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Abstract.

We have studied the temperature dependence of escape phenomena in various

underdamped Josephson junctions. The junctions had different Josephson coupling

energies EJ which were relatively small, but larger than the charging energy EC . Upon

increasing temperature T , we first observe the usual crossover between macroscopic

quantum tunnelling and thermally activated (TA) behavior at temperatures kBT ∼
~ωp, where ωp is the plasma frequency of the junction. Increasing T further, the

width of the switching current distribution has, counter-intuitively, a non-monotonic

temperature dependence. This can be explained by the novel cross-over from TA

behavior to underdamped phase diffusion. We show that this cross-over is expected

to occur at temperatures such that kBT ∼ EJ(1 − 4/πQ)3/2, where Q is the quality

factor of the junction at the plasma frequency, in agreement with experiment. Our

findings can be compared with detailed model calculations which take into account

dissipation and level quantization in a metastable well.

Particular attention is paid to the sample with the smallest EJ , which shows

extensive phase diffusion even at the lowest temperatures. This sample consists of

a dc-SQUID and a single Josephson junction close to each other, such that the SQUID

acts as a tunable inductive protection for the single junction from fluctuations of a

dissipative environment. By varying the flux through the dc-SQUID we present, for

the first time, experimental evidence of the escape of a Josephson junction from the

phase diffusion regime to the free running state in a tunable environment. We also

show that in the zero voltage state the losses mainly occur at frequencies near the

plasma resonance.
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1. Introduction

In quantum computing one needs, besides a quantum bit, also a way to measure

the quantum state of the system. Recently in many superconducting quantum bit

experiments the hysteretic Josephson junction (JJ) escaping from its zero voltage

state has successfully been used in the detection of the quantum state [1, 2]. In

these applications a hysteretic JJ is also providing inductive protection against phase

fluctuations. Escape measurements also enable one to perform conventional large

bandwidth current measurements with extensive statistical averaging, and recently there

have been proposals to use escape measurements as classical ammeters for studying

phenomena like shot-noise [3, 4, 5]. For many purposes it may be advantageous to reduce

the critical current Ic of the detecting junction in order to increase the measurement

sensivity. Yet the physics governing escape phenomena of small Ic junctions, i.e.,

junctions where the thermal energy kBT is of the order of the Josephson coupling energy

EJ = ~

2e
Ic, ultimately differs from those with larger Ic, and this sets a limit on how far

one can reduce Ic still maintaining the useful features of the detector [6, 7, 8]. In the

present work we have investigated experimentally in this limit the phase dynamics in
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Figure 1. In the RCSJ-model the real Josephson junction (a) is modeled by an ideal

junction, which has capacitance and dissipative shunting impedance in parallel (b).

Normally the dissipative environment is strongly frequency dependent and the model

presented in Fig. (c) is more realistic.

underdamped Josephson junctions and dc SQUIDs. Studied samples were either in the

weak Josephson coupling regime with small Ic or in the intermediate regime between

”standard” strong coupling junctions (EJ � kBT ) and the junctions with weak coupling.

We will see that in this intermediate regime the usual escape from a single metastable

state and the underdamped phase diffusion both play a role.

2. Josephson junction

2.1. RCSJ-model

Josephson junction is a weak link (e.g. tunnel junction) between two superconducting

electrodes. It can be characterized by its coupling energy EJ = Φ0

2π
Ic, charging energy

EC = e2/2CJ , and dissipation R(ω) = 1/Re {Y (ω)}. Here CJ is the capacitance of the

junction and Φ0 = h/2e is the flux quantum. The dynamics of a JJ can be described by

the resistively and capacitively shunted junction model (RSCJ) presented in Fig. 1 (b).

