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Simultaneous estimation of optical anisotropy
and absorption in medical optical

tomography
Jenni Heino, Erkki Somersalo, Simon Arridge

Abstract— In this paper we propose a possible
model for anisotropic light propagation, and present
simultaneous reconstruction of anisotropy parame-
ters and optical absorption for optical tomography.
The anisotropic model is introduced into the Radia-
tive Transfer Equation (RTE). The most commonly
used approximation to the RTE in optical tomogra-
phy is the Diffusion Equation (DE). In anisotropic
case, the diffusion coefficient in the DE assumes a
tensor form. We present the diffusion tensor as an
eigenvalue decomposition corresponding to the di-
rections and the strength parameters of anisotropy.
The numerical approximation is done in two dimen-
sions using the finite element (FE) method. We then
consider the inverse problem of reconstructing the
optical absorption when the directions of anisotropy
are assumed to be known, but the strength may vary.
For this estimation to be successful, the strength pa-
rameters are reconstructed simultaneously with the
absorption. We present numerical examples of cases
in which the location of anisotropy is truly known,
and in which there is an error in the assumed loca-
tion.

I. Introduction

OPTICAL tomography is a relatively new, non-
invasive modality for medical applications

such as functional imaging of the brain or breast
cancer detection. Techniques using near-infrared
light have some important advantages over existing
modalities. Near-infrared light is non-ionizing and
thus harmless to the patient, enabling long term
monitoring. Also, the instrumentation can be made
relatively light and inexpensive.

Several human tissues, such as the white matter
of the brain, muscles, or skin [1], have optical prop-
erties that depend not only on location but also
on direction. It is known, e.g., that the fibres in
the white matter of the brain have direction depen-
dent properties for the diffusion of water [2]. Since
the imaging of the human brain is one of the main
application targets of optical tomography, it is im-
portant to understand how anisotropies effect the
image reconstruction. In this paper, we present one
approach to model the anisotropic effects of light
propagation and some examples of simultaneous re-
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construction of optical absorption and anisotropy
model parameters.

II. Light propagation model

Light propagation in the presence of spatially
varying absorbing coefficient µa and scattering co-
efficient µs is generally described (ignoring polariza-
tion and coherence effects) by the Radiative Trans-
fer Equation (RTE) [3]. For a source modulated
with angular frequency ω, this is written

(ŝ · ∇+ µa + µs − iω/c) φ(r, ŝ;ω)

= µs

∫

S2
Θ(ŝ, ŝ′)φ(r, ŝ′;ω)d2ŝ′ + q(r, ŝ;ω). (1)

Here φ(r, ŝ; ω) is the radiance at position r with
direction of propagation ŝ, c is the speed of light,
q denotes the source term and the phase function
Θ(ŝ, ŝ′) represents the probability density function
for scattering ŝ′ → ŝ.

When scattering dominates absorption a com-
mon approximation with high fidelity to the physi-
cal situation is the Diffusion Approximation (DA),
which arises from assuming firstly that the spherical
harmonic expansion of φ can be reasonably approx-
imated by only first order terms, and secondly that
the phase function depends only on (ŝ · ŝ′) i.e. the
angular separation between incoming and scattered
radiation, not the absolute direction. Then the DA
is written

−∇ · κ∇Φ + (µa − iω/c)Φ = Q, (2)

where κ = 1
3 (µa + (1− g)µs))

−1 is the scalar diffu-
sion coefficient, in which g is the mean of the cosine
of the scattering angle, and Q presents an isotropic
source term.

As mentioned, in many situations it is likely that
the scattering phase function has an absolute de-
pendency on direction. In this paper we assume a
simple phase function of the form

Θ(ŝ, ŝ′) =
1
4π

(
1 + 3ŝTB ŝ′

)
, (3)

where B is a symmetric positive definite tensor. In-
serting this phase function into the RTE, expanding
in spherical harmonics and taking terms only up to
first order leads to the tensor diffusion equation

−∇ · K∇Φ + (µa − iω/c)Φ = Q, (4)
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where
K =

1
3

((µa + µs)I− µsB)−1
. (5)

Note (4) reduces to (2) if B = gI which implies
Θ(ŝ, ŝ′) = 1

4π (1 + gŝ · ŝ′).
In this work, we use the so called collimated

source approximation [4], where the light source is
modeled with a collimated pencil beam perpendic-
ular to the surface. In this approximation, we write
the source term as a point source below the surface:
Q = Q0δ(rs), where rs is the source position. For
the boundary condition, we assume that the inward
directed flux in each point on the boundary is zero.
Within the diffusion approximation, this assump-
tion leads to a so called Robin boundary condition

Φ + 2n̂ · K∇Φ = 0, (6)

where n̂ is the outward unit normal vector to the
surface. The boundary data consists of measured
outward flux Γout at points xm, the optode loca-
tions, on the boundary ∂Ω. Using the boundary
condition (6), the outward flux within the diffusion
approximation is simply Γout(xm) = 1

2Φ(xm).

