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1 Introduction

Carbon is a versatile element which can be found in many forms in nature.
A new structural form, carbon nanotube, was discovered in 1991 [1]. Soon
after the discovery, it was understood that elemental carbon in this form can
conduct electricity very well, and since the nanotubes are also mechanically
very robust, they are promising for various electronic applications. Consider-
able amount of research has been put in the effort to understand the electron
transport properties of carbon nanotubes. This Thesis work is a small part
of this effort.

The outline of the Thesis is the following. In the introduction, the elec-
tronic transport in mesoscopic systems is briefly reviewed from parts which
are relevant in what follows (Sec. 1.1). The structure and synthesis of carbon
nanotubes are described, and the electronic transport in them, according to
the present understanding, is reviewed (Sec. 1.2). In Ch. 2 the experimental
techniques used in this work are described. In Ch. 3 the transport mea-
surements on disordered carbon nanotubes are discussed, and Ch. 4 is about
tunneling experiments on nanotubes. The tunneling conductivity of both
disordered and good-quality nanotubes has been studied. In Ch. 5 the pos-
sibility of using nanotubes for single electronics is discussed, and finally in
Ch. 6 conclusions are given.

1.1 Electronic transport in mesoscopic sys-

tems

As the size of a conductor is decreased, Ohm’s law is no longer strictly valid
and size-dependent phenomena arise. In this section these phenomena and
the different relevant length scales will be introduced. Complete discussion
can be found e. g. in Ref. [2].

The electron mean free path Lm determines the transport regime: if Lm

is longer than the sample length L, the electrons are ballistic. In the other
limit the transport can be classified either as diffusive or classical, depending
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on whether elastic or inelastic scattering processes contribute more to Lm.
Unlike a superconductor, a ballistic wire has a non-zero resistance. As the
transverse size of the wire decreases, the spacing of the states increases and
the continuum approximation breaks down. Due to the finite number of
transverse modes available, the conductance is quantized, and is given by
G = Me2/h, where M is the number of modes.

In the diffusive regime, the elastic scattering is much more common than
inelastic scattering, which destroys the phase coherence of the electrons. The
interference effects between electron waves become important, giving rise to
effects such as weak localization magnetoresistance, universal conductance
fluctuations and Aharonov-Bohm (A-B) effect (see, e. g. [3, 4]). Localization
arises due to the interference between time reversed electron waves, traversing
a closed loop in opposite directions. Typically the interference is constructive,
and enhances backscattering (destructive interference can arise due to strong
spin-orbit scattering, and is referred to as anti-localization). For this effect
to be observable, the electrons must maintain their phase as they diffuse over
such a path, and therefore the dephasing length Lφ must be sufficiently large
compared to the elastic mean free path ` (only elastic scattering is taken into
account in `, while also inelastic processes, such as electron-phonon scatter-
ing, contribute to Lm). The negative magnetoresistance arises because of the
suppression of the enhanced back-scattering probability in a magnetic field.
The electron waves travelling in opposite directions acquire opposite phase
shifts and hence the constructive interference is lost. The conductance of a
sample depends on the defect configuration, which is random. The change of
magnetic field modifies the phase shift between elastic scattering events so
that the scatterer configuration effectively changes, and hence the conduc-
tance is altered in a random way. This gives rise to universal conductance
fluctuations (UCF). The A-B effect is related to the interference of electron
waves travelling along two branches of a ring-like sample.

Electron-electron interactions are especially significant for transport in
disordered, low-dimensional conductors [5]. The interactions give rise to a
temperature-dependent correction to the conductivity, and also play a key
role in the tunneling conductance. In a simplistic interpretation, interactions
are enhanced because a pair of electrons remain close to one other for a longer
time as they slowly diffuse through a disordered conductor.

If the system is strictly 1D, its ground state is not a Fermi liquid but a
so-called Luttinger liquid (LL) [6]. The main characteristic of a Luttinger
liquid is that its excitations are plasmons instead of fermion quasi-particles.
The density of states near Fermi level is suppressed due to the lack of quasi-
particle states. A tunneling experiment between a 3D Fermi liquid and a
Luttinger liquid is typically applied to show this suppression. However, this
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does not give an unambiguous proof of the existence of the LL state. Another
characteristic of the LL is the separation of spin and charge carrying modes,
which has not been unambiguously verified for carbon nanotubes.

Length scales and dimensionality

The dimensionality of a sample may vary depending on what type of phe-
nomenon one is looking at. In the case of weak localization, the cut-off is
provided by the phase-coherence length Lφ. The dimensionality with respect
to this effect is determined by a comparison between Lφ and the physical di-
mensions of the sample [7]. In addition, if Lφ is longer than the localization
length Lloc = MLm, the strong localization regime is entered and the con-
ductivity is suppressed exponentially as a function of the wire length. The
dimensionality of the interaction correction is determined by Lε =

√
~D/ε,

which depends on the range of electron energies available, ε = ~ω, kBT ,
or eV , depending on the type of experiment. The dimensionality may be
different from that of the weak localization effect. Another scale of impor-
tance is the energy relaxation length Le−e, defined as the length over which
an electronic excitation relaxes via the inelastic electron-electron collisions,
i. e. the electrons thermalize and the Fermi distribution is reached. The
electron-phonon scattering length Le−ph determines the resistivity in typical
metals, together with the elastic length `, but it is also of importance when
dissipation of power is under consideration.

Tunnel junctions

A single-electron transistor (SET) is a device consisting of an island, which is
coupled to drain and source electrodes via small tunnel junctions. When the
total capacitance CΣ of the island is small enough so that the charging energy
e2/2CΣ À kBT the tunneling at low voltages is not energetically favorable
and thus the current is blockaded. A gate electrode is applied to capacitively
couple charges even smaller than the electron charge e to the island, and is
thus utilized to control the flow of current through the device. The blockade is
lifted for island charges Q = (n+ 1

2
)e, and therefore the current is modulated

periodically as a function of gate voltage. Carbon nanotubes can be used
to construct single-electron transistors [8–10], where the nanotube forms the
central island.
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Figure 1.1: Scrolling of a graphene sheet to obtain a carbon nanotube with
chiral vector Ch = (5, 2). The chiral angle θ is defined as the angle between
the lattice vector a1 and Ch. For θ = 0◦ (Ch = (n, 0)) and θ = 30◦ (Ch = (n,
n)) one obtains especially symmetric structures, called zigzag and armchair
nanotubes. The translational vector T shows the length of one unit cell. The
diameter of a (5, 2)-tube is 0.5 nm. A nanotube as small as that can be
encountered as the innermost tube in a MWNT[13].

1.2 Carbon nanotubes

1.2.1 Structure

Carbon nanotubes are similar to graphite in the sense that they both consist
of carbon sheets with hexagonal lattice, where each carbon atom is cova-
lently bonded to three nearest neighbors. While in graphite these so-called
graphene sheets are stacked, carbon nanotubes are formed by rolling the sheet
into a seamless cylinder, whose ends are usually closed by a spherical cap.
One such tube is called a single-walled nanotube (SWNT), while by arranging
several tubes coaxially one obtains a multiwalled nanotube (MWNT). Typi-
cally the diameter of a SWNT is 1-2 nm while the MWNTs have diameters
of 5-50 nm. Depending on how the axis of the nanotube is directed relative
to the lattice vectors of the graphene sheet, one can find nanotubes with
different symmetry. Depending on the chirality (see Fig. 1.1) the nanotubes
can be either metallic or semiconducting [11]. Tight-binding calculation of
the electronic structure can be found e. g. in Ref. [12].
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Figure 1.2: Comparison of CVD grown (on the left) and arc-discharge-grown
(right) nanotubes.