In this model the junction capacitance and dissipative resistor are in parallel with an

ideal Josephson junction. This leads to the model where a fictive phase particle of mass

m = ~
2/8EC whose position is given by the difference of the superconducting phase

of the junction, ϕ, resides in a tilted cosine potential U(ϕ) = −EJ (cosϕ + I/Ic ϕ)

schematically presented in Fig. 2. The motion of ϕ is also affected by viscous drag

( ~

2e
)2 1/R(ω) dϕ

dt
= EJ

ωpQ
dϕ
dt

[9]. Here Q(ω) = ωpR(ω)CJ is the quality factor of the

junction, and ωp =
√

d2U/dϕ2

m
= ω0

p q
1/2
0 = 1

~

√
8EJEC q

1/2
0 is the plasma frequency,

i.e., the angular frequency of small oscillations around the metastable minimum of the

potential and q0
∼=

√

2(1 − I/Ic) at currents close to Ic (ω0
p is the plasma frequency

at zero bias). When the biasing current is close to the critical value, the potential

is well approximated by the cubic form U(q) = 3 ∆U (q/q0)
2(1 − 2

3
q/q0), where

q = ϕ/2 − π
4

+ 1
2
q0, and ∆U = 2

3
EJ q3

0 is the height of the potential barrier.
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The dynamics of the Josephson junction can be either overdamped (Q < 1) or

underdamped (Q > 1). In the underdamped dynamics the IV -characteristic of the

junction is hysteretic: with increasing current the voltage will jump abruptly from zero

to V ≈ 2∆BCS/e at I = Isw < Ic. Here ∆BCS is the superconducting gap. On the

contrary, in the case Q < 1 the IV -characteristic is non-hysteretic and the voltage

increases continuously.

2.2. The dynamics of the underdamped Josephson junction

Figure 2 presents schematically the dynamics of a hysteretic Josephson junction. The

upper inset shows an example of a measured IV -characteristic and in the main frame we

present the corresponding dynamics of the phase particle in the tilted cosine potential.

There are two distinguishable states of the system: the superconducting S-state and

the high voltage N-state. In the first one the phase has constant average value and the

voltage across the junction is close to zero. With increasing current the phase particle

will escape from the metastable S-state and switch to the second state, where the phase

is running freely. In this N-state the voltage is about twice the superconducting gap

(2∆BCS≈ 360 µV for aluminum). Escape is fully a stochastic phenomenon and the

value of the switching current changes from current sweep to another. With decreasing

current, the dissipation is slowing down the phase particle and at I = Ir it will be

relocalized again to the S-state. This retrapping current Ir differs from that of escaping

and it strongly depends on dissipation.

Phase particle can escape from a metastable well in the S-state either via thermal

activation (TA) over, or quantum tunnelling (MQT) through the barrier. For strong

coupling junctions (~ωp � ∆U) we can assume that there is a continuum of levels within

a metastable potential well, which leads to the thermal activation rate

ΓTA = at
ωp

2π
e
−

∆U
kBT , (1)

where ∆U is the height of the potential barrier [10] and at is the dissipation dependent

prefactor, which is of the order of unity with typical experimental parameters [11]. The

tunnelling rate out of the bottom of the potential well can be calculated using standard

WKB approximations leading to [10]

ΓMQT = aMQT
ωp

2π
e−B. (2)

where aMQT = A0 [1 + 2.86α + O(α2)] with A0 = 12
√

6π
√

∆U
~ωp

and B = B0 [1 + 1.74α +

O(α2)] with B0 = 36
5

∆U
~ωp

[12, 13]. The dissipation is described by α = 1/2Q. The total

escape rate can be approximated by ΓTOT (I) ' ΓMQT (I) + ΓTA(I) and the total escape

probability in the time interval 0 ≤ t ≤ τ can be written as P = 1 − e−
� τ

0
ΓTOT [I(t)]dt.

The two conventional methods to investigate escape dynamics are as follows: 1.

by ramping biasing current through the junction and by measuring the distribution

of the switching currents, or 2. by measuring escape rate directly at different values

of the bias current. Escape rates per unit time can be determined via the escape
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Figure 2. Dynamics of a hysteretic Josephson junction. The top frame presents

an example of a measured IV -characteristic. In the superconducting state (S-state)

the phase mainly oscillates in the well and the average voltage is close to zero. The

phase particle can escape from well either by thermal activation (TA) or macroscopic

quantum tunnelling (MQT) and the system switches to the free running state (N-

state). In the N-state the voltage across the junction is approximately twice the

superconducting gap (2∆Al ≈ 360 µV). The escaping is stochastic process and by

sweeping the current repeatedly one can measure the distribution of the switching

currents (inset in the IV -characteristic figure). In this work we used a pulse technique,

which yields the integral of this distribution directly.

probability in a measurement with a set of current pulses with fixed amplitude and

duration, determining the statistical probability of junction to switch into a high voltage

free running state. Usually one is measuring the switching probability as a function of

current pulse amplitude P (I), which yields cumulative histograms of switching currents

(see Fig. 8).

