Z

R

Z

R

u(x,s)v(y,σ− s)dsϕ(x)ψ(y)θ(σ)dσdydx

=
Z

X

Z

Y

Z

R

Z

R

u(x,s)v(y, t)ϕ(x)ψ(y)χ(t)θ(s+ t)dsdt dydx.

A convolution with respect to x ∈ R
3 only will also appear in Gkϕ = Φ ∗x ϕ. In this

case, the frequency variable k is fixed, and the convolution can be viewed as a Lebesgue
integral.
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2 Equivalent formulations of the direct problems
In this section, we shall show that the time and frequency domain scattering problems and
the Lippmann-Schwinger equation

(I +GkQ)ûs =−Gk(qûi)

are equivalent to each other; Q denotes the operator of pointwise multiplication by the
potential q. This equation will be considered in the context of certain weighted Lp

spaces, where we can use L. Päivärinta’s extension [Päi04] to S. Agmon’s classical re-
sult [Agm75] telling that the operator Gk : ϕ 7→ Φ(·,k)∗ϕ is bounded in these spaces. It
is also natural to use the weights because one of the simplest solutions to the Helmholtz
equation, the plane wave eikx·ω, is of constant absolute value and thus does not belong to
the unweighted spaces.

Our strategy is the following. We first estimate the norms of the incident part ûi, under
certain assumptions about the translation representation. Then we show that once we have
these estimates, the corresponding norms of

ûs(·,k) =−(I +GkQ)−1Gkqûi(·,k) (2.1)

can be estimated by the norms of ûi, by proving that the operators (I +GkQ)−1 and GkQ
exist and that they and their derivatives with respect to k are bounded. This also establishes
the unique solvability of the Lippmann-Schwinger equation.

Even though the connection between the time and frequency domain equations (1.1)
and (1.8) is simply the Fourier transform, the function spaces that are natural for the
different formulations are not related in the most straightforward manner. For this reason,
our proof of the equivalence entails some work. On the other hand, the estimates that
will soon be proved will also be useful in what follows, in particular in the proof of the
Blagoveščenskiı̆ identity in Section 3.

2.1 Norm estimates for the solution and its k derivatives
We shall now estimate weighted Lp norms of û and its two first derivatives with respect to
k. These estimates are used to deduce regularity properties of the solution û = ûi + ûs and
furthermore show the equivalence of the frequency domain direct scattering problem and
the time and frequency domain Lippmann-Schwinger equations (1.7) and (1.11).

These estimates will also be needed later, for p = 2 and some p > 3, in the derivation
of the extended far field expansions, which are used in the Blagoveščenskiı̆ identity of
Theorem 3.1. The Sobolev embedding theorems and the estimates for Gk that we shall be
using impose here the additional requirement that p < 6.

For all incident waves ui whose translation representations h are in L2(R× S2), we
have the following weighted L2 estimate.
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Lemma 2.1. Let
ui(x, t) =

Z

S2
h(x ·ω− t,ω)dS(ω)

with h ∈ L2(R×S2). Then

‖ûi(x, ·)‖L2(R) =
√

2π‖ui(x, ·)‖L2(R)

is uniformly bounded with respect to x ∈ R
3, and in particular,

‖ûi‖L2
(−δ,0)

:=
[

Z

R3

Z

R

|ûi(x,k)|2w(x)−2δ dk dx
]1/2

=
√

2π‖ui‖L2
(−δ,0)

<∞ (2.2)

for all δ > 3/2.

Proof. Parseval’s formula and Hölder’s inequality tell us that

‖ûi(x, ·)‖2
L2(R) = 2π‖ui(x, ·)‖2

L2(R)

≤ 2π
Z

R

∣∣∣
Z

S2
|h(x ·ω− t,ω)| dS(ω)

∣∣∣
2

dt

≤ 8π2
Z

S2

Z

R

|h(x ·ω− t,ω)|2 dt dS(ω).

Therefore

‖ûi‖2
L2

(−δ,0)
(R3×R)

=
Z

R3

Z

R

|ûi(x,k)|2 dk w(x)−2δ dx

= 2π
Z

R3

Z

R

|ui(x, t)|2 dt w(x)−2δ dx

≤ 8π2‖h‖2
L2(R×S2)‖w−2δ‖L1(R3) <∞

by (1.15).

We shall also need stronger estimates of the k dependence. To obtain these estimates,
we restrict ourselves to incident waves whose translation representations are fairly smooth
and compactly supported.

Lemma 2.2. Let
ui(x, t) =

Z

S2
h(x ·ω− t,ω)dS(ω),

h ∈Cb
0(R×S2), b ∈ N, m ∈ N, δ > m+3/p, 1≤ p <∞. Then for all k ∈ R,

∥∥∥∥
∂mûi

∂km (·,k)
∥∥∥∥

Lp
−δ

≤ C
|k|b

for some constant C = C(δ,m, p,h).
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Proof. In the Fourier transform, the factor k is clearly translated into a t derivative, and
the k derivative into a factor t:

|k|pb
∥∥∥∥

∂mûi

∂km (·,k)
∥∥∥∥

p

Lp
−δ

=
Z

R3

∣∣∣∣
Z

R

kb∂m
k eiktui(x, t)dt

∣∣∣∣
p

w(x)−pδ dx

=
Z

R3

∣∣∣∣
Z

R

eikt∂b
t tmui(x, t)dt

∣∣∣∣
p

w(x)−pδ dx.

Now making the change of variables s = x ·ω− t and observing that |t| ≤ |x|+ |s| ≤
w(x)w(s) we get that

∣∣∣∣
Z

R

eikt∂b
t tmui(x, t)dt

∣∣∣∣≤C
b

∑
j=0

Z

S2

Z

R

|t|m−b+ j|∂ j
t h(x ·ω− t,ω)|dt dS(ω)

≤C
b

∑
j=0
‖∂ j

sh‖L1
m

w(x)m.

Therefore

|k|pb
∥∥∥∥

∂mûi

∂km (·,k)
∥∥∥∥

p

Lp
−δ

≤C
b

∑
j=0
‖∂ j

sh‖p
L1

m
‖wm−δ‖p

Lp ,

which is finite by our assumption about δ.

Now having established estimates for the Lp
−δ norms of the incident field ûi and

its k derivatives, we do the same for the scattering solutions ûs(·,k) of the Lippmann-
Schwinger equation (2.1). To this end, we analyse the operators (I +GkQ)−1 and GkQ
and their k derivatives.

Lemma 2.3. Let 1≤m≤ p <∞, and q∈ L∞γ for some γ > δ+ρ+3 p−m
pm and any δ, ρ∈R.

Then
‖Q f‖Lm

ρ (R3) ≤C‖ f‖Lp
−δ(R

3)

for some constant C.

Proof. Simply use Hölder’s inequality and (1.15):

‖Q f‖m
Lm

ρ
=

Z

R3
|q(x)|m| f (x)|mw(x)mρ dx

≤C
Z

R3
| f (x)|mw(x)m(ρ−γ) dx

≤C‖ f mw−δm‖m
Lp/m‖wm(ρ+δ−γ)‖m

L(p/m)′ ≤C‖ f‖m
Lp
−δ

.
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Lemma 2.4. Let 1 < m≤ 2≤ p <∞ and δ > max{1,3/p,3(1−1/m)}. Then the oper-
ator valued function

R 3 k 7→ Gk : Lm
δ → Lp

−δ

is continuous, and
‖Gk‖L(Lm

δ ,Lp
−δ)
≤Cw(k)3( 1

m− 1
p )−1.

Proof. By the mean value theorem,

|(Gk+h f −Gk f )(x)|=
∣∣∣∣
Z

R3

ei(k+h)|x−y|− eik|x−y|

4π|x− y| f (y)dy
∣∣∣∣

=

∣∣∣∣
Z

R3

h
4π

deit

dt

∣∣∣∣
t=ξ

f (y)w(y)δw(y)−δ dy
∣∣∣∣≤

|h|
4π
‖ f‖Lm

δ
‖1‖Lm′

−δ

for some ξ = ξ(x,y,k,h) between k|x− y| and (k +h)|x− y|. Thus,

‖Gk+h−Gk‖p
L(Lm

δ ,Lp
−δ)

= sup
‖ f‖Lm

δ
≤1

Z

R3
|(Gk+h f −Gk f )(x)|p w(x)−pδ dx

≤Chp‖1‖Lm′
−δ
‖1‖Lp

−δ

h→0−−−→ 0

by (1.15) and the assumption about δ. Therefore, Gk is continuous with respect to k.
For |k|> 1, we use the estimate [Päi04, Thm. 3.1]

‖Gk‖L(Lm
δ (Rn),Lp

−δ(R
n)) ≤C|k|n( 1

m− 1
p )−1,

now with n = 3. If the exponent is positive, this immediately proves the claim. If not, we
combine this estimate with the fact that by continuity, Gk is bounded for k in the compact
set [−1,1]. Thus by (1.16),

‖Gk‖L(Lm
δ ,Lp

−δ)
≤C min{1, |k|3( 1

m− 1
p )−1} ≤Cw(k)3( 1

m− 1
p )−1.

For showing the invertibility of the Lippmann-Schwinger operator I +GkQ, we shall
use weighted Sobolev spaces, for which we first demonstrate a few facts.

Definition 2.5. For m ∈ N and δ ∈ R, the weighted Sobolev norm over a domain Ω⊂ R
n

is defined by

‖ f‖W m,p
δ (Ω) =

[
Z

Ω
w(x)pδ ∑

|α|≤m
|∂α f (x)|p dx

]1/p

when 1≤ p <∞

‖ f‖W m,∞
δ (Ω) = max

|α|≤m
‖∂α f‖L∞δ (Ω).
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The corresponding weighted Sobolev space consists of those functions whose norm is
finite:

W m,p
δ (Ω) =

{
f ∈ S ′(Ω)

∣∣‖ f‖W m,p(Ω) <∞
}
.

We also use the notation

W m,p
loc =

{
f ∈ S ′(R3)

∣∣‖ f‖W m,p(K) <∞ for all compact subsets K ⊂ R
3}.

In the case p = 2 we also write

Hm = W m,2 Hm
δ = W m,2

δ Hm
loc = W m,2

loc .

It might seem equally natural to define these norms the other way around, taking the
derivatives only after multiplying by the weight. As is well known, this would not change
the spaces.

Lemma 2.6. For 1 ≤ p < ∞, the weighted Sobolev norm is equivalent to the regular
Sobolev norm of the weighted function:

‖ f‖W m,p
δ (Ω) ∼ ‖wδ f‖W m,p(Ω).

Proof. First show that ‖wδ f‖W m,p(Ω) ≤C‖ f‖W m,p
δ (Ω): By the Leibniz formula and (1.16)

‖wδ f‖p
W m,p(Ω)

≤
Z

Ω
∑
|α|≤m

[
∑

β≤α

(
α
β

)∣∣∣∂α−βw(x)δ
∣∣∣
∣∣∣∂β f (x)

∣∣∣
]p

dx

≤C
Z

Ω
w(x)δ ∑

|β|≤m

∣∣∣∂β f (x)
∣∣∣

p
dx = C‖ f‖p

W m,p
δ (Ω)

.

For the converse estimate, again use the Leibniz formula and Lemma 1.1 to get

w(x)δ∣∣∂α f (x)
∣∣=
∣∣∣∂α[w(x)δ f (x)

]
− ∑

α′<α

(
α
α′

)
∂α−α′w(x)δ∂α′f (x)

∣∣∣

≤
∣∣∣∂α[w(x)δ f (x)

]∣∣∣+ ∑
α′<α

(
α
α′

)∣∣∂α−α′w(x)δ∣∣∣∣∂α′f (x)
∣∣

≤
∣∣∣∂α[w(x)δ f (x)

]∣∣∣+C ∑
α′<α

(
α
α′

)
w(x)δ∣∣∂α′f (x)

∣∣.

Note that now |α′| ≤ m−1. Repeating the estimate m times gives the statement.
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Lemma 2.7. The embedding H2
δ′(R

3) ↪→ Lp
δ(R3) is compact for all p∈ [2,6] and δ, δ′ ∈R

with δ < δ′.

Proof. Choose χ ∈C∞0 (R) such that suppχ ⊂ [−2,2] and χ ≡ 1 on [−1,1]. Set χR(x) =
χ(|x| −R + 1) so that χR ∈ C∞0 (R3) and suppχR ⊂ B(0,R + 1) and χR|B(0,R) ≡ 1. Then
the operator χR· : H2

δ′ → H2(BR) ↪→ Lp(BR)→ Lp
δ is compact by the Sobolev embedding

theorem [Ada75, Thm. 6.2.II]. Here → denotes a continuous mapping and ↪→ a compact
embedding.

It suffices to show that the operator 1− χR : H2
δ′ → Lp

δ tends to zero as R →∞: by
another Sobolev embedding theorem [Ada75, Thm. 5.4.I] and Lemma 1.1,

‖(1−χR) f‖Lp
δ
≤C‖wδ(1−χR) f‖H1

≤C
[
‖wδ(1−χR) f‖L2 +‖(∇wδ)(1−χR) f‖L2

+‖wδ [∇(1−χR)] f‖L2 +‖wδ(1−χR)∇ f‖L2

]

≤C
[
‖wδ f‖L2(R3\B(0,R)) +‖wδ∇ f‖L2(R3\B(0,R))

]

≤Cw(R)δ−δ′‖ f‖H2
δ′
,

where C does not depend on R. Therefore ‖1−χR‖L(H2
δ′ ,L

p
δ ) ≤Cw(R)δ−δ′ → 0.

For proving the invertibility of I + GkQ, we shall express the convolution operator
Gk = Φ(·,k)∗ as multiplication on the Fourier transform side. To this end, we review the
calculation of its Fourier transform with respect to x ∈ R

3:

Lemma 2.8. For z ∈ C+ and k ∈ R,

FΦ(ξ,z) =
1

|ξ|2− z2

FΦ(ξ,k) = lim
ε↘0

1
|ξ|2− (k + iε)2 =:

1
|ξ|2− (k + i0)2

FΦ(ξ,k) = lim
ε↘0

1
|ξ|2− k2− iεsgnk

=:
1

|ξ|2− k2− i0sgnk
.

(2.3)

In the case k = 0, the limit reduces to FΦ(ξ,0) = |ξ|−2.
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Proof. Integrating by parts in polar coordinates and substituting t = cosθ, we get

F

[
eiz|x|

4π|x|

]
(ξ) =

Z

S2

Z ∞

0

exp [i(z− x̂ ·ξ)r]
4πr

r2 dr dS(x̂)

=
Z

S2
− 1

4π(z− x̂ ·ξ)2 dS(x̂)

=−
Z π

0

Z 2π

0
dϕ

1
4π(z−|ξ|cosθ)2 sinθdθ

=
1
2

Z −1

1

1
(z−|ξ|t)2 dt

=
1

|ξ|2− z2 .

Since e−ε|x|ϕ(x)→ ϕ(x) in C(R3) as ε ↘ 0, and Φ is a tempered distribution of order
zero,

〈Φ,ϕ〉 = lim
ε↘0

〈
Φ,e−ε|·|ϕ

〉
= lim

ε↘0

〈
ei(k+iε)|x|

4π|x| ,ϕ(x)

〉

x

,

i.e., Φ(x,k) is the distribution limit as ε↘ 0 of the integrable functions Φ(x,k+ iε). Thus,

FΦ(ξ) = lim
ε↘0

F

[
ei(k+iε)|x|

4π|x|

]
(ξ) = lim

ε↘0

1
|ξ|2− (k + iε)2 .

The alternate form for FΦ(ξ,k) follows analogously since, if we take the square root with
positive imaginary part,

〈Φ,ϕ〉 = lim
ε↘0

〈
Φ,ei[(k2+iεsgnk)1/2−k]|·|ϕ

〉
= lim

ε↘0

〈
ei(k2+iεsgnk)1/2|x|

4π|x| ,ϕ(x)

〉

x

.

Lemma 2.9. Let p ∈ [2,6], δ > 3/2, q ∈ L∞γ for some γ > 2δ + 3/2, and assume that
q is such that the operator I +GkQ is injective on L2

−δ. Then the operator I +GkQ is
invertible in Lp

−δ, and in particular, the frequency domain Lippmann-Schwinger equation
has a unique solution.

Proof. We first note that I +GkQ is also injective on Lp
−δ: If (I +GkQ)ψ = 0 with ψ∈ Lp

−δ,
Lemmata 2.3 and 2.4 imply that ψ =−GkQψ ∈ L2

−δ and thus by assumption, ψ = 0.
By the Fredholm Alternative it suffices to show that Gkq is a compact operator on Lp

−δ,
since then injectivity will imply invertibility for the resolvent. This will be done by fixing
any δ′ ∈ (3/2, min{δ,(γ−1)/2}) and showing that

Lp
−δ

Q−→ L2
δ′
Gk−→ H2

−δ′ ↪→ Lp
−δ,
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where→ denotes a continuous mapping and ↪→ a compact embedding.
The continuity of Q : Lp

−δ → L2
δ′ is asserted by Lemma 2.3. The compactness of the

embedding H2
−δ′ ↪→ Lp

−δ was proved in Lemma 2.7.
For proving the continuity of Gk : L2

δ′ → H2
−δ′ , use Lemma 2.6 to see that

‖Gk f‖H2
−δ′
≤C‖w−δ′Gk f‖H2

≤C‖w2F(w−δ′Gk f )‖L2

≤C‖F(w−δ′Gk f )‖L2 +C‖| · |2F(w−δ′Gk f )‖L2

= C‖Gk f‖L2
−δ′

+C‖4(w−δ′Gk f )‖L2 .

The first term is estimated using Lemma 2.4. As for the second term,

‖4(w−δ′Gk f )‖L2 ≤C
[
‖(4w−δ′)Gk f‖L2 +‖(∇w−δ′) ·∇Gk f‖L2 +‖w−δ′4Gk f‖L2

]

≤C
[
‖Gk f‖L2

−δ′
+

3

∑
j=1
‖∂ jGk f‖L2

−δ′
+‖4Gk f‖L2

−δ′

]
(2.4)

by Lemma 1.1. For estimating the first order terms, choose χ ∈C∞0 (B3|k|+3, [0,1]) such
that χ≡ 1 in B2|k|+2, and write ∂ jGk f = g1 +g2, where

(Fg1)(ξ) =
(F f )(ξ)

|ξ|2− (k + i0)2 iξ jχ(ξ), (Fg2)(ξ) =
(F f )(ξ)

|ξ|2− (k + i0)2 iξ j [1−χ(ξ)] . (2.5)

Now the fact that multiplication by ξχ(ξ) ∈C∞0 is a bounded operator on H−δ′ gives

‖g1‖L2
−δ′

= ‖Fg1‖H−δ′ ≤C‖F(Gk f )‖H−δ′ = C‖Gk f‖L2
−δ′

.

Also,

ϕ(ξ) :=
ξ j

|ξ|2− (k + i0)2 [1−χ(ξ)]

is a bounded function, and thus

‖g2‖L2
−δ′
≤C‖g2‖L2 = C‖Fg2‖L2 ≤C‖ϕ‖L∞‖F f‖L2 = C‖ f‖L2 ≤C‖ f‖L2

δ′
.

Therefore Lemma 2.4 shows that

‖∂ jGk f‖L2
−δ′
≤C

[
‖g1‖L2

−δ′
+‖g2‖L2

−δ′

]
≤C‖ f‖L2

δ′
.

The Laplacian term in (2.4) is estimated exactly in the same way, except with multi-
plication by |ξ|2 instead of ξ j in (2.5).
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The injectivity condition is automatically satisfied for nonzero frequencies k, as is
shown by the following lemma. For the zero frequency, we need to explicitly assume
injectivity.

Lemma 2.10. Let δ > 3/2 and q ∈ L∞γ (R3,R) for some γ > max{δ+7/2,2δ+1}. Then
the operator I +GkQ is injective on L2

−δ for all k 6= 0.

Proof. Fix k 6= 0 and assume that L2
−δ 3 ϕ =−Gkqϕ. Thus

(−4− k2 +q)ϕ = (−4− k2)(−Gkqϕ)+qϕ =−qϕ+qϕ = 0.

Since the operator −4− k2 + q is injective in L2 when q(x) =O(|x|−ρ), ρ > 1 [Kat59],
it suffices to show that ϕ ∈ L2.

