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Abstract— The nonlinear independent component analysis
method introduced by Lappalainen and Honkela in 2000 uses
a truncated Taylor series representation to approximate the
nonlinear transformation from sources to observations. The
approach uses information only at the single point of input mean
and can produce poor results if the input variance is large. This
feature has recently been identified to be the cause of instability of
the algorithm with large source dimensionalities. In this paper,
an improved approximation is presented. The derivatives used
in the Taylor scheme are replaced with slopes evaluated by
global Gauss-Hermite quadrature. The resulting approximation
is more accurate under high input variance and the new learning
algorithm more stable with high source dimensionalities.

I. I NTRODUCTION

Variational Bayesian learning has recently become very
popular in the field of independent component analysis (ICA).
Several authors have proposed methods based on applying a
variational method called ensemble learning to a linear gen-
erative model with mixture-of-Gaussians source prior [1]–[4].
The same method can also be applied to nonlinear ICA or blind
source separation (BSS) by replacing the linear generative
model with a nonlinear one. In [5], the nonlinear mapping
was modelled with a multilayer perceptron (MLP) network.
The method has later also been extended to handle sources
with temporal dependencies to create a powerful nonlinear
state-space model [6], [7].

The variational Bayesian learning algorithm requires eval-
uation of certain statistics of the outputs of the model, given
a distribution of parameter values. In case of a linear model,
the statistics can be evaluated exactly, but with a nonlinear
model they have to be approximated. In [5], the nonlinearity
was handled by replacing it with a truncated Taylor series
approximation. The method is simple and works well when the
variance of the inputs is small enough. In cases of high input
variance, however, the approximation loses accuracy. Thishas
recently been identified to be the cause of instability of the
algorithm with high source dimensionalites.

In this paper, a better approximation for the statistics of a
nonlinear transform of a probability distribution is presented.
The approximation is based on the idea of linearising the
nonlinearity, but instead of the derivatives used in the Tay-
lor scheme, different slopes evaluated with a global Gauss-
Hermite quadrature method are used. The change is found to

improve the accuracy of the approximation significantly and
help avoid the stability problems.

The rest of the paper is organised as follows. The nonlinear
ICA method is briefly introduced in Sec. II. Methods for
approximating nonlinear transformations of probability distri-
butions are introduced first in a general setting in Sec. III,and
with specific application to MLP network in Sec. IV. The new
approximation method is also presented in Sec. IV. In Sec. V,
an experimental comparison of the methods is presented. The
paper ends with conclusions in Sec. VI.

II. N ONLINEAR ICA BY VARIATIONAL BAYESIAN

LEARNING

Let us denote the observed data byX = {x(t)|t}. Given
the data, the goal is to estimate the sourcesS = {s(t)|t} and
other model parametersθ = {θi|i}. The MLP network model
for the observations can be written as

x(t) = f(s(t);A,B,a,b)+n(t) = Bφ(As(t)+a)+b+n(t),
(1)

where n(t) is Gaussian noise andφ is the nonlinear acti-
vation function of the hidden neurons. The weightsW =
{A,B,a,b} are elements ofθ along with the parameters
governing n(t) and hyperpriors of other parameters. The
sources are assumed to be independent and have either a
Gaussian mixture prior for nonlinear ICA or a Gaussian prior
for simpler nonlinear factor analysis (NFA). In the latter case,
the method can be extended to perform ICA by using a linear
ICA algorithm as postprocessing for the extracted sources [7].
Because of this, the rest of the paper deals with the simpler
NFA method.

As a variational Bayesian method, ensemble learning is
based on approximating the posterior probability distribution
of the sources and model parametersp(S,θ|X) with a simpler
tractable distributionq(S,θ). The approximation is fitted
by minimising the Kullback-Leibler divergence between the
approximation and the true posterior

D(q(S,θ)||p(S,θ|X)) =

〈
log

q(S,θ)

p(S,θ|X)

〉
, (2)

where〈·〉 denotes expectation over the distributionq(S,θ) [8],
[9]. The approximation is set to be of fixed simple form, such
as a multivariate Gaussian with a diagonal covariance used in
NFA.



The learning algorithm used in the nonlinear factor analysis
method is in principle very simple. The cost function in Eq. (2)
can mostly be evaluated exactly, up to an additive constant.
The only difficulties arise from the likelihood term

Cx = 〈− log p(X|S,θ)〉

=
∑

t

〈− log N(x(t); f(s(t),W ),Σx)〉 (3)

that has to be approximated somehow. HereN(x; x,Σx)
denotes a Gaussian density for variablex having meanx
and covarianceΣx. Assuming such an approximation can be
found, the whole learning can be performed by numerically
minimising the cost using e.g. simple gradient descent.