2.3. The effects due to frequency dependent Q

In a typical experimental setup the junction is also capacitively shunted by the stray

capacitance of, e.g., the leads, besides by the junction capacitance. A more realistic

equivalent circuit of the junction is thus that presented in Fig. 1 (c) instead of the

simple RCSJ-model of (b). At low frequencies the dissipation is mostly determined

by the junction subgap resistance, which is usually of the order of 1 MΩ, but at high

frequencies, e.g., at ωp, the impedance is typically small because Cs is a short and Rs

is small. In the S-state the phase mainly oscillates in a well at plasma frequency and

it may transit from a well to another in a time which is of the order of the inverse

plasma frequency. The dissipation is thus characterized by R(ωp) in this case. Without
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specially designed environmental circuit this high frequency dissipation is usually of the

order of vacuum impedance Z0 =
√

µ0/ε0 ≈ 377 Ω. Yet after transition into the N-

state the dominant part of dissipation takes place at low frequencies. Thus the junction

can have very large Q at low frequencies with very small retrapping current, yet in the

supercurrent branch the junction can be overdamped [14, 15].

2.4. dc-SQUID

A dc-SQUID consists of a superconducting loop and two weak links. In the limit of small

loop inductance Lloop (βL ≡ 2πLloopIc

Φ0
� 1 [9]), the potential energy of the dc-SQUID

can be written as

UJ(γ) = EJ

√

2(1 + δ2) + 2(1 − δ2)cos(
2πΦ

Φ0

) cos(γ), (3)

where γ is the phase across the dc-SQUID, Φ is the magnetic flux through the

loop and δ determines the asymmetry of the dc-SQUID (EJ1,J2 = EJ(1 ± δ)).

The supercurrent (Isc = 2e
~

∂UJ/∂γ) can in this case be written as I =

I0
c

√

2(1 + δ2) + 2(1 − δ2)cos(2πΦ
Φ0

) sin(γ). Hereafter we will consider δ = 0. Then we

can write I = Icsin(γ), where Ic = 2I0
c | cos(πΦ/Φ0) |. The potential energy of the

dc-SQUID has also an inductive contribution due to the inductance of the dc-SQUID

loop. However if the Josephson inductance LJ = Φ0/2πIc is much larger than the loop

inductance (βL � 1), this term is not affecting the dynamics and we can neglect it

[16]. In an ideal case the dc-SQUID is a tunable single junction with maximum critical

current twice that of one junction in the loop (δ = 0). Both our dc-SQUIDs are in the

βL � 1 limit.

2.5. Current threshold detection using Josephson junctions

Schematical examples of circuits used in a current threshold detection are presented

in Fig. 3 (a) and (b). In these set-ups, the goal is to measure the current induced

by a generic current source. This current is called Ix. The thick blue lines indicate

the superconducting parts of the circuits and the principle difference between circuits

shown in (a) and (b) is that the circuit in (a) can be used for measuring currents

induced by externally biased circuits in contrast to (b), where the measured circuit is

purely inductively shunted and it can be used for measuring a persistent supercurrent.

The circuit presented in Fig. 3 (a) can be used in a conventional current measurement

and it has also been proposed to be used, e.g., in measurements of shot-noise [3, 4, 5].

In these measurements the JJ is providing the way to perform large bandwidth current

measurements with extensive statistical averaging. The scheme presented in Fig. 3 (b)

is similar to what has been used, e.g., in the ”Quantronium” experiment [1, 17, 18], but

the circuit has also been proposed for measurements of quantum errors in Cooper pair

pumping [19].