1.2.2 Synthesis

In this Thesis, I have studied two different brands of carbon nanotubes, arc-
discharge grown nanotubes from University of Montpellier and CVD grown
nanotubes from Facultes Universitaires Notre-Dame de la Paix, Namur. In
the arc-discharge (AD) method [1], large current is applied between electrodes
of pure graphite in an inert gas atmosphere. The soot that is produced
on the negative electrode contains multiwalled nanotubes that have nearly
ideal morphology, but also large quantities of amorphous carbon and other
carbon species. In the CVD method, acetylene gas is lead to a flow reactor
heated to 700 ◦C containing the supported transition metal catalyst (Co) [14].
Nanotubes are produced at high yield as a result of catalytic decomposition
of the carbon-containing gas. This method results in spaghetti-like tangle
of nanotubes in various morphologies, containing also ring-like and helical
nanotubes [15, 16]. Intrinsic curvature is a result of defects in the graphitic
network. Direct measurement of the Young’s modulus of some AD and CVD
nanotubes has shown that, indeed, the mechanical properties of CVD tubes
are inferior [17]. The measurements on the CVD grown nanotubes performed
for this Thesis [P1-P4] are the first fully systematic studies on electrical
properties of highly disordered carbon nanotubes.

1.2.3 Electronic transport: A short review

Since the earliest transport experiments in nanotubes [18–21] it has been clear
that each nanotube is an individual and hence the outcome of an experiment
sensitively depends on details of the particular nanotube sample. In these
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experiments, all done on MWNTs, the resistivity1 was found to vary from
kilo-ohms to megaohms per micron, and negative [18] as well as positive
[19, 21, 22] magnetoresistance was observed. In MWNTs, there are many
degrees of freedom: the diameter and chirality of each shell are different,
and amount and type of defects varies over a wide range. The difficulty lies
in the separation of essential and accidental properties, and in manufacture
of samples with repeatable characteristics. The high resistivity observed in
the early studies, e. g. 12–86 kΩ/µm for the regular, ’metallic’ samples in
Ref. [21], suggests that the nanotubes actually contained a large amount of
defects.

Diffusive transport in MWNTs was suggested already in 1996 by Langer
et al. [18]. The nanotubes were found to behave as 2D diffusive metals,
which show both weak localization (WL) magnetoresistance and universal
conductance fluctuations at low temperatures, with extremely short phase
coherence length Lφ of 20 nm at 0.3 K. Later on, a similar value of Lφ, 15
nm at 2 K, was found in another weak localization study [23]. Bachtold
et al. observed Aharonov-Bohm oscillations in samples with a higher Lφ of
250 nm [24]. Consistently, the nanotubes were found 1D with respect to
WL magnetoresistance in Ref. [25]. However, completely different results
were obtained on a nanotube contacted by dipping it into liquid metal (Hg):
ballistic transport was observed [26]. Accurate measurements of resistance
vs dipping depth indicate very low resistivity, ρ < 100 Ω/µm [27], and thus
the mean free path is so long that it is legitimate to refer to the nanotube
as ballistic. Apparently the mean free paths are shorter in lithographically
contacted nanotubes, and they typically show diffusive electron transport. In
such a sample, the voltage drop over the tube has been directly observed by
electrostatic force microscope, and it was found linear, with ρ ∼ 10 kΩ/µm
[28].

For CVD grown tubes, there are less reported experiments available than
for arc-discharge grown samples. Dai et al. [20] measured very high line re-
sistivity for CVD tubes using a conducting AFM probe, ρ = 60–400 kΩ/µm.
They also noted that tubes which appear structurally defective exhibit higher
resistivity, and an individual bend can increase the resistance significantly.
In this Thesis work, electronic transport in CVD grown nanotubes has been
characterized in detail [P1-P4].

The transport in single-walled nanotubes depends largely on whether the
nanotube is semiconducting or not. Typically the semiconducting tubes be-

1Because of the ambiguity associated with the determination of the current-carrying
cross-section, either 1D resistivity ρ (units Ω/m) or sheet resistivity R� (units Ω) will be
used throughout this Thesis.
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have as p-type [29] or ambipolar [30, 31] FETs at room temperature, while
the metallic nanotubes don’t show much gate dependence [32]. Also scanning
tunneling microscopy has been utilized to study the electronic strucutre of
SWNTs, and both semiconducting and metallic densities of state were ob-
served [33]. At low temperatures, SWNTs were found to behave as quantum
dots [9, 34, 35], where the transport occurs via a finite number of electronic
states, extending over the entire sample length, in this case over µm length
scales. The observation of a power law tunneling anomaly suggests that the
electronic system in SWNTs can be described as a Luttinger liquid [36]. At-
taching low-ohmic contacts to a SWNT is considerably more difficult than
to a MWNT, and it has only been achieved relatively recently [37, 38]. The
realization of a Fabry-Perot interference between electron waves reflected at
the contacts indicates that the phase coherence in SWNTs is significantly
better that in MWNTs. In general, SWNT is a simpler system and their
properties are quite well understood by now. However, open questions still
remain such as related to superconductivity in SWNTs, reported by Kociak
et al. [39].

Semiconducting MWNTs are hardly ever observed [25], even though sta-
tistically only every third nanotube should be metallic. The controversy
about the amount of metallic vs semiconducting nanotubes was solved when
it was understood that the nanotubes are doped by oxygen, shifting the
Fermi level by 0.3–0.5 eV [40]. Therefore there are more than four conduc-
tion channels in MWNTs, and resistances lower than 6.4 kΩ have indeed
been measured [24, 41]. Nanotubes can also be deliberately doped [42].

One way to assess the quality of a nanotube is to measure its current
carrying ability. A current density as high as 109 A/cm2 is possible in an
individual SWNT [43], and good quality MWNTs are able to stand currents
as high as 10 mA under ambient conditions [41]. How is this current dis-
tributed among the shells? There is evidence that at low temperature and
low bias the current is mainly conducted along the outermost shell [24], but
at room temperature several shells are contributing as observed by Collins
et al. [44]. In their experiment, indicating conduction in several shells, the
current saturates, and eventually the nanotubes failed at currents around 200
µA. Later on, the large bias current was observed to depend on the diameter
and length of the shell, and Imax = 10-60 µA/shell was found [45]. This is
in striking contradiction with the experiments on well-conducting nanotubes
contacted by dipping into Hg, where the length dependence was found very
weak [46]. No saturation was observed before the tubes failed. The mea-
surements were performed under transmission electron microscope and the
failure was observed to occur at defects or at the Hg contact, i. e. where
power is dissipated. In an idealistic, defect-free nanotube the coupling be-
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tween shells should be negligible [47], and Ref. [46] also suggest conduction
at the outermost layer only. Recently, nanotubes positioned on top of the
electrodes, not touching the substrate, were studied at high bias voltages,
and they did not show a complete saturation of current, but only downturn
of conductance, up to 675 µA [48].

The tunneling conductivity between a nanotube and a metallic electrode
can be used to probe the density of states, similar to an STM experiment [25].
In many cases, a power law tunneling anomaly is observed around zero bias
[49–52]. This suppression is a manifestation of the interactions between the
tunneling electron and the electron system in the nanotube. At low enough
temperatures, Coulomb blockade develops in a double junction geometry, and
SETs have been realized with a MWNT as the central island [10, 53]. When
the contacts become more transparent, the complexity of the characteristics
increase [54]. In Refs. [55, 56] MWNTs were found to behave as quantum
dots, so that they can be clean enough, even when lithographically contacted,
to have well defined states that extend over the entire length of the nanotube.
As the coupling to the electrodes was quite strong, also the Kondo effect was
observable.



2 Experimental techniques

To measure the electrical characteristics of a nanotube, it must be connected
to a pair of electrical conduits, connected to the macroscopic measurement
electronics. Contacting individual MWNTs was achieved for the first time
in 1996 [18–21], and by now the techniques are quite well established. There
are two different basic approaches, both of which were utilized in this Thesis
work. The first one is to first prepare the electrodes, with a suitable spac-
ing depending on the length of the available nanotubes, and then deposit
the nanotubes. One near-by nanotube is moved between the electrodes by
utilizing atomic force microscope (AFM) manipulation[10, 57]. The second
method utilizes AFM to locate the deposited nanotubes with respect to align-
ment markers, and the electrodes are subsequently fabricated on top of the
nanotubes.

The electrodes are manufactured using standard e-beam lithography. A
PMMA resist is spun on a piece of an oxidized silicon wafer. Then the
pattern is exposed using a scanning electron microscope (Jeol JSM-6400),
and the exposed resist is removed by a suitable solvent. A thin metal film is
evaporated using Edwards 306 vacuum coater. The electrode thickness was
typically 20-80 nm. Thinner electrodes are needed if one wishes to push a
nanotube on top of the electrodes afterwards. After a lift-off in acetone the
electrodes are ready.