Assuming a Gaussian noise model with diagonal noise co-
variance, the problem of approximatingCx reduces to finding
good approximations for the mean

f(s,W ) =
〈
f(s,W )

〉
(4)

and diagonal elements of the covariance

f̃i(s,W ) =
〈(

fi(s,W )− f i(s,W )
)2

〉
(5)

of the outputs of the MLP network.

III. G AUSSIAN INTEGRATION

The mean of a nonlinear functiong of y ∼ N(y,Σy) can
be written as integral of a given function with a Gaussian
weight

I(g) = g(y) =

∫

Rn

g(y)N(y; y,Σy)dy. (6)

With this formalism, the covariance can be written as

Icov(g) =

∫

Rn

(g(y) − g(y))(g(y) − g(y))T N(y; y,Σy)dy

= I
(
(g(·) − g(y))(g(·) − g(y))T

)

(7)

The problem of multivariate Gaussian integration has many
applications and has thus been studied widely. It is needed in
many problems in physics and mathematical finance, but the
methods used in these applications seem to concentrate more
on the accuracy of the approximation and use computationally
intensive Monte Carlo and quasi-Monte Carlo methods [10].
Unfortunately, these methods are computationally too heavy
for machine learning applications such as nonlinear Kalman
filtering and nonlinear ICA, where the integrals are needed as
part of an iterative algorithm. Therefore e.g. nonlinear Kalman
filtering methods use either a simple Taylor approximation
(extended Kalman filtering) or a simple quadrature with very
few points (unscented Kalman filtering).

Finding good approximations for high-dimensional Gaus-
sian integrals is in general very difficult. In [11] it is shown
that when the required precisionǫ approaches zero, the worst-
case complexity for evaluating that good approximation of the
integral is of the orderǫ−d, where d is the dimensionality
of the input. In the examples of Sec. V, for instance, these
dimensionalities are typically of the order of 1000. In caseof

fixed precision, however, dimensions with sufficiently small
input variance can be safely ignored, thus limiting the growth
of the complexity somewhat.

A. First-order Taylor approximation

One of the simplest methods to evaluate the Gaussian
integrals of Eqs. (6) and (7) is to substituteg(y) with a
first-order Taylor approximationg(y) + Dg(y)(y− y) about
the mean. This approach is used for example in the extended
Kalman filter. The resulting approximate mean is

g(y)taylor = g(y) (8)

and covariance

g̃(y)taylor = (Dg(y))Σy(Dg(y))T , (9)

where Dg(y) is the Jacobian matrix ofg evaluated at the
point y.

In case of the mean, the approximation can relatively
easily be extended to second-order by using only second-order
information of the inputs as

gi(y)taylor2 = gi(y) +
1

2
trace(D2gi(y)Σy). (10)

In case of variance, the second-order approximation requires
higher order statistics of the inputs. The second-order approx-
imation is more accurate in case of low input variance, but it
adds some new problems. In case of boundedg, for instance,
the mean estimates given by Eq. (10) are unbounded whereas
those given by the first-order approximation in Eq. (8) are
bounded. It is therefore not obvious that the second-order
approximation should always be preferred over the first-order
variant.

B. Gauss-Hermite quadrature

Gauss-Hermite quadrature is a method for evaluating nu-
merically one-dimensional Gaussian integrals. The methodcan
be iterated and thus applied in higher dimensions as well, but
the number of function evaluations grows exponentially so it
is not very practical in high dimensions.

The Gauss-Hermite quadrature approximation for one di-
mensional version of Eq. (6) withy ∼ N(y, ỹ) is of the form

IGauss-Hermite(g) =

N∑

i=1

wig
(
y +

√
ỹti

)
, (11)

where theabscissasti and weights wi are determined by
requiring the approximation to be exact for polynomials up to a
suitable degree. The number of points used can be determined
by the level of accuracy needed.

Using these, the Gauss-Hermite approximation for mean and
variance of a scalar function can be written as

g(y)GH =

N∑

i=1

wig(y +
√

ỹti) (12)

and

g̃(y)GH =

N∑

i=1

wi

(
g(y +

√
ỹti)− g(y)

)2

. (13)



C. The unscented transform

The unscented transformation proposed by Julier and
Uhlmann in 1996 [12] was designed to overcome the defi-
ciencies of the Taylor approximation used in extended Kalman
filter. The resulting unscented Kalman filter has since been
developed further e.g. in [13].

