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Abstract 

Face-to-face communication involves both hearing and seeing speech. Heard and 

seen speech inputs interact during audiovisual speech perception. Specifically, seeing 

the speaker's mouth and lip movements improves identification of acoustic speech 

stimuli, especially in noisy conditions. In addition, visual speech may even change the 

auditory percept. This occurs when mismatching auditory speech is dubbed onto 

visual articulation.  

Research on the brain mechanisms of audiovisual perception aims at revealing 

where, when and how inputs from different modalities interact. In this thesis, 

functional magnetic resonance imaging (fMRI), magnetoencephalography (MEG) and 

behavioral methods were used to study the neurocognitive mechanisms of audiovisual 

speech perception. 

The results suggest that interactions during audiovisual and visual speech 

perception have an effect on auditory speech processing at early levels of processing 

hierarchy. The results also suggest that auditory and visual speech inputs interact in 

the motor cortical areas involved in speech production. Some of these regions are part 

of the “mirror neuron system” (MNS). The MNS performs a specialized primate 

cerebral function of coupling two fundamental processes - motor action execution and 

perception - together. It is suggested that this action-perception coupling mechanism 

might be involved in audiovisual integration of speech.  

 

Keywords: auditory cortex, functional magnetic resonance imaging, 

magnetoencephalography, multisensory, audiovisual speech perception, lipreading, 

Broca, motor cortex, superior temporal sulcus 
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Chapter 1: Literature review 

The sections below review experimental studies and theoretical views on the 

neurocognitive mechanisms of audiovisual integration of speech. The first and second 

sections focus on behavioral studies and theoretical views on audiovisual integration 

of speech, the third and fourth sections focus on neurophysiological studies on the 

neural mechanisms of audiovisual multisensory integration in general and audiovisual 

integration of speech in particular. 

AUDIOVISUAL SPEECH PERCEPTION 

Think of a conversation with your friend in a noisy restaurant at lunch time. Does 

watching her face and mouth help to hear what she is saying? Most probably you 

would say that it does. From everyday situations like this we know that visual 

information from the talker’s face facilitates speech perception and is often even 

crucial for intelligibility of speech. In other words, seeing speaker's articulatory 

gestures improves identification of acoustic speech, especially in noisy conditions. 

This phenomenon was experimentally characterized already in the 50’s (Sumby and 

Pollack, 1954).  

Sometimes visual speech input may even change the auditory percept, as occurs in 

the "McGurk effect". For example, simultaneously presented conflicting acoustic /ba/ 

and visual /ga/ are usually perceived as /da/ (McGurk and MacDonald, 1976). The 

McGurk effect is a captivating experience. Laboratory studies have shown that it is 

also a very robust phenomenon. It occurs even when the acoustic stimulus is loud and 

clear, but the strength of the McGurk effect may increase when the signal-to-noise 

ratio (SNR) of the acoustic speech decreases (Sekiyama and Tohkura, 1991). The 

effect occurs even though the observer is aware of how the stimuli are constructed. 

Dubbing a male voice onto female articulation does not influence the strength of the 

McGurk effect (Green et al., 1991), and it is not sensitive to the discrepancy in the 

spatial locations of auditory and visual speech (Jones and Munhall, 1997).  

The acoustic and visual stimuli do not have to be in exact synchrony to be 

integrated. The asynchrony of acoustic and visual stimuli may be as much as 240 ms 

(Green, 1996; Munhall et al., 1996). Furthermore, instructing subjects to respond to 

audiovisual stimuli based on auditory or visual information only biases responses 

towards the instructed modality (Massaro, 1998). However, when visual attention is 
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directed towards a distractor stimulus presented together with the talking face, the 

McGurk effect is weaker indicating that visual attention modulates audiovisual speech 

perception (Tiippana et al., 2004).  

Face and mouth are frequent visual stimuli from the birth. Infants learn to imitate 

mouth movements very early (Meltzoff, 1990) and they start to show interest in 

matching acoustic and visible speech at the age of 10-20 weeks (Dodd, 1979). At 3 

months they have developed the ability to facilitate face recognition by voice 

information (Burnham, 1998). As young as 4-5 –months of age infants also show the 

McGurk effect (Burnham and Dodd, 1995). From there on, the effect of the visible 

speech on speech perception becomes stronger with age (McGurk and MacDonald, 

1976).   

MODELS OF AUDIOVISUAL SPEECH PERCEPTION 

The central questions in audiovisual speech perception research are the following. 

When are the auditory and visual speech signals combined or integrated during speech 

processing? Where and how do the two signals interact? What is the common 

representation for the two very different sensory inputs?  

Number of theoretical models have been proposed to explain the audiovisual 

integration of speech (for reviews, see Massaro, 1998; Schwartz et al., 1998; 

Summerfield, 1987). The models can be divided into early and late (Schwartz et al., 

1998) and auditory and gestural (or “articulatory” ) integration models (Green, 1998). 

According to the auditory theories, visual information influences the processing of 

auditory speech. These influences may take place before phonetic categorization of 

unimodal inputs (early integration) or acoustic and visual speech inputs may be 

categorized separately before integration (late integration).  

Early auditory integration models assume that the visual modality is recoded into 

or influences the auditory processing early in the processing hierarchy (Green, 1998). 

The visual signal is recoded into and combined with the auditory signal and processed 

as single input in the auditory processing stream until it is categorized (e.g., Schroeder 

and Foxe, 2004).  

A well-known example of a late integration model is the Fuzzy Logical Model of 

Perception (FLMP) (for a review see, Massaro, 1998). According to this model the 

speech inputs are matched separately against unimodal phonetic prototypes. Then, the 
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separate classifications are fused through probabilistic computation. The integration is 

assumed to occur at a post-phonetic level. 

According to the articulatory theories, the two inputs are integrated because both 

signals (e.g., seen /ba/ and heard /ba/) provide the observer with information about the 

motor act of speaking (e.g., uttering /ba/). These theories have sprung from the motor 

theory of speech, which advocates the idea that speech perception and production 

systems are intimately intertwined (Liberman and Mattingly, 1985; Liberman et al., 

1967). The theory assumes speech to be perceived by recognition of the articulatory 

gestures of the speaker rather than the speech sounds. Specifically, speech inputs are 

mapped into the motor representations which control the vocal tract during the 

observer’s own articulation. In other words, observers map speech input to the motor 

programs used in their own speech production. During audiovisual speech perception, 

observers are suggested to map information from seen lip movements and heard 

speech to the motor programs used in their own speech production. According to this 

theory, the motor act of articulation serves as the common metric for auditory and 

visual speech information in audiovisual speech perception (e.g., Skipper et al., 2005).  

The articulatory theory is an example of early models as the motor mapping is 

thought to enable phonetic categorization in the first place. However, in recent 

neurophysiological literature, the role of articulatory processing in audiovisual speech 

perception has been incorporated into the late auditory interaction models. 

Specifically, articulatory processes have been suggested to have a secondary role by 

constraining and refining primary acoustic-phonetic processing (Callan et al., 2004; 

Calvert and Campbell, 2003). 

NEURAL MECHANISMS OF AUDIOVISUAL MULTISENSORY 

PROCESSING 

Combining and utilizing information from more than one modality is a general 

function of the nervous system. The following section gives a short summary of the 

neurophysiological mechanisms and the anatomical regions and connections known to 

underlie multisensory processing of audiovisual non-speech stimuli (see Calvert et al., 

2004).  

Multisensory convergence in super ior  colliculus 

The most detailed account of the neuronal mechanisms of multisensory processing 

is based on single cell recordings directly from the mammalian superior colliculus 
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(SC) (for a review, see Stein and Meredith, 1993). The SC receives mostly input from 

the auditory, visual and somatosensory systems. The unimodal neurons in SC have 

sensory-specific receptive fields to which they respond.  

Multisensory neurons in SC are defined by their multiple sensory inputs. These 

neurons display overlapping sensory receptive fields. The response of these neurons is 

substantially enhanced during spatially and temporally coinciding multisensory 

stimulation. The firing rate may be 12 fold of what would be expected by summing 

the responses of each unimodal input in isolation (Stein and Meredith, 1993). Because 

the combined response is no longer comparable to the response to either input, it is 

considered a new output signal. This process is referred to as multisensory integration 

(Calvert and Thesen, 2004). The enhancement of the neuronal response is often 

maximal when the responses to the individual inputs are weakest, a principle known 

as inverse effectiveness. In contrast, spatially or temporally disparate stimuli can 

induce response depression (Stein and Meredith, 1993).  

The capability of noninvasive methods such as BOLD fMRI in demonstrating 

multisensory convergence (i.e., detecting sub- and supra-additive neuronal responses) 

might be limited (however, see Calvert et al., 2000). This is because the measured 

signal originates from a large neuronal population, sub- and supra-additive neurons 

make up a small portion of the total population of multisensory neurons, and they are 

not spatially segregated from other neurons (Beauchamp et al., 2004a). 

Cor tical multisensory areas 

Multisensory cortical regions contain, by definition, neurons responsive to 

stimulation in more than one modality. Several such regions have been identified in 

the primate brain. These areas include the upper bank of the superior temporal sulcus 

(STS) (Bruce et al., 1981; Watanabe and Iwai, 1991), intraparietal sulcus (IPS) (Lewis 

et al., 2000), premotor (PMC) (Graziano and Gandhi, 2000) and prefrontal cortex 

(PFC) (Benevento et al., 1977; Bremmer et al., 2001; Romanski and Goldman-Rakic, 

2002; Watanabe, 1992) (see Figure 1.1 depicting corresponding areas in the human 

brain). 
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Figure 1.1. Putative cortical multisensory areas: posterior superior temporal sulcus (solid red line depicts entire 
STS), intraparietal sulcus (solid green line) and prefrontal cortex anterior to the precentral sulcus (solid yellow 
line; DL=dorsolateral PFC, VL=ventrolateral PFC). Mirror neuron areas: primary motor and premotor areas 
(blue) anterior to the central sulcus (solid blue line), Broca’ s area (yellow) and inferior parietal areas (green). 
Auditory processing areas: superior temporal gyrys (red) and the Heschl´s gyrys/primary auditory cortex (only 
the lateral end of which is visible, marked as solid red area). See sections above and below for details (The 
picture is modified from Williams et al., 1997). 

Electrophysiological and functional neuroimaging studies have provided 

information on the topographic organization of these areas. Recent studies in rodents 

have shown that multisensory neurons are concentrated along boundaries between 

unisensory areas (Wallace et al., 2004) (Figure 1.2.). The pattern of alternating 

modality-specific and multisensory zones has been observed also in human. A recent 

imaging study suggests that auditory and visual inputs arrive in the human STS in 

separate patches, followed by integration in the intervening cortex (Beauchamp et al., 

2004a). The intermixed composition of multisensory and sensory-specific neurons in 

the multisensory convergence zones suggest a functional architecture in which 

information from different modalities is brought into close proximity, followed by 

integration in the intervening cortex (Beauchamp et al., 2004a). 
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Figure. 1.2. The distribution of multisensory neurons in rat cortex. Major cortical subdivisions are shown in 
color shading: parietal in red, temporal in green and occipital in blue. Filled circles show locations of single 
cell recordings and circle size indicates the incidence of multisensory neurons displaying supra-additive 
responses. Insets show the results of higher-resolution sampling. Bar height indicates the incidence of 
multisensory neurons (vertical scale bar = 50% multisensory incidence, horizontal scale bar=250 µm). 
V=visual cortex, A=auditory cortex, S=somatosensory cortex. Adopted from (Wallace et al., 2004). Reprinted 
with permission of the National Academy of Sciences. Copyright (2004) National Academy of Sciences, 
U.S.A.  