The nanotubes come in the form of a black powder, which is mixed to
a solvent (e. g. dichloroethane) using ultrasonic agitation. A droplet of this
dispersion is placed onto the substrate, and after evaporation of the solvent,
the nanotubes are left on the chip, randomly placed. It is also possible to
use a spinner to apply the dispersion.

The AFM was developed in 1986 [58], and it has become a powerful tool
in the research of nano-scale structures (see, e. g. [59]). Unlike scanning tun-
neling microscope, which was developed earlier, AFM enables also imaging
of insulating surfaces. The force between the sample surface and a sharp
tip, attached to a small cantilever, causes the cantilever to bend, which can
be detected by e. g. optical means. The applied force, which is typically a
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Figure 2.1: The principle of moving nanotubes by AFM (not to scale). On
the left, during the usual imaging in the non-contact mode, a feedback loop
is utilized to keep the oscillation amplitude (and the tip-surface separation)
constant. On the right, the feedback loop is disabled, and the tip comes to
contact with the nanotube.

few nN’s, is kept constant by regulating the tip-sample distance, and a 3D
image of the sample topography is obtained. In the non-contact operating
mode, the cantilever is driven to oscillate near its resonant frequency, and
the amplitude of the oscillation is monitored. The resonant frequency shifts
proportionally to the force gradient, and the observed amplitude changes. By
keeping the amplitude constant one can measure a constant force gradient
surface. Usually van der Waals forces give the most significant contribu-
tion in the non-contact regime, and the measured surface gives the sample
topography.

In addition to the usual imaging, AFM can also be utilized in construction
of samples as described by Martin et al. [57] and Roschier et al. [10]. In
this approach, small particles or nanotubes are moved in the non-contact
mode. The principle is illustrated in Fig. 2.1. The benefit of this method
is that it enables to a certain degree monitoring of the nanotube during the
movement, and reduces the need to acquire images between manipulation
steps. Fig. 2.2 illustrates how the arc-discharge grown tubes behave under
mechanical manipulation. Very short nanotubes move as a whole [10], but
longer nanotubes bend and show sharp kinks.

The quality of the contacts between the nanotube and the metal elec-
trodes is critical for the outcome of the experiments. In the tube-on-top
geometry, contacts are typically very weak. After deposition the resistances
range from tens of kΩ’s to unmeasurably high. An additional heat treatment
(in an evacuated tube oven at ∼ 700 ◦C for a short time, on the order of
30 s [60]) is necessary to reduce the contact resistances. Still, even after this
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Figure 2.2: Construction of the nanotube cross studied in P7 using AFM
manipulation.

treatment tunnel junction typically remains between the nanotube and the
metal electrode, and the range of sample resistances remains quite wide. Low
contact resistances in the tube-on-top configuration have been reached using
a special technique, where the nanotube is ’soldered’ to the electrodes by a
focused laser beam [22, 39].

On the contrary, depositing electrodes on top of the nanotubes typically
results in reasonably good electrical contact even without further treatment.
On disordered samples, a heat treatment in air was used prior to evaporation
of contacts, which were fabricated using Ti sticking layer, and using this
method the outcome was of quite uniform quality, with contact resistances
on the order of 1 kΩ. Measurements on samples with such low ohmic contacts
is the topic of Ch. 3.

Until now, the fabrication of tunnel junctions on carbon nanotubes has
mainly relied on tunnel junctions occurring accidentally. In P5 another ap-
proach was attempted. The idea was to use aluminum as the contact mate-
rial, and see if the formation of oxide would increase the contact resistances
over time. Even though aging of contacts was indeed observed, most of
the samples manufactured using aluminum contacts were not working in the
first place, so no definite conclusions can be drawn about the potential of
this method. A summary of the samples studied in this Thesis is given in
Table 2.1.

For electrical measurements, the silicon chip with the nanotube is glued
to a sample holder, and the measurement leads are connected using a wire
bonder. The sample is surrounded by a copper radiation shield. The sample
holder is mounted on a dilution refrigerator, which is capable of reaching a
base temperature of ∼ 100 mK. The measurement lines are filtered by ther-
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mocoax cable heat sunk at the mixing chamber. Below 4 K, the temperature
is monitored by a Matsushita resistor, calibrated against a Coulomb block-
ade thermometer [61]. At higher temperatures a calibrated diode [62] is used.
Typically both dc and ac resistance are recorded in a two-lead configuration
(Fig. 2.3).
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Figure 2.3: The measurement setup. Typically samples were measured in a
2-lead configuration. For the best results the preamplifiers have to be battery-
operated. To avoid ground loops, all the measurement electronics is floating,
and the setup is grounded via the dewar.
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Table 2.1: Summary of the samples. L refers to the length between the con-
tacts, and R295K is the 2-probe resistance at room temperature. The con-
struction method (nanotube on top (ToT) or electrodes on top (EoT)) and the
material of the contacts is given. The synthesis method is either arc-discharge
(AD) or chemical vapor deposition (CVD) method. In the last column, the
publications containing data on the sample are listed.

Sample L (µm) R295K (kΩ) contacts synthesis References
1 0.50 16.5 EoT, Ti+Au CVD [P1, P3]
4 0.38 16 EoT, Ti+Au CVD [P1]
6 1.48/1.21a 67 EoT, Ti+Au CVD [P1]
A 0.77 220b EoT, Al CVD [P4]
B 1.9 190 EoT, Al CVD [P4]
C 2.8 250 EoT, Al CVD [P4]
D 0.78 1600 EoT, Ti+Au CVD [P4]
T1 0.5 33 ToT, Au AD [P5,P9]
T2 0.3 28 ToT, Au AD [P5,P6,P8]
T3 0.6 70c ToT, Au AD [P5,P9]
T4 0.7 71 EoT, Cr+Au AD [P5,P6,P7]

aA ring-shaped nanotube.
bMeasured at 1.3 K.
cMeasured at 77 K.
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3 Transport in disordered
nanotubes

The transport in disordered samples is the subject of publications [P1-P3].
The resistivity of these tubes was estimated from 4-lead measurements to be
ρ = 30-100 kΩ/µm1. This means that the mean free path ` is very short,
only a few nanometers. The same measurements suggest that the contact
resistance RC ≤ 5 kΩ, and hence effects that are intrinsic to the nanotubes
are studied.

The electrical conductance was characterized as a function of magnetic
field, temperature and bias. The characteristics of all measured samples were
similar. The resistance increased moderately towards lower temperatures
(Fig. 3.3), magnetoresistance was negative and monotonous (Fig. 3.2), and
the differential conductance displayed a dip at zero bias (Fig. 3.1). In general,
dependence on all parameters was smooth and featureless. This is in accord
with the strong elastic scattering.

An example of a multi-probe measurement is shown in Fig. 3.1. Resis-
tances measured using several different electrode configurations are shown.
By such measurements it can be established that the resistances over dif-
ferent portions of the nanotube are completely additive. In a three-probe
sample, it is possible to extract the resistance of the middle contact (RC2 in
Fig. 3.1) by leading a current through the middle probe to one of the ends
(e. g. I2 in Fig. 3.1, I1 = 0) and measuring the voltage between the middle
probe and the other end: RC2 = (V2 − V1)/I2. Correct contact resistance is
obtained if there is no significant voltage drop across the width of the middle
electrode. Similarly, the resistance of one of the tube segments, e. g. R2−3,
can be extracted, eliminating the resistance of the central lead and contact
RC2 (but RC3 cannot be separated). As indicated by dashed line in Fig. 3.1,
the sum of these two separate measurements quite accurately reproduces the
2-probe resistance over the same segment. Thus the nanotube behaves quite

1A value on the order of 100 kΩ/µm was measured on a reactive-ion etched nanotube.
Values below 50 kΩ/µm are more typical.
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Figure 3.1: The multi-probe measurement does not give much additional in-
formation compared with the 2-probe result. The resistances are additive:
summation of multi-probe results quite accurately reproduces the two-probe
results (sums shown as dashed lines). On the right, schematic of the sample
geometry (top) and a circuit model (bottom), defining the various resistances.
In a three-probe geometry, only the contact resistance of the central probe can
be separated.

a lot like a classical resistor, and the 4-terminal measurements are of limited
value (besides extracting a number for RC). The resistivity appears indepen-
dent of the length, as the size dependent effects are cut-off by the coherence
length Lφ, which in this case is much shorter than L.