In one dimension, the unscented transform is mostly equiv-
alent to Gauss-Hermite quadrature. In higher dimensions,
however, the number of points used in the approximation
grows much more slowly with the dimensionality. In ann-
dimensional case, the unscented transform is based on select-
ing a setY of 2n weighted points together with the mean point
that describe well the input distribution. In case of diagonal
input covariance, the points will reside on the coordinate axes
at a distance governed by corresponding standard deviation.
These points are then transformed individually to get a new
set of pointsZi = g(Yi). The output mean and covariance
are then computed as weighted mean and covariance of the
transformed pointsZ.

The unscented transform is intuitively appealing. With a
suitable selection of points and their weights, it can achieve
second-order accuracy with respect to Taylor approximation
of the nonlinear transform. Additionally some informationof
higher order statistics of the input can be incorporated in the
selection of the points. The non-local nature of the unscented
transform also promises better accuracy for cases with high
input variance in which the Taylor based approximations fail.

Despite its benefits, the unscented transform is not without
drawbacks. As noted in the beginning of this section, main-
taining the same level of accuracy of the approximation under
increasing input dimensionality requires exponential increase
in the number of function evaluations. The number of function
evaluations used in unscented transform grows only linearly,
so the accuracy of the approximation is bound to decrease
as the dimensionality increases. Quantifying the decreaseis,
however, difficult, because the complexity result presented
above is only valid on the limit of vanishing error.

The unscented transform is a good method for evaluating
simple Gaussian integrals in low dimensions. In higher dimen-
sions, choosing only two points for each dimension loses too
much information and the results suffer.

IV. A PPLICATION TO THEMLP

The original nonlinear factor analysis method [5] uses the
first-order Taylor scheme of Eq. (9) for approximation of
the variance and the second-order scheme of Eq. (10) for
the mean. Looking at the results of earlier real experiments
reported e.g. in [5]–[7] and the experimental analysis of ap-
proximation accuracy presented later in Sec. V-A, the method
works very well when the input variance is low enough. Only
when the number of estimated sources, and along with it
the input variance, grows too large, the method will run into
trouble.

The non-local nature of the unscented transform suggests
that it should be better able to handle the cases of high
input variance. This is confirmed by the results of experiments

presented later in Sec. V-A. Unfortunately, the unscented
transform seems to produce surprisingly poor results in low
noise conditions and is thus as such unsuitable replacementfor
the old Taylor approximation. The poor results are probably
due to the form of the function represented by the MLP
including correlations caused by products of different input
variables. These can be easily handled with minor extension
to the Taylor approximation but are neglected by the unscented
transform.

Overall, the linear parts of the MLP are easy to handle
exactly. The only difficulties are caused by the nonlinearities,
i.e. the activation functions of the hidden neurons. If those
were replaced with linear functions, the whole network would
be linear and even the simplest Taylor approximation would
be exact. Because of this, it would seem reasonable to try
to improve the Taylor approximation by using a more so-
phisticated approximation for those scalar functions without
changing the whole scheme. The new method is thus basically
the old Taylor approximation but with a linearisation of the
activation functions based on the Gauss-Hermite quadrature
instead of actual Taylor series expansion about the mean of
the input.

A. First-order Taylor approximation

Let us examine the position of the activation functionφ(y)
of the hidden neurons of the MLP network in the Taylor
approximation. According to the first-order Taylor approxi-
mation, the mean of the output is

f(s,W ) = Bφ(As + a) + b (14)

and the variance

f̃i(s,W ) = ∇sfi(s,W )Σs∇sfi(s,W )T

+ ∇W fi(s,W )ΣW∇W fi(s,W )T ,
(15)

where the weights and sources are assumed to have distribu-
tions W ∼ N(W ,ΣW ) and s ∼ N(s,Σs). The required
derivative with respect to the inputs, for instance, is

∇sfi(s,W ) = Bi diag(φ′(As + a))A, (16)

where Bi denotes theith row of the mean matrixB and
diag(z) denotes a diagonal matrix with elements of vector
z on its main diagonal. From this it is clear that both
approximations can be broken into parts, i.e. evaluating the
mean and variance ofy = As + a first, then those ofφ(y)
and finally those ofBφ(y). The only approximations are done
in the middle step, the first and the last are exact.