Take a sequence of functions ψn ∈C∞0 converging to qϕ in L2
δ. Then

0 = Im(ϕ,qϕ) = Im(Gkqϕ,qϕ) = lim
n→∞

Im(Gkψn,ψn) = lim
n→∞

Im
Z

R3

|Fψn(ξ)|2
|ξ|2− k2∓ i0

dξ,

where ∓ = −sgnk. Split the integral into two parts using a smooth cut-off function
χ ∈C∞0 (B|k|/2, [0,∞)) with χ ≡ 1 in B|k|/3: The part around the origin is away from the
singularity, and thus

Im
Z

R3

χ(ξ)|Fψn(ξ)|2
|ξ|2− k2∓ i0

dξ = Im
Z

R3

χ(ξ)|Fψn(ξ)|2
|ξ|2− k2 dξ = 0.

Write the singular part using pullback with the smooth f (ξ) = |ξ|2− k2, whose gradient
does not vanish for |ξ|> |k|/3:

1
|ξ|2− k2∓ i0

= ( f ∗g)(ξ), g(ξ) =

(
1

ξ∓ i0

)
= pv 1

ξ ± iπδ0(ξ).

Therefore

0 = lim
n→∞

Im
[

lim
ε↘0

Z

||ξ|2−k2|>ε

1−χ(ξ)

|ξ|2− k2 |Fψn(ξ)|2 dξ ± iπ〈 f ∗δ0(1−χ)Fψn,Fψn〉
]

=±π lim
n→∞

Z

|ξ|2=k2
|Fψn(ξ)|2 dS(ξ) (2.6)

=±π
Z

|ξ|=|k|
|F(qϕ)(ξ)|2 dS(ξ)

by the Sobolev trace theorem, since Fψn → F(qϕ) in Hδ.
We shall now use (2.6) to analyse the behaviour of F(qϕ) near the sphere |ξ| = |k|,

where FΦ is singular: Let α > 5/2. Let Ks : L2(R3)→ L2(S2) be the operator defined by

[Ks(wαqϕ)](ω) = F(qϕ)(sω)

= F(qϕ)(sω)−F(qϕ)(|k|ω)

=
Z

R3
Ks(x,ω)w(x)αq(x)ϕ(x)dx,
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where
Ks(x,ω) = eisω·x

[
ei(|k|−s)ω·x−1

]
w(x)−α.

We can estimate the operator norm of Ks through its Hilbert-Schmidt norm as follows:
because the chord line of the unit circle is not longer than the corresponding arc, we have
|ei(|k|−s)ω·x−1| ≤ |(|k|− s)ω · x| ≤ ||k|− s||x|, and thus

‖Ks‖2
L(L2(R3),L2(S2)) ≤

Z

S2

Z

R3

∣∣e−isω·x∣∣2∣∣ei(|k|−s)ω·x−1
∣∣2w(x)−2α dxdS(ω)

≤ (4π)2 ∣∣|k|− s
∣∣2

Z ∞

0
r2w(r)−2αr2 dr

≤C
∣∣|k|− s

∣∣2.

If we choose α ∈ (5/2,γ− δ), we see that ‖wαqϕ‖L2 ≤ C‖ϕ‖L2
α−γ
≤ C‖ϕ‖L2

−δ
<∞ and

thus
‖[F(qϕ)](s·)‖L2(S2) ≤C

∣∣|k|− s
∣∣, (2.7)

the constant now containing the norm of ϕ.
Write

‖ϕ‖2
L2 = ‖Gkqϕ‖2

L2 = C‖F(Gkqϕ)‖2
L2 = C

Z

R3

∣∣∣∣
F(qϕ)(ξ)

|ξ|2− (k + i0)2

∣∣∣∣
2

dξ.

Split the domain into B2|k| and its complement. In B2|k|, use (2.7) and further estimate
||k|− r|2 ≤ ||k|− r + iε|2 = (r−|k|− iε)(r−|k|+ iε) to see that

Z

B2|k|

∣∣∣∣
F(qϕ)(ξ)

|ξ|2− (k + i0)2

∣∣∣∣
2

dξ = lim
ε↘0

Z 2|k|

0

1
|r2− (k + iε)2|2

Z

S2
|F(qϕ)(rω)|2 dS(ω)r2 dr

≤ lim
ε↘0

C
Z 2|k|

0

(r−|k|− iε)(r−|k|+ iε)r2 dr
(r + k + iε)(r + k− iε)(r− k− iε)(r− k + iε)

= lim
ε↘0

C
Z 2|k|

0

r2 dr
(r + |k|+ iε)(r + |k|− iε)

= C
Z 2|k|

0

r2

(r + |k|)2 dr

<∞.

In R
3 \B2|k|, simply estimate |ξ|2− (k + iε)2 ≥ k2 to get

Z

R3\B2|k|

∣∣∣∣
F(qϕ)(ξ)

|ξ|2− (k + i0)2

∣∣∣∣
2

dξ≤
‖F(qϕ)‖2

L2

k2 =
C‖qϕ‖2

L2

k2 ≤
C‖ϕ‖2

L2
−δ

k2 <∞.
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Lemma 2.11. Let 2≤ p < 6, δ > 3/2, q∈ L∞γ (R3,R) for some γ > max{δ+7/2,2δ+1},
and assume that q is such that the operator I +G0Q is injective on L2

−δ. Then the operator
valued function

R 3 k 7→ (I +GkQ)−1 ∈ L(Lp
−δ)

is continuous and bounded with respect to k.

Proof. By Lemmata 2.3 and 2.4,

‖GkQ‖L(Lp
−δ,L

p
−δ)
≤ ‖Gk‖L(Lm

δ ,Lp
−δ)
‖Q‖L(Lp

−δ,L
m
δ ) ≤Cw(k)3( 1

m− 1
p )−1 → 0

as |k| →∞, if we choose m ∈ (3p/(3+ p),2], which is possible by our assumption about
p. Thus, when |k| is sufficiently large, say |k| ≥ M, this norm is less than 1, and the
resolvent is given by the Neumann series

(I +GkQ)−1 =
∞
∑
j=0

(−GkQ) j

for which
‖(I +GkQ)−1 ‖L(Lp

−δ)
≤ 1

1−CM1−3( 1
m− 1

p )
.

Continuity follows, since

‖(I +GkQ)−1− (I +Gk0Q)−1‖L(Lp
−δ)

=
∥∥(I +GkQ)−1 [Gk0−Gk

]
Q(I +Gk0Q)−1∥∥

≤C‖Gk0−Gk‖L(Lm
δ ,Lp

−δ)
→ 0

(2.8)

as k→ k0, by Lemma 2.4.
Then consider the case |k| ≤M. We first show local boundedness using the formula

‖(A+b)−1‖ = ‖A−1(I +bA−1)−1‖ ≤ ‖A−1‖
1−‖b‖‖A−1‖ :

Fix k0 ∈ [−M,M] and set A = I +Gk0Q and b = GkQ−Gk0Q. Then by Lemmata 2.9 and
2.10 and our assumption, A is invertible. Thus by Lemma 2.4,

‖b‖L(Lp
−δ)
≤ ‖Gk−Gk0‖L(Lm

δ ,Lp
−δ)
‖Q‖L(Lp

−δ,L
m
δ ) <

1
2‖(I +Gk0Q)−1‖L(Lp

−δ)

for k in some small neighbourhood of k0. For such k, we thus have

‖(I +GkQ)−1‖L(Lp
−δ)
≤
‖(I +Gk0Q)−1‖L(Lp

−δ)

1−1/2
,

and (2.8) shows continuity. Boundedness follows, since the compact set [−M,M] can be
covered by a finite number of such neighbourhoods.
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Remark. Combining Lemmata 2.4 and 2.11 shows that the resolvent of the Schrödinger
operator

Gq
k := lim

ε↘0

(
−4+Q− (k + iε)2)−1

= (I +GkQ)−1Gk

satisfies the same estimates as Gk in Lemma 2.4.

For estimating the derivatives

∂kûs =−
[
∂k(I +GkQ)−1]Gk(qû)− (I +GkQ)−1[∂kGk

]
(qû)− (I +GkQ)−1Gk(q∂kû)

∂2
k ûs =−

[
∂2

k(I +GkQ)−1]Gk(qû)− (I +GkQ)−1[∂2
kGk
]
(qû)− (I +GkQ)−1Gk(q∂2

k û)

−2
[
∂k(I +GkQ)−1][∂kGk

]
(qû)−2

[
∂k(I +GkQ)−1]Gk(q∂kû)

−2(I +GkQ)−1[∂kGk
]
(q∂kû)

we shall use the following estimates for the k derivatives of the operators Gk and (I +
GkQ)−1.

Lemma 2.12. The operator valued function

R 3 k 7→ Gk : L2
δ → Lp

−δ

has two bounded derivatives for 2≤ p <∞ and δ > 5/2.

Proof. Show that we can differentiate under the convolution integral: ∂kGk = ∂k(Φ∗) =
(∂kΦ)∗, i.e., that (∂kΦ)∗ is the operator norm limit of the difference quotient. By the
mean value theorem, there is a ξ = ξ(x,y,k,h) between k and k +h such that

∥∥∥∥
(Gk+h−Gk

h
− (∂kΦ)∗

)
f
∥∥∥∥

p

Lp
−δ

=
Z

R3

∣∣∣∣
Z

R3

[
ei(k+h)|x−y|− eik|x−y|

4πh|x− y| − ieik|x−y|

4π

]
f (y)dy

∣∣∣∣
p

w(x)−pδdx

=
Z

R3

∣∣∣∣
Z

R3

ieik|x−y|

4π

[
ei(ξ−k)|x−y|−1

]
f (y)dy

∣∣∣∣
p

w(x)−pδdx

≤C
Z

R3

∥∥∥∥∥
ei(ξ−k)|x−·|−1

w(x)εwε f wδ

∥∥∥∥∥

p

L2

‖wε−δ‖p
L2 w(x)p(ε−δ)dx.

Now |ei(ξ−k)|x−y|−1| ≤ |ξ−k||x−y| ≤ h(|x|+ |y|), and of course also≤ 2. Thus if ε≥ 0,

∣∣∣∣∣
ei(ξ−k)|x−y|−1

w(x)εw(y)ε

∣∣∣∣∣≤





2
(1+ 1

h )ε/2 = 2hε/2

(1+h)ε/2 ≤ 2hε/2 when |x|> 1√
h

or |y|> 1√
h

h(|x|+|y|)
w(x)εw(y)ε ≤ h 2√

h
≤ 2
√

h when |x|, |y| ≤ 1√
h

(2.9)
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and consequently by (1.15),
∥∥∥∥
(Gk+h−Gk

h
−∂kGk

)
f
∥∥∥∥

Lp
−δ

≤C(hε/2 +h1/2)‖ f‖L2
δ
‖wε−δ‖L2‖wε−δ‖Lp

≤C(hε/2 +h1/2)‖ f‖L2
δ
,

which proves the claim about differentiating under the integral if we choose ε ∈ (0,δ−
3/2).

Then do the same for the second derivative ∂2
kΦ(x− y,k) =−eik|x−y||x− y|/4π:

∥∥∥∥
(

∂kGk+h−∂kGk

h
− (∂2

kΦ)∗
)

f
∥∥∥∥

p

Lp
−δ

=
Z

R3

∣∣∣∣
Z

R3

[
−ei(k+h)|x−y|− eik|x−y|

4πh
+

eik|x−y|

4π
|x− y|

]
f (y)dy

∣∣∣∣
p

w(x)−pδdx

=
Z

R3

∣∣∣∣
Z

R3

eiξ|x−y|

4π

[
ei(k−ξ)|x−y|−1

]
|x− y| f (y)dy

∣∣∣∣
p

w(x)−pδdx

≤C
Z

R3

∥∥∥∥∥
ei(k−ξ)|x−·|−1

w(x)εwε |x− y| f wδ

∥∥∥∥∥

p

L2

‖wε−δ‖p
L2 w(x)p(ε−δ)dx

for some ξ = ξ(x,y,k,h) between k and k+h. This time estimate as in (2.9), but now with
|x− y| ≤ |x|+ |y| ≤ 2w(x)w(y):

∣∣∣∣∣
ei(k−ξ)|x−y|−1

w(x)εw(y)ε |x− y|
∣∣∣∣∣≤
∣∣∣∣∣2

ei(k−ξ)|x−y|−1
w(x)ε−1w(y)ε−1

∣∣∣∣∣≤ 4
(

h
ε−1

2 +h
1
2

)
,

and consequently
∥∥∥∥
(

∂kGk+h−∂kGk

h
− (∂2

kΦ)∗
)

f
∥∥∥∥

Lp
−δ

≤C
(

h
ε−1

2 +h1/2
)
‖wε−δ‖L2‖wε−δ‖Lp‖ f‖L2

δ
.

Now we have to choose ε ∈ (1,δ−3/2).
The norms are bounded since

‖∂kGk f‖p
Lp
−δ
≤

Z

R3

(
Z

R3

∣∣∣ ie
ik|x−y|

4π

∣∣∣| f (y)|dy

)p

w(x)−pδ dx≤C‖1‖p
Lp
−δ
‖1‖p

L2
−δ
‖ f‖p

L2
δ

and

‖∂2
kGk f‖p

Lp
−δ
≤

Z

R3

(
Z

R3

∣∣∣e
ik|x−y|

4π

∣∣∣|x− y|| f (y)|dy

)p

w(x)−pδ dx

≤C
Z

R3

(
Z

R3
| f (y)|w(y)δw(y)1−δ dy

)p

w(x)p(1−δ) dx

≤C‖1‖p
Lp

1−δ
‖1‖p

L2
1−δ
‖ f‖p

L2
δ
.
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Corollary 2.13. Let 2 ≤ p < 6, δ > 5/2 and q ∈ L∞γ (R3,R), γ > 2δ + 1 such I +G0Q is
injective on L2

−δ. Then the operator valued function

R 3 k 7→ (I +GkQ)−1 ∈ L(Lp
−δ)

has two bounded derivatives.

Proof. Use the formula ∂kA−1 =−A−1(∂kA)A−1 and its consequence

∂2
kA−1 = 2A−1(∂kA)A−1(∂kA)A−1−A−1(∂2

kA)A−1

to obtain

‖∂k(I +GkQ)−1‖L(Lp
−δ)
≤ ‖(I +GkQ)−1‖2

L(Lp
−δ)
‖∂kGk‖L(L2

δ,L
p
−δ)
‖Q‖L(Lp

−δ,L
2
δ)

,

‖∂2
k(I +GkQ)−1‖L(Lp

−δ)
≤ 2‖(I +GkQ)−1‖3

L(Lp
−δ)
‖∂kGk‖L(L2

δ,L
p
−δ)
‖Q‖L(Lp

−δ,L
2
δ)

+‖(I +GkQ)−1‖2
L(Lp

−δ)
‖∂2

kGk‖L(L2
δ,L

p
−δ)
‖Q‖L(Lp

−δ,L
2
δ)

.

The right hand sides are bounded by Lemmata 2.11 and 2.12.

The norm estimates for the incident and scattered waves are summarized in the fol-
lowing corollary.

Corollary 2.14. Let m∈{0,1,2}, 2≤ p < 6 and δ > m+3/2. Assume that q∈ L∞γ (R3,R)

with γ > 2δ+1 is such that I +G0Q is injective on L2
−δ. Then if

∥∥∥∥
∂mûi

∂km

∥∥∥∥
Lp
−δ

≤ C
|k|b , (2.10)

we also have ∥∥∥∥
∂mûs

∂km

∥∥∥∥
Lp
−δ

≤ C′

|k|b . (2.11)

In particular, the estimates (2.10) and (2.11) hold if

ui(x, t) =
Z

S2
h(x ·ω− t,ω)dS(ω)

with h ∈Cb
0(R,L2(S2)).
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2.2 Regularity of solutions

Lemma 2.15. Assume that q ∈W j,∞
loc and that û(·,k) ∈ L2

loc solves the frequency domain
plasma wave equation (1.8). Then û(·,k) ∈ H2+ j

loc ⊂C j(R3).

Proof. Let K be any bounded set in R
n. By assumption,

‖4û(·,k)‖L2(K) = ‖(q− k2)û(·,k)‖L2(K) ≤
(
k2 +‖q‖L∞(K)

)
‖û(·,k)‖L2(K) <∞.

Thus by standard elliptic regularity results [Eva98, Thm 6.3.1], û(·,k) ∈ H 2
loc. The state-

ment for j > 0 follows iteratively: Assume that û(·,k) ∈ Hm
loc. Then operating on (1.8) by

∂α with |α|= m and and using the same estimate as above, we find that

‖4∂αû(·,k)‖L2(K) =
∥∥∥ ∑

β≤α

(
α
β

)
(∂βq)∂α−βû(·,k)− k2û(·,k)

∥∥∥
L2(K)

≤
(
k2 +2m‖q‖W m,∞(K)

)
‖û(·,k)‖Hm(K) <∞.

Thus again by elliptic regularity, ∂αû(·,k) ∈ H2
loc. Therefore, û(·,k) ∈ Hm+2

loc . The inclu-
sion in the claim is the standard Sobolev embedding result [Ada75, Thm. 5.4.I].

We note that Green’s representation formula

f (x) =
Z

∂BR

[
∂ f
∂n

(y)Φ(x− y)− f (y)
∂Φ

∂n(y)
(x− y)

]
dS(y)

−
Z

BR

[
(4+ k2) f (y)

]
Φ(x− y)dy

(2.12)

for |x|< R, valid in the L2 sense when f ∈H1
loc and4 f ∈ L2

loc, also holds pointwise when
f ∈ H2

loc. This can be seen by approximating f with smooth functions, for which (2.12)
is shown, e.g., in [CK98, Thm. 2.1], and using the Sobolev embedding theorem [Ada75,
Thm. 5.4.I].

2.3 Wave operator
A common formulation [LP67, RS79] for time domain scattering problems is in terms of
the wave operator [RS79]

Ω± = lim
t→∓∞

W1(−t)W0(t),

where W0 and W1 are the propagators

W0(t) :
(

ui(·,s)
∂tui(·,s)

)
7→
(

ui(·,s+ t)
∂tui(·,s+ t)

)
W1(t) :

(
u(·,s)

∂tu(·,s)

)
7→
(

u(·,s+ t)
∂tu(·,s+ t)

)
.

This definition is independent of the choice of s ∈ R, since the free space wave equation
and the plasma wave equation are time-independent.
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Often one also considers the scattering operator S = (Ω−)∗Ω+ which relates to each
other the asymptotical free space waves that the solution approaches before and after
the scattering. We, however, shall not use it since we only deal with the incident free
space wave and the scattered full wave (u,∂tu) = Ω+(ui,∂tui). We shall show shortly
in Lemma 2.19 that under certain assumptions, this formulation is equivalent to the time
domain integral equation formulation (1.7).

A natural environment in which to work with the propagators is given in terms of the
energies with and without potential: the propagators W0 and W1 preserve these energies,
respectively. These energies and the associated Banach spaces are defined as follows:

Definition 2.16. Denote by X the completion of C∞0 (R3) with respect to the norm

‖ f1‖X := ‖∇ f1‖L2 ,

with inner product
( f1,g1)X := (∇ f1,∇g1)L2 .

Set H := X×L2,
((

f1

f2

)
,

(
g1

g2

))

H

:= ( f1,g1)X +( f2,g2)L2 ,

∥∥∥∥
(

f1

f2

)∥∥∥∥
H

:=

((
f1

f2

)
,

(
f1

f2

))1/2

H

and write

H̃ :=
{

u ∈ H1(
R,L2

loc(R
3)
)∣∣∣∣
(

u(·, t)
∂tu(·, t)

)
∈ H for all t ∈ R

}
.

For any p ∈ L∞(R3,R), define on H the energy form

Ep( f1, f2) :=
Z

R3

[
|∇ f1(x)|2 + | f2(x)|2 + p(x)| f1(x)|2

]
dx

and on H̃ the energy of the wave at time t, Ẽp(u, t) := Ep
(
u(·, t),∂tu(·, t)

)
.

Note that the first components of elements of H are locally square integrable by the
Gagliardo-Nirenberg-Sobolev inequality (see, e.g., [Eva98, Thm. 5.6.1] or [Ada75, Sec.
5.11])

‖ f‖Lp∗(Rn) ≤C‖∇ f‖Lp(Rn), p < p∗ =
np

n− p
<∞. (2.13)

With n = 3 and p = 2, p∗ = 6 and we get for any bounded V ⊂ R
3

‖ f1‖2
L2(V ) = ‖ f 2

1 ‖L1(V )

≤ m(V )2/3‖ f 2
1 ‖L3

≤C‖ f1‖2
L6

≤C‖∇ f1‖2
L2

≤C‖( f1, f2)‖2
H .