The 4-terminal measurement is not a completely reliable way to deter-
mine ρ and RC. The voltage probe does not work as it is intended, if there is
current flow in it, and thus the contact resistance cannot be completely elim-
inated. This occurs for high resistivity samples with wide voltage probes,
of width LC, when ρLC ≥ RC, and finally in the highly disordered limit,
when ρLC À RC, the difference between 2- and 4-terminal measurements
disappears. Accidentally, ballistic conductors with ideal contacts also have
this feature: 4-terminal measurements do not work there either. The reason
is different, however. In a ballistic conductor, one measures in both cases
the quantum contact resistance h/(Me2) of the ideal contacts due to finite
number M of channels [2].
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Figure 3.2: (a) Magnetoresistance of a disordered CVD nanotube at a few
different temperatures. (b) Phase coherence length extracted from the mag-
netoresistance shown in (a) (Sample 4) and from another similar set of data
(Sample 6). The dashed line is the calculated contribution of 2D e–e scatter-
ing for sample 4, and the thick solid line indicates the cross-over from weak to
strong localization in the e–e scattering picture.

3.1 Weak localization and magnetoresistance

If weak localization effect is present, the sample is in diffusive regime, and
determining Lφ gives indirect information about the degree of static disorder
in the sample. The magnitude of the correction depends on Lφ, and it satu-
rates for very short samples where L < Lφ. In 2D systems, the correction is
logarithmic: δσ ∼ −(e2/~) ln(Lφ/`) [5].

Applying a magnetic field is useful to study weak localization, as it pro-
duces a phase shift to electrons destroying the phase coherence. This gives
rise to positive magnetoconductance, which for a 2D conductor in a trans-
verse magnetic field is given by [63]

∆σ(B) =
e2

2π2~

(
ψ

(
1

2
+

~
4eBL2

φ

)
+ ln

(
4eBL2

φ

~

))
, (3.1)

where ψ is the digamma function. The measured magnetoresistance is shown
in Fig. 3.2(a). A good fit to experimental data is obtained using Eq. (3.1),
suggesting that 2D description is valid in disordered nanotubes. The dephas-
ing length Lφ, shown in Fig. 3.2(b), is obtained as a fitting parameter, and it
is consistent with the two-dimensionality assumption: Lφ is clearly smaller
than the circumference of the nanotube (πΦ ≈ 90 nm for sample 4). Also
fit to 1D theory was tested, but it gives slightly worse fit, and inconsistently
with the 1D assumption, Lφ is still found smaller than πΦ. Universal con-
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Figure 3.3: Square conductance of several samples as a function of temper-
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samples are measured twice, in different cooldowns. The resistance shifted
slightly over time, probably due to a slight change of contacts during the
thermal cycling, but temperature dependence remained similar.

ductance fluctuations were not seen in either of the samples. As Lφ is very
short, fluctuations are expected to require temperatures lower than 4.2 K,
which were not reached in this experiment.

The temperature dependence of Lφ is in many cases useful to distinguish
between different dephasing mechanisms (phonon, electron-electron or mag-
netic impurity scattering). In Fig. 3.2(b), the temperature dependence is
given by Lφ ∝ T−p/2, with p = 0.36− 0.53. This value is smaller than what
is expected for phonon scattering or electron-electron scattering [64] (the
theoretical prediction for e–e scattering case is shown in Fig. 3.2(b)). The
unexpectedly small p leaves a few likely scenarios: there can be large amount
of magnetic impurities in the material, or we are observing the break-down
of perturbation theory near the strong localization limit.

3.2 Temperature dependence of conductivity

At low temperatures, two quantum corrections are required to the classical
conductivity of a disordered conductor, weak localization and interaction cor-
rections [3, 5]. These corrections are especially important for low-dimensional
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conductors. The subject of electron-electron interactions is closely related to
weak localization, where interactions appear as one contribution to the elec-
tron dephasing, in addition to the direct impact they have on the conductivity
of the low dimensional system. In 2D conductor, the e–e interaction correc-
tion is logarithmic function of temperature, as well as the weak localization
correction.

The conductivity of several samples was measured, and in all cases it was
found roughly proportional to ln T (see Fig. 3.3). The localization correction,
proportional to the exponent p, is not large enough to account for the entire
effect. The remaining part, roughly equal in magnitude, can be assigned
to interaction effects. The magnitude of the interaction correction depends
on the Fermi liquid interaction parameter F σ

0 , characterizing the screened
Coulomb interaction [65], the value of which is not known for nanotubes.
Since the pre-factor to the logarithm appears to be similar in all samples,
according to the data in Fig. 3.3, it looks like p and F σ

0 don’t vary much
from sample to sample, in which case the square conductance should show
an universal slope.

Even though the experimental findings are in accord with the quantum
corrections due to weak localization and electron-electron interactions, there
are some complications. The square conductance for some of the samples
in Fig. 3.3 is quite low, reaching 2e2/h, and therefore they are close to the
strong localization limit, where the perturbation theory results [5, 64] no
longer apply.

Also it is questionable whether it is reasonable to think about a diffusive
conductor with ` < 1 nm: is it more likely that the resistance is located
at a few places where the tube is defective and conduction between these
scatterers is much better? According to this line of thought, the nanotube
could be modelled as an array of tunnel junctions in the strong tunneling
regime, a model for which theoretical results have been calculated [66]. Even
though G vs T can be fitted, the shortcoming of this model is that it does
not account for the magnetic field dependence.

3.3 Heating effects

When performing electrical transport experiments at low temperatures one
always has to bear in mind that the electrical current gives rise to power
dissipation, with P = RI2. Unless this extra heat is effectively transported
to the surroundings, the temperature of the system may rise considerably,
which has been directly observed in carbon nanotubes by scanning thermal
microscopy [67]. In publication [P3], the role of heating in the disordered
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nanotubes is considered by calculating the differential conductance vs voltage.
Experimentally, the conductance shows a dip around zero-bias (or peak in
resistance as in Fig. 3.1), reminiscent of the well-known tunneling anomaly,
but as it appears even in the absence of tunnel junctions, it must be accounted
for as a manifestation of electron heating. Another possible origin of the
dip is an electron-electron interaction related correction to conductivity, but
heating seems more likely.

A hot electron in the nanotube can lose its energy via scattering with
phonons, and lattice must dissipate this energy to the substrate or elec-
trodes. In a steady state, two separate regimes can be distinguished depend-
ing on the relative magnitude of the coupling between electrons/phonons and
phonons/substrate [68]. If the electron/phonon coupling is strong, which is
typically the case at room temperature, lattice temperature T0 and electron
temperature Te are practically equal and the system heats as a whole. On
the contrary, if electron-phonon scattering is weak, the electron temperature
Te may rise considerably above T0. At low temperatures electron-phonon
scattering quickly becomes weak and electron heating becomes more signifi-
cant.

In addition to electron-phonon scattering, the electron system can also
cool down via electronic thermal conduction. The nanotube is connected to
electrodes which can be considered as thermal reservoirs where the heating
is negligible, since they have much larger volume and smaller resistance than
the nanotube. Hence the ends of the nanotube remain at lattice temperature
T0 and a temperature profile is created over the nanotube (Fig. 3.4). The
one-dimensional thermal diffusion equation can be written as

π2k2
B

6e2

d

dx

(
σ(Te(x))

dT 2
e

dx

)
= −ρ(Te(x))I2 + AΣ(Te(x)5 − T 5

0 ), (3.2)

where the first term on the right gives the power generated in the nanotube
(ρ(Te) = 1/σ(Te) is the temperature-dependent resistivity of the nanotube),
and the second one gives the energy flow from electron system to phonons
[68], and Σ is the electron-phonon coupling parameter.

Several assumptions are done in this model. 1) It is necessary that a
position dependent electron temperature exists. This is the case if energy re-
laxation length Le−e, over which the thermal distribution is established [69],
is much shorter than the sample length L. 2) The electron thermal conductiv-
ity is given by the Wiedemann-Franz (WF) law. 3) The thermal resistance,
which the electrons experience at the contacts, is negligible (generalization is
possible and yields only a small change to final results as long as the thermal
resistances remain ’small’). 4) The form of the electron phonon-coupling in
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Figure 3.4: The temperature profile along the nanotube when current is passed
through it. For modelling purposes it is assumed that the temperature depen-
dent resistivity also changes along the nanotube.

