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Abstract. Post-nonlinear (PNL) independent component analysis
(ICA) is a generalisation of ICA where the observations are assumed
to have been generated from independent sources by linear mixing fol-
lowed by component-wise scalar nonlinearities. Most previous PNL ICA
algorithms require the post-nonlinearities to be invertible functions. In
this paper, we present a variational Bayesian approach to PNL ICA that
also works for non-invertible post-nonlinearities. The method is based
on a generative model with multi-layer perceptron (MLP) networks to
model the post-nonlinearities. Preliminary results with a difficult artifi-
cial example are encouraging.

1 Introduction

The problem of ICA have been studied by many authors in recent years. The
general goal of ICA is to estimate some unknown signals (or sources) from a set
of their mixtures by exploiting only the assumption that the mixed signals are
statistically independent. The linear ICA model is well understood (see e.g. [1]
for review) while the general nonlinear ICA and related nonlinear blind source
separation (BSS) are more difficult problems from both theoretical and practical
points of view [2, 1]. In fact, the general nonlinear ICA problem is ill-posed and
most approaches to it are better classified as nonlinear BSS, where the goal is
to estimate the specific sources that have generated the observed mixtures.

Post-nonlinear mixtures are a special case of the nonlinear mixing model
studied first by Taleb and Jutten [3]. They are interesting for their separability
properties and plausibility in many real world situations. In the PNL model, the
nonlinear mixture has the following specific form:

xi(t) = fi




M∑
j=1

aijsj(t)


 i = 1, . . . , N (1)

where xi(t) are the N observations, sj(t) are the M independent sources, aij

denotes the elements of the unknown mixing matrix A and fi : R → R are a set
of scalar to scalar functions sometimes also called post-nonlinear distortions.
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Most of the existing ICA methods for PNL mixtures assume that the source
vectors s(t) and the observations x(t) are of the same dimensionality (i.e. N =
M) and that all post-nonlinear distortions fi are invertible. In this case, under
certain conditions on the distributions of the sources (at most one Gaussian
source) and the mixing structure (A has at least 2 nonzero entries on each row or
column), PNL mixtures are separable with the same well-known indeterminacies
as in the linear mixtures [4, 3].

However, as was shown in [5], overdetermined PNL mixtures (when there
are more observations xi than sources sj , i.e. N > M) can be separable even
when some of the distortions fi are non-invertible functions. In [5], the general
nonlinear factor analysis (NFA) model [6]

x(t) = f (s(t), θf ) + n(t) (2)

followed by the linear FastICA post-processing [1] was successfully applied to
recover the independent sources from this kind of PNL mixtures.

In the present paper, we restrict the general NFA model of Eq. (2) to the
special case of PNL mixtures of Eq. (1) and derive a learning algorithm based
on variational Bayesian learning. In the resulting model, which we call post-
nonlinear factor analysis (PNFA), the sources sj(t) are assumed to be Gaussian
and therefore the nonlinear ICA problem can be solved by first learning the
roughly Gaussian sources and then rotating them using any linear ICA algorithm
to recover the independent components [6, 7].

The rest of the paper is structured as follows. First, the PNFA model is intro-
duced in Sec. 2. The learning algorithm used to estimate the model is presented
in Sec. 3 and the results of an experiment with a difficult artificial example in
Sec. 4. The paper concludes with discussion in Sec. 5.

2 Post-nonlinear Factor Analysis Model

Most PNL ICA methods [3, 8] separate sources by inverting the mixing model
(1) and therefore by estimating the following separating structure

sj(t) =
N∑

i=1

bjigi(xi(t), θi) j = 1, . . . , M. (3)

This approach implicitly assumes the existence of the inverse of the component-
wise nonlinearities gi = f−1

i , and therefore fails in separable PNL mixtures with
non-invertible distortions fi [5].

To overcome this problem, we present the Bayesian PNFA algorithm which
instead learns the generative model (1) in the following form (see Fig. 1):

xi(t) = fi [yi(t), W i] + ni(t) = fi




M∑
j=1

aijsj(t), W i


 + ni(t) (4)
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where yi(t) =
∑M

j=1 aijsj(t) and ni(t) is the observation noise. The post-non-
linear component-wise distortions fi are modelled by multi-layer preceptron
(MLP) networks with one hidden layer:

fi(y, W i) = Diφ(Ciy + ci) + di. (5)

Here the parameters W i of the MLPs include the column vectors Ci, ci, row vec-
tor Di and scalar di. A sigmoidal activation function φ that operates component-
wise on its inputs is used.