Connectivity of the cor tical multisensory areas 

In addition to having neurons responsive to stimulation from different modalities, 

the cortical multisensory areas have anatomical connectivity that relates them to more 

than one modality (for reviews see Kaas and Collins, 2004; Miller and Cohen, 2001). 

Most of the data on brain connectivity is based on anatomical tracing studies and 

electrophysiological experiments in monkeys. The cortico-cortical connections of the 

multisensory areas are briefly described below (see Figure 1.3.). 

Superior temporal sulcus 

STS receives inputs from a number of higher-order visual areas, like posterior 

parietal and inferotemporal areas (reviewed in Kaas and Collins, 2004). It encloses 

neurons with reciprocal connections to secondary auditory areas of the anterior and 

posterior STG (Seltzer and Pandya, 1991) and neurons with one-way connections to 

primary visual cortex (Falchier et al., 2002) (Figure 1.3.). The STS is also reciprocally 
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connected to PMC (Deacon, 1992), Broca’s area in human (Catani et al., 2005), 

ventrolateral (VL) PFC (Petrides and Pandya, 2002) and IPS (Kaas and Collins, 

2004). 

Cortex of the intraparietal sulcus 

The multisensory cortex inferior of intraparietal sulcus receives input from primary 

and secondary visual, and secondary auditory areas (Kaas and Collins, 2004). The IPS 

areas project reciprocally to PFC and ventral PMC. The most inferior part of IPS 

cortex has connections also with STS (see (Kaas and Collins, 2004). In human, 

inferior parietal cortex (BA 40) has reciprocal connections to posterior STG and 

Brocá s area (Catani et al., 2005). 

Premotor cortex 

Neurons in the monkey premotor area F5, which is considered to be the homologue 

of Brocá s area (BA 44) - respond to both sound and vision (Kohler et al., 2002). The 

IPS region is likely to be the main source of visual input to PMC (Graziano et al., 

1999). For auditory input, area F5 is connected to STS and posterior STG regions 

(reviewed in Arbib and Bota, 2003). In human, Arcuate fasciculus connects Brocá s 

area to posterior temporal areas including STG, STS and MTG directly and indirectly 

through inferior parietal cortex (Catani et al., 2005). Premotor cortex is closely 

interconnected with M1 (Miller and Cohen, 2001). 

Prefrontal cortex 

The dorsolateral (DL) and ventrolateral (VL) PFC receive reciprocal projections 

from anterior and posterior STG as well as from secondary visual and parietal 

cortices. In addition PFC regions are extensively interconnected (for a review, see 

Miller and Cohen, 2001). The anterior STG projects mainly to ventral PCF and the 

posterior STG to the dorsal PCF (Romanski et al., 1999). This pattern is similar to that 

observed in the visual system – the ventral “what”  stream projects to VLPFC and the 

dorsal “where”  stream projects to DLPFC (Wilson et al., 1993). Both PFC areas 

receive inputs from the posterior superior temporal sulcus (Petrides and Pandya, 

2002). Dorsal PFC is connected with premotor cortex (Lu et al., 1994). 
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Figure 1.3. A schematic, simplified illustration of the anatomical structures, interconnectivity and multisensory 
properties (rasterized colour) of the key cortical areas involved in audiovisual speech perception: auditory 
areas (blue), multisensory posterior STS (green), visual areas (yellow) and mirror-neuron system (red). 
PMC=premotor cortex, PFC=prefrontal cortex, IP=inferior parietal cortex, PAC=primary auditory cortex, 
aSTG=anterior STG, pSTG=posterior STG, pSTS= posterior superior temporal sulcus, TH=thalamus, 
V1=primary visual area, V2-4=secondary visual areas, … = higher-order visual processing.  

 

Multisensory convergence in sensory specific areas 

Recent electrophysiological (Fort et al., 2002; Foxe et al., 2000; Giard and 

Peronnet, 1999; Molholm et al., 2004; Molholm et al., 2002; for a review, see Fort 

and Giard, 2004) and functional neuroimaging (Calvert et al., 1999; Laurienti et al., 

2002; Macaluso et al., 2000) studies in humans as well as electrophysiological 

findings in monkeys (Fu et al., 2003; Schroeder et al., 2001) have suggested that 

cortical multisensory integration can occur at very early stages of the cortical 

processing hierarchy stages previously thought to be purely unisensory.  

In support, there is evidence that neurons at sensory specific cortical areas can be 

activated by stimulation from other modalities (Wallace et al., 2004) (Figure 1.2.). 

Specifically, in visual cortex there are neurons responsive to auditory inputs (Fishman 

and Michael, 1973; Morrell, 1972; Spinelli et al., 1968) and in auditory cortex 

neurons responsive to visual inputs (Schroeder and Foxe, 2002). Recent studies in cats 

have shown that primary and secondary auditory cortices project directly to primary 
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visual cortex (Falchier et al., 2002; Rockland and Ojima, 2003). These connections 

may not be reciprocal, since projections from V1 and V2 to auditory areas have not 

been demonstrated (Kaas and Collins, 2004). Single cell recordings in the monkey 

posterior auditory cortex have shown that the responses to visual stimuli in auditory 

cortex neurons are very early (~50ms from stimulus onset) and display feedback 

properties, suggesting that visual input originates from higher cortical region 

(Schroeder and Foxe, 2002; Schroeder et al., 2003).  

AUDIOVISUAL INTEGRATION OF SPEECH IN THE HUMAN BRAIN 

The previous chapter reviewed the general neural mechanisms involved in 

audiovisual multisensory processing. However, in audiovisual speech perception, both 

general and speech-specific multisensory mechanisms might be important (see 

Calvert et al., 2004; Klucharev et al., 2003). The following section gives a short 

description of the cortical processing of auditory speech, followed by a detailed 

review of the neuroimaging literature on audiovisual speech processing. 

Cor tical processing of auditory speech 

Functional imaging studies of speech perception have typically shown bilateral 

responses to speech in STG/STS of the temporal lobes (Binder et al., 2000; 

Vouloumanos et al., 2001; Zatorre et al., 1992) (see Figure 1.1). Processing of the 

acoustic features of non-speech sounds has been attributed to the primary auditory 

cortex and dorsolateral portions of STG (Binder et al., 2000), whereas phonetic 

processing of speech signals involves ventral STG and the adjacent multisensory STS 

extending both anteriorly and posteriorly (Binder et al., 2000; Jäncke et al., 2002; 

Narain et al., 2003; Scott et al., 2000; Vouloumanos et al., 2001). The primary 

auditory cortex (PAC, BA 41), is in the medial portion of Heschl’s gyrus (HG) 

(Rademacher et al., 1993). The secondary auditory cortex is in the surrounding 

regions of STG and STS encompassing Brodmann’s Areas 42, 21 and 22 (Figure 1.1). 

Anatomical and functional boundaries between auditory processing areas are not 

precisely known, and may vary among individuals (Rademacher et al., 1993). 

Recent theories of auditory speech processing have suggested that the ventral 

“what”  and dorsal “where”  streams of auditory processing (Romanski et al., 1999) 

would analyze the acoustic speech input into acoustic-phonetic and articulatory-based 

representations, respectively (Hickok and Poeppel, 2000; Hickok and Poeppel, 2004; 

Scott and Johnsrude, 2003; Scott and Wise, 2004). According to Scott et al. (2003, 
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2004) the ventral stream includes the anterior auditory cortical areas in STG/STS, 

connected with Broca’s area. The dorsal stream includes posterior STG/STS which is 

connected to premotor cortex. Hickock and Poeppel (2004) propose slightly different 

brain areas. According to them the acoustic-phonetic representations are processed in 

STG. The posterior aspect of Sylvian fissure at the boundary between the parietal and 

temporal lobes serves as an interface between sound-based and articulatory-based 

representations (Hickok and Poeppel, 2004). Both theories suggest a link between 

speech perception and production. 

In support, neuroimaging studies show that the “speech motor regions”  (Broca’s 

area and PMC, see Figure 1.1.) are involved in the processing of auditory speech 

information. Brocá s area is activated during speech production (Heim et al., 2003), 

passive listening to speech (Benson et al., 2001; Binder et al., 2000; Wilson et al., 

2004) and in various acoustic speech processing tasks involving phonological 

processing (Zatorre et al., 1992), verbal working memory (Braver et al., 1997), and 

speech sound segmentation (Burton et al., 2000). Recently, it has been shown that 

listening to meaningless monosyllables activates a superior portion of ventral 

premotor cortex on the border of Brodmann areas 4a and 6, overlapping the motor 

activations during production of the same syllables and possibly extending to the most 

anterior part of M1 (Wilson et al., 2004). Furthermore, recent transcranial magnetic 

stimulation studies have found evidence of the activation of the speech motor areas 

during auditory speech perception (Fadiga et al., 2002; Watkins et al., 2003). 

Activation of the speech motor regions during auditory speech perception has been 

suggested to be related to the functioning of “mirror neurons”  (for reviews, see 

(Rizzolatti and Arbib, 1998; Scott and Johnsrude, 2003). Such neurons in the monkey 

brain are activated both during execution of goal-directed hand and mouth actions and 

during observation of similar actions performed by other individuals (di Pellegrino et 

al., 1992; Fadiga et al., 1995; Ferrari et al., 2003; Gallese et al., 1996). Cortical mirror 

neurons have been found in two main regions (mirror neuron system, MNS): the 

ventral premotor cortex (F5, the monkey homologue of Broca’s area) and the rostral 

part of the inferior parietal lobule (for a review see Rizzolatti and Craighero, 2004). 

MNS has been demonstrated also in humans (Fadiga et al., 1995; Hari et al., 1998; 

Nishitani and Hari, 2000) (see Figure 1.1). In monkeys some of the mirror neurons are 

audiovisual, meaning that they are activated by both seen and heard actions (Keysers 

et al., 2003; Kohler et al., 2002). Because it seems to function as an interface between 
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motor actions and perception, the MNS has been suggested to play an important role 

in speech communication (for reviews, see Rizzolatti and Arbib, 1998; Rizzolatti and 

Craighero, 2004; Rizzolatti et al., 2001) in agreement with the motor theory of speech 

perception (Liberman and Mattingly, 1985; Liberman et al., 1967). Mirror neurons 

provide a plausible neural mechanism for the articulatory-based processing of speech 

information (Scott and Johnsrude, 2003). 

Cor tical processing of audiovisual speech 

Neuroimaging and anatomical evidence suggest that the audiovisual integration of 

speech is achieved by processing in four key cortical areas, which are closely 

connected: posterior STS (Callan et al., 2004; Callan et al., 2003; Calvert et al., 2000; 

Macaluso et al., 2004; Möttönen et al., 2004; Sekiyama et al., 2003; Skipper et al., 

2005; Wright et al., 2003) the sensory-specific auditory (Callan et al., 2004; Calvert et 

al., 1999; Möttönen et al., 2002; Möttönen et al., 2004; Sams et al., 1991) and visual 

cortices (Calvert et al., 1999) and the speech motor regions (Callan et al., 2004; 

Callan et al., 2003; Jones and Callan, 2003; MacSweeney et al., 2002b; Sekiyama et 

al., 2003; Skipper et al., 2005) (see Figures 1.1. and 1.3.).  