(2.14)
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An essential fact that we shall use when showing the existence of the wave operator
is the equivalence of the energy forms with and without potential. For this, we shall
assume that the potential is such that the Schrödinger operator −4+ Q does not have
eigenvalues. A sufficient condition for this is that the potential only takes positive values;
then it is easy to see that −4+ Q is a positive operator, being the sum of two positive
operators. The absence of positive eigenvalues was noted in the proof of Lemma 2.10,
and it is also known that zero is not an eigenvalue [RS00]. It is thus enough to assume the
absence of negative eigenvalues, so-called bound states.

Lemma 2.17. Assume that q ∈ L∞γ (R3,R) with γ > 2 is such that the Schrödinger oper-
ator H1 := −4+ Q, D(H1) = H2(R3) ⊂ L2(R3), has no negative eigenvalues. Then the
energies Eq and E0 are equivalent, i.e., there is a constant C > 0 such that

C−1E0( f1, f2)≤ Eq( f1, f2)≤CE0( f1, f2)

for all ( f1, f2) ∈ H.

Proof. See [Phi82, Lemma 3.4] for the proof, which is based on the Gagliardo-Nirenberg-
Sobolev inequality (2.13) and the Rellich-Kondrachov compactness theorem.

We now prove the existence of the wave operator:

Theorem 2.18. Assume that q ∈ L∞γ (R3,R) with γ > 3 is such that the Schrödinger op-
erator H1 := −4+ Q, D(H1) = H2(R3) ⊂ L2(R3), has no negative eigenvalues. Let
H0 =−4. For4 j ∈ {0,1} setH j = H with inner product5

((
f1

f2

)
,

(
g1

g2

))

H j

:=
(
H j f1,g1

)
L2 +( f2,g2)L2 . (2.15)

Then the propagators W j are unitary inH j, and the wave operator

Ω± = lim
t→∓∞

W1(−t)W0(t)

exists and is an isometry fromH0 toH1.

Proof. We proceed in the general framework of scattering theory, which is presented, e.g.,
in [RS79, Sec. XI.10], and which we review here for completeness while proving that the
required assumptions are satisfied.

The operators H j are unbounded positive self-adjoint operators on L2, with domains
D(H j) = H2; the positivity of H1 follows from Lemma 2.17 with f2 = 0. We write the
free space wave equation ( j = 0) and plasma wave equation ( j = 1) as first order systems:

∂t

(
u j(·, t)

∂tu j(·, t)

)
=−iA j

(
u j(·, t)

∂tu j(·, t)

)
, A j = i

(
0 I
−H j 0

)
.

4In the entire section, statements with the index j refer to both cases j = 0 and j = 1.
5Observe that (( f1, f2),( f1, f2))H0

= E0( f1, f2) = ‖( f1, f2)‖2
H and (( f1, f2),( f1, f2))H1

= Eq( f1, f2).
Here, like elsewhere in this text, we identify pairs and column vectors.
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The operators A j are self-adjoint on D(A j) = H2⊕H1 ⊂H j:

(
A j

(
f1

f2

)
,

(
g1

g2

))

H j

=

(
i
(

0 I
−H j 0

)(
f1

f2

)
,

(
g1

g2

))

H j

=
(
H ji f2,g1

)
L2 +

(
−iH j f1,g2

)
L2

=
(

f2,−iH jg1
)

L2 +
(
H j f1, ig2

)
L2

=

((
f1

f2

)
, A j

(
g1

g2

))

H j

Thus iA j are skew-adjoint, and consequently the propagators W j(t) = e−iA jt are unitary in
H j [LP67, App. 1, Thm. 2].

Let B j =
√

H j, extended to X , which is, again by Lemma 2.17 with f2 = 0, the com-
pletion of H1 in the norm ‖B j · ‖L2 = E jq(·,0)1/2 ∼ ‖ ·‖X .

To analyse the propagators W j(t), we diagonalize their infinitesimal generators: A j =

T−1
j B̃ jTj, where

Tj =
1√
2

(
B j i
B j −i

)
T−1

j =
1√
2

(
B−1

j B−1
j

−i i

)
B̃ j =

(
B j 0
0 −B j

)
.

The similarity transformations Tj :H j → L2×L2 are isometries, and they also diagonalize
the propagators

W j(t) = T−1
j W̃ j(t)Tj, W̃ j(t) =

(
e−iB jt 0

0 eiB jt

)
,

and the identification operator

J :=
(

B−1
1 B0 0
0 I

)
= T−1

1 IT0 :H0 →H1

which relates to each other the two Hilbert spaces H0 and H1 in which the propagators
W0 and W1 are unitary.

We shall first prove the existence of the generalized wave operator Ω±(A1,A0;J) :=
limt→∓∞W1(−t)JW0(t). As Lemma 2.17 shows, the spaces H0 and H1 are actually set-
wise, and also topologically, equal, so the identification operator J is in a sense super-
fluous. Indeed, it turns out that the usual wave operator Ω±(A1,A0) also exists, and that
it coincides with Ω±(A1,A0;J); we shall shortly conclude the proof of our theorem by
showing this.

Note that the existence of Ω±(A1,A0;J) is equivalent to the existence of Ω±(B1,B0)
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— for both signs — because as t →∓∞,

W1(−t)JW0(t) = T−1
1 W̃1(−t)T1JT−1

0 W̃0(t)T0

= T−1
1

(
eiB1te−iB0t 0

0 e−iB1teiB0t

)
T0

strongly−−−−→ T−1
1

(
Ω±(B1,B0) 0

0 Ω∓(B1,B0)

)
T0

if the limits exist. This also shows that if Ω±(B1,B0) is an isometry, so is Ω±(A1,A0;J).
We show the existence of Ω±(B1,B0) using the Kato-Birman invariance principle

[RS79, Thm. XI.11]: Let λ > 0, T = (0,1/λ) and ϕ(s) = (1/s− λ)1/2. Then since
σ(H0) = [0,∞) and σ(H1) = σac(H1)∪σp(H1) with σac(H1) ⊂ σess(H1) ⊂ σess(H0) =
[0,∞) [Kat95, Thm. 5.35] and σp(H1)∩(−∞,0] = ∅ by assumption, we see that σ((H j +
λ)−1)⊂ [0,1/λ] = T . Also, ϕ′ < 0 on T and ϕ′′ ∈C(T )⊂ L1

loc(T ). As for the end points
of T , ϕ(1/λ) = 0 is finite, and 0 6∈ σp(H j +λ). Therefore, if we succeed in showing that
(H1 + λ)−1− (H0 + λ)−1 is trace class, the Kato-Birman invariance principle will imply
the existence of Ω±(B1,B0), since B j = ϕ((H j +λ)−1).

For showing the trace class property, write (H j +λ)−1 =−R j
−λ. Then

(H1 +λ)−1− (H0 +λ)−1 = R0
−λ−R1

−λ

= R0
−λ
[
−(H1 +λ)R1

−λ
]
−R0

−λ [−(H0 +λ)]R1
−λ

= R0
−λ [H0 +λ−H1−λ]R1

−λ

=−R0
−λQR1

−λ

so that
R1
−λ = R0

−λ +R0
−λQR1

−λ = R0
−λ
[
I +QR1

−λ
]

and thus

R0
−λ−R1

−λ =−R0
−λQR0

−λ
[
I +QR1

−λ
]

=−
[
R0
−λ|q|1/2·

][
|q|1/2 sgnq ·R0

−λ

][
I +QR1

−λ
] (2.16)

is trace class as a product of two Hilbert-Schmidt operators and a bounded operator: the
second factor in (2.16) is of the form f (x)g(−i∇), for f (x) = |q(x)|1/2 sgnq(x) ∈ L2 and
g(ξ) = (|ξ|2 + λ)−1 ∈ L2, and thus a Hilbert-Schmidt operator [RS79, Thm. XI.20]. For
the first factor, note that

(
R0
−λ|q|1/2ψ, η

)
=
(
|q|1/2ψ, R0

−λη
)

=
(

ψ, |q|1/2R0
−λη

)
,

so that R0
−λ|q|1/2· = (|q|1/2 ·R0

−λ)
∗. The argument that was used for the second factor

therefore shows that the first factor is the adjoint of a Hilbert-Schmidt operator, and thus
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a Hilbert-Schmidt operator itself, too. The operator (2.16) is thus trace class, which al-
lows us to conclude the existence of the wave operators Ω±(B1,B0), and thus also of
Ω±(A1,A0;J).

To show that the identification operator J can be dropped, apply [RS79, Thm. XI.76]
whose assumptions reduce to trivialities except for the following:

(i) Equivalence of the energies
(

f ,H j f
)
: this again follows from Lemma 2.17 with

f2 = 0.

(ii) Vanishing of ‖(H0−H1)e−iB0tw‖L2 as t→±∞, for all w in a dense set D⊂D(H0) =
D(H1) = H2(R3): this will be shown next.

(iii) Existence of the wave operators Ω±(B1,V0): this was shown using the Kato-Birman
invariance principle.

For proving (ii), choose D to be the set of smooth, quickly decaying functions whose
Fourier transform vanishes in a neighbourhood of the origin. Take any ε > 0. Then for
any w ∈ D,

‖(H0−H1)e−iB0tw‖L2 ≤ ‖qe−iB0tw‖L2(BR) +‖qe−iB0tw‖L2(R3\BR)

≤ ‖q‖L∞‖e−iB0tw‖L2(BR) +‖q‖L∞(R3\BR)‖e−iB0tw‖L2 .

Now ‖e−iB0tw‖L2 = (2π)−3‖e−i|·|tFw‖L2 = (2π)−3‖Fw‖L2 = ‖w‖L2 , and since q is as-
sumed to decay, we can fix R so large that ‖q‖L∞(R3\BR)‖w‖L2 < ε/2. It thus suffices to
prove that ‖e−iB0tw‖L2(BR) goes to zero as t → ±∞: For |x| < R, integrate by parts in
spherical coordinates to see that
∣∣(e−iB0tw

)
(x)
∣∣= 1

(2π)3

∣∣∣
Z

R3
eix·ξe−i|ξ|tFw(ξ)dξ

∣∣∣

=
1

(2π)3

∣∣∣
Z

S2

Z ∞

0
eiρ(x·θ−t)Fw(ρθ)ρ2 dρdS(θ)

∣∣∣

=
1

(2π)3

∣∣∣
Z

S2

Z ∞

0

ieiρ(x·θ−t)

x ·ω− t
∂

∂ρ
[
Fw(ρθ)ρ2] dρdS(θ)

∣∣∣

≤ 1
(2π)3

Z

S2

Z ∞

0

|ieiρ(x·θ−t)|
|x ·ω− t|

∣∣∣ ∂
∂ρ

Fw(ρθ)+
2
ρ

Fw(ρθ)
∣∣∣ ρ2 dρdS(θ)

≤ (2π)−3

|t|−R

Z

R3

[
|∇Fw(ξ)|+ 2

|ξ| |Fw(ξ)|
]

dξ.

This completes the proof.

We shall prove shortly in Section 2.4 that the time and frequency domain formulations
of the direct scattering problem are equivalent. The following lemma, which shows that
the time domain direct scattering problem can be formulated in terms of the wave operator,
will allow us to deduce the conservation of energy for the solutions of the direct scattering
problem.
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Lemma 2.19. Let ui(x, t) =
R

S2 h(x ·ω−t,ω)dS(ω). Then ui ∈ H̃ if and only if h∈ L2(S2),
and Ẽ0(ui, t) = (2π)2‖h‖2

L2(R×S2)
for all t ∈ R.

Assume, in addition, that q ∈ L∞comp(R
3,R) is such that the Schrödinger operator

H1 := −4+ Q, D(H1) = H2(R3) ⊂ L2(R3), has no negative eigenvalues. Then u =
ui +us, (

u(·, t)
∂tu(·, t)

)
:= W1(t)Ω+

(
ui(·,0)

∂tui(·,0)

)
,

solves (1.7), u ∈ H̃ and Ẽq(u, t) = (2π)2‖h‖2
L2(R×S2)

for all t ∈ R.

Proof. The isometricity of the incident wave and its translation representation is shown
in [LP67, Chapter IV, (2.16)]; there a factor of 1/2π appears in the expression (1.6) of ui
in terms of h, instead of the definition (1.5) of h. The isometricities of the wave operator
Ω+ and the propagator W1(t) were shown in Theorem 2.18.

To show that u solves (1.7), first approximate ui by

un
i (x, t) =

Z

S2
hn(x ·ω− t, t)dS(ω), hn(s,ω) = 1(−∞,n](s)h(s,ω), n ∈ N.

As n→∞, the isometricities already noted imply that
(

un
i (·, t)

∂tun
i (·, t)

)
→
(

ui(·, t)
∂tui(·, t)

)

and (
un(·, t)

∂tun(·, t)

)
:= W1(t)Ω+

(
un

i (·,0)

∂tun
i (·,0)

)
→
(

u(·, t)
∂tu(·, t)

)
(2.17)

in H for all t ∈ R. Now un
i is −n-incoming, i.e., un

i (x, t) = 0 when |x|<−n− t. Thus
(

un
i (·, t)

∂tun
i (·, t)

)
= W0(t)

(
un

i (·,0)

∂tun
i (·,0)

)
= 0

in BR when t <−R−n, so that if suppq⊂ BR,

W1(−t)W0(t)
(

un
i (·,0)

∂tun
i (·,0)

)
= W1(R+n)W0(−R−n)

(
un

i (·,0)

∂tun
i (·,0)

)

when t <−R−n. Therefore
(

un(·, t)
∂tun(·, t)

)
= W1(t +R+n)W0(−R−n)

(
un

i (·,0)

∂tun
i (·,0)

)
=

(
un

i (·, t)
∂tun

i (·, t)

)

when t <−R−n. Consequently
[
∂2

t −4
]

un
s =−qun in R

3×R

un
s = ∂tun

s = 0 at t =−R−n,
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PSfrag replacements
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of suppq× [a0,b]
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Figure 3: Domains of dependence and influence in (2.18).

and we deduce that un
s =−E+ ∗qun.

By (2.17), it suffices to show that as n→∞, E+ ∗ q(u− un)→ 0 uniformly for any
compact V × [a,b]⊂ R

3×R. Set vn := u−un and

vn
s (x0, t0) :=−

Z t0

−∞

1
4π(t0− t)

Z

|x−x0|=t0−t
q(x)vn(x, t)dS(x)dt. (2.18)

By the compactness of the support of q, the integrand vanishes for t smaller than some
a0 < a (see Figure 3). Thus for a large enough compact set U ⊂ R

3,
[
∂2

t −4
]

vn
s =−qvn in U× [a0,b]

vn
s = 0 on ∂U× [a0,b]

vn
s = ∂tvn

s = 0 at t = a0

and consequently [Eva98, Thm. 7.2.5]

esssup
a≤t≤b

[
‖vn

s (·, t)‖H1
0 (V ) +‖∂tvn

s (·, t)‖L2(V )

]
≤ esssup

a0≤t≤b

[
‖vn

s (·, t)‖H1
0 (U) +‖∂tvn

s (·, t)‖L2(U)

]

≤C‖qvn‖L2(U×[a0,b])

≤C‖q‖L∞

[
Z b

a0

‖vn(·, t)‖L2(U)

]1/2

.

The quantity on the right hand side approaches zero as n →∞; to see this, use (2.14),
the equivalence of the energies (Lemma 2.17) and the isometricities of the wave operator
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(Theorem 2.18) and the translation representation:

‖vn(·, t)‖2
L2(U) ≤CẼ0(vn, t)≤CẼq(vn, t) = CẼ0(vn

i , t) = C‖h‖2
L2(S2×(n,∞))

n→∞−−−→ 0

uniformly for all t ∈ [a0,b].

2.4 Equivalence result
We have introduced four different formulations for the direct scattering problem:

(i) û = ûi + ûs satisfies the frequency domain Lippmann-Schwinger equation (1.11)

(ii) û = ûi+ ûs satisfies the frequency domain scattering problem (in Section 1.2, page 11)

(iii) u = ui +us satisfies the time domain Lippmann-Schwinger equation (1.7)

(iv)
(
u(·, t),∂tu(·, t)

)
= Ω+

(
u(·, t),∂tu(·, t)

)
.

There is a vast literature dealing with each of these four formulations. Each has certain
convenient properties that arise naturally in the framework of appropriate function spaces.
However, these frameworks are somewhat different for each formulation. In order to be
able to combine these properties, we shall now prove the equivalence of the different
formulations.

That (iii) follows from (iv) was already shown in Lemma 2.19; if (iii) is uniquely
solvable, this also gives the converse implication. The analysis of the others will be
broken down into two lemmata showing pairwise equivalences under slightly different
assumptions. The results will be summarized in Theorem 2.24.

Lemma 2.20. Let k ∈R and ûi(·,k)∈ Lp
−δ for some δ > 5/2 and some p∈ (3,6). Assume

that q ∈W 1,∞
loc (R3,R)∩L∞γ with γ > 2δ+3 is such that the operator I +G0Q is injective

on L2
−δ.

Then û(·,k) = ûi(·,k)+ ûs(·,k) satisfies the frequency domain direct scattering prob-
lem (in Section 1.2, page 11) if it satisfies the frequency domain Lippmann-Schwinger
equation (1.11). For k 6= 0, the converse implication also holds.

Proof. Let û = ûi + ûs be a solution of the Lippmann-Schwinger equation (1.11) and let
C∞0 (R3) 3 ϕn → qû in L2

δ (see Lemma 2.3). Then by Lemma 2.4, Gkϕn →Gk(qû) in Lp
−δ,

and a fortiori in S ′. Thus in the sense of distributions,

(4+ k2)û = (4+ k2)ûs

= (4+ k2)
[
−Gk(qû)

]

= lim
n→∞

[
− (4+ k2)Φ

]
∗ϕn

= lim
n→∞

δ0 ∗ϕn

= qû.
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To show that the Sommerfeld radiation condition (1.10) is satisfied, we can differenti-
ate under the integral with respect to r = |x|, as is seen in the following. Fix χ ∈C∞0 (R3)
with suppχ⊂ BR. Then

〈
∂
∂r

[
Φ∗ (qû)

]
,χ
〉

=

〈
∂
∂r

[
Φ∗ (1BRqû)

]
,χ
〉

+

〈
∂
∂r

[
Φ∗
(
(1−1BR)qû

)]
,χ
〉

;

consider the terms separately. Now as 1BRqû ∈ E ′, the convolution in the first term is a
usual convolution E ′×D′→D′, and it follows that

∂
∂r

[
Φ∗
(
1BRqû

)]
(x) =

3

∑
j=1

x j

|x|
∂

∂x j

[
Φ∗
(
1BRqû

)]
(x)

=
3

∑
j=1

x j

|x|

[
∂Φ
∂x j

∗
(
1BRqû

)]
(x)

= x̂ ·∇Φ∗
(
1BRqû

)
(x).

For the second term, we use the mean value theorem: when x ∈ suppχ⊂ BR,

∂
∂r

[
Φ∗
(
(1−1BR)qû

)]
(x)

= lim
h→0

Z

R3\BR

[
Φ(x+hx̂− y)−Φ(x− y)

h

]
q(y)û(y,k)dy

= lim
h→0

Z

R3\BR

x̂ ·∇Φ
(
x+ξx̂− y

)
q(y)û(y,k)dy

for some ξ = ξ(x,y,h) ∈ [−h,h]. The integral converges to the integral of the pointwise
limit by Lebesgue’s dominated convergence theorem: since |x|< R and y > R,

|x+ξx̂− y| ≥ |x− y|− |ξ| ≥ R−|x|− |h| ≥ R−|x|
2

when |h| ≤ (R−|x|)/2, and thus

∣∣x̂ ·∇Φ
(
x+ξx̂− y

)∣∣≤ |x̂|
∣∣∣∣∣

eik|x+ξx̂−y|

4π|x+ξx̂− y|

∣∣∣∣∣

[∣∣∣∣ik
x+ξx̂− y
|x+ξx̂− y|

∣∣∣∣+
1

|x+ξx̂− y|

]
≤C(x,k),

showing that the integrand is bounded by the integrable function C(x,k)|q(y)||û(y,k)|.
Therefore

∂
∂r

[Φ∗ (qû)](x) = x̂ ·
[
∇Φ∗ (qû)

]
(x)
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for x ∈ suppχ, and the Sommerfeld radiation condition follows from that for Φ:

∣∣∣∂ûs

∂r
(x,k)− ikû(x,k)

∣∣∣
=
∣∣x̂ ·
[
∇Φ∗ (qû)

]
(x,k)− ik

[
Φ∗ (qû)

]
(x,k)

∣∣

=

∣∣∣∣
Z

R3

eik|x−y|

4π|x− y|

[(
x̂ · x− y
|x− y| −1

)
ik− 1

|x− y|

]
q(y)û(y,k)dy

∣∣∣∣

≤Cw(k)
Z

R3

[
1

|x− y|

∣∣∣∣ x̂ ·
x− y
|x− y| −1

∣∣∣∣+
1

|x− y|2
]
|q(y)||û(y,k)|dy.