Eq. (3.2) is deduced for clean metals. For disordered and/or low-dimensional
conductors, the exponent may differ from 5.

Equation (3.2) enables numerical calculation of the temperature distribu-
tion in a nanotube. To make connection with the experiment, the differential
resistance vs bias voltage must be estimated. By assuming that the resistiv-
ity (units Ω/m) is a function of the local temperature (see Fig. 3.4), and
integrating over the nanotube length, the total resistance RNT and hence the
voltage V = RNT I vs the heating current can be obtained. The differential
conductance dI/dV is calculated by numerical differentiation. The input to
such a calculation is the experimentally determined temperature dependence
of conductivity, which in this case is logarithmic (Fig. 3.5(a)). Compari-
son with experimental G–V -curves is shown in Fig. 3.5(b). At low heating
currents the electronic thermal conduction is more efficient and Te ∝ V (im-
plying that G(V ) ∝ G(T )). However, at higher bias the heating slows down
as the phonon scattering mechanism becomes more significant and Te ∝ V 2/5.

For the sample in Fig. 3.5, the fit gives Σ = 0.23 nWµm−3K−5, which
is slightly less than a typical value for metals, 1 nWµm−3K−5. The value
depends on how one chooses to calculate for the cross-sectional area A of the
nanotube. Here a circular cross-section was used. Since the conduction is
supposed to take place mainly in the outermost layer of the nanotube, the
effective volume where energy exchange can occur is actually smaller than
AL. Thus Σ is somewhat underestimated. The coupling per unit length for
this sample is AΣ = 0.15 pWµm−1K−5.

In the simulated temperature of Fig. 3.5(a) there is a cross-over from
Te ∝ V to the phonon limited case Te ∝ V 2/5, and corresponding cross-over
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Figure 3.5: (a) Maximum electron temperature in a resistive carbon nanotube
as calculated from the heating model. The lattice temperature T0 is varied
between 0.13 and 1.4 K. Inset: Zero-bias conductance vs temperature of the
nanotube. Straight line is a logarithmic least squares fit, which enters into the
simulation. (b) Conductance vs bias voltage at a few different temperatures.
The solid lines are the simulated curves, calculated from the heating model
using the fit shown in (a) for the temperature dependence of conductance. The
behavior in the absence of electron-phonon scattering is sketched as a dashed
line. The bars indicate the range of conductance modulation by a side gate at
zero bias.

is visible in the measured resistance as well (the behavior when electron-
phonon scattering is neglected is sketched as a dashed line in Fig. 3.5(b)).
One has Le−ph ' L at the cross-over. One can also estimate Le−ph at this tem-

perature: according to the theory [68] Le−ph = 1.313kB/(e
√

ρ(Te)T 3
e AΣ) ≈

240 nm (Te ∼ 3 K), which indeed is quite close to the sample length (L
= 0.5 µm). Since the scattering length appears to be this long, it is quite
understandable that the electron-phonon scattering only becomes important
at higher temperatures from the dephasing point of view.

What should the exponent n of phonon coupling term be? Experimental
data suggests that n = 5 works quite well, but also n = 4 is possible. Expo-
nent n = 5 is based on the three dimensional independent electron theory. It
may not be entirely valid for carbon nanotubes, since the phonon coupling is
probably somewhat different. There is, however, no theoretical calculations
available for nanotubes in the disordered limit.

While WF law has been shown to remain valid for weak localization
correction [70], theoretical calculations predict that it does not hold for dis-
ordered conductors, where electron-electron interaction correction is signif-
icant, and an additional interaction correction to the thermal conductivity
κ is required [71]. Applying the correction for interaction in 2D, given in
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Ref. [71], with parameters applicable to our samples, it turns out that the
error in omitting this correction is less that 5% at 1 K, so using the WF law
is a good enough approximation. The relative error increases towards lower
temperatures, with weak logarithmic temperature dependence.

Self-heating in a suspended wire has been applied as a method to ex-
tract the thermal conductivity of a conductor [72]. Basically the method
is a measurement of heating induced differential conductance change, sim-
ilar to what is done here on nanotubes. Here, however, electronic thermal
conductivity is assessed, because the temperature of the phonons is lower.
For the self-heating method to work, it is necessary that there is no other
non-linearity in the IV -characteristics, such as Coulomb blockade. If this
is not the case, then this method fails, because it cannot specify the origin
of the non-linearity. Similarly, the non-linearity of the IV -characteristics,
such as that in Fig. 3.5(b), can be taken as a demonstration that thermal
conductivity of our samples is roughly given by the Wiedemann-Franz law,
but it is not accurate enough to measure small deviations thereof.

At high currents, the temperature gradients produced by the numeri-
cal model become very steep and, as such, cannot reflect any true tem-
perature change in the carbon nanotube. In such a case it is sufficient to
neglect the gradient altogether and assume a constant temperature Te =
5
√

T 5
0 + P (Te)/ΣAL over the nanotube.
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4 Zero-bias tunneling
anomalies

The appearance of a dip in the tunneling conductance around zero bias is a
manifestation of the e–e interactions. This phenomenon has been known in
large metal-insulator-metal junctions already for a long time, and it is dis-
cussed at length in Ref. [5]. Due to the interactions, the electron system of
a diffusive electrode must relax after a tunneling event in order to accommo-
date the tunneling charge. Another related anomaly appears in ultra-small
tunnel junctions with small capacitance CT: due to charging of the junction
capacitance the tunneling of electrons with energy below the Coulomb energy
EC = e2/2CT can be completely blocked until the charge has relaxed via an
external circuit. The tunneling rate is related to the dissipation in the exter-
nal electromagnetic environment, whose effect is to damp fluctuations of the
tunnel junction charge. The theory is discussed in Ref. [73], and it is some-
times referred to as environmental quantum fluctuation theory (EQFT). In
both disorder enhanced tunneling anomalies and EQFT, tunneling between
two usual Fermi liquids is under consideration. In a strictly 1D conductor
where the ground state is a Luttinger liquid [6] instead of Fermi liquid, a third
type of anomaly is predicted to occur: the tunneling is suppressed due to the
lack of low energy excitations (quasi-particles) in a Luttinger liquid. In this
chapter, the tunneling anomaly between a MWNT and a metal electrode is
discussed, and a short note about the relevance of the Luttinger liquid model
in MWNTs is given.

The suppression of the tunneling between disordered electrodes becomes
stronger as disorder increases. This can be understood because scattering
events slow down the spreading of charge after tunneling. The effect de-
pends on the geometry of the conductors in which charge relaxation occurs.
The effective dimensionality of the conductors is determined by the Thou-
less energy for the field diffusion: E∗

Th = ~D∗/x2, where D∗ is the field
diffusion coefficient, and x is a characteristic dimension of the wire, i. e. ei-
ther thickness, width or length [74, 75]. Using plasmons in the over-damped
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case, it can be estimated that D∗ ≈ 1/rcT, where r is the resistance of
the wire and cT is the capacitance of the junction, both per unit length.
The dimension decreases by one, whenever the energy scale of the tunnel-
ing electron (either eV or kBT , whichever is larger) becomes smaller than
the Thouless energy E∗

Th corresponding to one of the sample dimensions. In
disordered nanotubes, the relevant cases are one-dimensional junctions, i. e.
when ~D∗/L2

C < ε < ~D∗/w2
eff , and zero-dimensional junctions, ε < ~D∗/L2

C.
Here LC is the length, and weff is an effective width of the junctions.

At low enough energies one arrives at the 0D limit, LC <
√
~D∗/ε = L∗Th,

where the charge spreading over the junction can be considered instanta-
neous, and the behavior is described by the EQFT. The suppression of tun-
neling is strong if the electromagnetic environment of the junction has a high
resistance Renv & RK = h/e2. On the low-Renv limit the IV -characteristics
approach linear behavior. The isolating resistance must be located close
to the junction. Experimentally, it is possible to reach complete Coulomb
blockade using an ohmic resistor [76]. More typically, isolation is provided
by another tunnel junction, and one deals with a single-electron transistor
(see Ch. 5).