Specific neurophysiological models of audiovisual integration of speech have been 

suggested emphasizing 1) multisensory convergence in STS (Calvert et al., 1997; 

Calvert et al., 2000), 2) interactions in the auditory cortical areas (Besle et al., 2004; 

Klucharev et al., 2003; Möttönen et al., 2002; Möttönen et al., 2004; Sams et al., 

1991; Schroeder and Foxe, 2004; van Wassenhove et al., 2005), or 3) modulation of 

auditory or multisensory processing through back-projections from speech 

motor/mirror neuron areas (Callan et al., 2004; Calvert and Campbell, 2003; Skipper 

et al., 2005). The following section reviews the literature relevant to these models, 

although all studies have not explicitly suggested any model for audiovisual speech 

integration. 

Multisensory convergence in the superior temporal region 

The posterior part of STS has been identified as a brain area involved in 

audiovisual integration of speech in a number of imaging studies. The posterior STS 

responds to audiovisual speech stimulation (Callan et al., 2004; Callan et al., 2003; 

Calvert et al., 2000; Macaluso et al., 2004; Sekiyama et al., 2003; Skipper et al., 2005; 

Wright et al., 2003) as well as auditory (e.g., Binder et al., 2000) and visual speech 
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stimulation (Calvert and Campbell, 2003; Calvert et al., 1997; Campbell et al., 2001; 

MacSweeney et al., 2000; MacSweeney et al., 2001; MacSweeney et al., 2002b). In 

addition, posterior STS is responsive to human non-speech voices (Belin et al., 2000) 

and visual biological movements (for a review see Allison et al., 2000). The region is 

also important for integrating auditory and visual information about objects 

(Beauchamp et al., 2004b) and letters (Raij et al., 2000; van Atteveldt et al., 2004). 

To study the brain areas of audiovisual integration of speech, Calvert et al. (2000) 

contrasted the brain activations to semantically matching and conflicting audiovisual 

speech (spoken extracts from a book) with the combined response to unimodal 

acoustic and visual speech. They used a paradigm in which matching and conflicting 

auditory and visual speech stimuli were presented simultaneously but so that the 

sequence resulted in periods of audiovisual, auditory and visual presentations of the 

stimuli. The matching condition was presumed to lead to multisensory integration. 

During conflicting AV stimulation the semantic as well as phonological and temporal 

coherence of the stimulation was disrupted. Analysis was targeted to find the voxels 

which display response properties analogous to those of superior colliculus 

multisensory integrative cells (Stein 1993). Only left STS exhibited significant supra-

additive (AV > A+V) response enhancement to matching audiovisual speech and sub-

additive (AV < A+V) response to conflicting audiovisual speech. As a plausible 

mechanism of audiovisual integration of speech, the authors suggested that the 

multisensory speech input would be initially integrated in STS and this area would 

subsequently modulate activity in the sensory-specific auditory cortices through 

feedback projections (Calvert et al., 2000). 

Supporting the role of STS in audiovisual integration of speech, Wright et al. 

(2003) found both enhanced and suppressed activations in bilateral STS region during 

observation of matching meaningful AV words in comparison to the unimodal 

responses. In addition, in a recent fMRI study, left posterior STS was found to be 

more active during the observation of continuous audiovisual than auditory spoken 

stories (Skipper et al., 2005).  

Furthermore, suppressed responses to audiovisual in comparison to the combined 

responses to unimodal speech stimuli (syllables) have been shown with MEG in the 

right STS region at 200-600 ms from stimulus onset (Möttönen et al., 2004). 

Klucharev et al. (2003) compared ERPs to audiovisual vowels which were 

phonetically either matching (e.g., acoustic /a/ and visual /a/) or conflicting (e.g., 



 

 13 

acoustic /a/ and visual /y/). They found differences in the ERPs to conflicting and 

matching audiovisual vowels peaking at three latencies, at 155 ms, 235 ms and 325 

ms from stimulus onset. These relatively late effects were suggested to reflect AV 

interactions at phonetic level in the multisensory cortices. 

The STS is implicated in audiovisual integration of speech by recent fMRI 

experiments which explored the brain mechanisms of enhanced perceptibility of 

degraded auditory speech by concordant visual speech (Callan et al., 2003; Sekiyama 

et al., 2003). Callan et al. (2003) presented audiovisual and auditory speech 

(meaningful words) with and without acoustic noise to the subjects. Increased activity 

in MTG and STG/STS was observed when audiovisual speech was presented with 

acoustic noise in comparison to audiovisual speech with no noise (Callan et al., 2003). 

Using similar approach, Sekiyama and coworkers (2003) investigated the McGurk 

effect with fMRI and positron emission tomography (PET) using conflicting 

audiovisual speech stimuli. Spoken syllables were presented auditorily, visually or 

audiovisually. The auditory component of the conflicting audiovisual stimuli was 

presented with and without added noise. Direct comparison between the audiovisual 

conditions showed increased activation with added noise in the posterior part of the 

left STS. Together these studies (Callan et al., 2003; Sekiyama et al., 2003) suggest 

that the responses of the multisensory neurons in STG/STS region display the 

principle of inverse effectiveness (see previous section) - the enhancement of 

STG/STS activity is greatest when the unimodal acoustic stimulus is the least 

effective.  

Callan et al. studied audiovisual integration of speech using degraded visual speech 

stimuli (Callan et al., 2004). The purpose of the study was to control for multisensory 

responses resulting from cross-modal attentional modulation cued by aspects of visual 

speech information, which are not specific to place of articulation information. Visual 

components of audiovisual speech stimuli (sentences) were spatial wavelet bandpass 

filtered at low and middle frequencies (LF and MF, respectively) and stimuli were 

presented with background auditory noise. Unfiltered visual speech information (UF) 

signals the place of articulation and onsets and offsets of the acoustic speech signal. 

The place of articulation information is preserved in the MF stimuli but is not present 

in the LF stimuli. The multisensory responses selectively induced by place of 

articulation information were established by the presence of activity for both the UF 
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and MF conditions relative to the LF condition. These responses were detected in left 

MTG, and STG/STS, including the auditory cortex.  

In a PET study, Macaluso et al. (2004) specifically manipulated the temporal and 

spatial synchrony of auditory and visual in audiovisual stimulation (words). 

Synchronous versus asynchronous audiovisual speech yielded increased activity in 

STS region. The spatial location of the sound source had no effect on STS activation. 

This indicates that temporal but not spatial synchrony of matching auditory and visual 

speech is critical to integrative effects in STS. 

Some studies have failed to show audiovisual speech integration effects in STS 

region (Calvert et al., 1999; Jones and Callan, 2003; Olson et al., 2002). In an fMRI 

study by Calvert et al. (1999), audiovisual stimuli (spoken numbers) did not evoke 

more activation in STS than unimodal auditory stimuli. In an fMRI study of the 

McGurk effect with vowel-consonant-vowel (e.g., /aka/) stimuli (Jones and Callan, 

2003), greater responses in STS were not observed for matching than conflicting 

audiovisual stimuli. Quite contrary, the conflicting stimuli activated larger areas of 

STS region. Also Olson et al. (2002) did not find enhanced activation in STS region 

when they compared the BOLD responses to synchronized over desynchronized 

conflicting audiovisual words producing the McGurk illusion. 

Despite the growing body of evidence on the importance of STS region in 

audiovisual integration of speech, it is unclear which features of the audiovisual 

stimuli give rise to the enhanced activation in posterior STS region. The enhanced 

activation might be due at least to semantic, phonological or temporal coherence 

between auditory and visual speech during audiovisual speech stimulation. The 

differences between studies that support STS as an audiovisual speech integration 

area and those that do not, suggest that the nature of the stimuli (e.g., sentences, words 

or syllables), contrasts between unimodal and audiovisual combinations (A+V vs. 

AV, matching vs. conflicting or McGurk) and the way integration is manipulated 

(temporal synchrony, acoustic SNR, the strength of the McGurk effect) are important 

factors in determining whether or not activation is detected in STS.  

STS activation seems to be particularly sensitive to auditory SNR (Callan et al., 

2003; Sekiyama et al., 2003). However, it is difficult to accurately control and know 

the SNR of the acoustic stimuli in the MR scanner during conventional continuous 

imaging paradigms. Furthermore, the auditory BOLD-response itself is very sensitive 

to acoustic noise from the MR equipment (Shah et al., 1999), for reviews, see (Di 
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Salle et al., 2003; Moelker and Pattynama, 2003). This complicates the comparison of 

the results from separate studies and might explain some of the discrepant results.  

Interactions in sensory specific areas 

MEG studies have shown that visual speech modifies activity in the auditory 

cortices (BA 41/42, 22) during audiovisual speech observation ~50-200 ms after 

stimulus onset (Möttönen et al., 2002; Möttönen et al., 2004; Sams et al., 1991). 

Similarly, an EEG study by Klucharev et al. (2003) show that the amplitude of the 

N100 event-related potential (ERP) component peaking at 85 ms from stimulus onset 

is suppressed during audiovisual stimulation in comparison to the ERPs to the sum of 

the unimodal responses. The N100 suppression was suggested to reflect modified 

activity in the sensory-specific cortices (see also, Besle et al., 2004; van Wassenhove 

et al., 2005). These studies suggest that audiovisual integration of speech occurs early 

in the cortical auditory processing hierarchy. 

Recent fMRI studies report response enhancement of the auditory cortex activity 

(identified with reference to an atlas by Rademacher et al. 2001) by visual speech in 

the presence of acoustic noise (Callan et al., 2003) and in comparison to varying 

levels of degraded visual speech (Callan et al., 2004) during audiovisual speech 

observation. Also the study by Calvert et al. (2000) showed supra-additive responses 

to matching audiovisual speech but not subadditive responses to conflicting 

audiovisual speech in sensory specific auditory (BA 41/42) and visual cortices (BA 

19). Furthermore, during audiovisual speech perception, BOLD responses in the 

auditory cortex (BA 42/41) as well as in the visual motion cortex (V5/MT, BA 37/19) 

are enhanced in comparison to responses during auditory or visual speech stimulation 

(Calvert et al., 1999). These results demonstrate audiovisual interactions in the 

sensory specific cortices.  

Neuroimaging studies have consistently shown that visual speech is processed in 

the auditory cortical areas of STG (Bernstein et al., 2002; Calvert and Campbell, 

2003; Calvert et al., 1999; Calvert et al., 1997; Calvert et al., 2000; Campbell et al., 

2001; MacSweeney et al., 2000; MacSweeney et al., 2002a; MacSweeney et al., 2001; 

Olson et al., 2002; Paulesu et al., 2003; Sekiyama et al., 2003; Wright et al., 2003). 

Whether this activation is limited to the hierarchically higher auditory areas in STG 

and STS or whether purely visual input can activate also PAC has, however, remained 

an open question (Bernstein et al., 2002; Calvert et al., 1997; MacSweeney et al., 
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2000). Calvert et al. (1997) reported PAC and secondary auditory cortex activation by 

silent lip-reading. PAC activation during silent lip-reading was confirmed in a 

subsequent study using a silent event-related paradigm (MacSweeney et al., 2000). 

However, PAC activation was not found during silent lip-reading in a study, where 

probabilistic mapping was used as a tool to identify PAC (Bernstein et al., 2002).  

It is not known which brain regions project the visual speech input to the auditory 

processing areas (for different possibilities, see Figure 1.3). It has been proposed that 

visual speech has access to sensory specific auditory cortex through feedback 

projections from multisensory neurons in posterior STS (Calvert et al., 2000). In 

support, there is evidence that responses to visual stimuli in auditory cortex neurons 

are projected from higher cortical regions (Schroeder and Foxe, 2002; Schroeder et 

al., 2003). On the other hand, multisensory interactions might occur earlier in the 

auditory cortices (150–200 ms) than in the right STS region (250–600 ms) (Möttönen 

et al., 2004). 