Split the domain of integration into three parts: B(x,1), B(0, |x|α) for some α ∈ (0,1/2),
and the rest, call it U . In B(x,1), we estimate

∣∣∣∣ x̂ ·
x− y
|x− y| −1

∣∣∣∣≤ 2 (2.19)

and |q(y)| ≤ Cw(y)−γ ∼ Cw(x)−γ for large x. In B(0, |x|α) for |x| large, approximate√
1+ s = 1+ s/2+O(s2) to get

|x− y|=
√
|x|2−2x · y+ |y|2 = |x|− x̂ · y+O

( |y|2
|x|

)

and consequently

1
|x− y|

∣∣∣∣ x̂ ·
x− y
|x− y| −1

∣∣∣∣+
1

|x− y|2 =

∣∣|x|− x̂ · y−|x− y|
∣∣+1

|x− y|2

=
O
(
|y|2
|x|

)
+1

|x− y|2 =
O(1)

|x− y|2 =O
(

1
|x|2
)

.

In U , simply use (2.19) and |x− y| ≥ 1. Thus

∣∣∣∂ûs

∂r
(x,k)− ikû(x,k)

∣∣∣

≤Cw(k)

[∥∥∥∥
1

|x− y|2
∥∥∥∥

Lp′(B(x,1))

‖wδ−γ‖L∞(B(x,1))‖û(·,k)‖Lp
−δ

+
1
|x|2 ‖w

δ−γ‖Lp′‖û(·,k)‖Lp
−δ

+‖wδ−γ‖Lp′(U)‖û(·,k)‖Lp
−δ

]
.

Now each term is o(|x|−1): For the first term,

∥∥∥∥
1

|x− y|2
∥∥∥∥

Lp′(B(x,1))

=

[
Z 1

0
r2−2p′ dr

]1/p′

<∞
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since p′ < 3/2, and ‖û(·,k)‖Lp <∞ by Corollary 2.14. As γ > δ+1,

‖wδ−γ‖L∞(B(x,1)) ∼ w(x)δ−γ = o
(

1
|x|

)
.

The statement is clear for the second term. For the third one, calculate

‖wδ−γ‖Lp′(U) =

[
Z ∞

|x|α
(1+ r)p′(δ−γ)r2 dr

]1/p′

≤
[

(1+ |x|α)p′(δ−γ)+3

p′(γ−δ)−3

]1/p′

=O
(
|x|α(δ−γ+ 3

p′
)
)

= o
(

1
|x|

)

if α < 1/2 is chosen large enough. The estimates are uniform over all directions x̂ ∈ S2.
Thus ûs satisfies the Sommerfeld radiation condition.

To see the converse implication, let û = ûi + ûs be a solution of the frequency domain
direct scattering problem at frequency k 6= 0. By Lemma 2.15, ûs(·,k) ∈ H3

loc(R
3), so

Green’s representation formula can be used to deduce that

ûs(x,k) =
Z

∂BR

[
∂ûs

∂n
(y)Φ(x− y)− ûs(y)

∂Φ
∂n(y)

(x− y)
]

dS(y)

−
Z

BR

Φ(x− y)q(y)û(y,k)dy,

which gives the Lippmann-Schwinger equation as R→∞, since the first integral tends to
zero: By assumption,

∂ûs

∂n
(y)Φ(x− y)− ûs(y)

∂Φ
∂n(y)

(x− y)

=

[
ikûs(y)+o

( 1
R

)]
Φ(x− y)− ûs(y) [ikΦ(x− y)+g(x,y)]

where g(x,y) = o(1/R) and Φ(x− y) =O(1/R) uniformly in all directions, and thus
∣∣∣∣
Z

∂BR

[
∂ûs

∂n
(y)Φ(x− y)− ûs(y)

∂Φ
∂n(y)

(x− y)
]

dS(y)
∣∣∣∣

≤ 4πR2 o
( 1

R2

)
+

[
Z

∂BR

|ûs(y)|2 dS(y)
Z

∂BR

|g(x,y)|2dS(y)
]1/2

.

The claim is proved if we show that
Z

∂BR

|ûs(y)|2 dS(y) =O(1) as R→∞.
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To this end, begin by noting that

Z

∂BR

[∣∣∣∣
∂ûs

∂n

∣∣∣∣
2

+ k2|ûs|2 +2k Im
(

ûs
∂ûs

∂n

)]
dS =

Z

∂BR

∣∣∣∣
∂ûs

∂n
− ikûs

∣∣∣∣
2

ds R→∞−−−→ 0

by the Sommerfeld radiation condition, which was assumed. Thus,

lim
R→∞

Z

∂BR

[∣∣∣∣
∂ûs

∂n

∣∣∣∣
2

+ k2|ûs|2
]

dS =−2k Im lim
R→∞

Z

∂BR

(
ûs

∂ûs

∂n

)
dS

=−2k Im lim
R→∞

Z

BR

[
ûs4ûs + |∇ûs|2

]
dx

=−2k Im lim
R→∞

Z

BR

[
ûs(qû− k2ûs)+ |∇ûs|2

]
dx

=−2k Im
Z

R3
qûsûdx

and therefore

lim
R→∞

Z

∂BR

|ûs|2 dS≤ 1
k2 lim

R→∞

Z

∂BR

[∣∣∣∣
∂ûs

∂n

∣∣∣∣
2

+ k2|ûs|2
]

dS

≤ 2
|k| Im

Z

R3
Cw−γ|ûs||û|dx

≤ 2
|k|‖ûs‖L2

−γ/2
‖û‖L2

−γ/2
<∞

by Corollary 2.14.

Lemma 2.21. Assume that q ∈ L∞γ (R3,R) with γ > 2δ + 1, δ > 5/2, is such that the
operator I +G0Q is injective on L2

−δ. Let ui(x, t) =
R

S2 h(x ·ω− t,ω)dS(ω), either with
h∈C2

0(R×S2) or with h∈L2(R×S2) and and q compactly supported. Then the frequency
and time domain integral equation formulations (i) and (iii) are equivalent, in the sense
of being satisfied for almost all k and t, respectively.

Proof. First assume that h ∈C2
0(R× S2). Then by using Corollary 2.14 with m = 0 and

both b = 0 and b = 2, we see that by assumption, ûi(·,k), ûs(·,k), û(·,k)∈ Lp
−δ, with norms

bounded by Cw(k)−2. The inverse Fourier transform of (1.11) gives

us(x, t) =−
Z

R

Z

R3

eik(|x−y|−t)

4π|x− y| q(y)û(y,k)dydk

=−
Z

R3

1
4π|x− y| q(y)

Z

R

e−ik(t−|x−y|)û(y,k)dk dy

=−
Z

R3

1
4π|x− y| q(y)u(y, t−|x− y|)dy

=−
[
E+ ∗ (qu)

]
(x, t);
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changing the order of integration was justified by Fubini’s theorem since the integral
converges:

Z

R

Z

R3

∣∣∣∣
eik(|x−y|−t)

4π|x− y| q(y)û(y,k)
∣∣∣∣dydk

≤C
Z

R

Z

R3

1
4π|x− y| w(y)−γ|û(y,k)|dydk

≤C
Z

R

[
Z ∞

0

Z

S2
r−p′w(x+ rθ)p′(δ−γ)dS(θ)r2 dr

]1/p′

‖û(·,k)‖Lp
−δ

dk <∞.

Thus, (i) is equivalent to (iii).
Then consider the case where q is compactly supported. Choose any ϕ ∈C∞0 (R3) and

ψ ∈ C∞0 (R). Therefore the integral below converges by Lemmata 2.1 and 2.11, and we
can change the order of integration:

〈us,ϕ⊗ψ〉 = 〈ûs,ϕ⊗ ψ̌〉

=−
Z

R3

Z

R

Z

R3
Φ(x− y,k)q(y)û(y,k)dyϕ(x)ψ̌(k)dk dx

=−
Z

R3

Z

R

q(y)û(y,k)
Z

R3
Φ(x− y,k)ϕ(x)dx ψ̌(k)dk dy

=− lim
n→∞

Z

R3

Z

R

q(y)û(y,k)θ̌n(y,k)dk dy,

where
θ̌n(y,k) = χn(y)

Z

R3
Φ(x− y,k)ϕ(x)dx ψ̌(k)

and χn ∈C∞0 (Bn) with χn ≡ 1 in Bn−1. Now

θn(y, t) =
Z

R

eiktχn(y)
Z

R3

eik|x−y|

4π|x− y| ϕ(x)dx ψ̌(k)dk

= χn(y)
Z

R3

1
4π|x− y| ϕ(x)

Z

R

eik(|x−y|+t)ψ̌(k)dk dx

= χn(y)[RE+ ∗ (ϕ⊗ψ)](y, t),

whereR· denotes reflection with respect to time. Therefore as q was assumed compactly
supported, we get for a χ ∈C∞0 (R3×R) with χ ≡ 1 in a sufficiently large ball, [Hör90,
p.104]

〈us,ϕ⊗ψ〉 = lim
n→∞

〈
−qû, θ̌n

〉

= lim
n→∞

〈−qu,θn〉
= lim

n→∞
〈−qu,χn(χRE+)∗ (ϕ⊗ψ)〉

= 〈−χqu,(χRE+)∗ (ϕ⊗ψ)〉
= 〈−(χE+)∗ (χqu),ϕ⊗ψ〉
= 〈−E+ ∗qu,ϕ⊗ψ〉 .
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The condition of the injectivity of the zero frequency Lippmann-Schwinger operator
I +G0Q on L2

−δ has appeared several times both in this section and in Section 2.1. Since
formally

−4+Q =4(I +G0Q),

this condition is related to the injectivity of the Schrödinger operator. In the analysis of
the time domain formulations in Section 2.3 it was required that the Schrödinger operator
has no L2 eigenvalues, and we noted in particular that zero is not one. In other words, the
Schrödinger operator is injective on L2. However, it might not be injective on a slightly
larger space. In this case we talk about resonances:

Definition 2.22. We say that the Schrödinger operator has a resonance at zero if the
equation

ϕ =−G0Qϕ

has a nontrivial continuous solution uniformly vanishing at infinity.

Now the condition of the injectivity of the Lippmann-Schwinger operator can be for-
mulated in terms of zero resonance:

Lemma 2.23. Let δ > 3/2 and q∈ L∞γ with γ > δ+3/2. Then if the Schrödinger operator
has no resonance at zero, the operator I +G0Q is injective on L2

−δ.

Proof. Let (I +G0Q)ϕ = 0 for some ϕ ∈ L2
−δ. Lemma 2.15 shows that ϕ is continuous.

A simple calculation, similar to the one in the proof of Lemma 3.3 below, shows that ϕ
vanishes uniformly at infinity. Thus ϕ = 0 by assumption.

We now summarize the equivalence of the different formulations of the direct scatter-
ing problem.

Theorem 2.24. Let ui(x, t) =
R

S2 h(x ·ω− t,ω)dS(ω) with h ∈ L2(R× S2). Assume that
q ∈W 1,∞

loc (R3,R)∩ L∞γ with γ > 8 and that the Schrödinger operator −4+ Q has no
negative L2 eigenvalues and no resonance at zero. Then the following are equivalent:

(i) û(·,k) = ûi(·,k)+ ûs(·,k) satisfies the Lippmann-Schwinger equation (1.11)
for almost all k ∈ R

(ii) û(·,k) = ûi(·,k)+ ûs(·,k) satisfies the frequency domain scattering problem
(in Section 1.2, page 11) for almost all k ∈ R.

If, in addition, h ∈C2
0(R×S2), (i) and (ii) are equivalent to:

(iii) u = ui +us satisfies the time domain Lippmann-Schwinger equation (1.7).

If q is compatly supported, (i) and (ii) are equivalent to (iii) in the sense of distributions
even without the additional assumption about h, and to:

(iv)
(
u(·, t),∂tu(·, t)

)
= W1(t)Ω+

(
u(·,0),∂tu(·,0)

)
for all t ∈ R.
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Proof. Lemmata 2.1 and 2.11 imply that û(·,k), ûi(·,k) and ûs(·,k) ∈ L2
−δ for any δ ∈

(5/2,(γ− 3)/2) and almost all k ∈ R, so Lemma 2.20 gives the equivalence of the two
frequency domain formulations.

The equivalence of the frequency and time domain Lippmann-Schwinger equations
was shown in Lemma 2.21. This also guarantees the unique solvability of the time do-
main Lippmann-Schwinger equation. Therefore the implication of Lemma 2.19 yields
the equivalence of the two time domain formulations.

3 Calculating inner products of solutions
from scattering data

Now that we have laid the basis for the analysis of the scattering problem, we are ready
to present some new results in this and subsequent sections. In the derivation of these
results, we combine properties of the different formulations whose equivalence we have
just shown.

As noted in the introduction, a straightforward approach to solving the inverse prob-
lem would be to try to simply calculate the potential from the plasma wave equation (1.1):

q(x) =
4u(x, t)−∂2

t u(x, t)
u(x, t)

.

The first difficulty with this formula is that we do not know u but only ui and the scattering
data. Fortunately, such data allow us to calculate inner products

Z

R3
u(x, t)v(x,s)dx = lim

R→∞

Z

B(0,R)
u(x, t)v(x,s)dx

of two solutions u and v through a variant of the Blagoveščenskiı̆ identity that we shall
now derive. Then if we can localize the solutions into a small neighbourhood of x0 ∈ R

3,
this inner product with s = t = t0 will give us information about u(x0, t0), and varying x0
and t0 will permit us to solve the potential.

The Blagoveščenskiı̆ identity is a central tool in solving the inverse problem using the
boundary control (BC) method. The classical form of this identity allows us to calculate
inner products (u(·, t),v(·,s)) of two solutions u and v of the plasma wave equation (1.1)
in a bounded domain U ⊂ R

n, if boundary data {u|∂U ,∂nu|∂U}, {v|∂U ,∂nv|∂U} are known
[KKL01, Lemma 4.15]. This identity was first derived for the one-dimensional equation
[Bla71] and then generalized for the multidimensional case [BB88].

We shall now present a generalization for the case U = R
3, with scattering data instead

of boundary data.
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3.1 The one-dimensional case
For motivation, we shall first take a look at the one-dimensional case, where the Blagov-
eščenskiı̆ identity for scattering is quite simple: Let u and v be solutions of

[
∂2

t −∂2
x +q(x)

]
u(x, t) = 0 (3.1)

[
∂2

t −∂2
x +q(x)

]
v(x, t) = 0. (3.2)

Assume that at least one of these solutions, say v, is incoming, i.e., v(x, t) = 0 when
|x| ≤ a− t. Define

wR(x, t) =
Z R

−R
u(x,s)v(x, t)dx, s, t ∈ R, R > 0.

Then using (3.1) and (3.2) and integrating by parts, we see that

(
∂2

s −∂2
t
)

wR(s, t) =
Z R

−R

[
∂2

s u(x,s)v(x, t)−u(x,s)∂2
t v(x, t)

]
dx

=
Z R

−R

[
∂2

xu(x,s)v(x, t)−u(x,s)∂2
xv(x, t)

]
dx

=
[
∂xu(x,s)v(x, t)−u(x,s)∂xv(x, t)

]R

x=−R
.

We thus have a wave equation in R
1+1, with homogeneous initial conditions by the in-

comingness of v. Therefore

wR(s0, t0) =
Z

D

[
∂xu(R,s)v(R, t)−u(R,s)∂xv(R, t)

−∂xu(−R,s)v(−R, t)+u(−R,s)∂xv(−R, t)
]

dsdt,
(3.3)
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Figure 4: Area of integration D.

where D = {(s, t) ∈ R
2 | |s− s0| < t0− t} (see Figure 4). As R→∞, the left hand side

tends to the inner product of u(·,s0) and v(·, t0). If we assume the potential q to be com-
pactly supported, û(x,k) = a+eikx + a−e−ikx on the left hand side of the support of the
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potential and û(x,k) = b+eikx + b−e−ikx on the right hand side, and analogously for v.
The scattering data are now the relations between the coefficients a± and b±, and given
ûi and v̂i, they determine û and v̂ outside the support of the potential, and through the
Fourier transform, also the integrand in (3.3) for R large enough. Plugging this depen-
dence of u and v on the scattering data into (3.3) and taking the limit as R→∞ yields the
one-dimensional Blagoveščenskiı̆ identity for scattering.

3.2 The Blagoveščenskiı̆ identity
We shall now derive the three-dimensional Blagoveščenskiı̆ identity for the scattering
problem, which permits us to calculate inner products of two solutions of the plasma wave
equation (1.1). We first consider the case where the incident waves ui and vi have rela-
tively smooth and compactly supported translation representations. Such incident waves
inherit the smoothness, and they are initially incoming and eventually outgoing. For a
while, we also assume that we do not only know the scattering amplitude, but also the
extended scattering data, i.e., a few of the first terms of the extended far field expansions
of scattered waves corresponding to different incident waves.

Theorem 3.1. Let q∈ L∞γ (R3,R) with γ > 28 be such that for some δ > 5/2, the operator
I +G0Q is injective on L2

−δ. Assume that the incoming incident waves

ui(x, t) =
Z

S2
hu(x ·ω− t,ω)dS(ω) and vi(x, t) =

Z

S2
hv(x ·ω− t,ω)dS(ω)

are known, with hu,hv ∈ C∞0 (R× S2), as well as the corresponding extended scattering
data UP

j , V P
j , for P ∈ {1,∂r,∂2

k ,∂r∂2
k} and j ∈ {−1, . . . ,2}. Then the inner product
Z

R3
u(x,s)v(x, t)dx

can be calculated for all s, t ∈ R for which u(·,s) and v(·, t) are square integrable.

Proof. By Corollary 2.14,

‖∂m
t ui(·, t)‖L2

−δ
=

Z

R3

∣∣∣
Z

R

w(k)−a(−ik)me−ikt ûi(x,k)w(k)a dk
∣∣∣w(x)−2δ dx

≤ ‖w−2a‖L2(R)

Z

R3

Z

R

|ûi(x,k)|2w(k)2a+2m dk w(x)−2δ dx

≤C
Z

R

Z

R3
|ûi(x,k)|2w(x)−2δ dxw(k)2a+2m dk

≤C
Z

R

w(k)2(a+m−b) dk <∞

if we take a > 1/2 and b > a + m + 1/2. The same estimate applies for us. Therefore
∂m

t ui(·, t), ∂m
t us(·, t) ∈ L2

−δ(R
3)⊂ L2

loc(R
3) for all m ∈ N, uniformly for all t ∈ R. Define

wR(s, t) :=
Z

BR

u(x,s)v(x, t)dx.
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By Green’s second identity,

(
∂2

s −∂2
t
)
wR(s, t) =

Z

BR

[
∂2

s u(x,s)v(x, t)−u(x,s)∂2
t v(x, t)

]
dx

=
Z

BR

[(
4−q(x)

)
u(x,s)v(x, t)−u(x,s)

(
4−q(x)

)
v(x,s)

]
dx

=
Z

∂BR

[
∂u
∂r

(x,s)v(x, t)−u(x,s)
∂v
∂r

(x, t)

]
dS(x).

(3.4)

Fix s0, t0 ∈ R such that u(·,s0), v(·, t0) ∈ L2. Since vi is an incoming wave, so is vs by the
finite speed of propagation, and thus wR(s, t) = 0 when t ≤−R−a. Therefore, wR(s0, t0)
can be solved from the one-dimensional wave equation (3.4) with homogeneous boundary
conditions:

wR(s0, t0) = 0+
Z t0

−∞

Z s0+t0−t

s0−t0+t

Z

∂BR

[
∂u
∂r

(x,s)v(x, t)−u(x,s)
∂v
∂r

(x, t)

]
dS(x)dsdt

=
Z

R2
1D(s, t)

Z

∂BR

[
∂u
∂r

(x,s)v(x, t)−u(x,s)
∂v
∂r

(x, t)

]
dS(x)dsdt,

where D = {(s, t) ∈R
2 | |s− s0|< t0− t}. Parseval’s formula in R

2 now yields the formal
integral

wR(s0, t0) =
1

2π

Z

R2
1̂D(−σ,−τ)

Z

∂BR

[
∂û
∂r

(x,σ)v̂(x,τ)− û(x,σ)
∂v̂
∂r

(x,τ)

]
dS(x)dσdτ.