Fig. 1. The model structure of PNFA.

Implementing the Bayesian approach, we express all the model assumptions
in the form of the joint distribution of the observations X = {x(t)|t}, the sources
S = {s(t)|t} and other model parameters θ = {θi|i}.

Assuming independent Gaussian noise ni(t) yields the likelihood

p(X |S, θ) =
∏
i,t

N
(
xi(t); fi [yi(t), W i] , e2vn,i

)
(6)

where N
(
x; µ, σ2

)
denotes a Gaussian density for variable x having mean µ

and variance σ2, and the variance parameter has lognormal hierarchical prior.
The sources sj(t) are assumed to be Gaussian and have the prior

p(S |θ) =
∏
j,t

N
(
sj(t); 0, e2vs,j

)
. (7)

The parameters of the prior distributions (such as the variance parameters
vn,i, vs,j) as well as the other model parameters (such as the parameters W i

of the component-wise MLPs) are further assigned Gaussian priors making the
prior p(θ) of the parameters hierarchical. For example, the noise parameters vn,i

of different components of the data share a common prior:

p(vn,i |θ \ vn,i) = N
(
vn,i; mvn , e2vvn

)
(8)

and the hyperparameters mvn , vvn have very flat Gaussian priors.

3 Learning

In this section, the variational Bayesian learning algorithm used to learn the
model, is introduced.
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3.1 Variational Bayesian Learning

The PNFA model is learned using variational Bayesian method called ensemble
learning [9–11]. It has recently become very popular in linear ICA [12–15] but it
has been applied to nonlinear BSS [6, 16, 7] as well. Reasons for the popularity
of ensemble learning include the ability to easily compare different models and
its resistance to overfitting, which is especially important in applications with
nonlinear models.

As a variational Bayesian method, ensemble learning is based on approximat-
ing the posterior distribution of the sources and model parameters p(S, θ|X)
with another, simpler distribution q(S, θ). The approximation is fitted by min-
imising the cost function

C =
〈

log
q(S, θ)

p(S, θ, X)

〉
= DKL(q(S, θ)||p(S, θ|X)) − log p(X) (9)

where 〈·〉 denotes expectation over the distribution q(S, θ) and DKL(q||p) is the
Kullback-Leibler divergence between the distributions q and p. The approxima-
tion is restricted to be of fixed simple form, such as a multivariate Gaussian with
a diagonal covariance used in PNFA.

3.2 Learning the Model

Most terms of the cost function in Eq. (9) are simple expectations over Gaussian
variables that can be evaluated analytically. The only difficulties arise from the
likelihood term

Cx = 〈− log p(X|S, θ)〉 (10)

that has to be approximated somehow.
With the Gaussian noise model, the likelihood term can be written as

Cx =
∑
t,i

〈− log N(xi(t); fi,t, σ2
n)

〉

=
∑
t,i

[
1
2

〈
log

√
2πσ2

n

〉
+

〈
1

2σ2
n

〉([
xi(t) − 〈fi,t〉

]2 + Var[fi,t]
)] (11)

where fi,t = fi [yi(t), W i] and Var[·] denotes variance under q(S, θ). This can be
thus evaluated if the mean and variance of the outputs of the MLP networks are
known. Once the cost function can be computed, it can be minimised numerically.
The minimisation is performed by a gradient based algorithm similar to one used
in [6].

3.3 Evaluation of the Statistics of MLP Outputs

To simplify the notation, subindices i will be dropped in this section. The mean
and variance of the inputs y(t) of the MLP networks can be computed exactly.
Assuming these are Gaussian, the mean and variance of the MLPs f(y(t), W )
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can easily be evaluated using e.g. Gauss-Hermite quadrature, which in this scalar
case for y using three points is equivalent to unscented transform.

The above discussion ignores the variance of the network weights W . Their
effect could be included by performing the unscented transform on full combined
input of y(t) and W , but that would increase the computational burden too
much. As the variances of the weights are usually small, their effects are repre-
sented sufficiently well by using first-order Taylor approximation of the network
with respect to them [17]. Thus the mean of the output is approximated as

〈ft〉 =
∑

j

wjf(ŷj(t), W ) (12)

where wj are the weights and ŷj(t) = 〈y(t)〉+tj Var[y(t)]1/2 are the basis points of
the Gauss-Hermite quadrature corresponding to the abscissas tj , and W denotes
the mean of the weights W .