Taken together, these findings have been interpreted to indicate that viewing 

speech influences the processing of acoustic speech in auditory sensory specific 

cortex at an early stage of speech processing possibly through feedback projections 

from the multisensory STS (Calvert et al., 1997; Calvert et al., 2000; Klucharev et al., 

2003; Möttönen et al., 2002; Möttönen et al., 2004; Sams et al., 1991; Schroeder and 

Foxe, 2004).  

Processing in the speech motor areas 

Activity in brain regions involved with planning and execution of speech 

production (Broca’s area, PMC and anterior insula (Dronkers and Ogar, 2004)) is also 

very consistently shown in studies of audiovisual speech perception (Callan et al., 

2004; Callan et al., 2003; Calvert et al., 1999; Calvert et al., 2000; Jones and Callan, 

2003; MacSweeney et al., 2002b; Olson et al., 2002; Sekiyama et al., 2003; Skipper et 

al., 2005). Additionally, most of the studies using unimodal visual speech stimulation 

have shown activation in these areas (Bernstein et al., 2002; Callan et al., 2004; 

Callan et al., 2003; Calvert and Campbell, 2003; Calvert et al., 1997; Campbell et al., 

2001; MacSweeney et al., 2000; Nishitani and Hari, 2002; Olson et al., 2002; Paulesu 

et al., 2003; Sekiyama et al., 2003; Skipper et al., 2005). However, activation in the 

speech motor areas is not reported in all studies of lipreading (MacSweeney et al., 

2002a; MacSweeney et al., 2001).  
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The speech motor regions are activated also during auditory speech perception. 

Broca’s area and PMC are activated during passive listening (Benson et al., 2001; 

Binder et al., 2000; Wilson et al., 2004) and phonetic analysis of auditory speech 

(Burton et al., 2000; Paulesu et al., 1993; Zatorre et al., 1992; Zatorre et al., 1996).  

Transcranial magnetic stimulation experiments demonstrate that observation of 

visual (Sundara et al., 2001; Watkins et al., 2003) and auditory (Fadiga et al., 2002; 

Watkins et al., 2003) speech increases the excitability of the orofacial motor system. 

Furthermore, left somatosensory cortex MEG responses to tactile lip stimulation are 

modulated during speech viewing but not during listening to speech (Möttönen et al., 

2005). 

Evidence of the roles of Broca’s area and PMC in audiovisual integration of speech 

comes from studies contrasting audiovisual conditions with different levels of 

acoustic noise (Callan et al., 2003; Sekiyama et al., 2003) and degraded visual input 

(Callan et al., 2004). These studies (Callan et al., 2003; Sekiyama et al., 2003) show 

that as well as in STG/STS region, also in the speech motor areas the enhancement of 

activity during multisensory stimulation is greatest when the unimodal acoustic 

stimulus is the least effective, displaying inverse effectiveness. 

Together these findings suggest that the motor regions of speech production might 

participate in unimodal auditory and visual as well as in audiovisual speech 

perception. This is further supported by the multisensory properties of the precentral 

gyrus (Graziano and Gandhi, 2000), PFC (Romanski and Goldman-Rakic, 2002) and 

ventral premotor cortex (monkey homologue of Broca's area) (Kohler et al., 2002).  

Mirror  neurons and audiovisual speech perception 

The speech motor regions have been suggested to be engaged in visual and 

audiovisual speech perception through the functioning of mirror neurons in Broca’s 

area, PMC and inferior parietal lobule (Callan et al., 2004; Callan et al., 2003; Calvert 

and Campbell, 2003; Campbell et al., 2001; MacSweeney et al., 2000; Nishitani and 

Hari, 2002; Paulesu et al., 2003; Skipper et al., 2005). MacSweeney et al. (2000) 

observed activation in response to silent lipreading bilaterally in PMC and Broca’s 

area. They suggest that the activations might be related to speech comprehension 

possibly via the mirror function of these areas (see also Paulesu et al., 2003). 

Campbell et al. (2001) observed activation of Broca’s area during silent lip-reading 

when contrasted to the activation during observation of meaningless facial movements 
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(gurning). The authors attribute the activation to either mirror neurons through 

imitation of observed biological actions, greater articulatory and/or lexical demands 

during visual speech than gurning observation, or prefrontal language rehearsal 

system (Paulesu et al., 1993) irrespective of the ‘mirror function’  (Campbell et al., 

2001). Interestingly, this result was not replicated in a second experiment where the 

visual speech stimuli included the upper half of the body of the speaker, whereas in 

the first experiment only the mouth was visible. This suggests that activation in 

Broca’s area related to action observation may be sensitive to the visible area of face 

in the images displayed (Campbell et al., 2001). 

Nishitani and Hari (2002) measured cortical evoked magnetic responses to 

observation and imitation of static lip forms as well as execution of similar facial 

gestures. They found that the MNS is activated during observation and imitation in a 

distinct temporal sequence - from STS to inferior parietal areas, ending in activation 

in Broca’s area and M1 at 220-340 ms after stimulus onset. They propose that the 

results agree with the motor theory of speech perception (Liberman and Mattingly, 

1985; Liberman et al., 1967).  

Calvert and Campbell (2003) observed activation in Broca’s area and left PMC/M1 

during moving visual speech and stilled pictures of articulatory movements. They 

suggest that following processing in the visual cortical areas, visual speech 

information is routed to the MNS. Phonetic representations in left posterior STS 

regions are then accessed through back-projections from the MNS (Calvert and 

Campbell, 2003). This is supported by the known neural projections in human brain 

from the prefrontal areas (including PMC and Broca’s area) to STG/STS regions 

(Catani et al., 2005) (see Figure 1.3.).  

Similarly, Callan et al. (2003, 2004) suggested that during audiovisual stimulation, 

both multisensory integration in STS, and internal articulatory simulation of the 

intended speech act of the observed speaker through MNS activation, facilitate 

auditory speech perception. Furthermore, Callan et al. (2004) suggest that the internal 

articulatory simulation mechanism might be dependent on task demands so that the 

harder the task the more internal articulatory simulation is involved in perceptual 

processing. 

Recently, Skipper et al. (2005) have elaborated the role of speech motor regions in 

AV integration. Their model relies on the neurophysiological evidence for the parallel 

functional properties of the posterior STS and Broca’s area in multisensory speech 
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perception and their anatomical connectivity. According to the model these two 

functionally and anatomically closely connected regions interact to produce 

multisensory representations of speech input by matching acoustic-phonetic sensory 

patterns to internal articulatory motor commands that the observer uses for own 

articulation. At the motor end of the sensory-motor continuum the mapping is carried 

out by interaction between Broca’s area, PMC and M1. This sensory to motor 

mapping generates predictions of the sensory consequences of the motor match. 

Predictions are used to constrain the phonetic interpretation of the sensory input. This 

process involves interaction between STS and/or inferior parietal areas as well as 

feedback from premotor or motor cortices (Skipper et al., 2005). 

Silent articulation as a possible confound 

A plausible criticism of the results and models reviewed above would be that the 

speech motor regions are activated during speech perception because subjects might 

be engaged in some degree in overt articulation (involving motor activity of the vocal 

tract) or silent articulation (involving “ inner speak”  but no motor activity of the vocal 

tract) during speech perception (Paulesu et al., 1993; Sekiyama et al., 2003). Broca’s 

area is activated during overt and silent articulation (Huang et al., 2002). Therefore, 

activation of Broca’s area due to silent articulation is a natural concern in studies 

where the subjects might be engaged in silent articulation during the active condition 

but the control condition does not involve silent articulation (Bernstein et al., 2002; 

Jones and Callan, 2003; MacSweeney et al., 2002b; Sekiyama et al., 2003). However, 

it may be difficult to separate activations due to redundant silent articulation from 

actual perceptual mechanisms involving speech motor processing.  

Several studies of lipreading and audiovisual speech perception have tried to 

overcome these confounds by controlling for articulatory as well as other motor 

demands between the conditions. In the lipreading studies by Calvert et al. (1997), 

MacSweeney et al. (2000), Campbell et al. (2001) and Calvert and Campbell (2003) 

all conditions, including control conditions, required participants to generate silent 

speech at the same rate, with no other motor tasks. However, enhanced premotor or 

Broca’s area activation in these studies might still reflect small differences in the 

articulation demands (Calvert et al., 1997; MacSweeney et al., 2000).  

Olson et al. (2002) had no motor task, but an articulatory task (rate matched to 

stimulation) in the control but not in the active condition. Calvert et al. (1999) had no 
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motor task and used direct contrasts between active conditions (AV-A and AV-A) 

with equal subvocal articulation in both conditions. Skipper et al. (2005) presented 

highly engaging unimodal and audiovisual stories to the subjects while they were 

simply attending to them. No overt motor response was required. Activation in the 

speech motor regions was detected in AV-A and AV-V contrast. Paulesu et al. (2003) 

were able to demonstrate a negative correlation between identification scores of visual 

speech stimuli and rCBF (regional cerebral blood flow) in speech motor regions. The 

authors argue that if inner articulation is related to visual speech perception, then 

increasingly successful identification of the stimuli should lead to a positive 

correlation with rCBF within the speech motor regions. The negative correlation 

suggests that the rCBF is increased the fewer accurate responses the subject made, 

indicating that the activation was related to more demanding phonological analysis of 

the stimuli. The MEG studies by Nishitani and Hari (2003) demonstrating motor and 

Möttönen et al. (2005) demonstrating somatosensory activations during visual speech 

perception controlled for overt articulation by measuring electromyography (EMG) 

signal from the orbicularis oris muscle during stimulation. To my knowledge, there 

are no auditory speech perception studies which would have used silent articulation as 

a control condition.  

SUMMARY 

Neuroimaging studies suggest that the audiovisual integration of speech is 

achieved by processing in posterior STS, the sensory-specific auditory and visual 

cortices and the speech motor regions/MNS. Some of these regions have been 

suggested to subserve the analysis of auditory speech input into acoustic-phonetic and 

articulatory representations. However, the role of sensory-specific as well as 

multisensory convergence regions in audiovisual speech perception is unclear and the 

contribution of the MNS and speech motor regions to audiovisual speech integration 

needs to be further clarified. 
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Chapter 2: Brain imaging methods used in the studies 

The primary brain imaging method used in the experiments of this study was 

functional magnetic resonance imaging (fMRI). Magnetoencephalography (MEG), as 

well as behavioral reaction time measurements were used in two of the five 

experiments. The fMRI section below is largely based on the book by Jezzard et al. 

(Jezzard et al., 2001). The MEG section is based on the review article by Hari (Hari, 

1999). 

FUNCTIONAL MAGNETIC RESONANCE IMAGING  

Functional magnetic resonance imaging is a method which allows precise 

localization of brain activity by measuring a signal which is dependent on changes in 

blood circulation and oxygenation due to neuronal activity.  

The method is based on the dissimilarity of different types of tissue in terms of 

their magnetic susceptibility, i.e., difference in response when placed in a strong 

magnetic field and excited with a radio-frequency pulse (see Jezzard et al., 2001). In 

practice, due to sensory stimulation, a local increase in neuronal activity causes local 

increase in blood flow and in the amount of oxygenated hemoglobin flowing to the 

brain area. The increase in oxygenated haemoglobin is beyond the metabolic need and 

thus the proportion of deoxyhaemoglobin is reduced. The two different forms of 

hemoglobin have different magnetic properties. Deoxyhaemoglobin disturbs the local 

magnetic field whereas oxygenated haemoglobin does not. As the net result, the 

measured local signal intensity is reduced and regions of the brain that have enhanced 

activity appear brighter in the image. Although the Blood Oxygenation Level 

Dependent (BOLD) signal has been shown to correlate with neural activity measured 

using microelectrodes (Logothetis et al., 2001), the exact nature of the coupling of 

neuronal and vascular responses is unknown. The physiological time course of 

cerebral blood flow following neuronal activation (3-4 seconds to maximum) is the 

major limitation to the temporal resolution of fMRI.  