4.1 1D junctions

The finite length tunnel junction between a bulky metallic electrode and a
resistive carbon nanotube can be modelled by the circuit of Fig. 4.1(b). This
model considers the nanotube as a finite length RC-transmission line with
a distributed resistance r and capacitance c, and a higher capacitance cT

in the section which is in contact with the electrodes. The model is rather
complicated, and it contains more parameters than can be unambiguously
extracted from an experiment. For a more stringent comparison between the
theory and the experiment, the number of variables needs to be reduced. The
model approaches two convenient limiting cases at very high and very low
energies: when ε À ~D∗/L2

C, the 1D tunnel junction is effectively infinite
(Fig. 4.1(c)), and when ε < ~D∗/L2

C, the junction is zero-dimensional and
the electromagnetic environment determines the tunneling conductivity (Fig.
4.1(d)). These two cases have been compared with experiments in publication
[P4].

The samples in [P4] were manufactured using CVD grown tubes. In order
to study 1D junctions over as wide energy range as possible, the contacts were
made relatively wide (0.6-1.1 µm). Therefore also the nanotubes selected for
this experiment were among the longest found in the source material (2.5-
9 µm). The inherent difficulty here is that the resistance of the nanotube
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Figure 4.1: (a) A schematic geometry of a MWNT contacted by two metallic
electrodes. (b) Corresponding circuit model of the tunnel junction between a
resistive carbon nanotube and a bulky metallic electrode. For simplicity, one
of the junctions is neglected, which is legitimate assuming that RT1 À RT2.
(c) At high energies, the junction is effectively infinitely long (L∗Th ¿ LC)
and the environment does not affect the tunneling. The environment can
be replaced by a lumped resistor RNT, or, if RNT ¿ RT, neglected entirely.
(d) At low energies the junction can be considered small (L∗Th À LC), and
replaced by a lumped element tunnel junction. The environment determines
the suppression of tunneling conductivity. (e) At even lower energies, the finite
length transmission line can be replaced by a lumped element resistor.
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Figure 4.2: Tunneling conductance vs temperature. For details of samples,
see Table 2.1. For the fits, see text.

RNT is quite large, and, as discussed in Ch. 3, it also depends on V and
T . Therefore the tunneling resistances have to be quite high, so that the
tunneling effects govern the conductivity. In [P4] this was achieved by using
aluminum as the electrode material. The tendency of Al contacts to oxidize
in air was utilized if too low RT was obtained initially.

The measured tunneling conductance of several samples is shown in Fig.
4.2(a). In comparison to the behavior in Fig. 3.3 in Sec. 3.2, the temperature
dependence is now much stronger (also the two-probe resistance of these
samples is larger than those considered in Sec. 3.2, see also Table 2.1), which
suggests that the tunnel junctions dominate the results, and it is a reasonable
first-order approximation to neglect the logarithmic corrections to RNT.

The plot in Fig. 4.2(b) shows that the tunneling conductivity is roughly
given by G ∝ exp(−

√
T0/T ). Similar results have been reported for boron-

doped MWNTs [77]. The results are compared against the theoretical cal-
culations for infinite 1D junctions [78, 79]. While in a metallic junction the
perturbative techniques of Ref. [5] have proven sufficient, the anomaly in dis-
ordered nanotubes is strong enough to call for a non-perturbative treatment.
The solid lines in Fig. 4.2(b) are calculated according to Refs. [78, 79], and
over the energy range of 0.5-100 K the agreement between theory and exper-
iment is good in all samples except for sample B, for which good fit cannot
be reached over a wide temperature range.

Both the voltage and the temperature dependence of the tunneling con-
ductivity can be fitted by the non-perturbative theory, within the experimen-
tal accuracy. However the inaccuracy in the case of voltage dependence is
considerable, because of the irregular fluctuations in the conductance. In Fig.
4.3, the GV -characteristics of two of our samples are shown, clearly illustrat-
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Figure 4.3: GV -characteristics of two of the samples of publication [P4]. The
irregular features are more clearly visible in the sample on the left, which is
typical for samples with high resistance. The dashed lines have been calculated
using the 1D tunneling theory, with the same parameters as in Fig. 4.2(b).

ing that accurate fitting of the data using a symmetric, monotonic function
is not possible. In theoretical work, such as Refs. [78, 79], it is customary to
assume the tunneling matrix element to be an energy independent constant
which is absorbed into the tunneling resistance RT. The behavior in Fig.
4.3 suggests that this assumption is not valid for disordered MWNTs. One
possibility is that the transmissions of the contacts experience resonant be-
havior due to localized states in the junction area. In addition, the detailed
structure may vary when the contacts change, e. g., due to thermal cycling.

4.2 0D junctions

In the case of a small tunnel junction, L∗Th À LC, the functional form of
the anomaly is determined by the electromagnetic environment of the junc-
tion, which is formed by the nanotube. The suitable circuit model depends
on the nanotube material. In [P4], the EQFT was applied to a disordered
nanotube using an RC-transmission line environment (Fig. 4.1(d)). In [P5],
arc-discharge tubes were analyzed using an LC-transmission line model (ob-
tained by replacing the distributed resistance r in Fig. 4.1(d) by distributed
inductance l). There is an interesting connection between the latter descrip-
tion and the Luttinger liquid model, since the excitations in a Luttinger liquid
are plasmons, which are similar to the propagating electrodynamic modes in
usual LC-transmission lines. This will be discussed in Sec. 4.3.

According to the environmental quantum fluctuation theory, conductance
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of a tunnel junction is given by [73, 80]

dI(V )

dV
=

1

RT

[
1 + 2

∫ ∞

0

dt

~β
πt

~β
Im

{
eJ(t)

} cos(eV t/~)
sinh2(πt/(~β))

]
, (4.1)

where β = 1/kBT and J(t) is the phase correlation function, related to the
circuit impedance via the fluctuation-dissipation theorem [73]:

J(t) = 2

∫ ∞

0

dω

ω

Re {Zt(ω)}
RK

{
cos(ωt)− 1

tanh(β~ω/2)
− i sin(ωt)

}
. (4.2)

The total impedance seen by the junction, Zt(ω), consists of the external
impedance in parallel with the tunnel junction capacitance CT.

Tunneling into high resistivity nanotubes

In [P4], the 0D model was applied to one sample, which did not follow the
1D theory very well (sample B in Fig. 4.2(b)). It is not completely clear
how this sample is different from all the others, but most likely one of the
contacts is actually shorter than it appears to be in the AFM images, giving
rise to the 0D behavior. The nanotube impedance was modelled by an RC-
transmission line, which is a good model for a disordered carbon nanotube.
One junction model was assumed, which is valid if the contact resistances
are highly asymmetric. As shown in Fig. 4.4(b), the 0D model gives a good
fit with reasonable set of parameters. Also a simpler circuit model, an ohmic
resistor, could have been used, as shown in Fig. 4.4(a). This model is espe-
cially straightforward to apply as an analytic expression for the integral of
Eq. (4.2) exists [80]. The fit is only slightly inferior, and it has one fitting
parameter less. The difference is quite insignificant and similar parameters
are obtained in both cases.

The temperature dependence of conductance for sample B is roughly given
by G ∝ exp(−T0/T ) at high T , which is also characteristic for a SET. Actu-
ally, when Renv ≥ RK, the conductance of a single tunnel junction in series
with a resistor behaves just like a SET as a function of temperature, in the
high temperatures range, where there is no gate modulation [80]. However, a
simple two-junction SET model is not applicable. A SET constructed using
a disordered nanotube, assuming that the junctions are located between the
electrodes and the nanotube, differs from the regular case. First of all, as
seen in the model calculation of Fig. 4.4, the nanotube resistance itself is
high enough to give rise to environmental Coulomb blockade. This should
appear as an additional suppression of conductance, which cannot be lifted
by the gate voltage. Also, the characteristics become rounded due to the
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Figure 4.4: 0D tunneling modelled by (a) a lumped resistor model (RNT =
117 kΩ, RT = 135 kΩ, and CT = 300 aF, the model is sketched in Fig. 4.1(e)),
and (b) RC-transmission line model (RNT = 90 kΩ, RT = 162 kΩ, CT = 260
aF, r = 45 kΩ/µm, and c = 240 aF/µm, see Fig. 4.1(d)). The inset shows the
fit in the case of superconducting electrodes, using the same parameters as
the main frame. The experimental data for sample B is shown as solid lines,
while the theoretical fits are shown as dashed lines.

resistive environment, and the amplitude of the gate oscillations is reduced
[73]. Returning to the RC-line description, the electromagnetic signal prop-
agates in the nanotube with velocity vpl ≈

√
ε/(~rc), and the ’event horizon’

of a junction is located a distance Lh = ~vpl/ε away, where ε is the electron
energy scale. For a typical sample, the resistivity of the nanotube completely
isolates the junctions from one another already at mV energy scale, and they
can be treated individually. Accordingly, it is not surprising that no periodic
gate modulation was observed in sample B, when voltage was applied to the
silicon substrate, functioning as a backgate.