Correspondingly, the variance is approximated by a combined Gauss-Hermite
and Taylor approximation

Var[ft] =
∑

j

wj

[(
f(ŷj(t), W ) − 〈ft〉

)2

+ ∇W f(ŷj(t), W )Cov[W ]∇W f(ŷj(t), W )T

]
.

(13)

4 Experiments

The proposed PNFA algorithm was tested on a three-dimensional PNL mix-
ture of two independent sources. The sources were a sine wave and uniformly
distributed white noise. The PNL transformation used for generating the data
contained two non-invertible post-nonlinear distortions:

y =



1.2 0.2
1 0.7

0.2 0.8


 s x =



(y1 − 0.5)2

(y2 + 0.4)2

tanh(2y3)


 . (14)

The observations were centered and normalised to unit variance and observation
noise with variance 0.01 was added. The number of samples was 400.

The PNFA model was trained by trying different model structures, i.e. dif-
ferent numbers of hidden neurons in the PNL MLPs (5), and several random
initialisations of the parameters to be optimised. The source initialisation was
done by the principal component analysis of the observations. The best PNFA
model1 had 5 neurons in the hidden layers of all MLPs.

The PNL distortions learned by the best model after 10000 iterations is pre-
sented in Fig. 2: The post-nonlinearities fi are estimated quite well except for
1 The best model has the smallest value of the cost function (9) which corresponds to

the maximum lower bound of the model evidence p(X|model).
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Fig. 2. The estimated post-nonlinear distortions fi against the functions used for gen-
erating the data (the dashed line). Each point in the figure corresponds to a single
observation.
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Fig. 3. The sources found by the PNFA and further rotated with the FastICA algo-
rithm. (a) – the scatter plots; (b) – the estimated time series; (c) – the distribution of
the sources. The signal-to-noise ratio is 12.95 dB.

some points at the edges. The difficulties mostly affect the two quadratic func-
tions which are difficult to model with such small MLP networks and relatively
few observations, especially at those edges.

The sources found by PNFA were further rotated by the FastICA algorithm
to obtain independent signals (see Fig. 3). The scatter plots in Fig. 3a show
how well the original sources were reconstructed. Each point corresponds to one
source si(t). The abscissa of a point is the original source which was used for
generating the data and the ordinate is the estimated source. The optimal result
would be a straight line which would mean that the estimated values of the
sources coincide with the true values. Again, the sources were estimated quite
well except for some points at the edges.

This result is somewhat natural due to the great difficulty of the test prob-
lem: There are only two bounded sub-Gaussian sources in the mixture and their
linear combinations are quite far from Gaussianity assumed by PNFA. Another
difficulty is the complex PNL mapping with a small number of observations and
several non-invertible post-nonlinear distortions. Removing any of the observa-
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tions from the mixture would make the mixing process non-injective and the
separation problem unsolvable.

5 Discussion

In this paper, we presented a new Bayesian algorithm for learning the post-
nonlinear mixing structure. The algorithm which we call post-nonlinear factor
analysis is based on modelling the component-wise post-nonlinear distortions by
MLP networks and using variational Bayesian learning.

An important feature of the proposed technique is that it learns the gen-
erative model of the observations while most existing PNL methods estimate
the complementary separating structure. This makes the algorithm applicable
to some post-nonlinear ICA problems unsolvable for the alternative methods.

We tested PNFA on a very challenging ICA problem and the obtained ex-
perimental results are very promising. The PNFA algorithm complemented by
a linear ICA method was able to recover original sources from a globally invert-
ible PNL mixture with non-invertible post-nonlinear distortions. This cannot be
achieved by existing alternative methods [5].

The presented results are still preliminary and further investigations of the
algorithm are needed. For example, the problem with local minima appears more
severe for PNL mixtures with non-invertible distortions. Another interesting
question is whether PNFA can improve the source restoration quality compared
to the general NFA method applied to PNL problems.

An important issue is how the proposed PNL ICA technique works in higher-
dimensional problems: Due to the Gaussianity assumption for the sources, the
performance of the algorithm may be better for a greater number of mixed
sources. Also, we are planning to implement a mixture-of-Gaussians model for
the sources like in [12, 6] in order to improve the source estimation quality.
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