FMRI exper iments 

In an fMRI experiment, usually hundreds of consecutive MR-images are measured. 

The resulting data are a time series of signal intensities in all of the individual volume 

elements (voxels) which make up the image.  
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Several preprocessing steps are performed before analyzing the data (see Jezzard et 

al., 2001). Head motion correction has to be done for each subject, because due to the 

subjects head movement during the experiment the same voxel does not represent the 

same location in the brain throughout time. Spatial smoothing increases the SNR in 

the fMRI signal and enables the use of Gaussian Randon Field Theory to correct for 

multiple comparisons in the statistical analysis by making the data more normally 

distributed. Temporal filtering removes high frequency fluctuations and long term 

drifts from the time series.  

One of the advantages of fMRI is its ability to detect robust signal changes in 

individual subjects. For intra-subject anatomical alignment of the activation maps, the 

low-resolution fMRI scan is co-registered to a high-resolution anatomical scan from 

the same individual. For group analysis, the brains of individual subjects are 

transformed to match a standard brain. Spatial transformations results in some 

reduction of spatial accuracy. The group average fMRI analysis is based on the 

assumption that cognitive and perceptual functions are mapped onto roughly same 

anatomical locations across individuals. However, in some cases this approximation 

might be too rough. Therefore, per-participant analysis might be advantageous in 

estimating the exact location, extent and intensity of brain activations.  

The most commonly used type of analysis, the General Linear Model (GLM), sets 

up a model derived from the stimulation that was applied during the scanning, and fits 

it to the data. The fitting is done by performing voxel-wise tests of the hypothesis that 

the observed time course is not significantly related to the model. An activation map 

is then constructed by applying a significance threshold to the resulting statistics. The 

analysis involves hundreds of thousands of statistical tests and the statistics has to be 

corrected for multiple comparisons to avoid false positive results. One way to correct 

for false positives is to divide the probability threshold by the number of tests 

(Bonferroni correction). This is, however, too stringent correction, since all individual 

voxels are not independent measurements. Due to smoothing, interpolation during 

preprocessing and the initial MRI reconstruction, signals in nearby voxels correlate. 

The number of independent measurements in spatially smoothed fMRI data can be 

accurately estimated using the Gaussian Random Field Theory (Friston et al., 1994; 

Worsley et al., 1992). In this approach, the probability threshold is divided by the 

number of independent resells (resolution elements) making correction more valid and 

less stringent.  
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Acoustic noise in auditory fMRI  

Functional MRI is a challenging method for auditory neuroscience due to the 

acoustic noise. There are two sources of acoustic noise in the imaging environment: 

the coolant pump and the noise generated by the rapidly shifting gradient coils. The 

noise poses difficulties for studies using sound stimuli by masking the stimuli, and 

inducing brain activity that is not related to the stimuli. The masking effects of the 

gradient noise can be avoided with a “clustered acquisition”  paradigm (Hall et al., 

1999). It involves imaging a volume of slices in a "cluster" and leaving a quiet 

interval for sound stimuli presentation between the clusters. The technique improves 

the sensitivity of auditory cortex fMRI measurements in comparison to continuous 

imaging (Edmister et al., 1999). 

MAGNETOENCEPHALOGRAPHY 

When a neuron is active, ions flow in and out of the cell through the membrane 

creating small currents and magnetic fields in the intra- and extracellular space. The 

magnetic fields generated by synchronous activation of several tens of thousands of 

neurons sum up, producing a measurable field outside the head (Hari, 1999). The 

physiological generator of the MEG signal is the electrophysiological activity of 

neurons, specifically dendritic postsynaptic potentials. MEG measures mostly currents 

generated in the apical dendrites of the cortical pyramidal neurons that lie parallel to 

each other and are tangential with respect to the surface of the head (e.g., in sulci) 

(Figure 2.3.). However, these fields are extremely weak and their detection requires 

especially sensitive instruments. The MEG signal is measured in an electrically 

shielded room using SQUID (Superconducting Quantum Interference Device) sensors 

immersed in liquid helium. In contrast to fMRI, MEG is a direct measure of neuronal 

activity and it has sub-millisecond temporal resolution. MEG has a spatial resolution 

of few millimeters. 
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Figure 2.3: A: A typical pyramidal cell of the cerebral cortex. Postsynaptic potential propagating in the apical 
dendrite is coupled with a magnetic field. B: The MEG is most sensitive to the tangential (sulcus dipoles). 

Contrary to the electric potentials measured with EEG, magnetic fields generated 

by an active neuronal population travel undisturbed through the skull, scalp and brain 

tissue. Therefore, MEG allows relatively accurate localization of the sources that 

produced the measured magnetic field. However, the estimation of the current sources 

in the brain on the basis of the measured signals is complicated by the so-called 

electromagnetic inverse problem that has no unique solution. Different current 

distributions inside the brain may produce the same magnetic field patterns outside 

the skull. Solving the inverse problem requires using assumptions which limit the 

number of possible solutions. The equivalent current dipole (ECD) is the most 

commonly used model of the current sources. An ECD (or multiple ECDs) is 

calculated by minimizing the difference between a calculated and the measured 

magnetic fields using least-squares search. The ECD has location, orientation and 

strength.  
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Chapter 3: Aims of the studies 

The aim of this thesis was to investigate the neurocognitive mechanisms of 

audiovisual speech perception using fMRI and MEG as well as behavioral methods. 

The specific aims of Studies I-V were the following. 

 

Study I: To study the representations underlying audiovisual integration of speech 

with a priming paradigm and reaction time measurements (see chapter 4 for details 

and motivation for the experiments). 

 

Study II: To explore the adaptation of auditory cortical MEG responses to auditory 

speech by preceding visual speech information. 

 

Study III: To study the primary auditory cortex activation during visual speech 

observation with fMRI. 

 

Study IV: To reveal the brain areas involved in the processing of phonetic features 

of audiovisual speech with fMRI. 

 

Study V: To map the network of common processing areas for auditory and visual 

speech information with fMRI. 
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Chapter 4: Experiments 

SUMMARY OF METHODS 

Subjects 

In all studies subjects were healthy and had normal hearing and vision (self 

reported) (see Table 4.1 for details). All subjects were native speakers of Finnish. 

Prior to participation the subjects gave an informed consent to the protocol that had 

been approved by the local ethics committee (fMRI studies) in accordance with the 

Helsinki declaration. 

Stimuli 

Speech stimulus material was videotaped in a sound attenuated chamber. The 

speaker was native Finnish male in Study I and female in studies II-V. Sound files 

(digitized at 44 100 Hz) and visual stimuli (a sequence of bitmap files, frame rate 25 

Hz) were extracted from the digital video. The acoustic and visual speech stimuli 

were presented with Presentation software. 

In Study I the experiment was conducted in an acoustically shielded booth with 

background noise of about 30 db. The auditory stimuli were presented through two 

loudspeakers located symmetrically in front of the subject on both sides of a monitor 

which was located 50 cm away from the subjects shoulder. The visual speech stimuli 

covered an area from the bottom of the talker’s nose to the middle of his chin, with no 

background visible. The visual stimuli subtended a visual angle of 11.3°.  

 In study II the auditory stimuli were presented at 60 dB over the individually 

determined hearing threshold to the right ear of the subjects. The second-formant 

midpoint stimulus (/æ/-/ø/) between /æ/ and /ø/ was created with Praat software.  

In studies IV and V the acoustic stimuli were presented binaurally through MR-

compatible electrostatic headphones. In study IV, the onset of the acoustic vowel was 

95 ms later than the onset of the articulatory lip movement. Such an asynchrony is 

natural in uttering single vowels.  

In studies II-V, the view in the visual speech stimuli was frontal, including the 

head and the upper part of the shoulders. In the fMRI studies III-V the visual stimuli 

were back projected to a mirror attached to the birdcage head coil. 

Data acquisition 

In study II, MEG (VectorView 306-channel system, Neuromag Ltd., Finland) was 

recorded (digitization rate 600 Hz, passband 0.01–197 Hz) during presentation of the 

stimuli.  



 

 27 

In studies III-V subjects were scanned using 3.0 T GE Signa system retrofitted 

with Advanced NMR operating console and a quadrature birdcage head coil. For 

anatomical co-alignment, a T1-weighted volume with a slice prescription similar to 

the functional volume and a high-resolution whole-head sagittal 3D spoiled-gradient 

echo-pulse sequence (voxel size 1x1x1.4mm) were acquired during the same imaging 

session.  

In study III, 30 second periods of active and baseline condition were intermittently 

varied and gradient echo planar magnetic resonance images depicting BOLD-contrast 

acquired (Time to echo, TE=32 ms; time to repetition, TR=2500 ms; flip angle=90º, 

28 contiguous 3.4 mm-thick axial oblique slices; field of view, FOV=22x22 cm, 

matrix=64x64). The experiment consisted of two 6 min runs (vowels and circles, see 

Table 4.1 for details), the order of which was randomized across subjects. 

In studies IV and V subjects were scanned during a 10 min session, which was 

repeated three times in study IV and twice in study V. To ensure silence during 

acoustic stimulus presentation, we used ‘clustered volume acquisition’  with 2.5 s 

periods of imaging separated by 3.5 s periods of stimulation, during which no scanner 

noise was present (Edmister et al., 1999). The scanner’s coolant pump was also 

switched off during the functional imaging sessions. During the 3.5 seconds of 

stimulation three stimuli of one stimulus type were presented. A stimulus block 

consisted of two to five consecutive 3.5 s periods of one stimulus type (see Table 4.1 

for details). 

Imaging parameters in study IV were: slices= 26, slice thickness= 4mm, TE=40 

ms, TR=2.5 s, flip angle = 90 degrees, matrix size = 96 × 96, interslice gap = 1 mm, 

FOV=22 mm. Imaging parameters in study V were: slices= 26, slice thickness= 

3.4mm, TE=30 ms, TR=2.5 s, flip angle = 90 degrees, matrix size = 96 × 96, FOV=22 

mm. 

Data analysis 

In study I, wrong responses and outlying RT's (longer than mean ± 3.5 standard 

deviations) were excluded from each subject's data prior to statistical analyses. The 

data from the McGurk block (see Table 4.1 for details) was analysed with the Fisher’s 

exact test. The data from the two priming blocks were analyzed separately for the /ba/ 

and /va/ targets with repeated measures ANOVA. Significant interactions were further 

analyzed with a Fisher LSD Post-hoc test.  

In study II at least 60 artifact-free (i.e., peak to peak electro-oculogram (EOG) and 

planar gradiometer sensor amplitudes <150 µV and <3000 femtoTesla/cm, 

respectively) MEG responses were collected and averaged per stimulus category (see 
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Table 4.1 for details). Response amplitudes were then quantified from the averaged 

responses to the test stimuli using ECDs fitted in a least-squares sense at the 

individually determined peak latency of the N1 response using a subset of 34 planar 

gradiometers over the left hemisphere temporal areas. Between-condition differences 

in the latencies and amplitudes of the ECD responses were statistically tested using 

repeated-measures ANOVA. 