(3.5)
The part with the solutions û and v̂ and their partial derivatives behaves nicely by Corol-
lary 2.14, but 1̂D is not a locally integrable function. We shall now investigate its proper-
ties and see how to work with the formal integral (3.5).

Make the change of coordinates y = s+ t, z =−s+ t, D̃ = {(y,z) ∈ R
2 |(s, t) ∈ D}=

(−∞, t0 + s0)× (−∞, t0 − s0). Consider test functions of the special form ϕ(σ,τ) =
ϕ̃(η,ζ) = ψ(η)θ(ζ); values of a distribution on test functions of this form define the
distribution uniquely [Trè67, Thm. 39.2]. Then

Z

R2
1̂D(σ,τ)ϕ(σ,τ)dσdτ =

Z

R2
1D(s, t)ϕ̂(s, t)dsdt

= 2
Z

R

1(−∞,t0+s0)(y)ψ̂(y)dy
Z

R

1(−∞,t0−s0)(z)θ̂(z)dz.

Now as 1(−∞,a)(y) = 1
2 [1− sgn(y−a)],

F
(
1(−∞,a)

)
(η) = πδ0(η)− i pv

eiaη

η
=: g(η;a)
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and thus we get, formally since g is not a locally integrable function,
Z

R2
1̂D(σ,τ)ϕ(σ,τ)dσdτ = 2

Z ∞

−∞
g(η; t0 + s0)ψ(η)dη

Z ∞

−∞
g(ζ; t0− s0)θ(ζ)dζ.

To turn these formal integrals into actual Lebesgue integrals, integrate by parts:
Z ∞

−∞
g(η;a)ψ(η)dη =−

Z ∞

−∞
πH0(η)ψ′(η)dη− i lim

ε→0+

Z

R\(−ε,ε)

1
η

eiaηψ(η)dη,

where H0 is the Heaviside function. Now
Z

R\(−ε,ε)

1
η

eiaηψ(η)dη

=− ln |η|eiaηψ(η)
∣∣∣
ε

η=−ε
−

Z

R\(−ε,ε)
ln |η|

[
eiaηψ′(η)+ iaeiaηψ(η)

]
dη

ε→0−−→−
Z ∞

−∞
ln |η|eiaηψ′(η)dη+

Z ∞

−∞
ia

Z η

0
ln |α|eiaα dαψ′(η)dη.

Therefore,
Z ∞

−∞
g(η;a)ψ(η)dη =

Z ∞

−∞
G(η;a)ψ′(η)dη

where G is the locally integrable function

G(η;a) = i ln |η|eiaη +a
Z η

0
ln |α|eiaα dα−πH0(η),

majorised by ln |η|+a
R |η|

0 |lnα|dα+π, and consequently
Z

R2
1̂D(σ,τ)ϕ(σ,τ)dσdτ = 2

Z

R2
G(η; t0 + s0)G(ζ; t0− s0)∂η∂ζϕ̃(η,ζ)dηdζ.

Now return to the original variables σ and τ: ∂η∂ζ = 1
4(∂2

τ−∂2
σ) and thus

Z

R2
1̂D(σ,τ)ϕ(σ,τ)dsdt =

Z

R2
F(t0,s0,τ,σ)

[
∂2ϕ
∂τ2 −

∂2ϕ
∂σ2

]
dσdτ,

where F is the locally integrable function

F(s0, t0,σ,τ) =
1
4

G(τ+σ, t0 + s0)G(τ−σ; t0− s0). (3.6)

In order to express

wR(s0, t0) =
1

2π

Z

R2
F(−σ,−τ)

Z

∂BR

[
∂û
∂r

(x,σ)
∂2v̂
∂τ2 (x,τ)− ∂3û

∂σ2∂r
(x,σ)v̂(x,τ)

− û(x,σ)
∂3v̂

∂τ2∂r
(x,τ)+

∂2û
∂σ2 (x,σ)

∂v̂
∂r

(x,τ)

]
dS(x)dσdτ

(3.7)
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in terms of the known incoming waves ûi and v̂i and the far field data for the corresponding
scattering solutions ûs and v̂s, we use the expansions given by Lemma 3.3 below:

Z

R2
F(−σ,−τ)

Z

∂BR

∂û
∂r

(x,σ)
∂2v̂
∂τ2 (x,τ)dS(x)dσdτ

=
Z

R2
F(−σ,−τ)

Z

∂BR

[
∂ûi

∂r
(x,σ)+ eiσR

N

∑
j=1

U∂r
j (x̂,σ)

R j +E∂rû
N (x,σ)

]
×

×


∂2v̂i(x,τ)

∂τ2 + eiτR
N

∑
j=−1

V
∂2

k
j (x̂,τ)

R j +E
∂2

k v̂
N (x,τ)


dS(x)dσdτ,

(3.8)

and similarly for the three other terms in (3.7).

We now postpone the proof Theorem 3.1 until we have developed these expansions.
After this, in Section 3.3 we shall see that our assumptions guarantee that the terms in-
volving the remainders tend to zero as R = |x| →∞. On the other hand, since the inner
product w(x0, t0) := limR→∞wR(s0, t0) is assumed finite, the terms that grow as R→∞
must cancel each other. Thus, we shall be able to calculate w(s0, t0) in terms of ûi, v̂i, UP

j
and V P

j .

3.3 Extended far field expansion

For completing the proof of Theorem 3.1, we derive the expansions used in (3.8) and
its analogues, and a series of estimates for the remainders. The expansion will follow
by plugging the following expansions of the fundamental solution into the Lippman-
Schwinger equation (1.11):
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Lemma 3.2. Let N ∈N and 0 < α < 1. The fundamental solution Φ(x−y,k) = eik|x−y|

4π|x−y| to
the Helmholtz equation and its partial derivatives have the asymptotics

Φ(x− y,k) =
N

∑
j=1

eik|x|

|x| j e−ikx̂·y
N−1

∑
m=0

2 j−2

∑
l=0

2 j−2−l

∑
s=0

a jlmskm(x̂ · y)l|y|s +gN(x,y,k) (3.9)

∂Φ
∂k

(x− y,k) =
N−1

∑
j=0

eik|x|

|x| j e−ikx̂·y
N−1

∑
m=0

2 j

∑
l=0

2 j−l

∑
s=0

ak
jlmsk

m(x̂ · y)l|y|s +gk
N(x,y,k)

∂2Φ
∂k2 (x− y,k) =

N−1

∑
j=−1

eik|x|

|x| j e−ikx̂·y
N

∑
m=0

2 j+2

∑
l=0

2 j+2−l

∑
s=0

akk
jlmsk

m(x̂ · y)l|y|s +gkk
N (x,y,k)

∂Φ
∂r

(x− y,k) =
N+2

∑
j=1

eik|x|

|x| j e−ikx̂·y
N

∑
m=0

2 j−2

∑
l=0

2 j−2−l

∑
s=0

ar
jlmsk

m(x̂ · y)l|y|s +gr
N(x,y,k)

∂2Φ
∂r∂k

(x− y,k) =
N

∑
j=0

eik|x|

|x| j e−ikx̂·y
N

∑
m=1

2 j+2

∑
l=0

2 j+2−l

∑
s=0

ark
jlmsk

m(x̂ · y)l|y|s +grk
N (x,y,k)

∂3Φ
∂r∂k2 (x− y,k) =

N−1

∑
j=−1

eik|x|

|x| j e−ikx̂·y
N

∑
m=0

2 j+2

∑
l=0

2 j+2−l

∑
s=0

arkk
jlmsk

m(x̂ · y)l|y|s +grkk
N (x,y,k)

for some constants a jlms, ak
jlms, akk

jlms, ar
jlms, ark

jlms, arkk
jlms. The remainders satisfy

|gN(x,y,k)| ≤Cw(k)Nw(x)N(2α−1)−1

|gk
N(x,y,k)| ≤Cw(k)Nw(x)N(2α−1)

|gkk
N (x,y,k)| ≤Cw(k)Nw(x)N(2α−1)+1

|gr
N(x,y,k)| ≤Cw(k)N+1w(x)(N+3)(2α−1)−2α

|grk
N (x,y,k)| ≤Cw(k)N+1w(x)(N+1)(2α−1)+2α

|grkk
N (x,y,k)| ≤Cw(k)N+1w(x)(N+1)(2α−1)+2α

uniformly for all |y| ≤ |x|α →∞, k ∈ R.

Proof. Let |y| ≤ |x|α and consider the behaviour as |x| →∞. Use the Maclaurin expan-
sions for (1+ s)±1/2 to see that

|x− y|±1 = |x|±1
(

1−2
x̂ · y
|x| +

|y|2
|x|2
)±1/2

= |x|±1

(
1+

∞
∑
j=1

c±j
j

∑
l=0

(
j
l

)
[2(x̂ · y)] j−l|y|2l

|x| j+l

)

= |x|±1 +
N

∑
j=1

b j/2c
∑

m=0
c±jm

(x̂ · y) j−2m|y|2m

|x| j∓1 +O
(
|x|(N+1)(α−1)±1

)
,

(3.10)
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with c+
j0 = 1. Plug this with the + sign and N = 1 into the Maclaurin expansion of eit :

denoting the remainder in (3.10) by g(x,y) =O(|x|2α−1), this gives

eik|x−y| = eik|x|e−ikx̂·y
[

N−1

∑
m=0

(ikg(x,y))m

m!
+O

(
|kg(x,y)|N

)
]

= eik|x|e−ikx̂·y
[

N−1

∑
m=0

N−1

∑
j=0

2 j

∑
l=0

2 j−l

∑
s=0

c jmlskm (x̂ · y)l|y|p
|x| j +O

(
|x|N(2α−1)

)]
.

Multiplying these expansions gives the statement.

Lemma 3.3. Let δ ≥ 0, N ∈ N, 3 < p ≤ ∞ and 0 < α < 1. Assume that q ∈ L∞γ and
that γ and N are so large that the exponents MP

N , P ∈ {1,∂r,∂2
k ,∂r∂2

k}, in (3.19)–(3.22)
below are negative. Let û = ûi + ûs be such that the norms in (3.15)–(3.18) are finite.
Then the scattering solution ûs of the Lippman-Schwinger equation (1.11) and its partial
derivatives admit the extended far field expansions

ûs(x,k) = eik|x|
N

∑
j=1

1
|x| j U1

j (x̂,k)+E1
N(x,k) (3.11)

∂2ûs

∂k2 (x,k) = eik|x|
N

∑
j=−1

1
|x| j U∂2

k
j (x̂,k)+E∂2

k
N (x,k) (3.12)

∂ûs

∂r
(x,k) = eik|x|

N

∑
j=1

1
|x| j U∂r

j (x̂,k)+E∂r
N (x,k) (3.13)

∂3ûs

∂r∂k2 (x,k) = eik|x|
N

∑
j=−1

1
|x| j U∂r∂2

k
j (x̂,k)+E∂r∂2

k
N (x,k) (3.14)

where

|E1
N(x,k)| ≤Cw(k)Nw(x)M1

N‖û(·,k)‖L2
−δ

(3.15)

|E∂2
k

N (x,k)| ≤Cw(k)Nw(x)M
∂2
k

N

[
‖û(·,k)‖L2

−δ
+‖∂kû(·,k)‖L2

−δ
+‖∂2

k û(·,k)‖L2
−δ

]
(3.16)

|E∂r
N (x,k)| ≤Cw(k)N+1w(x)M∂r

N ‖û(·,k)‖Lp
−δ

(3.17)

|E∂r∂2
k

N (x,k)| ≤Cw(k)N+1w(x)M
∂r∂2

k
N

[
‖û(·,k)‖L2

−δ
+‖∂kû(·,k)‖L2

−δ
+‖∂2

k û(·,k)‖Lp
−δ

]

(3.18)
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as x→∞, uniformly in all directions, with

M1
N = max

{
α(δ− γ+ 3

2), N(2α−1)−1, α(δ− γ+2N− 3
2)−1

}
(3.19)

M∂2
k

N = max
{

N(2α−1)+1, α(δ− γ+2N−1/2)+1
}

(3.20)

M∂r
N = max

{
α(δ− γ+2N +1− 3

p), α(δ− γ)+3− 3
p , (N +3)(2α−1)−2α

}
(3.21)

M∂r∂2
k

N = max
{

α(δ− γ+2N +1− 3
p), α(δ− γ)+3− 3

p , (N +1)(2α−1)+2α
}
. (3.22)

Remark. A few of the last terms in (3.11)–(3.14) actually decay faster in x than the error
terms EP

N . This notation, however, simplifies the indices.

Proof. For ûs, work directly on the expression

ûs(x,k) =−
Z

R3
Φ(x− y,k)q(y)û(y,k)dy.

The calculations in the proof of Lemma 2.20 justify differentiation under the integral for
∂rûs. For ∂2

k ûs, ∂rûs and ∂r∂2
k ûs, the argument is similar, only simpler since the integrand

is less singular. When differentiating with respect to k, the Leibniz rule gives three terms.
Split the domain of integration into three parts: B(0, |x|α),

(
R

3\B(0, |x|α)
)
∩B(x,1)=:

U1 and R
3 \
(
B(0, |x|α)∪B(x,1)

)
=: U2. (See Figure 5.)

PSfrag replacements

|x|α

x

0

B(0, |x|α)

U1

U2

1

Figure 5: Three domains of integration B(0, |x|α), U1 and U2.

In the first part, use the expansions of Lemma 3.2. Its main terms give for ûs, as
|x| → ∞, the main part of the expansions (3.11)–(3.14) plus some error terms with x
dependence of the type w(x)α(δ−γ+2N−1/2)−1. The integrals of the remainder terms are
estimated using the Hölder inequality with weights,

∣∣∣
Z

f (x)g(x)dx
∣∣∣≤ ‖ f‖Lr

δ
‖g‖Lr′

−δ
,

1
r

+
1
r′

= 1, (3.23)

now with r = 2, yielding terms with x dependence of the type w(x)N(2α−1)−1.
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In U1, Φ(x−y) has a square integrable singularity at y = x, uniform as |x| →∞. Thus
the decay of q yields an estimate for the integral over U1, with x dependence of the type
w(x)2α(δ−γ+3/2). The same is true for ∂kΦ, ∂2

kΦ, ∂r∂kΦ and ∂r∂2
kΦ. However,

∂rΦ(x− y,k) =
eik|x−y|

4π|x− y|

(
ik− 1

|x− y|

)
x̂ · x− y
|x− y|

has a stronger singularity which is integrable only to powers less than 3/2. For estimating
its integral, we can use (3.23) with r > 3 (i.e., r′ < 3/2).

Finally in U2, Φ is bounded, so the decay of q gives an estimate of the integral over U2,
with x dependence of the type w(x)α(δ−γ+3/2). The integrals of the partial derivatives of Φ
can be estimated in a similar way; ∂2

kΦ(x− y,k) and ∂r∂2
kΦ(x− y,k) grow as |x− y| ∼ |x|,

but this only gives a slightly slower decay for the estimate.
Combining these estimates completes the proof.

We now have enough tools to finish the proof of the Blagoveščenskiı̆ identity:

Proof of Theorem 3.1, continued. Estimate the error terms in (3.8) and its analogues using
Lemma 3.3 and Corollary 2.14. The smoothness assumption about hu and hv guarantees
the convergence of the integral with respect to σ and τ. The assumption about γ shows
that if we choose6 α = 1/4 and N = 7 in Lemma 3.3, the integrals involving the error
terms tend to zero as R→∞. All other terms are assumed known.

3.4 Sufficiency of regular scattering data
When deriving the Blagoveščenskiı̆ identity in the previous sections, we assumed that we
know the extended far field data, i.e., the first few terms of the far field expansions of ûs,
∂rûs, ∂2

k ûs and ∂r∂2
k ûs. It turns out that these extended data are actually redundant: they are

determined by the regular far field data û∞s = U1
1 . For the case of a compactly supported

potential, this is very easy to see:

Lemma 3.4. Assume that q is compactly supported. Then the far field pattern û∞s = U1
1

determines the extended far field data U P
j for j ∈ {−1,0,1, . . .} and P ∈ {1,∂2

k ,∂r,∂r∂2
k}.

Proof. Since ûs satisfies the Helmholtz equation outside the support of q, Lemma 2.15
shows that û is as many times continuously differentiable as we want sufficiently far
from suppq. By Rellich’s lemma [CK98, Thm. 2.13], the far field data determine ûs(x,k)
uniquely for large |x|. This clearly also fixes the lower order asymptotics U P

j .

Remark. The scattered wave ûs can actually be determined constructively in the following
way:7 Consider the spherical harmonic expression

ûs(rx̂,k) =
∞
∑
n=0

n

∑
m=−n

a(r,k)Y m
n (x̂).

6This choice of α is optimal for ûs. For the others, this uniform choice simplifies the calculations.
7This construction is, however, very unstable, since for fixed r, the spherical Bessel functions grow

rapidly, h(1)
n (kr)∼ nn.
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The coefficients am
n are given by

am
n (r,k) =

Z

S2
ûs(rx̂,k)Y m

n (x̂)dS(x) (3.24)

Differentiating under the integral, integrating by parts and using properties of the spherical
harmonics we see that the coefficients satisfy the spherical Bessel differential equation

[
d2

dr2 +
2
r

d
dr

+

(
k2− n(n+1)

r2

)]
am

n (r,k) = 0

and thus am
n (k,r) = cm

n (k)h(1)
n (kr)+ dm

n (k)h(2)
n (kr). The Sommerfeld radiation condition

forces dm
n ≡ 0, and thus

am
n (k,r) = cm

n (k)h(1)
n (kr) = cm

n (k)
(−1)n

i
eikr

kr
+O

(
1
r2

)

On the other hand, inserting the far field expansion, which is uniform in all directions x̂,
into (3.24) gives

am
n (r,k) =

eikr

r

Z

S2
û∞s (x̂,k)Y m

n (x̂)dS(x)+O
(

1
r2

)
.

Equating these two expressions shows that the coefficients cm
n are completely determined

by the far field data. Thus so too are am
n , and hence the whole scattered wave ûs(x,k) for

large |x|.
The regular far field pattern û∞s = U1

1 also determines the lower order terms U P
j when

the potential is not compactly supported but decays sufficiently fast. This will be stated
soon in Theorem 3.9. We shall use different techniques to show this for P = 1, P = ∂r,
and P ∈ {∂2

k ,∂r∂2
k}. For this reason, the proof of Theorem 3.9 will be broken down into a

series of lemmata.

Lemma 3.5. Let δ > 5/2, 3 < p≤ 6, N ∈ N and 0 < α < 1, with q ∈W 1,∞
γ (R3,R) such

that the operator I +G0Q is injective on L2
−δ. Assume that γ and N are so large that the

exponents in (3.25) are negative. Let ui(x, t) =
R

S2 h(x ·ω− t,ω)dS(ω) be an incident
free space wave with h ∈ C∞0 (R× S2). Then the second radial partial derivative of the
scattering solution ûs of the Lippman-Schwinger equation (1.11) admits the extended far
field expansion

∂2ûs

∂r2 (x,k) = eik|x|
N

∑
j=1

1
|x| j U∂2

r
j (x̂,k)+E∂2

r
N (x,k),

where

|E∂2
r

N (x,k)| ≤Cw(k)N+1w(x)M∂2
r

N

[
‖û(·,k)‖Lp

−δ
+‖∇û(·,k)‖Lp

−δ

]
(3.25)

as x→∞, uniformly in all directions, with M∂2
r

N = M∂r
N defined in (3.21) in Lemma 3.3.
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Proof. Differentiate under the integral, as in the proof of Lemma 3.3, and integrate by
parts to get

∂2
r ûs(x,k) =−∂r

Z

R3
x̂ ·∇xΦ(x− y,k)q(y)û(y,k)dy

=−∂r

Z

R3
Φ(x− y,k)x̂ ·∇

[
q(y)û(y,k)

]
dy

=−
Z

R3
x̂ ·∇xΦ(x− y,k)x̂ ·∇

[
q(y)û(y,k)

]
dy.