B. Gauss-Hermite approximation of hidden neurons

As noted before, the above method fails in case of high input
variance because it relies on information of the activationfunc-
tion at a single point. To this end, an alternative approximation
for the second step, evaluation of mean and variance ofφ(y),
is proposed. Because of the nature ofφ, the problem splits
naturally to one-dimensional subproblems concerning each
component separately. These can then be handled easily by



applying the Gauss-Hermite quadrature introduced in Sec. III-
B. In order to keep the computational load reasonable, an
approximation with three points was used. This also makes
the procedure equivalent to applying the unscented transform
to φ(y).

Once the meanφ(yi)GH and variancẽφ(yi)GH as given in
Eqs. (12) and (13) are known, it is easy to return back to the
computations implied by the Taylor scheme by setting

φ(yi) := φ(yi)GH (17)

and

φ′(yi) :=

√
φ̃(yi)GH

ỹi

, (18)

where ỹi is the variance ofyi. These formulae can be seen
to define a global linearisation of the activation function in
a sense that is optimal with respect to the assumed Gaussian
input.

C. Computational considerations

Above, the new approximation has been derived for network
inputs only. Corresponding approximations are needed for
network weights as well, but they can be derived in a similar
manner. The dependence of the outputs from the second layer
weightsB andb is linear so it can be handled trivially. The
derivatives of the output with respect to first layer weightsA

anda are

∇Aj
fi(s,W ) = Bijφ

′((As)j + aj)s, (19)

whereAj is the jth row of matrixA, and

∇afi(s,W ) = Bi diag(φ′(As + a)). (20)

The Equations (16), (19) and (20) combined with the cor-
responding covariance matrices of the parameters each imply
a different variance for the inputy of the activation functions.
Additionally, none of these is equal to the total variance ofy

which would seem the most natural choice for evaluating the
approximation for the mean. Evaluating these four separate
Gauss-Hermite approximations is computationally expensive,
so combining them to evaluate several quantities with a single
expansion is preferable.

Most of the variance ofy is due to the variance of the
sources, so using a common approximation for the source
variance and mean introduces only very small errors. Unfor-
tunately, using the same approximation also for the weights
introduces significant errors, so another one must be used
jointly for both A anda.

V. EXPERIMENTAL RESULTS

In this section, experimental results on the accuracy and
performance of the different approximations are presented. In
the first experiment, the accuracy of the approximations is
studied with random MLP networks and random inputs. In
other experiments, the proposed method is compared to the
original Taylor approximation in nonlinear factor analysis.1

1The Matlab code used in the NFA experiments is available athttp:
//www.cis.hut.fi/projects/bayes/software/.

A. Approximation accuracy

In this experiment, the accuracy of different approximations
was studied. The accuracy was evaluated by testing the ap-
proximations with 500 random input distributions, each with
100 random MLP networks. The means of the weights of the
MLP networks were sampled randomly from a unit variance
Gaussian distribution. The covariance of the weights was
assumed to be diagonal with variances of the weights all equal
to 10−3. 100 input means were also randomly sampled from
a unit variance Gaussian distribution. Five different values
were tested for the variances at each of the input means,
10−3, 10−2, 10−1, 1 and 10. The results were then compared
to assumed correct solutions evaluated with a Monte Carlo
method. The dimensions of the MLP network were 5-30-10,
i.e. 5 input neurons, 30 hidden neurons and 10 output neurons.

The results of the experiment are shown in Figs. 1, 2
and 3. Fig. 1 shows the mean squared error of different
mean approximations. It confirms the suspicion that second-
order Taylor approximation is better than first-order with
low variance but worse with high variance. The unscented
transform is surprisingly worse than even first-order Taylor
approximation. The proposed method provides the best results
on all levels of input variance.

The mean squared errors of different variance approxima-
tions on logarithmic scale are shown in Fig. 2. The most
notable result is the rapid drop in accuracy of the Taylor
approximation. The unscented transform and the proposed
method provide more stable results with the proposed method
being clearly better on all noise levels. Fig. 3 shows the
maximum amount different methods underestimate the output
variance. The plot shows the ratio of the true variance and
estimated variance, so value 1 would be the optimal result.
This result is shown separately because it is probably the most
harmful type of error for our application. The results are rather
similar to the mean squared errors of the variance estimate.
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Fig. 1. Mean squared error of different mean approximations asa function
of the input variance.
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Fig. 2. Mean squared error of logarithm of different variance approximations
as a function of the input variance.
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of the input variance.