In studies III-V, fMRI data were analyzed using FMRI Expert Analysis Tool 

(FEAT) sofware, version 3.1, part of FMRIB’s Software library (FSL, 

www.fmrib.ox.ac.uk/fsl). Pre-processing steps included discarding the two first 

volumes, non-brain tissue extraction, motion correction, spatial smoothing using a 

Gaussian kernel with 5 mm full-widht-half-maximum, mean-based intensity 

normalization of all volumes by the same factor, and high-pass temporal filtering. 

Time-series analyses were performed using general linear model with local 

autocorrelation correction (Woolrich et al., 2001). The model used independent 

predictor for each stimulus condition. In studies IV and V the model was not 

convolved to a hemodynamic response function, due to the sparseness of the data 

sampling.  Resulting statistical maps were thresholded for subsequent clustering and 

then a cluster-wise significance threshold was set, corrected for multiple comparisons 

across the whole acquisition volume (Forman et al., 1995; Friston et al., 1994; 

Worsley et al., 1992). 

In study III each individual’s functional images were co-aligned to their own 

anatomical scans and the data was analyzed only in individual subject level. In studies 

IV and V subjects’  functional images were co-registered with their anatomical scans 

and a standard brain (Jenkinson et al., 2002; Jenkinson and Smith, 2001). Then a 

mixed-effects (often referred to as 'random-effects') group analysis was carried out. 

MNI-coordinates were transformed into Talairach space using Matthew Brett’s 

method (http://www.mrc-cbu.cam.ac.uk/Imaging/Common/mnispace.shtml). 

Anatomical regions were automatically determined for within cluster peak activation 

(study IV) or activations’  Center of gravity (Study V) coordinates using the Talairach 

Daemon v. 1.1 software (University of Texas Health Science Center at San Antonio, 

TX). 
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Table 1. 

Study Subjects Stimuli Tasks Method 
I Baseline: N=18,  

15 females  
16-19 years 
right handed 
Audiovisual: N=26  
19 females  
16-19 years 
right handed 

Baseline: Auditory 
/va/ and /ba/  
ISI=1,5 s 
Audiovisual:  
1) Auditory /ba/ + 
visual /va/ and vice 
versa 
2) Auditory /ba/ + 
visual /va/ and vice 
versa, followed by 
auditory /ba/ or /va/ 
3) Audiovisual /ba/ 
or /va/ followed by 
auditory /ba/ or /va/ 
Durations: /va/=315 
ms, /ba/=328 ms 
(acoustic), 1 s 
(visual), ISI (prime-
target)=580 ms 
Auditory 
intensity=50 and 60 
dB 

Two-choice auditory 
identification task 

Reaction time 

II N=8 
right handed 
 

1) auditory /æ/, /ø/ 
or /æ-ø/ (midpoint 
between /æ/ and /ø/) 
followed by  auditory 
/æ/ or /ø/ 
2) visual/ æ/ or /ø/ 
followed by  auditory 
/æ/ or /ø/ 
3) Auditory /æ/ or /ø/ 
Durations: 450 ms 
(visual), ISI (prime-
target)=500 ms, 
SOA=3,5 s 

Two-choice auditory 
identification task 

MEG, 306-channels 

III N=10 
3 females, 
21-30 years 
right handed 
 

Run 1 active 
condition:  
Visual articulation (a, 
e, o and y) 
Run 2 active 
condition: 
Expanding and 
constricting ovals 
overlaid on a still 
face 
Duration=560 ms, 
ISI=640 ms 
Baseline condition: 
still face 

Press a key  when 
two identical stimuli 
were presented in 
row 

fMRI, 3T 

IV N=10 
5 females 
22-31 years 
right handed 
 

Matching AV: /a/, /o/, 
/i/, /y/  
Conflicting AV: 
Acoustic /a/ + Visual 
/y/, A /y/ + V /a/, A 
/o/ + V /i/, A /i/ + V 
/o/ 
Duration=440 ms 
(acoustic), 780 ms 
(visual), ISI=100-400 
ms 
Baseline: still face 

Press a key  when 
the type of 
stimulation changes 

fMRI 3T 

V N=13 
6 females 
20-31 years 

Active condition: 
Auditory vowels (/a/, 
/o/, /i/ and /y/, the 
same visual vowels 
Baseline condition: 
still face 
Duration=440 ms 
(acoustic), 780 ms 
(visual), ISI=100-400 
ms 

Press the key when 
/i/, or target stimulus 
during baseline is 
presented  

fMRI, 3T  
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STUDY I : AUDIOVISUAL INTEGRATION OF A PRIME STIMULUS 

AFFECTS THE PROCESSING SPEED OF A TARGET STIMULUS 

Introduction and methods 

The purpose of this study was to investigate the representations underlying 

audiovisual interactions in speech perception using a priming paradigm. We measured 

the effects of a prior exposure to matching and conflicting (McGurk-type) audiovisual 

prime stimuli to the identification speed of auditory targets (see table 4.1. for details). 

The acoustic component of the audiovisual prime was presented at two different 

intensities.  

Behavioral studies of selective adaptation and phonetic context effects have shown 

that preceding auditory stimulation has a striking effect on the identification of 

following speech stimuli (Mann, 1980; for a review, see Diehl et al., 2004). The 

effects are generally thought to be specific to auditory speech (Roberts and 

Summerfield, 1981; Saldaña and Rosenblum, 1994) but it is not certain whether these 

effects might be affected by the visual component of an audiovisual stimulus 

(Bertelson et al., 2003). 

The experiment consisted of three consecutive stimulus blocks. The McGurk 

stimuli were presented alone in the first block to have a measure of the strength of 

audiovisual integration at both auditory intensity levels for each subject. The 

following blocks consisted of the prime-target pairs. The subjects were instructed to 

pay attention to the first audiovisual stimuli similarly as in the McGurk block but 

respond only to the second auditory stimulus. The subjects’  task was to discriminate 

between the target stimuli.  

Results and discussion 

As can be seen from Figure 4.1 the conflicting audiovisual stimuli were strongly 

integrated. The mean proportion of visual responses was 83±5% in the 60-db 

condition and 78±6% in the 50-db condition (range 45%-100%). The most important 

finding was that the identification speed of target /ba/ varied as the intensity of the 

prime's acoustic component varied, but only after exposure to the conflicting prime 

(Figure 4.2). RT was 81 ms faster in the 50-db than in the 60-db condition (Table 4.2). 

Furthermore, in the 60-db condition the effect of the conflicting prime was similar to 
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those of the other prime stimuli. In contrast, the RT in the 50-db condition was about 

90 ms faster after the conflicting prime than after the audiovisual /ba/ prime. The 

interaction of the factors Prime type x Auditory intensity was significant, F(2,32)=3.3, 

p<0.05. The mean error rates at the different stimulus conditions showed similar 

pattern of results.  
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Visual Auditory Combination
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Figure 4.1. Mean proportions of visual, auditory and combination responses to the conflicting audiovisual 
stimuli. Error bars represent standard error of mean. 

/ba/
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720

780

840

60 db 50 db

 

Figure 4.2. The mean RT's to the target /ba/ at the two auditory intensity levels of the conflicting and the two 
matching prime stimuli. Statistically significant effects were observed only for the target /ba/, not for /va/.  

We suggest that the observed effects were due to audiovisual interactions in the 

processing of the auditory and the visual components of the conflicting prime. 

Specifically, in accordance with the inverse effectiveness principle (Stein and 

Meredith, 1993), the visual component of the conflicting prime might have influenced 

auditory processing more when the intensity of the auditory stimulus was 50 db than 

60 db. Increased visual influence might have directly changed the acoustic-phonetic 

presentation of the prime stimulus, changing therefore the preceding acoustic-

A/ba/&V/va/ AV/va/ AV/ba/ 
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phonetic context and the processing of the auditory target stimulus. Such influence is 

plausible on the basis of neurophysiological studies demonstrating that visual speech 

has access to auditory cortex (Calvert et al., 1997; Möttönen et al., 2002; Möttönen et 

al., 2004; Sams et al., 1991). 

STUDY 2: ADAPTATION OF THE NEUROMAGNETIC AUDITORY N1 

RESPONSE AMPLITUDE BY VISUAL SPEECH INFORMATION 

Introduction and methods 

The purpose of this study was to investigate whether seeing a visual articulation 

causes adaptation of auditory cortex MEG responses to a subsequently presented 

auditory target speech stimulus (see table 4.1. for details). We hypothesized that the 

adaptation is larger when the target stimulus is preceded by an auditory than a visual 

stimulus and that the adaptation effects would be phonetic category specific (e.g., 

stronger adaptation when /æ/ preceded /æ/ than when /ø/ preceded /æ/). 

The target stimulus was preceded (500 ms) by another auditory or visual stimulus 

or without any preceding stimuli in separate stimulus blocks. The subjects’  task was 

to discriminate between the target stimuli.  

Results and discussion 

The amplitude of the left-hemisphere N1 (peaking at ~110 ms after stimulus onset) 

response to test stimuli was significantly suppressed, when the test stimuli were 

preceded by auditory (P<0.001) and visual (P<0.05) stimuli, as compared with the 

responses to the test stimuli when they were presented alone. The effect was 

significantly greater when auditory stimuli preceded the test stimuli than when the 

preceding stimuli were visual (P<0.01) (Figure 4.3 and 4.4). Category-specific 

adaptation of the responses was weak and statistically non-significant. 
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Figure 4.3. Single-subject ECD fits at N1m peak latency with the arrow depicting estimated source strengths 
and orientations. (a) Responses to the auditory phonemes when presented without preceding stimuli. (b) 
Responses to the auditory phonemes when preceded by auditory stimuli. (c) Responses to the auditory 
phonemes when preceded by the visual articulations.   

  

Figure 4.4. Mean (±standard error of mean) amplitude of the MEG responses to the phonetic stimuli when 
preceded by auditory and visual stimuli, and when presented alone. 
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These results support the hypothesis according to which seeing the articulatory lip 

movements of a speaker causes adaptation of feature-specific neurons within the 

human auditory cortex. The adaptation effect caused by the preceding auditory stimuli 

was significantly larger than that caused by the preceding visual stimuli, most 

probably as the result of adaptation of auditory cortex neurons to both phonetic and 

simple acoustic (e.g., stimulus intensity) stimulus features. The results corroborate 

previous findings showing that seeing speech influences auditory cortex processing of 

heard speech (Möttönen et al., 2002; Möttönen et al., 2004; Sams et al., 1991) 

possibly already at the level of primary auditory cortex (Calvert et al., 1997).  

STUDY 3: SILENT LIP-READING ACTIVATES HUMAN PRIMARY 

AUDITORY CORTEX 

Introduction and methods 

Silent lip-reading is known to activate auditory cortices and STS (Calvert and 

Campbell, 2003; Calvert et al., 1997; Paulesu et al., 2003). Whether this effect is 

limited to the hierarchically higher auditory areas in STG and STS or whether purely 

visual input can modulate also PAC function has, however, remained an open 

question (Bernstein et al., 2002). 

PAC is anatomically located in the medial half of the transverse gyrus of Heschl 

(HG) in the temporal lobe. We defined HG in each subject’s high-resolution MR 

images and evaluated signal changes during silent lip-reading inside this area in a per-

participant basis. During the MR-imaging the subjects were instructed to fixate their 

gaze on a marker constantly visible in the mouth region of the face, lip-read the 

vowels during the active condition and indicate by a button press whenever any vowel 

occurred twice in succession. During the circles run, they were to detect occurrence of 

two circles successively moving in the same direction. 