III. Numerical approximation

The numerical approximation in this work is
based on the finite element computations conducted
in a two-dimensional space. For implementing the
finite element method, we write the variational for-
mulation of the diffusion equation (4). By multi-
plying the equation (4) by a test function ψ and
integrating by parts over Ω, we arrive at the varia-
tional equation

∫

Ω

∇ψ · K∇Φdx +
∫

Ω

(µa − iω/c)ψΦdx

+
∫

∂Ω

1
2
ψΦdS = Q0ψ(rs), (7)

where the Robin boundary condition (6) and the
collimated source condition have been taken into
account.

In the finite element approximation, the domain
Ω is divided into finite elements and the solution is
approximated by nodal-based basis functions,

Φ(x) ≈
Nn∑

j=1

αjψj(r). (8)

where Nn is the number of the nodes in the finite
element mesh. By choosing the test function ψ in
(7) to be one of the basis functions, we arrive at the
matrix equation Aα = β, where A is the Nn × Nn

symmetric matrix with entries

Aj,` =
∫

Ω

∇ψj · K∇ψ`dx +
∫

Ω

(µa − iω/c)ψjψ`dx +
∫

∂Ω

1
2
ψjψ`dS, (9)

and β is a Nn–vector βj = Q0ψj(rs).
In two dimensions, we write the eigenvalue de-

composition for the anisotropy matrix B = B(r) ∈
<2×2 as

B(r) = U(r)diag(b1(r), b2(r))U(r)T, (10)

where U(r) ∈ <2×2 is an orthogonal matrix and
we assume the eigenvalues bj(r) are positive. This
decomposition leads to a corresponding decomposi-
tion of the diffusion matrix K,

K(r) = U(r)diag(λ1(r), λ2(r))U(r)T, (11)

where

λj(r) =
1

2(µa(r) + (1− bj(r))µs(r))
, j = 1, 2

(12)
(see figure 1).

Consider the system matrix A defined in (9). By
writing

U(r)T∇ψj(r) = ξj(r)ê1 + ηj(r)ê2, (13)

where the vectors êj are the Cartesian basis vectors,
and making the assumption that the strength of the
anisotropy is constant, i.e., λj(r) = λj = constant,
j = 1, 2, we get

∫

Ω

∇ψj · K∇ψkdx

= λ1

∫

Ω

ξjξkdx + λ2

∫

Ω

ηjηkdx. (14)

Note that the assumption of constant strength does
not mean that the diffusion coefficient is constant,
since the principal directions coded in the matrix
U(r) may vary. In this connection, we make one
further simplifying approximation: We assume that
the anisotropy factors λj , j = 1, 2, are independent
of the absorption coefficient. This assumption, al-
though not correct, can be justified when the ma-
terial is scattering dominated, i.e., µa ¿ µs, so in
formula (12) the absorption coefficient can be ig-
nored.

Fig. 1. A schematic illustration of the representation of
anisotropy using eigenvalue decomposition. The direction of
anisotropic structures is presented by two orthogonal direc-
tions confined in the matrix U(x) = [~α1(x), ~α2(x)] and the
strength by the corresponding eigenvalues λ1(x), λ2(x).
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Fig. 2. Reconstruction of the absorption coefficient. (a) Geometry used in the reconstruction is a sphere of a radius of 2
cm with an anisotropic band and two spherical perturbations in the absorption coefficient. In the band (Ω1) the direction
of anisotropy is parallel with the band. Outside the band (Ω2) material is isotropic. The solid lines denote the true location
of the band, and the dashed and dotted lines two false locations of the band. In Ω1 (λ1, λ2)=(0.0250 cm, 0.0083 cm) and
in Ω2 κ=0.0192 cm. In the background µa=0.25 cm−1 and in the spherical perturbations µa=1 cm−1. (b) Reconstruction
of µa using a model with the true location for the anisotropic band. (c) Reconstruction using the false position denoted by
the dashed lines. (d) Reconstruction using the false position denoted by the dotted lines.
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Fig. 3. Values of the parameters (λ1, λ2, κ) during iteration. The horizontal dashed lines denote the real value of the
parameter. Solid line is for the reconstruction in figure 2 (b), dashed line for figure 2 (c) and dotted line for figure 2 (d).
The dotted vertical line denotes the time of the change to the local µa basis.

IV. Inverse problem

Next let us consider the following inverse prob-
lem of optical tomography: We assume that the
principal directions of the anisotropy confined in
matrix U(r) are known, but the strength (λ1, λ2)
of anisotropy is poorly known. The goal is to es-
timate the absorption coefficient µa = µa(r) based
on optical boundary measurements.