B. Nonlinear factor analysis with artificial data

The nonlinear factor analysis method using the new ap-
proximation was tested using the same artificial data set that
was used in [5]. The data set consisted of 20-dimensional
vectors that were formed by mapping 4 sub-Gaussian and
4 super-Gaussian sources nonlinearly with a random MLP
network. The number of samples was 1000. The results were
evaluated by the signal-to-noise ratio of the sources recovered
by optimal linear reconstruction from the estimated sources
to the true sources. The additional linear reconstruction was
used because the NFA method cannot find the correct rotation
for the sources. The rotation could be recovered blindly using
a linear ICA algorithm, but this was not used as it would

have increased the computational burden and added another
possible source of error.

The results of the experiment are shown in Fig. 4. With
10 sources, the algorithm using the Taylor approximation
produces better results than the proposed approximation. The
results attained by the Taylor algorithm do, however, yield
significantly lower cost function value than the results of the
proposed algorithm also with the new approximation, so the
problem is due to suboptimal optimisation algorithm. When
the number of sources is increased to 15, the Taylor algorithm
can no longer produce any reasonable results. Even the best
of the 12 simulations starts to diverge right at the start. The
results of the proposed algorithm are affected by the increase
in the number of sources only slightly.

10
2

10
3

10
4

0

5

10

15

20

25

# of iterations

S
N

R
 o

f s
ou

rc
e 

re
co

ns
tr

uc
tio

n 
(d

B
)

Taylor, 10 sources
Proposed, 10 sources
Taylor, 15 sources
Proposed, 15 sources

Fig. 4. Comparison of signal to noise ratios attained with different
approximations in the NFA algorithm using either 10 or 15 sources. The
results show the best of 12 simulations with different randominitialisations
at each point.

C. Nonlinear factor analysis with natural data

The new method was tested on natural data with the speech
data compression experiment also presented in [7]. The data
set used in the experiment consisted of spectrograms of 24
individual words of Finnish speech, spoken by 20 different
speakers. The spectra were modified to mimic the reception
abilities of the human ear. This is a standard preprocessing
procedure for speech recognition. The preprocessed data con-
sisted of 2547 30-dimensional spectrogram vectors.

Linear factor analysis as well as nonlinear factor analysis
with both old Taylor based approximation and proposed new
approximation were applied to the data to extract different
number of sources or factors. The nonlinear factor analy-
sis methods were run for 10000 iterations. Fig. 5 shows
the residual energy left unexplained by the given number
of sources. Nonlinear factor analysis is able to explain the
data equally well with fewer factors than the linear method.
The differences between different approximations in nonlinear



factor analysis are mostly small. The proposed approximation
is able to reliably estimate even 20 components while the
Taylor approximation method consistently fails when trying to
estimate more than 13. It is possible that using many different
random initialisations might help the Taylor method estimate a
few more components as shown in the results reported in [7],
but the difference in the stability of the methods is very clear.

Additionally, in the cases where the Taylor approximation
produces better results than the proposed method, the cost
function value of those simulations is also lower when evalu-
ated using the proposed approximation than the one attained
in the actual simulation using the proposed method. The worse
results are therefore due to the optimisation method used with
the new approximation and should be remediable by improving
the optimisation algorithm.
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Fig. 5. The remaining (residual) energy of the speech data as afunction of
the number of extracted components using linear factor analysis and nonlinear
factor analysis with proposed approximation and Taylor approximation. There
are no results for Taylor approximation with more than 13 components because
all the simulations diverged.

VI. CONCLUSIONS

In this paper, a new method for estimating the mean and the
variance of a nonlinear transform of a probability distribution
was proposed. The method is especially designed for use
with nonlinear transforms modelled by MLP networks. It is
based on standard first-order Taylor method of linearising the
mapping about the input mean, except that the derivatives
of the nonlinear activation function are replaced by slopes
evaluated globally by Gauss-Hermite quadrature. The global
nature of the approximation increases its accuracy with large
input variances significantly while guaranteeing second-order
accuracy for cases of small input variance.

The new approximation was used to derive a new learning
algorithm for the nonlinear factor analysis (NFA) model origi-
nally proposed in [5]. The new algorithm was able to avoid the
stability problems from which the old algorithm suffered, but

unfortunately the results suffered slightly. The better optima
found by the old algorithm are also clearly better with respect
to the cost function evaluated with the new method, so the
problem is most likely due to the highly tuned optimisation
algorithm used in the NFA method. The optimisation algorithm
was designed for the simpler approximation and may thus not
work in the desired manner with the more complicated new
method. In future, the complicated hand-tuned optimisation
algorithm should be replaced with something more suitable
for the new approximation.

The computation time required by the nonlinear factor
analysis algorithm using the new approximation is larger than
with the old Taylor approximation. The increase is, however,
typically less than 50 %.
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