Results and discussion 

Nine subjects showed significant BOLD signal changes within the left HG during 

visual speech perception. The activation extended to the medial half of the HG in 

seven (Fig. 4.5.). Five of the nine subjects had activation also in the right HG. The 

signal changes extended to its medial half in three. 

Six subjects showed significant activation within the left HG (bilateral in one 

subject) also during watching the moving circles (three in the medial half). All of 
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them had HG activation also during lip-reading. One subject showed no significant 

activation during either condition. 

 

Figure 4.5. Watching speech activates primary auditory cortex. Significant (Z>2.3, p>0.01, corrected), 
activations during visual speech perception within Heschl’s gyri are shown, overlaid on axial MR images. The 
yellow line outlines Heschl’s gyri, the medial parts of which accommodate primary auditory cortex. The 
middle column displays coronal, axial, and left sagittal high-resolution MR images of subject 6 with overlaid 
activations. 

Our findings demonstrate that PAC in normal-hearing individuals can be activated 

by visual speech perception, an issue that had remained controversial according to 

earlier studies (Bernstein et al., 2002; Calvert et al., 1997; MacSweeney et al., 2000). 

Compared to earlier studies, directly determining HG in each participant may have 

enhanced the anatomical accuracy of signal-change localization in the present study, 

since error-sources inherent to standard-space registration could be avoided, and the 

need to use any atlas was circumvented.  We also used a higher field-strength MR-

scanner (3 Tesla) and a smaller voxel size (3.4 x 3.4 x 3.4mm) in image acquisition 

than in previous studies, which may have provided increased sensitivity in BOLD-

signal change detection when examining the small anatomical area of PAC.  

Several subjects exhibited activation within HG also while watching the moving 

circles. However, the activation was significantly stronger during visual speech 

perception than when viewing circles. This, combined with left-hemisphere 

dominance for visual speech, suggests that the left HG is specifically tuned to 

phonetic features of visually perceived articulations. 

The results support the views about visual speech influencing auditory speech 

processing at early stages of information processing. As a tentative mechanism, PAC 

could be receiving visual input through feedback connections from the multisensory 
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STS region (Calvert et al., 2000; Schroeder and Foxe, 2002), or possibly through 

direct connections from sub-cortical structures. Alternatively, seeing speech may tune 

PAC to the acoustic features of speech, via multisensory attentional mechanisms, and 

this anticipation then modulate processing of simultaneous acoustic input (e.g., the 

scanner noise) in PAC, even in the absence of heard speech.  

STUDY 4: INCREASED ACTIVITY IN BROCA’S AREA DURING 

PROCESSING OF CONFLICTING VISUAL AND ACOUSTIC PHONETIC 

INPUTS 

Introduction and methods 

The purpose of this study was to investigate the processing of the phonetic features 

of audiovisual speech. We used two types of audiovisual stimuli (matching and 

conflicting vowels) which differed only with respect to phonetic congruency (see 

table 4.1. for details). The matching vowels produced a unified audiovisual percept, 

but the conflicting ones were perceptually clearly incongruous.  

Results and discussion 

Matching and conflicting audiovisual speech activated the auditory and the visual 

cortical areas and the inferior frontal, the premotor and the visual-parietal areas 

bilaterally (Fig 4.6.). Conflicting stimulation evoked significantly greater activity than 

matching in three left hemisphere areas: Brocá s area (BA44/45), superior parietal 

lobule (BA7) and prefrontal cortex (BA10). No statistically significant voxels were 

detected when the BOLD signal during matching stimulation was contrasted to the 

signal during conflicting stimulation.  
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Figure 4.6. Across-subjects z-statistic maps overlaid on an anatomical template (Z>3.0 and cluster-wise 
p<0.05, corrected for multiple comparisons). Matching audiovisual speech activated the acoustic and the visual 
cortical areas, as well as the inferior frontal, the premotor and the visual-parietal areas bilaterally (upper 
panel). Conflicting audiovisual speech caused a similar but more extensive pattern of brain activity (middle 
panel). The difference in the contrast conflicting > matching AV-stimulation reached significance in three left-
hemisphere areas: Brocá s area (BA44/45), superior parietal lobule (BA7) and prefrontal cortex (BA10) (lower 
panel).  

Brocá s area is activated during speech production (Dronkers and Ogar, 2004) and 

it participates also in various acoustic speech processing tasks (Braver et al., 1997; 

Burton et al., 2000; Zatorre et al., 1992) and visual speech processing (Callan et al., 

2003; Campbell et al., 2001; Nishitani and Hari, 2002; Paulesu et al., 2003; Sekiyama 

et al., 2003).  

We suggest that stronger activation to conflicting than to matching stimuli in 

Broca’s area was due to processing of two instead of a single phonetic input. 

Neuronal activity related to the processing of unimodal components of the matching 

audiovisual stimuli probably converged on the same neurons in Broca’s area. On the 

other hand, conflicting components probably activated partly same but also separate 

neurons.  

The activation of Brocá s area and motor speech regions by auditory and visual 

speech has been argued to be related to the functioning of the mirror neurons. We 

suggest that Broca's area would contain amodal motor representations of articulatory 

gestures into which both acoustic and visual phonetic inputs are mapped during 

audiovisual speech observation, possibly through the activation of the mirror neurons. 
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We were surprised not to see stronger activation in the left STS for the matching 

than conflicting audiovisual speech stimulation in the present study. The main 

difference between our study and that of Calvert et al. (2000) is the nature of the 

stimuli. Calvert et al. (2000) used meaningful acoustic and visual speech inputs 

(paragraphs from a book), which were either in temporal synchrony or not. It might be 

that the left STS is not involved in the processing of phonetic, but rather temporal or 

semantic, factors of audiovisual speech.  

STUDY 5: SPEECH PRODUCTION REGIONS ARE ACTIVATED DURING 

AUDITORY AND VISUAL SPEECH PERCEPTION 

Introduction and methods 

In the present study, we specifically aimed at mapping common brain areas 

processing both auditory and visual speech using the same set of vowels in both 

modalities as stimuli (see table 4.1. for details). We also tested the hypothesis that 

auditory and visual speech both activate Broca’s area, but its partially different neural 

pools (Study IV) by comparing the activations’  center of gravities (COG) within the 

common areas. The subjects' task was to press a button every time he/she saw or 

heard /i/ and when a small white square appeared below the lower lip of the talker 

during baseline. 

Results and discussion 

Areas activated by both hearing and seeing speech included: left motor and 

premotor motor cortex, Broca’s area, left inferior parietal area, STG/STS bilaterally, 

left dorsolateral prefrontal cortex, and left anterior cingulate cortex (Figure 4.7).  
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Figure 4.7. Across-subjects z-statistic maps overlaid on an anatomical template (thresholded at Z>2.0, p<0.05, 
corrected). Brain areas that were activated during lipeading are indicated in green and those activated by 
listening to speech in blue (compared to the baseline condition). Areas activated by both types of speech 
perception are shown in yellow. 

The COGs during visual speech perception were located more superiorly than the 

COGs during auditory speech perception within the left premotor/primary motor 

cortex, Broca’s area, the inferior parietal area and the bilateral superior temporal area 

(Fig. 4.8A). In the left premotor/primary motor cortex, the COGs of all individual 

subjects were located in the ventrolateral part of the primary motor cortex area 4a 

(Geyer et al., 1996), which however can not compellingly be differentiated from the 

premotor area 6 with MRI (Fig. 4.8B). The activations were below the approximate 

representation area of finger movements, in the representation areas of lip and tongue 

movements as well as in the more inferior part of area 4a/6 (Fig. 4.8C). During 

lipreading, most COGs of individual subjects (mean z-coordinate value 43±1.6 mm) 

were located in the lip and tongue areas. During auditory speech perception, 

individual COGs (mean z-coordinate value 37±2.6 mm) were more evenly distributed 

within 4a/6 (Fig. 4.8C). The difference in the mean z-coordinate values was 

statistically significant, t(8) = 2.38, p < .05  
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Figure 4.8. A: The activations’  center of gravities during lipreading (red) were located superior to those during 
listening to speech (yellow) in the left motor cortex and in Brocá s area and superior and posterior in the left 
posterior superior temporal area, and in the inferior parietal lobule. B: Sagittal view of the ventrolateral part of 
the cytoarchitectoniccytoarchitectural maps of Brodmann motor cortical areas 4a (grey) and 6 (light blue) and 
their intersection (dark blue) and individual subjects’  (small circles) and mean (large circles) COG locations 
during auditory (yellow) and visual (red) speech perception. C: Coronal view of the cytoarchitectonic map of 
Brodmann motor cortical area 4a divided in three sections corresponding to the approximate motor 
representation areas for finger, lip and tongue movement, 1 (Alkadhi et al., 2002), 2 (Hesselmann et al., 2004). 

The results corroborate and extend findings from several neuroimaging studies of 

auditory, visual and audiovisual speech processing which suggest that STS and speech 

motor areas might be involved in processing both heard and seen speech (e.g., Binder 

et al., 2000; Callan et al., 2003; Calvert and Campbell, 2003; Wilson et al., 2004). In 

addition, our data suggest that visual speech activates the primary motor cortex, even 

though we can not rule out that at least some of these activations are in the premotor 

cortex.  

The COG analysis indicates that visual speech activates systematically more 

superior parts of the MNS areas than auditory speech. We suggest that this might be 

related to the difference in information provided by auditory and visual speech. Visual 

vowels contain information from orofacial gestures, such as movements of the lips 

and surrounding areas of the face, not of the whole vocal tract. In contrast, acoustic 

speech provides information of the activity of the whole vocal tract including the non-

visible parts. In support, motor-cortex activation during auditory speech perception 



 

 41 

was distributed along the lip, tongue and more inferior areas of the area 4a/6, whereas 

activation during visual speech perception was more concentrated to the lip and 

tongue areas (Fig. 4.8) 

The observed overlap of MNS activation during auditory and visual speech 

perception suggests that there is an audiovisual neuronal subpopulation, which 

processes speech input independently of whether it is produced, heard or seen. On the 

other hand, different COGs within the common areas suggest that there are auditory 

and visual modality-specific subpopulations as suggested by Study IV and previous 

research (Keysers et al., 2003; Kohler et al., 2002). Furthermore, the observed 

somatotopic activation tentatively suggests that auditory and visual speech inputs are 

mapped to specific motor representations corresponding to the perceived motor origin 

of the input.  

In conclusion, we suggest that the network of brain areas identified here supports 

the mapping of the auditory and visual speech inputs into motor based phonetic 

representations, via the mirror neuron system (see also Skipper et al., 2005).  
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CHAPTER 5: GENERAL DISCUSSION 

The current thesis summarizes the results from five experiments which 

investigated the neurocognitive mechanisms of audiovisual speech perception by 

using fMRI, MEG and behavioral methods. The results of the Studies I-III corroborate 

earlier findings on audiovisual integration of speech taking place early on in the 

auditory processing hierarchy. Study I provided behavioral evidence for this, although 

the interpretation of the complex behavioral result has to be taken with proper caution. 

The interpretation is, however, supported by studies II-III, where visual speech was 

found to modulate the reactivity of the left auditory cortical areas (Study II) and 

importantly, the PAC (Study III). Studies IV and V provided new findings suggesting 

that acoustic and visual speech signals might interact in the speech motor regions 

(Study IV). Furthermore, these regions were tentatively suggested to support the 

mapping of the auditory and visual speech inputs into common motor based phonetic 

representations, possibly via the somatotopic activation of the mirror neuron system 

(Study V). The following sections discuss these main findings.  