(3.26)

The integral converges since

‖∇
[
q(y)û(y,k)

]
‖Lp
−δ
≤ ‖∇q‖L∞‖ûi(·,k)‖Lp

−δ
+‖∇q‖L∞‖ûs(·,k)‖Lp

−δ

+‖q‖L∞‖∇ûi(·,k)‖Lp
−δ

+‖q‖L∞‖∇ûs(·,k)‖Lp
−δ

and the norms on the right hand side are finite: Clearly ‖q‖L∞ , ‖∇q‖L∞ ≤ ‖q‖W 1,∞
γ

<

∞ directly by the assumptions. The finiteness of the norms of ûi and ûs was shown in
Corollary 2.14. Since

∂x j ûi(x,k) = F
[

Z

S2
ω jh′(x ·ω−·,ω)dS(ω)

]
,

the proof of Lemma 2.2 guarantees the finiteness of the norm of ∇ûi. For the norm
of ∇ûs, argue as follows: Simply leaving out the dot product with x̂ in the proof of
Lemma 3.3 and using the fact that ûs ∈ Lp

−δ for δ > 2, which we already know, we see
that∇ûs(x,k) =O(|x|−1). By Lemma 2.15, ûs(·,k)∈C1 and thus∇ûs(·,k) is also locally
bounded. Therefore ∇ûs(·,k) ∈ L2

−δ.
We can now plug the expansion in Lemma 3.2 for ∂rΦ into (3.26). The claim of the

theorem is proved in the same way as the one about ∂rûs in Lemma 3.3, but now with
x̂ ·∇[q(y)û(y,k)] under the integral instead of just q(y)û(y,k).

Remark. We get the same speed of decay in x since we assumed more smoothness of q and
integrated by parts. The same could have been done in Lemma 3.3 to get M∂r

N = M1
N and

M∂r∂2
k

N = M∂2
k

N . This would also have got rid of the Lp
−δ norms, p > 3. Assuming q∈W 2,∞

γ ,

we could have integrated by parts twice in the proof of Lemma 3.5 to get M∂2
r

N = M1
N .

Lemma 3.6. Let q ∈W 1,∞
γ (R3,R), γ > 241

2 be such that the operator I +G0Q is injective
on L2

−δ for some δ > 5/2. Assume that ûs, ∂rûs and ∂rûs admit the extended far field
expansions. Then the extended far field coefficients U 1

1 and U1
2 determine the coefficients

UP
j for P ∈ {∂r,∂2

r} and j ∈ {1,2}.
Proof. Integrating the expression

∂
∂r

[
e−ikrûs(rx̂,k)

]
= e−ikr ∂ûs

∂r
(rx̂,k)− ike−ikrûs(rx̂,k)

=
N

∑
j=1

U∂r
j (x̂,k)−U1

j (x̂,k)

r j + e−ikr[E∂r
N (rx̂,k)− ikE1

N(rx̂,k)
]
,
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with respect to r from infinity, we see that

ûs(rx̂,k) = eikr
N

∑
j=1

U∂r
j (x̂,k)− ikU1

j (x̂,k)

−( j−1)r j−1 + Ẽ1
N(rx̂,k),

where

Ẽ1
N(rx̂,k) = eikr

Z r

∞

[
E∂r

N (sx̂,k)− ikE1
N(sx̂,k)

]
e−iks ds =O(kN+1)O(rmax{M1

N ,M∂r
N }+1).

Comparing this with (3.13), we obtain that

U∂r
j (x̂,k) = ikU1

j (x̂,k)− ( j−1)U1
j−1(x̂,k) (3.27)

for j ∈ {1,2}, with the interpretation U 1
0 ≡ 0.

Analogously integrating twice

∂2

∂r2

[
e−ikrûs(rx̂,k)

]
=

N

∑
j=1

U∂2
r

j (x̂,k)−2ikU∂r
j (x̂,k)− k2U1

j (x̂,k)

r j + ˜̃E∂2
r

N (rx̂,k),

where
˜̃E∂2

r
N (rx̂,k) = e−ikr[E∂2

r
N (rx̂,k)−2ikE∂r

N (rx̂,k)− k2E1
N(rx̂,k)

]
,

and substituting (3.27) we get

U∂2
r

j =−k2U1
j −2ik( j−1)U1

j−1 +( j−1)( j−2)U1
j−2, (3.28)

again interpreting U1
0 = U1

−1 = 0.

Lemma 3.7. Let q ∈W 1,∞
γ (R3,R), γ > 21 be such that the operator I +G0Q is injective

on L2
−δ for some δ > 5/2. Assume that ui(x, t) =

R

S2 h(x ·ω−t,ω)dS(ω) with h∈C∞0 (R×
S2). Then the far field pattern û∞s = U1

1 determines the extended far field coefficient U 1
2 .

Proof. In spherical coordinates, the equation
[
−4− k2 +q(rx̂)

]
ûs(rx̂,k) =−q(rx̂)ûi(rx̂,k)

reads [
− ∂2

∂r2 −
2
r

∂
∂r
−4⊥

r2 − k2 +q(rx̂)
]

ûs(rx̂,k) =−q(rx̂)ûi(rx̂,k), (3.29)

where 4⊥ is the spherical part of the Laplacian. We now plug the extended far field
expansions and the relations (3.27) and (3.28) into (3.29). Since

|ûi(rx̂,k)|=
Z

R

Z

S2
|eikt ||h(x ·ω− t, t)|dS(ω)dt ≤ ‖h‖L1(R×S2)



3.4. Sufficiency of regular scattering data 59

is uniformly bounded, and since ûs(rx̂) = O(1/r) as r →∞ by Lemma 3.3, we see that
q(rx̂)ûi(rx̂,k) and q(rx̂)ûs(rx̂,k) are O(r−γ). The existence of the extended far field ex-
pansions of ∂2

r ûs, ∂rûs and ûs thus implies the existence of a similar expansion for 4⊥ûs.
The calculation

∣∣∣∣
Z

S2

[
4⊥ûs(rx̂,k)−

N

∑
j=1

4⊥U1
j (x̂,k)

r j

]
ϕ(x̂)dS(x̂)

∣∣∣∣

=

∣∣∣∣
Z

S2

[
ûs(rx̂,k)−

N

∑
j=1

U1
j (x̂,k)

r j

]
4⊥ϕ(x̂)dS(x̂)

∣∣∣∣

≤Cw(r)M1
N w(k)M‖4⊥ϕ‖L1(S2),

valid for any ϕ ∈C∞(S2), shows that the coefficients of this expansion are 4⊥U1
j (x̂,k).

We therefore get

L

∑
j=1

[
−k2U1

j (x̂,k)−2ik( j−1)U1
j−1(x̂,k)+( j−1)( j−2)U1

j−2(x̂,k)

r j (3.30)

+
2ikU1

j (x̂,k)−2( j−1)U1
j−1(x̂,k)

r j+1 +
4⊥U1

j (x̂,k)

r j+2 +
k2U1

j (x̂,k)

r j

]
= o

(
1
rL

)
.

We now use the spherical harmonic expansions

U1
j (x̂,k) =

∞
∑
n=0

n

∑
m=−n

anm
j (k)Y m

n (x̂), j ∈ {1, . . . ,L},

where
anm

j (k) =
1
|S2|

Z

S2
U1

j (x̂,k)Y m
n (x̂)dS(x̂).

Taking the inner product of both sides of (3.30) with Y m
n (x̂) and integrating by parts twice,

we get

L

∑
j=1

[
−2ik( j−1)anm

j−1(k)+( j−1)( j−2)anm
j−2(k)

r j

+
2ikanm

j (k)−2( j−1)anm
j−1(k)

r j+1 +
n(n+1)anm

j (k)

r j+2

]
= o

(
1
rL

)
.

This yields the recurrence relations

2ik( j−2)anm
j−1 = [ j−3+n(n+1)]anm

j−2, j ∈ {1, . . . ,L}.

Our assumption about γ allows us to choose L = 3, yielding anm
2 = n(n+1)

2k ianm
1 .
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Lemma 3.8. Let q ∈ L∞γ (R3,R), γ > 28 be such that the operator I +G0Q is injective
on L2

−δ for some δ > 5/2. Let ui(x, t) =
R

S2 h(x ·ω,ω)dS(ω) with h ∈C∞0 (R×S2). Then

the extended far field coefficients U 1
j and U∂r

j determine the coefficients U∂2
k

j and U∂r∂2
k

j for
j ∈ {−1, . . . ,2}.

Proof. For each ϕ ∈C∞0 (S2×R), we have by (3.11) of Lemma 3.3 that

∣∣∣∣
Z

R

Z

S2

[
ûs(rx̂,k)− eikr

N

∑
j=1

U1
j (x̂,k)

r j

]
∂2

kϕ(x̂,k)dx̂dk
∣∣∣∣≤Cw(r)M1

N‖∂2
kϕ‖L1

N
,

with M1
N defined by (3.19). Integrating by parts twice, we see that

∣∣∣
Z

R

Z

S2

[
∂2

k ûs(rx̂,k)− eikr
N

∑
j=1

−r2U1
j (x̂,k)+2ir∂kU1

j (x̂,k)+∂2
kU1

j (x̂,k)

r j

]
ϕ(x̂,k)dx̂dk

∣∣∣

=
∣∣∣
Z

R

Z

S2

[
∂2

k ûs(rx̂,k)

− eikr
N

∑
j=−1

−U1
j+2(x̂,k)+2i∂kU1

j+1(x̂,k)+∂2
kU1

j (x̂,k)

r j

]
ϕ(x̂,k)dx̂dk

∣∣∣

≤Cw(r)M1
N‖∂2

kϕ‖L1
N
.

On the other hand, the expansion (3.12) is determined by the estimate

Z

R

Z

S2

[
∂2

k ûs(rx̂,k)− eikr
N

∑
j=−1

U∂2
k

j (x̂,k)

r j

]
ϕ(x̂,k)dx̂dk ≤Cw(r)M

∂2
k

N ‖ϕ‖L1
N
,

with M∂2
k

N defined by (3.20). We thus conclude that

U∂2
k

j (x̂,k) =−U1
j+2(x̂,k)+2i∂kU1

j+1(x̂,k)+∂2
kU1

j (x̂,k).

Analogously we see how the coefficients of ∂rûs determine those of ∂r∂2
k ûs.

Combining the results of these three lemmata, we thus have the following.

Theorem 3.9. Let q ∈W 1,∞
γ (R3,R) with γ > 28 be such that the operator I + G0Q is

injective on L2
−δ for some δ > 5/2. Let ui(x, t) =

R

S2 h(x ·ω,ω)dS(ω) with h ∈C∞0 (R×
S2). Then the far field pattern û∞s = U1

1 determines the extended far field data U P
j for

j ∈ {−1, . . . ,2} and P ∈ {1,∂2
k ,∂r,∂r∂2

k}.
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3.5 Scattering amplitude
Scattering data are often formulated in terms of the scattering amplitude A(x̂,ω,k). This
is defined as the far field of the scattered field corresponding to an incident plane wave:
A(ω, x̂,k) = v̂∞s (x̂,k;ω), where

[
−4− k2 +q(x)

]
v̂(x,k;ω) = 0 (3.31)
v̂(x,k;ω) = v̂i(x,k;ω)+ v̂s(x,k;ω) (3.32)

v̂i(x,k;ω) = eikx·ω (3.33)

lim
r→∞

∂v̂s(rx̂,k;ω)

∂r
− ikv̂s(x,k;ω) = o

(1
r

)
(3.34)

It is pleasing to see that the scattering amplitude is, indeed, exactly what we need here, too.
This is because we want to calculate the inner products of time derivatives of solutions
for which

ui(x, t) =
Z

S2
hu(x ·ω+ t,ω)dS(ω)

with hu ∈ L2(R× S2). In the frequency domain, this is a Herglotz wave function, i.e., a
wave whose incident part is

ûi(x,k) =
Z

S2
eikx·ωĥu(k,ω)dS(ω),

where ĥu(k, ·) ∈ L2(S2) for almost all k ∈ R. As could be expected, the scattered part is
the corresponding linear combination of scattered plane waves, and analogously for the
far field:

Lemma 3.10. Assume that q ∈W 1,∞
loc (R3,R)∩L∞γ with γ > 13 and k 6= 0. Let

F̂i(x,k) =
Z

S2
ĥ(ω)v̂i(x,k;ω)dS(ω), F̂s(x,k) =

Z

S2
ĥ(ω)v̂s(x,k;ω)dS(ω), (3.35)

where ĥ ∈ L2(S2) and v̂ = v̂i + v̂s is the scattering solution corresponding to the incident
plane wave, i.e., the solution to (3.31)–(3.34). Then F̂ = F̂i + F̂s solves the scattering
problem

[
−4− k2 +q(x)

]
F̂(x,k) = 0 (3.36)

∂F̂s

∂r
(rx̂,k)− ikF̂s(rx̂,k) = o

(
1
r

)
as r→∞, (3.37)

the Sommerfeld radiation condition (3.37) holding uniformly over all x̂ ∈ S2. The scat-
tered wave F̂s has the far field pattern

F̂∞s (x̂,k) =
Z

S2
ĥ(ω)v̂∞s (x,k;ω)dS(ω),

where v̂∞s is the far field of v̂s.
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Proof. Lemma 2.20 asserts that v̂ = v̂i + v̂s solves the Lippman-Schwinger equation. Mul-
tiplying this equation by ĥ(ω) and integrating over ω, we get

F̂s(x,k) =
Z

S2
ĥ(ω)v̂s(x,k;ω)dS(ω)

=−
Z

S2

Z

R3
Φ(x− y)q(y)ĥ(ω)v̂(y,k;ω)dydS(ω)

=−
Z

R3
Φ(x− y)q(y)F̂(y,k)dy.

(3.38)

Here we can change the order of integration since Lemmata 2.4 and 2.9 show that for any
δ between 5/2 and (γ−3)/2,

‖v̂(·,k;ω)‖L2
−δ
≤ ‖(I +GkQ)−1GkQ+ I‖L(L2

−δ)
‖v̂i(·,k;ω)‖L2

−δ

is uniformly bounded with respect to ω ∈ S2, and thus both
Z

S2

Z

B(x,1)
|Φ(x− y)||q(y)||ĥ(ω)||v̂(y,k;ω)|dydS(ω)

≤C
Z

S2
|ĥ(ω)|

∥∥∥∥
1

|x−·|

∥∥∥∥
L2(B(x,1))

‖qv̂(·,k;ω)‖L2(B(x,1)) dS(ω)

≤C
Z

S2
|ĥ(ω)|‖q‖L∞δ

‖v̂(·,k;ω)‖L2
−δ

dS(ω)

and
Z

S2

Z

R3\B(x,1)
|Φ(x− y)||q(y)||ĥ(ω)||v̂(y,k;ω)|dydS(ω)

≤C
Z

S2
|ĥ(ω)|‖q‖L2

δ
‖v̂(·,k;ω)‖L2

−δ
dS(ω)

(3.39)

are finite.
Again by Lemma 2.20, the Lippman-Schwinger equation (3.38) implies that F̂ solves

the scattering problem. The far field pattern is

F̂∞s (x̂,k) =−
Z

R3
e−ikx̂·yq(y)F̂(y)dy

=−
Z

R3

Z

S2
e−ikx̂·yq(y)ĥ(ω)v̂(y,k;ω)dS(ω)dy

=
Z

S2
ĥ(ω)v̂∞s (x̂,k;ω)dS(ω)dy,

changing the order of integration being permitted by a calculation almost identical to
(3.39).

Our variant of the Blagoveščenskiı̆ identity thus reads:
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Theorem 3.11. Let q ∈W 1,∞
γ (R3,R) with γ > 28 be such that the operator I +G0Q is

injective on L2
−δ for some δ > 5/2. Assume that the incoming incident waves

ui(x, t) =
Z

S2
hu(x ·ω− t,ω)dS(ω) and vi(x, t) =

Z

S2
hv(x ·ω− t,ω)dS(ω)

are known, with hu,hv ∈C∞0 (R×S2), as well as the scattering amplitude. Then the inner
product

Z

R3
u(x,s)v(x, t)dx

can be calculated for all s, t ∈ R for which u(·,s) and v(·, t) are square integrable.

3.6 Inner products of time derivatives
Theorem 3.11 may not be very useful if we cannot be sure that u(·, t) is square integrable.
However, we can work with the time derivative, which is always known to be square
integrable for compactly supported potentials by Lemma 2.19.

It actually follows that if ui ∈ H̃ and ui(·, t0), us(·, t0) or u(·, t0) is square integrable for
some time t0 ∈ R, then it is for all other times, too, since

‖u(·, t)‖L2 ≤ ‖u(·, t0)‖L2 + |
Z t

t0
‖∂tu(·,s)‖L2 ds | ≤ ‖u(·, t0)‖L2 + |t− t0|‖h‖L2(R×S2)

and analogously for ui and us. The assumption of square integrability at any one time
would thus be sufficient for the inner products in Theorem 3.11 to make sense. However,
we can avoid making this additional assumption by calculating directly the inner products
of time derivatives of solutions instead. Here we assume that the potential has compact
support in order to be able to use Lemma 2.19; when this result is applied in Section 5,
this assumption will also be used for other purposes.

Theorem 3.12. Let q ∈W 1,∞
comp(R

3,R) be such that the operator I +G0Q is injective on
L2
−δ for some δ > 5/2. Then if the scattering amplitude is known, the inner product

Z

R3
∂su(x,s)∂tv(x, t)dx (3.40)

can be calculated for all known incident waves ui,vi ∈ H̃ and all s, t ∈ R.

Proof. Let hu and hv ∈ L2(R×S2) be the translation representations of the incident waves
ui and vi, respectively. Choose sequences of functions h j

u,h
j
v ∈C∞0 (R×S2) converging in

L2(R×S2) to hu and hv, respectively. Set

u j
i (x, t) =

Z

S2
h j

u(x ·ω− t,ω)dS(ω) and v j
i (x, t) =

Z

S2
h j

v(x ·ω− t,ω)dS(ω)



64 4. Scattering control

and let u j = u j
i +u j

s and v j = v j
i + v j

s be the corresponding total waves. Now ∂su(·,s) and
∂tv(·, t) are solutions of the plasma wave equation (1.1) corresponding to incident waves

∂su
j
i (x,s) =

Z

S2
∂sh j

u(x ·ω− s,ω)dS(ω) and ∂tv
j
i (x, t) =

Z

S2
∂th j

v(x ·ω− t,ω)dS(ω).

Since these incident waves satisfy the assumptions of Theorem 3.1, the inner products
Z

R3
∂su j(x,s)∂tv j(x, t)dx

can be calculated; the s and t derivatives translate into a multiplication of the integrand in
(3.8) by−στ, which only requires one more derivative for h j

u and h j
v, which were assumed

smooth anyway. Since

‖∂su(·,x)−∂su j(·,s)‖L2 ≤ Ẽ0(u−u j,s)

≤CẼq(u−u j,s)

= CẼ0(ui−u j
i ,0)

= C‖hu−h j
u‖L2(R×S2) → 0

and analogously for ∂tv−∂tv j, these inner products converge to the inner product (3.40).

4 Scattering control
We shall now take the next step towards solving the inverse problem of the plasma wave
equation (1.1) using scattering data. The previous section showed how inner products of
solutions can be calculated from these data. Now we show how to select the solutions in
such a way that knowing their inner products allows us to solve the inverse problem. The
potential q will be assumed to be compactly supported in this section.

Our strategy will be the following: By Rellich’s lemma [CK98, Thm. 2.13], the scat-
tering data determine the solutions corresponding to incident plane waves at points outside
the support of the potential. The mixed reciprocity relation [Pot01, Thm. 2.2.4] shows that
these are the same as far field data corresponding to point sources outside the support of
the potential. We show that using this information, we can construct a superposition of
plane waves which gives, from a certain point in time on, the same solution as that induced
by a point source.

Then we show that, with point sources in a small set outside the support of the poten-
tial, it is possible to control the solutions in the support at any particular time. In particular,
we can excite a wave that is nonzero in a neighbourhood of any point. In Section 5, we
calculate inner products of such waves using the Blagoveščenskiı̆ identity, and choosing
the waves in an appropriate way, we eventually determine the values of the waves at any
point. The potential is then solved from (1.1).
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The method used here is a variant of the boundary control (BC) method, pioneered
by Belishev and Kurylev [Bel90, BK92b, Bel97]. As the name suggests, the BC method
traditionally deals with a boundary value problem. There the control property says that
by placing sources on a piece of the boundary from time 0 to time T , it is possible to
approximately control at time T the domain of dependence, which is the set of points that
the waves have reached in this time. Now the sources on a boundary are replaced by the
simulated sources described above.

4.1 Simulating point sources
In this section, we investigate the possibility of simulating point sources by sending in
plane waves. In other words, we would like to express the causal Green’s function
g(x, t;x0), i.e., the solution of the inhomogeneous plasma wave equation with a point
source,

[
∂2

t −4x +q(x)
]
g(x, t;x0) = δx0(x)δ0(t) (4.1)

g|t<0 = 0, (4.2)

as a superposition of scattering solutions v = vi + vs corresponding to incident plane
waves,8

[
∂2

t −4x +q(x)
]
v(x, t;ω) = 0

vi(x, t;ω) = δ(t− x ·ω)

v(x, t;ω) = 0 when t < x ·ω.