When the resistance of the environment is very large, comparable to the
tunnel junction resistance, some part of the charge relaxation occurs through
the junction itself. The total impedance Zt(ω) needs to be corrected by
including the resistance of the junction in parallel with the environment [81].
Hence the Renv does not necessarily equal the resistance of the nanotube.
In the fit depicted in Fig. 4.4(a), Renv ≈ RNT‖RT. Actually, the voltage
dependent tunneling resistance RT(V ) should be used in parallel with RNT,
in which case the total conductivity needs to be solved self-consistently [82].
However, as the anomaly is not very sensitive to changes in Renv as long as
Renv & RK, constant RT is a reasonable first approximation.
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Figure 4.5: (a) Offset voltage Voffset = V − I/(dI/dV ). The straight lines
indicate power law behavior I ∝ V α+1. (b) GV -characteristics of sample T4
(gray line). The various traces result from random gating by the background
charge fluctuations. The theoretical line is calculated for a SET with the
parameters shown.

Tunneling into low resistivity nanotubes

Tunneling into a good quality AD nanotubes was studied in [P5]. The tun-
neling anomaly differs from the above case because the resistivity of the
nanotubes is low, and at high frequencies r is not as important as the in-
ductance: r ≤ ωl. Due to the low density of charge carriers in a nanotube,
the kinetic inductance lkin of nanotubes is much larger than the magnetic
inductance. For ballistic SWNTs 16 nH/µm has been calculated [83], but in
MWNTs the value is lower due to larger amount of channels and possibly
disorder. The impedance of a good quality nanotube, Z =

√
lkin/c ∼ 5 kΩ,

is low in comparison to typical tunnel junction resistances. Therefore one
must consider a model environment consisting of the LC-transmission line in
series with the other tunnel junction. Three regimes in conductance can be
separated as the bias voltage is varied: (1) At lowest voltages, the junctions
’see’ each other and the system becomes a SET, (2) at medium energy range,
the conductance of each junction is a power law G ∝ V α, and (3) at highest
energies the conductance approaches Ohm’s law asymptotically.

The analysis in [P5] considers the high voltage cases, (2) and (3), where
the ’local rule’ applies [73, 84], and the junctions can be considered indepen-
dent. For two junctions in series, one obtains the high-voltage asymptotic
behavior

I =
1

2RT

[
V − e

CT

+
4RK

Z

(
e

2πCT

)2
1

V

]
. (4.3)

The high frequency impedance was found to be Z = 1.3-7.7 kΩ. At medium
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voltages, when V ¿ ~/(eRCT) and T = 0 K, the IV -characteristics are
given by a power law I ∝ V 1+α (see Fig. 4.5(a)), where α = 2Z/RK. Fitting
of this power law yields an independent estimate for Z, which is found to
be consistent with the value deduced from the asymptotic fit. Using a value
c = 70 aF/µm, lkin was estimated as 0.1-4.2 nH/µm. At even lower voltages,
below the plasmon frequency ωpl = vpl/L = 1/(

√
clkinL), the assumption of

independent junctions breaks down and SET behavior is expected.

In good-quality nanotubes of finite length, one expects to see steps in the
GV -characteristics with spacing ∆V = π~/(e

√
clkinL). In most cases these

resonances are not seen, possible reasons for that being the small resistivity
that remains in the nanotube-transmission line, smearing due to the wide
contacts, or leakage of the plasmon modes to the electrodes due to too low
RT.

At the lowest temperatures the sample is expected to behave as a SET.
A comparison between sample T4 (the one with the highest resistance) and
the standard SET theory is shown in Fig. 4.5(b). The fit for this sample is
tolerable, but for the other samples this approach faces serious difficulties.
The Coulomb blockade remains weak as indicated by roughly linear behavior
in Fig. 4.5(a), and the junctions stay independent.

4.3 Is Luttinger liquid important for MWNTs?

The ground state of a 1D conductor with arbitrarily weak interactions is a
Luttinger liquid (LL). Single-walled nanotubes can be considered as quite
good realizations of the Luttinger liquid. The tunneling conductance of
SWNTs is suppressed at low energies as a power law: G ∝ V αLL or G ∝ TαLL

[36]. While in metallic SWNTs there are four conduction modes (two spins,
two bands crossing at Fermi level), in MWNTs, the number of channels
can be tens. Due to their larger diameter, the energy separation between
the transverse modes is not very large, and the tubes are typically clearly
doped [40], increasing the number of modes. When there is a large amount
of channels, the LL exponent αLL decreases as ∝ 1/

√
N [83, 85] and hence

the behavior approaches that of a Fermi liquid (in Ref. [85] N is number
of shells but it could be number of modes as well). Hence, the exponents
should be clearly smaller for MWNTs, on the order of 0.1, which is not
in line with experimental observations, which suggest similar exponents for
SWNTs (αbulk ≈ 0.3− 0.4 [36]) and MWNTs (αbulk ≈ 0.3 [49]).

The most important factor working against the LL model in MWNTs is
scattering. In the theory (see, e. g. [86]), any defects in the LL lead to a power
law suppression of conduction. As the theory is strictly one-dimensional,
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there is no way the electron can work its way around the defect. At low
enough temperatures disorder is predicted to lead to the complete suppression
of conductance. The characteristic power law is valid at high energy range
ε À ~vF/(

√
N`) [79], which for very good quality SWNTs (` ≥ 1 µm) means

T À 1 K, but for disordered MWNTs T À 300 K, and clearly the LL
model is not relevant. The conductivity in the disordered tubes should be
completely suppressed, which is not in line with experimental observations.
It is possible that, as N is large, there is considerable amount of scattering
between the transverse channels in disordered samples. Hence, these samples
are not truly 1-dimensional and LL model is not valid at any temperature. In
a recent photoemission spectroscopy study, evidence was found that the low
energy excitations in MWNTs behave as usual Fermi liquid quasi-particles
[87].

The EQFT does produce exactly the same behavior as the LL theory in
the large N limit, when both the geometrical and the quantum capacitance of
the nanotube are included in the transmission line description [88]. The LL
theory can be formulated in electrical engineering terms using transmission
line analogy for the plasmon excitations[83]. In addition to the charged mode,
there are also neutral modes which do not carry charge but can carry spin.
Comparing the supposed LL state in MWNTs and SWNTs by their respective
transmission line parameters, lkin is reduced in MWNTs due to the larger
number of modes (as found in [P5]), and, importantly, c should be larger due
to the size of the conductor and the screening provided by the other shells.
Hence the impedance Z is reduced in MWNTs, and the LL exponent α should
be small compared to SWNTs. The physics behind the anomaly is different in
LL and EQFT cases. In EQFT the power law arises as the tunneling electron
needs to exchange energy with the external transmission line to overcome the
potential barrier, while in LL model there are no single-particle states for the
electron to tunnel into. Difference between the predictions of the two models
arises at high voltages, where the Luttinger liquid theory fails to include the
Coulomb offset observed in [P5], and therefore better description is given by
the EQFT.



5 Single-electron devices and
noise

The construction and characterization of nanotube-SETs is described in pub-
lications [P6-P8]. A nanotube can make a nice island, basically because it
is small enough to have quite tiny capacitance, which is difficult to reach
via lithographic techniques. Moreover, it is a good conductor. In practice,
a nanotube may or may not give a practical or even operational device: 1)
there should not be any breaks in the nanotube, which lead to splitting of
the island into two or more sections, and 2) the RC time constant of the
nanotube should not be so large that it leads to suppression of gate mod-
ulation. The gate voltage characteristics of devices constructed using CVD
tubes do not show any regular Coulomb oscillations (see Fig. 5 in [P6]) and,
hence, they are useless as electrometers. Arc-discharge tube devices, on the
other hand, work quite well [P7,P8]. A good length for the nanotube is on
the order of 1 µm or less. Otherwise, the stray capacitance starts to suppress
the charging energy [89].