The justification for this choice is that it may
be possible to make some inference of the principal
directions of structural anisotropies in human tis-
sue, e.g., based on anatomical information or other
imaging modalities such as functional MRI (Diffu-
sion Tensor Imaging, see [2]). Of course, this type
of information is never accurate, and also, correla-
tion between optical and diffusion anisotropy has
not been experimentally verified. However, they

both depend on structural anisotropy of the mat-
ter, and Monte Carlo studies indicate that struc-
tural anisotropy gives rise to optical anisotropy [1].

For the estimation of the absorption coefficient
to be successful, the incomplete knowledge of the
anisotropy need to be taken into concern. Here,
the estimation of the constant strength (λ1, λ2) of
anisotropy in the anisotropic region Ω1, and the
scalar diffusion coefficient κ in the isotropic region
Ω2, is included into the solution. Another possi-
bility would be to use a prior distribution for the
uncertain anisotropy parameter values by applying
statistical inversion methods [5].

The observation model in this study is

y = G(µa, λ1, λ2, κ) + n, (15)

where y is vector consisting of boundary measure-
ments, which in this case are the logarithm of the
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amplitude and the phase angle of the outward flux,
G(µa, λ1, λ2, κ) is the model for the noiseless ob-
servation, µa is a vector consisting of the discrete
values of the absorption coefficient in the pixels and
n is the additive measurement noise. The estima-
tion is based on minimisation of the functional F ,

F(µa, λ1, λ2, κ) =

‖y −G(µa, λ1, λ2, κ)‖2 + ρ

∫

Ω1+Ω2

|µa|2dΩ

+ρ

∫

Ω1

(|λ1|2 + |λ2|2
)
dΩ + ρ

∫

Ω2

|κ|2dΩ, (16)

where ρ is a parameter related to the variance of
the estimated parameters. Note that both mea-
surements y and parameters µa, λ1, λ2 and κ are
rescaled by average value.

In practise, the minimisation is performed by two
stage Gauss-Newton iteration. Firstly, four global
values (µa, λ1, λ2, κ) are recovered, secondly the it-
eration is continued in the local pixel basis for µa.
The Jacobian of the data with respect to the pa-
rameters (µa, λ1, λ2, κ) takes the following form

Jµa,λ1,λ2,κ = [Jµa |Jλ1 |Jλ2 |Jκ] , (17)

where Jµa , Jλ1 , Jλ2 and Jκ are the Jacobians for
µa, λ1, λ2 and κ, respectively, and µa is firstly the
global value and secondly the vector of local pixel
values.

V. Results

In the numerical example, we consider an
isotropic sphere of a radius of 2 cm, with an
anisotropic band Ω1 and two perturbations of the
absorption coefficient µa of radii of 0.2 cm. We esti-
mate the absorption coefficient µa, the eigenvalues
(λ1, λ2) in Ω1 and the scalar diffusion coefficient κ
in the isotropic region Ω2. Figure 2 (a) displays the
geometry in this numerical example.

In the following reconstructions, the initial val-
ues are µa = 0.15 cm −1 and λ1 = λ2 = κ = 0.0125
cm. First, the location of the anisotropic band is
assumed to be known. Figure 2 (b) displays the
reconstruction of the absorption coefficient in this
case. However, in general the structural informa-
tion on anisotropy which is used as a basis of the
image reconstruction may not be accurate. To in-
vestigate how severely inaccuracies in the geometry
of the anisotropy disturb the reconstruction, two
alternative locations for the anisotropic band were
considered. Figures 2 (c) and (d) display the re-
constructions of absorption coefficient with an in-
creasing error in the location of the anisotropy. As
the location used in the reconstruction moves fur-
ther away from the true location of the band, the
reconstruction deteriorates seriously.

Finally, figure 3 displays the recovery of the
global values of λ1, λ2 and κ during iteration for
all three cases.

VI. Conclusions

In this paper, we have presented a possible model
for optical anisotropy with numerical examples of
reconstructions for optical tomography. Based on
the results presented, anisotropy should be prop-
erly modelled for the image reconstruction to be
successful. In addition, even if the strength param-
eters can be reconstructed simultaneously with the
absorption coefficient, also the structural informa-
tion of the anisotropy should be relatively truthful.
However, generally we cannot assume this informa-
tion to be very accurate. Further studies concern-
ing the uncertainties in the location and direction
of anisotropy need to be performed.

Acknowledgements. This work was supported by the
Academy of Finland, the Foundation of Technology, the
Finnish Cultural Foundation and the Jenny and Antti Wi-
huri Foundation. The author Heino would like to thank Dr.
J Nenonen, HUT, for supporting her work.

References

[1] Stephan Nickell, Marcus Herrmann, Matthias Essen-
preis, Thomas J. Farrell, Uwe Krämer, and Michael S.
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