Of course, this is not possible, since plane waves satisfy the homogeneous plasma wave
equation (1.1), so that no superposition of them can give the delta source in (4.1).

However, what we ultimately want to do is to control solutions u(·,T ) of the plasma
wave equation by sending in superpositions of plane waves. This is done in two steps,
which we shall first describe unrigorously, and shortly thereafter proceed to justify the
formal calculations. The first step is to express u(·,T ) as a linear combination of Green’s
functions,

u(x, t) =
Z

A

Z T

0
H(y,s)g(x, t− s;y)dsdy =: uH(x, t),

where A is a bounded set in the complement of suppq; this question of what we call
interior control will be considered in Section 4.2 below. In the second step, we try to send
in a superposition of plane waves that has the same effect at time T as the above linear
combination of Green’s functions.

The second step can be achieved as follows using the odd continuation of the causal
Green’s function: Set

f (x, t;x0) := g(x, t;x0)−g(x,−t;x0), (4.3)

8The scattered wave us is sometimes called a retarded pulse. [New85]
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where g(x, t;x0) is the causal Green’s function with source at x0, i.e., the solution of
(4.1)–(4.2). This function gives the same effect as the causal Green’s function: since
f (x, t;x0) = g(x, t;x0) for t ≥ 0,

Z

A

Z T

0
H(y,s) f (x, t− s;y)dsdy =

Z

A

Z T

0
H(y,s)g(x, t− s;y)dsdy = uH(x, t)

when t ≥ T . In contrast to the Green’s function g, the function f satisfies
[
∂2

t −4+q(x)
]

f (x, t;x0) = δx0(x)δ0(t)−δx0(x)δ0(t) = 0

and it turns out that it can, indeed, be expressed as a formal linear combination of plane
waves,9

f (x, t;x0) = F(x, t;x0) :=
Z

S2

Z ∞

−∞
m(ω,s;x0)v(x, t− s;ω)dsdS(ω), (4.5)

if the density m is chosen appropriately. We shall now continue these formal calculations
and derive a necessary condition for m, and then proceed to show that this condition is
also sufficient for (4.5) to hold.

In analogy with Theorem 2.24, the Fourier transform gives f̂ (x,k;x0) = ĝ(x,k;x0)−
ĝ(x,k;x0), where

[
−4x− k2 +q(x)

]
ĝ(x,k;x0) = δx0(x) (4.6)

∂ĝ
∂r

(rx̂,k;x0)− ikĝ(rx̂,k;x0) = o
(

1
r

)
as r→∞, (4.7)

the Sommerfeld radiation condition (4.7) holding uniformly over all directions x̂ ∈ S2.
Thus, f̂ satisfies the frequency domain plasma wave equation:

[
−4− k2 +q(x)

]
f̂ (x,k;x0) = 0. (4.8)

On the other hand, F̂ is a scattered Herglotz wave, i.e.,

F̂(x,k;x0) =
Z

S2
m̂(ω,k;x0)v̂(x,k;ω)dS(ω), (4.9)

where v̂ = v̂i + v̂s is the scattered wave corresponding to an incident plane wave defined
by (3.31)–(3.34). Lemma 3.10 tells us that F̂ = F̂i + F̂s, where F̂i is the corresponding su-
perposition of incident plane waves, and F̂s satisfies the Sommerfeld radiation condition,

∂F̂s

∂r
(rx̂,k;x0)− ikF̂s(rx̂,k;x0) = o

(
1
r

)
as r→∞, (4.10)

9Up to a reflection in time and a permutation of the variables, m is the translation representation of the
incident part

Fi(x, t;x0) =
Z

S2

Z

R

m(ω,s;x0)δ(t− s− x ·ω)dsdS(ω) =
Z

S2
m(ω, t− x ·ω;x0)dS(ω). (4.4)
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uniformly in all directions x̂ ∈ S2.
The incident part has the following far field (cf. [Mel94, GY99]):

Lemma 4.1. Let
F̂i(x,k;x0) =

Z

S2
m̂(ω,k;x0)v̂i(x,k;ω)dS(ω).

with m̂(k, ·;x0) ∈C4(S2). Fix k ∈ R and x0 ∈ R
3. Then

F̂i(x,k;x0) =
eik|x|

|x|
2πi
k

m̂(x̂,k;x0)−
e−ik|x|

|x|
2πi
k

m̂(−x̂,k;x0)+O
(

1
|x|2
)

as |x| →∞.

Proof. As k and x0 are fixed, write m̂(ω) = m̂(k,ω;x0) to simplify notation. Use the
method of stationary phase [Hör90, Thm. 7.7.5] as follows: Fix x̂∈ S2. Using two smooth
coordinate charts (U±,ϕ±) covering S2, with ϕ±(±x̂) = 0, and an associated partition of
unity {χ+,χ−}, we get

F̂i(x,k;x0) =
Z

S2
eikrx̂·ωm̂(ω)dS(ω) =

Z

ϕ+U+

eir f+(y)m̂+(y)dy+
Z

ϕ−U−
eir f−(y)m̂−(y)dy,

where
f±(y) = kϕ−1

± (y) · x̂ m̂±(y) = χ±
(
ϕ−1
± (y)

)
m̂
(
ϕ−1
± (y)

)
Jϕ−1
±

(y).

Here Im f±≡ 0,∇ f±(0) = 0, det(∂ j∂m f±(0)) 6= 0 and∇ f±(y) 6= 0 for all y∈ϕ±U±\{0}.
Thus the first order stationary phase expansion gives

Z

ϕ±U±
eir f±(y)m̂±(y)dy = c±eir f±(0) m̂±(0)

r
+O

(
1
r2

)
.

with c± independent of m̂. Thus,

F̂i(x,k;x0) =
eik|x|

|x| c+m̂(x̂)+
e−ik|x|

|x| c−m̂(−x̂)+O
(

1
|x|2
)

.

Choosing ϕ to be, for instance, the stereographic projection, we see that c±=±2πi/k.

Combining Lemmata 3.10 and 4.1 shows that if m̂(k, ·;x0) ∈C4(S2), the full Herglotz
wave f̂ has the asymptotic behaviour

Z

S2
m̂(ω)v̂(x,k;ω)dS(ω) =

eik|x|

|x|

[
2πi
k

m̂(x̂,k;x0)+
Z

S2
m̂(ω)v̂∞s (x̂,k;ω)dS

]
+

− e−ik|x|

|x|
2πi
k

m̂(−x̂,k;x0)+O
(

1
|x|2
)

. (4.11)
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Now since ĝ satisfies the Helmholtz equation outside suppq and the Sommerfeld ra-
diation condition, it has the far field expansion [CK98, Thm. 2.5]

ĝ(x,k;x0) =
eik|x|

|x| ĝ∞(x̂,k;x0)+o
(

1
|x|

)

and thus

f̂ (x,k;x0) =
eik|x|

|x| ĝ∞(x̂,k;x0)−
e−ik|x|

|x| ĝ∞(x̂,k;x0)+o
(

1
|x|

)
. (4.12)

In order for f̂ to equal F̂ , the coefficients of the e±ik|x|/|x| terms must match in (4.11) and
(4.12). In particular, to fulfill this requirement for the antiradiating part, i.e., the second
term on the right hand side of (4.12), we must choose m̂(ω,k;x0) = kĝ∞(−ω,k;x0)/2πi =
kĝ∞(−ω,−k;x0)/2πi. Actually this is a consistent choice, as the radiating parts match
automatically:

Theorem 4.2. Assume that q ∈C1
0(R

3,R). Let f̂ (x,k;x0) = ĝ(x,k;x0)− ĝ(x,k;x0), where
ĝ is a solution to (4.6)–(4.7). Set

m̂(ω,k;x0) =
k

2πi
ĝ∞(−ω,−k;x0).

Then
f̂ (x,k;x0) =

Z

S2
m̂(ω,k;x0)v̂(x,k;ω)dS(ω). (4.13)

If x0 6∈ suppq, the scattering amplitude determines m̂.

Proof. As before, let

F̂i(x,k;x0) =
Z

S2
m̂(ω,k;x0)v̂i(x,k;ω)dS(ω)

F̂s(x,k;x0) =
Z

S2
m̂(ω,k;x0)v̂s(x,k;ω)dS(ω)

and F̂ = F̂i + F̂s. Observe that Lemma 4.1 can be applied, since ĝ∞(·,−k;x0) is analytic
on the unit sphere, and in particular four times continuously differentiable.

Fix k ∈ R and write ϕ = F̂− f̂ . By (4.8) and Lemma 3.10,
[
−4− k2 +q(x)

]
ϕ(x) = 0.

The function ϕ also satisfies the Sommerfeld radiation condition: Differentiating under
the integral and using Lemma 4.1 we see that

∂F̂i

∂r
(x,k;x0) = ik

Z

S2
x̂ ·ω m̂(ω,k;x0)v̂i(x,k;ω)dS(ω)

=−eikr

r
2πm̂(x̂,k;x0)−

e−ikr

r
2πm̂(−x̂,k;x0)+O

(
1
|x|2
)

.
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Combining this with (4.7) and (4.10), and applying Lemma 4.1 again, we see that

∂ϕ
∂r

(x)− ikϕ(x) =−e−ikr

r
4πm̂(−x̂,k;x0)−

e−ikr

r
2ikĝ∞(x̂,k;x0)+o

(
1
r

)
= o

(
1
r

)

by assumption, uniformly in all directions x̂ ∈ S2. Since the frequency domain scattering
problem is uniquely solvable [CK98, Thm. 8.7], we deduce that ϕ̂≡ 0.

The final statement follows from the mixed reciprocity relation [Pot01, Thm. 2.2.4]:

ĝ∞(ω,k;x0) =
1

4π
v̂s(x0,k;−ω), (4.14)

and v̂s(x0,k;−ω) is determined by v̂∞s (·,k;ω) = A(·,ω,k) by Rellich’s lemma [CK98,
Thm. 2.13].

Remark. It is interesting to note that substituting (4.14) into (4.13) gives

f̂s(x,k;x0) =
1

4π

Z

S2
v̂s(x0,k;ω)v̂s(x,k;ω)dS(ω),

i.e., the scattered solution with a simulated point source is given by the correlation of the
values at x and x0 of scattered plane waves.

We now record the observation that (4.6)–(4.7) indeed has a unique solution.

Lemma 4.3. Let q ∈C1
0(R

3,R). Then for all k 6= 0, (4.6)–(4.7) has a unique solution

ĝ(·,k;x0) = (I +GkQ)−1Φ(·− x0,k).

Proof. Since both ĝ and Φ satisfy the Sommerfeld radiation condition, we see as in the
proof of Lemma 2.20 that (4.6)–(4.7) is equivalent with the integral equation

ĝ(·,k;ϕ)−Φ(·− x0,k) =−GkQĝ(·,k;ϕ), (4.15)

which has a unique solution by Lemmata 2.9 and 2.10.

In the time domain analogue (4.5) of the superposition formula (4.13), the product
of the two functions of k translates into a convolution in t. To make this rigorous, this
convolution of two bounded functions could be interpreted as being defined as the inverse
Fourier transform of (4.13). However, if the sources are smoothed in time, the convolution
can be viewed in the context of distributions and Lp functions. To this end, we shall use
the following two lemmata:

Lemma 4.4. Let K ⊂ R
3 be compact and assume that the q ∈C1

0(R
3,R) is such that the

operator I +G0Q is injective on L2
−δ for some δ > 5/2. Then there is a constant C > 0,

only depending on q and K, such that
∣∣∂l

kĝ∞(ω,k;x0)
∣∣≤C

for all l ∈ {0,1,2}, ω ∈ S2, k ∈ R\{0} and x0 ∈ K.
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Proof. Inserting the expansion (3.9) with N = 1 into (4.15) gives

ĝ(x̂,k;x0) =
eik|x|

4π|x|

[
e−ikx̂·x0−

Z

R3
e−ikx̂·yq(y)ĝ(y,k;x0)dy

]
+o
(

1
|x|

)

as |x| →∞, i.e.,

∂l
kĝ∞(ω,k;x0) = (−iω·x0)

l

4π e−ikω·x0−
l

∑
j=0

( j
l

)Z

R3

(−ikω·y)l− j

4π e−ikω·yq(y)∂ j
kĝ(y,k;x0)dy.

Therefore,

∣∣∂l
kĝ∞(ω,k;x0)

∣∣≤C

[
1+

l

∑
j=0

Z

R3
|q(y)|

∣∣∂ j
kĝ(y,k;x0)

∣∣dy

]

≤C
[
1+‖q‖L2

δ
‖∂ j

kĝ(·,k;x0)‖L2
−δ

]
.

This is bounded by Corollary 2.13 since

∂ j
kĝ(·,k;x0) =

j

∑
m=0

(
m
j

)[
∂ j−m

k (I +GkQ)−1
]

∂m
k Φ(·− x0,k)

and ∂m
k Φ(·− x0,k) is bounded in L2

−δ uniformly for all x0 ∈ K and k ∈ R.

Lemma 4.5. Let m̂ be as in Theorem 4.2. Let q ∈ C1
0(R

3,R) be such that the operator
I +G0Q is injective on L2

−δ for some δ > 5/2. Fix η ∈C∞0 (R) and a compact set K ⊂R
3.

Then there is a constant C, depending on q, η and K, such that

|(η∗m)(ω, t;x0)|=
∣∣F−1[η̂(k)m̂(ω,k;x0)

]
(t)
∣∣≤Cw(t)−2

for all ω ∈ S2, t ∈ R and x0 ∈ K.

Proof. For all l ∈ {0,1,2},

∂l
k
(
η̂(k)m̂(ω,k;x0)

)
=

k
2πi

l

∑
j=0

(
j
l

)
∂l− j

k η̂(k)∂ j
kĝ∞(−ω,−k;x0) =O

(
|k|−n) (4.16)

for all n ∈ N by Lemma 4.4 and the fact that η̂ ∈ S . The convolution theorem for η ∈
C∞0 ⊂ E ′ and m ∈ L∞ ⊂ S ′ shows that η∗m = F−1(η̂m̂) and thus

∥∥t l[η∗m(ω, ·;x0)
]
(t)
∥∥

L∞(t) ≤
∥∥∂l

k
[
η̂(k)m̂(ω,k;x0)

]∥∥
L1(k)

≤
∥∥w2(k)∂l

k
[
η̂(k)m̂(ω,k;x0)

]∥∥
L∞(k)‖w

−2‖L1 ,

whose boundedness is asserted by (4.16).
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In the derivation of the condition m̂(ω,k;x0) = kĝ∞(−ω,−k;x0)/2πi, we used the
Sommerfeld radiation condition (4.7) to get a causal fundamental solution in the time
domain. In the proof of this implication, we shall use the following estimate:

Lemma 4.6. There is a constant C > 0 such that

‖Gz‖L(L2
δ,L

2
−δ)
≤ C
|z|

for all z ∈ C+ \{0}.
Proof. The proof follows the lines of [Päi04, Thm. 3.1], where

(Gz f ,g)L2 = (F(Gz f ), ĝ)L2 =
Z

R3

f̂ (ξ)ĝ(ξ)

|ξ|2− z2 dξ

is estimated. As z is complex, some of the details are slightly more tedious when estimat-
ing the integrand in the subdomains ||ξ|− |z||< |z|/2 and ||ξ|− |z|| ≥ |z|/2.

Using this estimate, we can now prove that the radiating fundamental solution indeed
satisfies the causal support condition:

Lemma 4.7. Let q ∈C1
0(R

3,R) be such that the operator I +G0Q is injective on L2
−δ for

some δ > 5/2. Then the inverse Fourier transform g of the solution of (4.6)–(4.7) is the
unique causal Green’s function, i.e., the unique solution of (4.1)–(4.2).

Proof. The Fourier transform of (4.6) immediately gives (4.1). To see the causal support
condition, it suffices to show that the function

R 3 t 7→ 〈g(·, t;x0),ϕ〉 =: G(t) ∈ C

is supported in [0,∞) for any test function ϕ ∈C∞0 (R3). We shall do this using the Paley-
Wiener theorem.

Fix ϕ ∈C∞0 (R3). For all ψ ∈C∞0 (R),
〈
Ĝ,ψ

〉
=
〈
〈g(·, t;x0),ϕ〉 , ψ̂(t)

〉
t

= 〈g(·, ·;x0),ϕ⊗ ψ̂〉
= 〈ĝ(·, ·;x0),ϕ⊗ψ〉
=
〈
〈ĝ(·,k;x0),ϕ〉 ,ψ(k)

〉
k.

By Lemma 4.3 and the limiting absorption principle, Ĝ(k) = limε↘0 Ĝ(k + iε), where

Ĝ(z) =
〈
(I +GzQ)−1Φ(·− x0,z),ϕ

〉
.

Estimate

|Ĝ(z)||
〈
(I +GzQ)−1Φ(·− x0,z),ϕ

〉
| ≤
∥∥(I +GzQ)−1∥∥

L(L2
−δ)
‖Φ(·− x0,z)‖L2

−δ
‖ϕ‖L2

δ
.
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Now use Lemma 4.6: ∥∥(I +GzQ)−1∥∥
L(L2

−δ)
≤ 1

1− C
|z|
≤ 2

when |z| > 2C, with C the constant of Lemma 4.6. Therefore Ĝ(z) is bounded in the set
{z∈C+ | |z|> 2C}. In the compact set {z∈C+ | |z| ≤ 2C}, Ĝ(z) is bounded by continuity.

Write K = [0,∞). Its support function is

HK(ξ) = sup
x∈K

x ·ξ =

{
∞ when ξ > 0
0 when ξ≤ 0.

The boundedness of Ĝ in the upper half plane can be written as10

|Ĝ(z)| ≤C(1+ |z|)0eHK(Im(−z)−0) when HK(Im(−z)−0) <∞.

The Paley-Wiener theorem [Hör90, Thm. 7.4.3] thus implies that suppG⊂ K = [0,∞).
To see uniqueness, let g̃ be another solution of (4.1)–(4.2). Then u := g− g̃ satisfies

[
∂2

t −4+q(x)
]

u = 0
u|t<0 = 0,

which implies that u = 0.

We are now ready to write the time domain result concerning simulated sources
smoothed in time.

Theorem 4.8. Assume that q ∈ C1
0(R3,R) is such that the operator I +G0Q is injective

on L2
−δ for some δ > 5/2. Let

f̂η(x,k;x0) = η̂(k)
Z

S2
m̂(ω,k;x0)v̂(x,k;ω)dS(ω)

where η ∈C∞0 ((−ε,ε)),

m̂(ω,k;x0) =
k

2πi
ĝ∞(−ω,−k;x0)

and g is the causal Green’s function of the plasma wave equation, i.e., the solution to
(4.1)–(4.2). Then fη := F−1 f̂η = f (x, ·;x0)∗η satisfies

fη(x, t;x0) = (g∗t η)(x, t;x0) (4.17)

when t > ε. In the time domain, fη has the convolution representation

fη(x, ·;x0) =
Z

S2
η∗m(ω, ·;x0)∗ v(x, ·;ω)dS(ω).