From the practical point of view, an important consideration is the noise
level of the devices, which limits their charge sensitivity. In metallic single-
electron devices, the low frequency operation is plagued by the 1/f noise,
which typically arises from either charge fluctuations in the nearby dielectric
materials, or resistance fluctuations of the tunnel junctions [90]. Background
charge fluctuations in carbon nanotube SETs were considered in publications
[P7] and [P8]. The topic of [P9] is 1/f type of noise outside the Coulomb
blockade regime, which is not arising from background charges.

In [P7], a nanotube-SET was made of two crossing nanotubes, by evap-
orating the contacts on top of the nanotubes. The lower tube acted as the
island. Because it turned out that the electrical contact between the two
tubes was very bad, it was possible to operate the upper tube as a near-by
gate electrode, which provided a larger gate capacitance than the lithograph-
ically manufactured side gate located relatively far from the nanotubes. The
characteristic diamond pattern, as seen in Fig. 5.1(a), is quite regular. The
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Figure 5.1: (a) Grayscale plot of nanotube SET conductance as a function
of gate and bias voltages. (b) The modulation of current noise (stars, left
axis) and current (solid line, right axis) vs gate voltage. The dashed line is a
guide to the eyes. The noise has maxima at the maxima of the transconduc-
tance dI/dVg. The noise minima corresponding to the minimum of current
are deeper than the local minimum at maximum of current.

most notable difference between the characteristics of our nanotube device
and typical metallic one is that the gap (see Fig. 5.1(a)) is not fully closed at
any value of Vg. The standard analysis yields junction capacitances C1 = 220
aF and C2 = 320 aF. This analysis yields the total capacitance (including
any self-capacitance), as opposed to the high-voltage tails analysis of [P5],
which gives an estimate for the junction capacitance only (CT = 110 aF), and
the self-capacitance is treated as a part of the electromagnetic environment
of the junction.

The current noise, recorded over one period of modulation as a function
of Vg, shows the highest values around the maxima of dI/dVg, indicating
that the background charge fluctuations contribute to the noise (Fig. 5.1(b)).
In addition to the gate dependent part of the 1/f noise, there is another
contribution, which increases as a function of the current, and hence the
noise is considerably higher close to the maximum of current than it is near
the minima, even though the charge sensitivity is zero in both cases.

In [P8], the nanotube-SET was constructed in the reverse order: the
electrodes were done first and AFM manipulation was employed to move the
nanotube to the desired location over the electrodes, fully detached from the
SiO2 substrate. The sample was heat treated at 700 ◦C, resulting in slight
sinking of the nanotube into the gold electrodes. The final resistance was
quite low for a SET, and the characteristics show signs of quantum-dot-like
behavior. In this sample, charge noise of 6×10−6 e/

√
Hz at f = 45 Hz was

measured, which is comparable to best metallic devices [91]. In [P7], the
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spectra were recorded at 1.3 K. The solid lines are obtained by fitting Eq.
(5.1) with a small overall 1/f background.

noise level was found not exceptional but rather typical for a SET. Charge
noise is reduced when the island is further away from any dielectric material
such as the substrate [90].

The current dependent 1/f noise, already observed in [P7], was further
studied in [P9]. The samples were prepared with the nanotubes on top of
the electrodes, which is supposed to be less susceptible to charge fluctuation
noise. In analogy to the usual oxide tunnel junction devices, resistance fluc-
tuations of the contacts are a likely origin of 1/f noise. Another possibility
is that the resistance of the nanotube itself fluctuates. While in metallic
devices the tunnel barrier is well-defined, in carbon nanotubes the micro-
scopic structure of the tunnel barrier is not really known. In the light of the
accidental nature of the tunnel junctions, it is not that surprising that the
quality of these contacts varies a lot from sample to sample and they may
be extremely noisy. The current noise of several samples as a function of
temperature is shown in Fig. 5.2(a) [P9]. The range of noise levels found in
the samples is wide. Notably, the noisiest sample has one very short contact
and is also partly touching the substrate. The noise power was observed to
decrease by a factor 10-100 going from room temperature to 4.2 K.

At low temperatures, the current noise spectra (Fig. 5.2(b)) were no
longer of simple 1/fα-type, but were observed to consist of a sum of Lorentzian
line shapes

SI = I2
∑

i

S
(i)
L τi

1 + 4π2τ 2
i f 2

, (5.1)
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where each Lorentzian is characterized by an effective lifetime τi and an
amplitude S

(i)
L . The details are different for each sample and asymmetric

with respect to the bias direction. The power spectrum of Eq. (5.1) arises
from a noise signal which shows fluctuations between two current states.
The analysis in [P9] has shown that these fluctuations can be on the order of
∆R ∼ 1 kΩ, which is not likely to arise from the nanotube itself, but suggests
that the contacts most likely dominate the measured noise, and the intrinsic
noise behavior of the nanotube is not observed.



6 Discussion

In this Thesis, electronic transport in CVD grown carbon nanotubes is char-
acterized in detail, and tunneling between metallic electrodes and carbon
nanotubes is studied in both disordered and relatively clean samples. The
disordered regime has not been studied in this extent before.

The separation of the intrinsic nanotube properties from tunneling phe-
nomena originating at the contacts is tricky in good-quality (ballistic) nan-
otubes, as well as in disordered nanotubes. In this Thesis work, the best
effort has been made to study the physics of intrinsic and contact-dominated
transport separately. Nevertheless, in transport studies even a few kilo-ohms
of resistance in contacts will give rise to tunneling effects of strong tunnel-
ing character, and in the opposing case of the high resistance tunnel junc-
tions, the temperature-dependent change of the nanotube resistance cannot
be completely eliminated. Four-lead measurements are ineffective in solving
this issue. Despite these difficulties, the main characteristics of each case
have been observed and analyzed, and the inherent complexity of the system
only affects the accuracy of the analysis.

The work in this Thesis covers most aspects of the effect of strong disorder
on electrical transport in nanotubes. The pointers that indicate that strong
disorder exists include (1) smooth G–V characteristics at low temperatures,
(2) weak negative magnetoresistance, (3) logarithmic (ohmic contacts) or
exp(−

√
T0/T ) (tunnel junctions) suppression of conductivity, and, of course,

(4) very high 4-lead resistivity. Observation of these signs in any particular
batch of nanotubes should be taken as a sign that the level of disorder is
high.

The tunneling conductivity in good quality samples was measured and
analyzed in terms of the environmental quantum fluctuation theory. The
conclusions have been later1 confirmed by several other groups [49, 51, 52],
and they can be considered as well-established. The measurements on dis-
ordered samples, on the other hand, possess some novelty and constitute a

1The manuscript of [P5] was originally submitted to Phys. Rev. Lett. on Nov. 27,
2000.
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way to experimentally verify the recent theoretical calculation beyond first
order [78, 79], which have been tested experimentally to a lesser degree [77].

Nanotube-SETs constructed using nanotubes of varying quality and dif-
ferent geometries were studied. Both poor quality nanotubes and contacts
can cause quite a lot of trouble when attempting to construct nanotube de-
vices. In nanotube SETs, the ill-defined, accidental nature of the tunnel
junctions can give rise to a large amount of 1/f noise at audio frequencies
and some unexpected contact phenomena. An initial attempt to construct
better defined tunnel junctions was made, using traditional aluminum oxide
barrier, but no improvement was found.

Generally, considerable amount of research effort has been invested in the
study of electrical transport in multiwalled carbon nanotubes. Even though
the results of different experiments vary, which may seem controversial at
first glance, in the light of the widely ranging quality of the material it is
quite understandable that transport experiments reflect this variety. To put
the potential of the nanotube material into use, it is quite important that
the quality of the nanotubes is known and good enough for the purpose at
hand. Also the manufacture of the samples has to be controlled and reliable,
so that repeatable result can be obtained.
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