Audiovisual interaction in auditory cor tex 

The results of studies I-III corroborate previous findings showing that visual 

speech has access to the early levels of auditory processing hierarchy (Klucharev et 

al., 2003; Möttönen et al., 2002; Möttönen et al., 2004; Sams et al., 1991; Besle et al., 

2004; Calvert et al., 1997; van Wassenhove et al., 2005) and support the auditory 

integration models (see Chapter 1). Importantly, Study III disclosed that PAC is 

activated during visual speech perception. However, these studies cannot disclose 

where the input to auditory processing stream comes from. Electrophysiological 

studies in monkeys suggest, that auditory cortex responses to visual stimuli are due to 

projections from higher cortical regions (Schroeder and Foxe, 2002; Schroeder et al., 

2003). However, additional research is needed to find out whether visual speech has 

access to PAC directly from subcortical structures or visual processing areas or 

through feedback from STS or other multisensory regions. 

The phonetic categorization of speech starts 100-150 ms after stimulus onset 

(Rinne et al., 1999). The modulation of auditory cortex reactivity by preceding visual 

speech stimulation in Study II may have occurred at any time between the prime and 

the target presentation. However, EEG studies show that the auditory N100 amplitude 

is suppressed during audiovisual speech stimulation in comparison to the sum of 
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unimodal responses (Besle et al., 2004; Klucharev et al., 2003; van Wassenhove et al., 

2005). These studies indicate that in terms of processing time there are early (within 

100 ms from the stimulus onset) audiovisual interactions in the auditory cortical areas. 

In support, electrophysiological studies in monkeys show that responses to visual 

stimuli in auditory cortex neurons are very early (~50ms from stimulus onset) 

(Schroeder and Foxe, 2002; Schroeder et al., 2003). These results suggest that there 

are audiovisual interactions in auditory cortical areas before the phonetic 

categorization of the speech input. Interactions occur also during or after the 

approximate time-window of phonetic categorization (> 150 ms) possibly through 

feedback to PAC/STG from STS or other multisensory areas (Möttönen et al., 2002; 

Möttönen et al., 2004; Sams et al., 1991). 

Study II failed to reveal phonetic category specific effects of visual speech on 

auditory cortex reactivity and thus leaved open the possibility that the effect is not 

specific to speech at all but might be due to any dynamic visual movement. In 

support, Study III showed that a dynamically moving circle placed above the still face 

baseline image activated PAC but the activation was not left-lateralized as it was 

during the visual speech condition. This suggests that dynamic visual non-speech 

stimuli modulate PAC reactivity to some extent but the left PAC is especially tuned to 

visual speech information. Therefore it is likely that the left auditory N1 suppression 

after visual speech stimulus presentation was at least in part due to adaptation of 

neurons coding phonetic features of visual speech.  

The role of multisensory convergence in audiovisual speech integration 

Integration of auditory and visual non-speech information is primarily based on 

temporal and spatial coincidence of the stimuli (Stein and Meredith, 1993). These 

mechanisms are important in audiovisual integration of speech as well (Macaluso et 

al., 2004). However, seeing and hearing speech provide also phonetic information. 

Therefore, both general and speech-specific multisensory mechanisms might be 

important in audiovisual perception of speech (for recent discussions, see Calvert et 

al., 2004; Klucharev et al., 2003).  

The lack of stronger activation in STS during matching than conflicting AV 

stimulation in Study IV suggests that STS region might not be involved in the 

processing of phonetic features of audiovisual speech, although one should be 

cautious in interpreting negative results. It was suggested in the Study IV that STS 
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might be involved in processing temporal or semantic factors of audiovisual speech 

instead.  

According to the hypothesis by Calvert et al. (2000), unimodal speech signals are 

integrated in STS and fed back onto primary auditory areas. This mechanism predicts 

activation of auditory cortices during visual (Study IV; Calvert et al., 1997) and 

enhanced activation during audiovisual speech processing (Callan et al., 2004; Callan 

et al., 2003; Sekiyama et al., 2003). However, the AV interactions in the left auditory 

cortex might precede those in the right STS (Möttönen et al., 2004) and the 

audiovisual responses measured with EEG and MEG are often smaller during 

audiovisual stimulation than the sum of responses during unimodal stimulation (Besle 

et al., 2004; Klucharev et al., 2003; Möttönen et al., 2004; van Wassenhove et al., 

2005).  

It has been suggested that rather than in establishing multisensory perceptual 

representations, the function of the multisensory areas could be the weighting of one 

sensory stream against the other (van Wassenhove et al., 2005). In support, studies 

using non-speech audiovisual stimuli have shown suppression of activity in sensory-

specific cortices together with enhanced activation of multisensory sites (Bushara et 

al., 2001; Laurienti et al., 2002). This suggests that there would be reciprocal 

interaction between multimodal and unimodal areas during audiovisual integration 

(Bushara et al., 2001). 

The vast extent of cerebral areas demonstrating multisensory convergence suggests 

that it is likely to be a general cerebral processing principle. However, the functional 

role of multisensory integration in posterior STS or in other multisensory cortical 

areas is unclear.  

Audiovisual integration in speech motor  areas 

Studies IV and V provide corroborating and new evidence for visual and auditory 

speech inputs being converted to motor representations during auditory, visual and 

audiovisual speech perception. One of the underlying neurocognitive mechanisms of 

audiovisual speech integration could therefore be the convergence of information 

from seen lip movements and heard speech into a common, specific motor 

representation matching the observers own speech production. According to this 

hypothesis the phonetic features of the auditory and visual components of audiovisual 

speech would be integrated in the multisensory neurons of the speech motor regions 
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(possibly after multisensory integration of non-speech features in other cortical areas) 

followed by a motor-based categorization of the speech input and refinement and 

constraining of sound-based phonetic representations in STG/STS through back-

projections. According to this model AV integration in the speech motor areas would 

precede phonetic categorization as well as constrain and facilitate sound-based 

phonetic processing. A similar model has been recently proposed by Skipper et al. 

(2005). 

In support, Study IV demonstrated that the speech motor regions are involved in 

the phonetic analysis of audiovisual speech input. Phonetically conflicting audiovisual 

stimulation enhanced activation in Broca’s area in comparison to matching 

stimulation. It is possible that there are supra-additive responses during phonetically 

matching audiovisual speech stimulation in these areas, although these responses were 

not detected. The increased activation during conflicting stimulation indicates, that 

phonetic analysis is performed by both multisensory and sensory-spesific neuronal 

populations within Broca’s area. In support, in Study V auditory and visual speech 

activated overlapping areas of the speech motor regions indicating that there might be 

multisensory neurons. The interpretation is, however, tentative since one can not 

differentiate between fMRI signal originating from densely mixed populations of 

unisensory cells from actual multisensory neurons by overlapping activations (Calvert 

and Thesen, 2004). However, the existence of multisensory neurons in the speech 

motor areas is plausible given the results from single-cell recordings in animals (see 

Chapter 1). Different COGs within the common areas suggests that there are auditory 

and visual modality-specific subpopulations as suggested by Study IV. Furthermore, 

the observed somatotopic activation tentatively suggests that auditory and visual 

speech inputs might be mapped to somatotopically specified motor representations 

corresponding to the perceived motor origin of the speech input. 

According to Calvert et al. (2003) and Callan et al. (2004) both integration in STS 

and the internal articulatory simulation of the intended speech act of the (visually) 

observed speaker facilitate auditory speech perception through back-projections to 

auditory cortical areas. Articulatory simulation of the visual speech input would have 

a secondary role in audiovisual speech perception and is used to facilitate primary 

acoustic-phonetic processing especially in sub-optimal conditions (Callan et al., 2004; 

Calvert and Campbell, 2003). Despite the similarities, this account is different from 

the one presented above. The important difference is that in these models the visual 
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speech input is assumed to be processed independently of the auditory input in the 

speech motor regions. Visual influence on auditory processing is achieved without 

convergence of A and V inputs into motor representations. 

Insights for  future research 

The main challenge for future research is to further characterize the roles of the 

sensory specific, multisensory and speech motor systems in cortical audiovisual 

speech processing. In addition, it is important to identify and differentiate the 

neurocognitive mechanisms of general and speech-specific multisensory processing.  

Combining fMRI and MEG would be beneficial in studying the source and time-

scale of feedback projections to the PAC and STG/STS during audiovisual speech 

perception. Using multiple phased-array surface coil techniques in fMRI for high 

spatial resolution and better SNR might enable detecting multisensory organization 

and possibly also supra- and subadditive responses to audiovisual speech stimulation 

in other brain areas than STS.  

Only a limited set of vowels were used as stimuli in the studies. Vowels were used 

in the studies to focus onto the prelexical, phonetic level of speech perception. 

Vowels lack several key properties of other types of speech information. At the pre-

lexical level consonant-vowel syllables involve short-duration spectral changes, due 

to the format transitions of consonants. Vowels and consonant-vowel syllables 

activate the superior temporal areas bilaterally (Scott and Wise, 2004) but consonant-

vowel syllables activate the left planum temporale and right STG/STS more than 

speech sounds incorporating spectral changes of a longer duration (such as vowel 

sounds) (Jäncke et al., 2002). The activation of the auditory cortical areas and the 

speech motor regions during speech perception are dependent on the level of 

phonetic/linguistic processing involved in the stimulation and the experimental task 

(Binder et al., 2000; Burton et al., 2000; LoCasto et al., 2004; Zatorre et al., 1992) for 

a review, see (Hickok and Poeppel, 2004). Therefore, parametric experimental 

designs which manipulate spatial and temporal as well as acoustic/phonetic and 

linguistic features of the stimuli may allow segregating the hierarchy of brain areas 

involved in audiovisual integration of speech.  

Precise control of the auditory SNR, for example by determining the hearing 

threshold of the subjects, would improve the comparability of the results of separate 
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studies. Investigation of speech specific integration mechanisms would require 

comparing responses to audiovisual speech and non-speech stimulus combinations. 

One plausible way to investigate the role of speech motor processing in 

audiovisual speech perception would be by comparing the timing and sequence of 

activated brain areas during silent articulation, visual, auditory and audiovisual speech 

perception. This requires combining fMRI and MEG for accurate spatial and temporal 

resolution. Another way to directly investigate this would be by measuring the effect 

of transcranial magnetic stimulation of motor cortical areas to unimodal and 

audiovisual speech perception. Furthermore, the suggested transformation of heard 

and seen vocal tract functions into somatotopic activations of the motor homunculus 

predicts that differences in the place of articulation (e.g., /apa/ vs. /ala/) would be 

mapped onto different locations of M1 during auditory speech perception and that 

conflicting visual input might have an effect on this location.  

In addition, it might be fruitful to study audiovisual speech processing in specific 

patient populations. Especially interesting are the children with specific language 

impairment. SLI-children have problems in either speech production or production 

and comprehension. They might be worse than their healthy peers in auditory and 

visual speech perception and possibly have different responses to conflicting 

audiovisual stimuli (Hayes et al., 2003).  

Conclusions  

The results of this thesis support the view on the neurocognitive mechanisms of 

audiovisual speech perception which emphasizes the involvement of multiple, 

hierarchically organized and mutually interacting brain mechanisms (Calvert and 

Thesen, 2004). The results add to and extend the evidence suggesting that auditory 

and visual speech interact in the auditory cortical regions early on in the processing 

hierarchy. Furthermore, the results indicate that auditory and visual speech inputs 

might interact in the motor cortical areas involved in speech production and that the 

cortical mechanisms of coupling motor action execution and perception might be 

involved in audiovisual integration of speech. 
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