If x0 6∈ suppq, the scattering amplitude determines m.
10Because of our definition of the Fourier transform, the sign in front of the argument of the support

function must be negative.
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Proof. The first statement is clear from Theorem 4.2: for ϕ ∈C∞0 (R3) and ψ ∈C∞0 (R),
〈
F−1( f̂η),ϕ⊗ψ

〉
=
〈

f̂ η̂,ϕ⊗F−1ψ
〉

=
〈

f̂ ,ϕ⊗
(
2π(F−1Rη)F−1ψ

)〉

=
〈

f̂ ,ϕ⊗F−1(Rη∗ψ)
〉

= 〈 f ,ϕ⊗ (Rη∗ψ)〉
= 〈 f ∗t η,ϕ⊗ψ〉

by the convolution theorem for test functions. That fη satisfies (4.17) is seen as follows:
If suppψ⊂ [ε,∞),

〈 fη−g∗η,ϕ⊗ψ〉 = 〈 f −g,ϕ⊗ (Rη∗ψ)〉 = 0

because supp( f −g)⊂R
3× (−∞,0] and supp(Rη∗ψ)⊂ suppRη+ suppψ⊂ (−ε,ε)+

[ε,∞) = (0,∞).
For the convolution representation, write v̂ = v̂i + v̂s, where v̂i(x,k;ω) = eikx·ω =

F(δ(t− x ·ω)), and consider the terms separately. For the incident part,
〈
F−1

(
η̂(k)

Z

S2
m̂(ω,k;x0)eikx·ω dS(ω)

)
(t),ϕ(x, t)

〉

x,t

=
〈

η̂(k)m̂(ω,k;x0)eikx·ω, ϕ̌(x,k)
〉

x,k,ω

=
Z

S2

Z

R3

〈
F(η∗m)(ω,k;x0)eikx·ω, ϕ̌(x,k)

〉
k

dxdS(ω)

=
Z

S2

Z

R3
〈(η∗m)(ω, t;x0)∗t δ(t− x ·ω),ϕ(x, t)〉t dxdS(ω)

=

〈
Z

S2
(η∗m)(ω, t;x0)∗t vi(x, t;ω)dS(ω),ϕ(x, t)

〉

x,t

since δ(·− x ·ω) ∈ E ′(R). For the scattered part, interpret the convolution as L1(R,C)×
L2(R,L2

−δ(R
3))→ L2(R,L2

−δ(R
3)), since

sup
ω∈S2,x0∈K

‖η∗m(ω, ·;x0)‖L1(R) ≤ sup
ω∈S2,x0∈K

‖η∗m(ω, ·;x0)‖L∞2 (R)‖w−2‖L1(R) <∞

by Lemma 4.5, and

‖v̂s(·,k;ω)‖L2
−δ

=
∥∥−(I +GkQ)−1Gkqv̂i(·,k;ω)

∥∥
L2
−δ

≤
∥∥(I +GkQ)−1∥∥

L(L2
−δ)
‖Gk‖L(L2

δ,L
2
−δ)
‖qv̂i(·,k;ω)‖L2

δ
≤ C

w(k)

by Lemma 2.4, and thus by Plancerel’s theorem,

‖vs(·, ·;ω)‖2
L2(R,L2

−δ)
= ‖v̂s(·, ·;ω)‖2

L2(R,L2
−δ)
≤

Z ∞

−∞
‖v̂s(·,k;ω)‖2

L2
−δ

dk (4.18)
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is bounded uniformly for all ω ∈ S2. The vector valued convolution theorem [ABHN01,
Section 1.8] can be applied, approximating with L1(R,L2

−δ(R
3))∩L2(R,L2

−δ(R
3)) func-

tions, which are dense.
The final statement follows as in Theorem 4.2.

4.2 Scattering control
Consider waves excited by time-dependent sources in a bounded set A⊂R

3. Since waves
travel at unit speed, they will stay supported in the union of light cones with vertices in
A. This means that in a finite length of time T , the waves will have travelled at most the
distance T away from A. If the sources are “turned on” at time zero, the waves excited by
them will be supported at time T > 0 in the set of points that are no further than distance
T from A. This set is called the domain of influence of A in time T and denoted by AT .

We shall now show that the time derivatives of waves excited by smooth sources in
a bounded domain A actually form a dense subset of all possible waves supported in
the domain of influence. In other words, the domain of influence can be approximately
controlled from A. [KKL01, Section 3.3]

The results in this section are presented for the three-dimensional case, but the proofs
apply without change to any number of dimensions in which the necessary ingredients are
available.

Theorem 4.9 (Interior control). Assume that q∈C1
0(R

3,R) is such that the operator I +
G0Q is injective on L2

−δ for some δ > 5/2. Let A⊂R
3 be a bounded set with a C2 bound-

ary, and let T > 0. Write AT := {x ∈ R
3 |d(x,A)≤ T}. Let g be the causal Green’s func-

tion defined by (4.1)–(4.2), and gηε(x, ·;x0) = g(x, ·;x0)∗ηε with η ∈C∞0 ((−1,1), [0,∞))
and ηε(t) = η(t/ε)/ε. Then
{

∂tuH,ε(·,T )
∣∣∣ uH,ε(x, ·) =

Z

A
H(y, ·)∗gηε(x, ·;y)dy,

H ∈C∞0
(
A× (0,T )

)
, 0 < ε < dist

(
πt suppH,{0,T}

)}
(4.19)

is a dense subset of L2(AT ).

Proof. The inclusion is clear from the finite speed of wave propagation, since uH,ε solves
[
∂2

t −4+q(x)
]

uH,ε(x, t) = (H ∗ηε)(x, t) =: Hε(x, t)

uH,ε(x,0) = 0

∂tuH,ε(x,0) = 0.

(4.20)

To show density, let ψ ∈ L2(AT ) be any function such that
Z

AT

ψ(x)∂tuH,ε(x,T )dx = 0
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for all H and ε as in (4.19). The statement follows if we show that ψ = 0.
Consider the weak solution e ∈ C([0,2T ],L2(R3))∩C1([0,2T ],H−1(R3)) [KKL01,

Corollary 2.36] of the dual problem
[
∂2

t −4+q(x)
]

e(x, t) = 0
e(x,T ) = ψ(x)

∂te(x,T ) = 0,

i.e.,
〈
e,
(
∂2

t −4+q(x)
)
ϕ
〉

= 〈0,ϕ〉 −〈0,ϕ(·,T )〉+ 〈∂te(·,0),ϕ(·,0)〉
+ 〈−ψ,∂tϕ(·,T )〉 −〈e(·,0),∂tϕ(·,0)〉

= 〈ψ,∂tϕ(·,T )〉+ 〈∂te(·,0),ϕ(·,0)〉 −〈e(·,0),∂tϕ(·,0)〉

for all ϕ ∈ H2(R3× [0,T ]). In particular, the choice ϕ = uH,ε yields

〈e,Hε〉 = 〈ψ,∂tϕ(·,T )〉+ 〈∂te(·,0),0〉 −〈e(·,0),0〉 = 0.

Now since functions of the form Hε are dense in L2(A×(0,T )), we conclude that e = 0 in
A× [0,T ], and in particular, its Cauchy data vanish on the boundary of the cylinder with
base A,

e = ∂ne = 0 (4.21)

on ∂A× [0,T ]. Since e(·,T ) = 0 and the plasma wave equation is translation invariant in
time and symmetrical with respect to reversal of time, e is antisymmetrical with respect
to reflection about the plane t = T , i.e., e(·,2T − t) = −e(·, t). Equation (4.21) therefore
holds in ∂A× [0,2T ]. Tataru’s theorem of unique continuation [Tat95, Thm. 3] thus shows
that e vanishes in the set

{
(x, t) ∈ R

3× [0,2T ]
∣∣dist(x,A)≤ T −|T − t|

}

(see Figure 6) and in particular,

ψ(x) = e(x,T ) = 0 when x ∈ AT .

In Section 4.1, we noted that a solution

uH,ε(·, t) =
Z

A

Z T

0
H(y,s)gηε(·, t− s;y)dsdy

of (4.20), excited by point sources in the set A× [0,T ], can be simulated using incident
plane waves: The values of the function

vH,ε(·, t) =
Z

A

Z T

0
H(y,s) fηε(·, t− s;y)dsdy
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Figure 6: Application of Tataru’s uniqueness theorem.

coincide with those of uH,ε(·, t) for t ≥ sup(πt suppH)+ ε; here πt denotes the projection
onto the time variable. We call the funtion vH,ε a wave corresponding to the simulated
source Hε = H ∗ηε.

Theorem 4.9 says that waves corresponding to simulated sources are dense over the
domain of influence. In terms of the plane waves used to simulate the sources this yields
the following.

Theorem 4.10 (Scattering control). Assume that q∈C1
0(R

3,R) is such that the operator
I + G0Q is injective on L2

−δ for some δ > 5/2. Let A ⊂ R
3 be a bounded set with C2

boundary, and let T > 0. Write AT := {x ∈R
3 |d(x,A)≤ T}. Let g be the causal Green’s

function defined by (4.1)–(4.2) and

m̂(ω,k;x0) =
k

2πi
ĝ∞(−ω,−k;x0).

Let η ∈C∞0 ((−1,1), [0,∞)) and ηε(t) = η(t/ε)/ε. Then
{

∂tvH,ε∣∣
AT

(·,T )
∣∣∣ vH,ε(x, ·) =

Z

S2
M(·,ω)∗ v(x, ·;ω)dS(ω)

M(·,ω) :=
Z

A
η∗m(·,ω;y)∗H(y, ·)dy

H ∈C∞0
(
A× (0,T )

)
, 0 < ε < dist

(
πt suppH,{0,T}

)}
(4.22)

is a dense subset of L2(AT ).

Proof. By Theorem 4.8, we see that when t ≥ T , each function uH,ε in (4.19) of Theo-
rem 4.9 can be written in the form

uH,ε(x, t) =
Z

A

Z T

0
H(y,s) fηε(x, t− s;y)dsdy

=
Z

S2

Z

R

Z

A

Z T

0
(η∗m)(t− p− s,ω;y)H(y,s)dsdyv(x, p;ω)d pdS(ω).

For vi, this integral should be interpreted in the sense of distributions.
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5 Solving the inverse problem
The scattering control results of the previous section can now be combined with the
Blagoveščenskiı̆ identity to solve the inverse problem. For any point x0 ∈ R

3 and for
any time t0 ∈ R, scattering control tells us that a wave can be sent in such that its time
derivative does not vanish in a neighbourhood of (x0, t0). For such a wave u, the potential
can be recovered from

q(x0) =

[
4−∂2

t ]∂tu(x0, t0)
∂tu(x0, t0)

, (5.1)

almost as in (1.2). The Blagoveščenskiı̆ identity (Theorem 3.12) with s = t = t0 allows
us to calculate the L2 norm of ∂tu. Localizing appropriately, this also yields pointwise
information about sufficiently smooth ∂tu, which can be inserted into (5.1).

This will now be done in more detail. In order to be able to use the scattering control
results of Section 4, we shall assume that the potential q is continuously differentiable and
of bounded support. All the results of this section can be generalized without change to
any number of dimensions, assuming that the tools are available.

5.1 Localization
The first step in localizing the solutions of the plasma wave equation is to project them
onto balls B. We do this as follows using the Blagoveščenskiı̆ identity to calculate inner
products with a suitable basis of L2(B), similarly to [KKL01, Section 4.2.6].

Lemma 5.1. Assume that q ∈C1
0(R

3,R) is such that the Schrödinger operator −4+ Q
has no negative L2 eigenvalues and no resonance at zero. Then given the scattering
amplitude and the incident waves ui and vi, we can calculate the inner products

(
∂tu(·, t0),∂tv(·,s0)

)
L2(B(x1,T ))

for any x1 ∈ R
3 \ suppq, T > 0 and any s0, t0 ∈ R.

Proof. Assume for simplicity of notation that t0 = 0. Let R > 0 be such that the potential
q is supported in BR−1. Consider waves corresponding to simulated sources in the set A =
B(x1,ρ) with x1 ∈ S2(0,R) and dist(x1,suppq) < ρ < T (see Figure 7). By the scattering
control Theorem 4.10, we see that at time 0, the time derivatives of waves corresponding
to simulated sources in A from time ρ− T to time 0 form a dense subset of all square
integrable functions over the domain of influence AT−ρ = B(x1,T ); we can apply the
sources on the time interval [ρ−T,0] instead of [0,T −ρ] because the equation is time-
invariant.

Since the Blagoveščenskiı̆ identity of Theorem 3.12 allows us to calculate the inner
products of the time derivatives of these waves, the Gram-Schmidt process yields an or-
thonormal basis {w j(·;x1,T )}∞j=0 of L2(AT ) such that

w j(x;x1,T ) = ∂tu j(x,0)
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PSfrag replacements suppq
x1

ρ

AT−ρ

A

T −ρ

Figure 7: Simulated sources and their domain of influence.

with the functions u j solving the plasma wave equation. For this reason, this basis is
called a wave basis. The coordinates of the time derivative of any solution u of (1.1) with
respect to this basis can be calculated using the Blagoveščenskiı̆ identity:

(
∂tu(·,0),w j(·;x1,T )

)
=
(
∂tu(·,0),∂tu j(·,0)

)
.

This gives

[
1B(x1,T )∂tu(·, t0)

]
(x) =

∞
∑
j=0

(
∂tu(·, t0),w j(·;x1,T )

)
w j(x;x1,T ).

The projection of ∂tv(·,s0) has an analogous expression. We do not know the values of
these functions, since their expressions contain the unknown values of the basis functions
w j(·;x1,T ). However, as the basis is orthonormal, it is possible to calculate the inner
products
(
∂tu(·, t0),∂tv(·,s0)

)
L2(B(x1,T ))

=
(
1B(x1,T )∂tu(·, t0),1B(x1,T )∂tv(·,s0)

)

=
∞
∑
j=0

(
∂tu(·, t0),w j(·;x1,T )

)(
∂tv(·,s0),w j(·;x1,T )

)
.

Since the potential q is yet to be determined, we do not know a priori how large R
should have been chosen at the beginning of the present proof. However, we can perform
the calculations above for different values of R, and keep increasing its value. When
R is so large that the support of the potential is contained in BR−1, the results of our
calculations will stop changing.

Combining projections of this type in an appropriate way, we can take our next step
towards finding point values of ∂tu, by projecting onto a small neighbourhood of any point
(x0, t0) ∈ R

3+1.
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PSfrag replacements suppq

S2(x0,R)

V
x1

x2R

Figure 8: Intersection of the domains of influence of simulated sources around
the support of the potential.

Lemma 5.2. Assume that q is as in Lemma 5.1. Let u and v ∈ H̃ be solutions of the
plasma wave equation (1.1). Then given the scattering amplitude, the incident waves ui
and vi, any point x0 ∈ R

3, any t0, s0 ∈ R and any δ > 0 small enough, we can calculate
the inner products (

∂tu(·, t0),∂tv(·,s0)
)

L2(V (x0,δ))
(5.2)

where V (x0,δ) is a neighbourhood of x0 such that B(x0,c1δ) ⊂ V (x0,δ) ⊂ B(x0,c2δ) for
some constants c1, c2 ∈ R independent of δ.

Proof. For l ∈ {1,2,3}, set xl = x0−Rel , where R is so large that suppq⊂ B(x0,R). Let
Tl± = R±δ/2 (see Figure 8). Then

V :=
3

\

l=1

[
B(xl,Tl+)\B(xl,Tl−)

]

is approximately a small cube of side δ with centre at x0. We can write the projection onto
a shell as
[
1B(xl ,Tl+)\B(xl ,Tl−)∂tu(·, t0)

]
(x)

=
[[

1−1B(xl ,Tl−)

]
1B(xl ,Tl+)∂tu(·, t0)

]
(x)

=
∞
∑
j=1

(
∂tu(·, t),w j(·;xl,Tl+)

)
×

×
[

w j(x;xl,Tl+)−
∞
∑

m=1

(
w j(·;xl,Tl+),wm(·;xl,Tl−)

)
wm(x;xl,Tl−)

]
,
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where the inner products can be calculated using Lemma 5.1. Repeating this procedure,
we find an expression for

1V ∂tu(·, t0) =

[
3

∏
l=1

1B(xl ,Tl+)\B(xl ,Tl−)

]
∂tu(·, t0)

in terms of the wave bases. As in the proof of Lemma 5.1, this yields the inner product
(5.2).

Now in the limit δ→ 0, the set V (x0,δ) shrinks nicely to the point x0, and the projec-
tions calculated in the above lemmata give us information about point values:

Lemma 5.3. Assume that q is as in Lemma 5.1. Let v = vH,ε be a wave corresponding
to a known simulated source as in (4.22). Then given the scattering amplitude, we can
calculate the value of |∂tv(x0, t0)| for all x0 ∈ R

3 and t0 ∈ R.

Proof. From Lemma 5.2, we know

(
∂tv(·, t0),∂tv(·, t0)

)1/2
L2(V (x0,δ))

m(V (x0,δ))
=
‖∂tv(·, t0)‖L2(V (x0,δ))

m(V (x0,δ))

δ→0−−−→ |∂tv(x0, t0)| (5.3)

for all Lebesgue points of ∂tv(·, t0). Now
[
∂2

t −4+q(x)
]

∂tvH,ε(x, t) = ∂tH ∗ηε(x, t)

vH,ε(x,0) = 0

∂tvH,ε(x,0) = 0.

Thus as q ∈C1
0(R3), ∂tv is in fact continuous:

∂tv ∈W 1,∞(R,H2(R3))⊂C(R,H2(R3))⊂C(R,C(R3))⊂C(R3+1)

[Eva98, Thms. 7.2.6 and 5.9.2]. Therefore it makes sense to talk about its point values,
and since all points are Lebesgue points for a continuous function, we can find |∂tv(x0, t0)|
for all x0 and t0.

5.2 Recovery of the potential
We are now ready to present the result showing how the Blagoveščenskiı̆ identity and
scattering control can be used to solve the inverse problem by the localization technique
described in Section 5.1.

Theorem 5.4. Assume that q∈C1
0(R3,R3) is such that the Schrödinger operator−4+Q

has no negative L2 eigenvalues and no resonance at zero. Then the scattering amplitude
determines the potential q.
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Proof. By scattering control, for any x0 ∈R
3 and t0 ∈R, we can choose a simulated source

H and ε > 0 such that the time derivative of the corresponding simulated wave v = vH,ε

does not vanish almost anywhere in a neighbourhood of (x0, t0). In this neighbourhood,

(∂2
t −4)∂tv(x, t) = q(x)∂tv(x, t)

is continuous as a product of two continuous functions, and we can thus calculate

q(x) =
(∂2

t −4)∂tv(x, t)
∂tv(x, t)

=
(∂2

t −4)|∂tv(x, t)|
|∂tv(x, t)|

,

provided that u is real valued. In fact, v can be chosen real valued, since for a real valued
potential q, the real and imaginary parts of v propagate independently of each other. Thus
if ∂tv(x0, t0) 6= 0, either Re∂tv or Im∂tv must be non-zero in a neighbourhood of (x0, t0),
and we can consider Re∂tv or Im∂tv instead of v, whichever does not vanish.

5.3 Prospects
The results in this study lend themselves to generalizations in several different directions:
Some of the assumptions made seem artificial and could perhaps be relaxed. On the other
hand, our method could be applied in different settings.

One of the main tools that we developed and used, the variant of the Blagoveščenskiı̆
identity, was proved under the assumption that the potential and its first derivatives are
bounded and decay as |x|−γ for γ > 28. This condition is most probably not sharp. In
the proof, a rather long chain of estimates involving many parameters was used, and it
would not be surprising if at some point, a looser assumption would suffice. Alternatively,
combining the estimates in a different way, or using totally different reasoning, might give
the required results under looser assumptions.

The subsequent building blocks that were used for solving the inverse problem were
derived under the more restrictive assumption that the potential is of class C1

0 and that
there are no bound states. We therefore concluded only that our method can be used
to solve the inverse problem under this assumption. However, the present form of the
Blagoveščenskiı̆ identity might already prove useful in other applications.

The assumption that q ∈ C1
0 could perhaps also be relaxed for the scattering con-

trol part and when solving the inverse problem. It seems plausible that if a sufficiently
quickly decaying potential is smoothly cut off outside a large compact set, the effect will
be small. This would enable us to approximate the case of a quickly decaying potential
by compactly supported ones.

The assumption about the absence of bound states, i.e., negative eigenvalues of the
operator −4+Q, might also not be necessary. Under quite general conditions, there are
only a finite number of negative eigenvalues, each with a finite dimensional eigenspace.
This means that the operator −4+Q is positive definite on a space H ′ of finite codimen-
sion. In this space, scattering can be defined, and the Blagoveščenskiı̆ formula derived as
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in Section 3.3. In Section 5, there is much room for the choice of the functions used in
solving the potential q, so it might be possible to choose them from H ′.

The principal tools that we used for solving the inverse problem are the Blagoveščen-
skiı̆ identity, developed in Section 3, the scattering control property, developed in Sec-
tion 4, and the wave bases, developed in Section 5. As these tools are quite geometric
in nature, it would be interesting to investigate the possibility of formulating them in
a differential geometric setting, and thus use them to solve inverse problems of more
general elliptic second order partial differential operators along the lines of [KKL01],
and perhaps complementing the active research currently being carried out in the field
[AKK+04, KKLM04, JSB99, SB03, SB]. A starting point could be to consider small
perturbations to the Euclidean metric, whose effect one would hope to be small enough
to permit the present methods to be used. Generalizations to dimensions other than n = 3
should also be considered.

An interesting framework for the boundary control method is that of Gaussian beams
[BK92a, KK98, KKL01]; this framework could also be fruitful in the study of simulated
sources and scattering control. It might also be worthwhile to examine the applicability
of the highly localized waves of Section 5.1 to ultrasound surgery [MHK03].

Connections to parabolic and spectral inverse problems [KKLM04, KKL01] might
also be worth investigating, as well as the application of ideas presented here to scattering
from obstacles and for electromagnetic scattering.
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