In both examples, (a) and (b), the measured current Ix runs in parellel with

biasing current Ibias through the measuring junction (or a dc-SQUID as in Fig. 3). A
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Figure 3. Schematical examples of current threshold detection using Josephson

junctions or dc-SQUIDs. Ix is the current to be measured and Ibias is the biasing

current. The thick blue lines indicate the superconducting parts of the circuit which

measures Ix. (a) Circuit for a classical current probing. (b) Circuit for inductively

shunted current measurements (e.g. Josephson junction circuits). (c) The schematic

of the cosine potential at different values of current through the junction.

direct measurement can be obtained by measuring the corresponding change in escape

probability for a constant Ibias. From this change Ix can be extracted. However the

working point of the detector is not constant in this measurement, which can induce an

error. A second measurement method is to regulate Ibias in order to keep the escape

probability equal in the absence and in the presence of the signal to be measured. The

current through the measuring junction is then equal in the two cases and loading

errors, e.g., the change of the Josephson inductance and superconducting phase, can be

neglected. Ix is then directly given by the variation of Ibias.

The sensitivity of the current threshold detection with constant bias current pulses

can be defined as S = dP/dI (the derivative of the cumulative histogram). In current

measurements the resolution is δI = δP/S. With TA and MQT models the maximum

of the sensitivity is reached with the current pulse amplitude, which corresponds

approximately to the 70 % escape probability. In Fig. 4 we present the maximum

sensitivity as a function of the critical current and capacitance, calculated by using TA

and MQT models. We have not taken into account the small effect of dissipation. A

single Josephson junction with fixed oxidation parameters is covering only a line on

the (Ic, C) -plane in Fig. 4 with an almost constant sensitivity. For typical oxidation
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Figure 4. The maximum current sensitivity of an escape junction as a function

of junction capacitance and critical current at T = 25 mK calculated by using a

combination of TA and MQT models. The effects of dissipation have not been taken

into account. The red region indicates the regime for a single Al-AlOx-Al tunnel

junction with typical oxidation parameters resulting in 1 kΩ(µm)2 and 50 fF/(µm)2

specific resistance and capacitance, respectively.

parameters of Al-AlOx-Al junctions this is presented as a red region. We have used the

values 1 kΩ(µm)2 and 50 fF/(µm)2. By decreasing junction area, both critical current

and junction capacitance are decreasing. However the sensitivity (dP/dI)max remains

fixed. Therefore it is beneficial to use a dc-SQUID configuration instead, where one can

tune the critical current and capacitance independently and thus increase sensitivity

remarkably.

The number of switching events is binomially distributed, whereby we find that the

standard deviation of the measured escape probability is

δP =

√

P (1 − P )√
Ntot

, (4)

where P is the measured escape probability and Ntot is the total number of current

pulses on the measurement. The maximum of dP occurs at P = 0.5 and it vanishes

at P = 0 and at P = 1. The current resolution is thus not the best at the current

value where the maximum sensitivity is reached, but at a probability, which is a slightly

higher instead (P ' 0.8).
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Table 1. The parameters of the measured samples. Both the critical current Ic

(Ambegaokar-Baratoff value calculated from the normal state resistance [9]) and the

sample capacitance CJ [calculated based on the junction area and 50 fF/(µm)2] are

given for the whole tunable circuit in case of dc-SQUID samples.

sample Rn (kΩ) Ic (nA) EJ (K) CJ (fF) ω0
p/2π (GHz)

intermediate coupling

SQ1 1.3 199 4.6 100 12.2

JJ1 0.41 630 14.5 130 19.0

weak coupling

SQJJ

single junction 11.6 23.4 0.53 30 7.5

dc-SQUID 3.8 74.5 1.7 50 10.5

3. Experimental details and measured samples

The parameters of the measured samples are presented in Table 1. All the measured

samples were made out of aluminum and they were fabricated using standard electron

beam lithography and aluminum metallization in a UHV evaporator. The AlOx tunnel

barriers were formed by basic room temperature oxidation.

We report on measurements of three different samples: two with intermediate

coupling energy (EJ > kBT ) and one with small coupling (EJ ' kBT ). Sample SQ1 has

a conventional dc-SQUID geometry, which consists of two wide superconducting planes

connected with two short superconducting lines with tunnel junctions in the middle

forming the dc-SQUID loop of area 20 × 39 (µm)2 (see Fig. 5). The purpose of wide

planes was to reduce loop inductance, and the measured value was around 120 pH, which

was small as compared to the calculated Josephson inductance (LJ = Φ0/2πIc = 3.2 nH

per junction). The dc-SQUID sample can thus indeed be considered as a single

Josephson junction, whose Ic can be tuned. The loop inductance was estimated from

the measured resonant voltage determined by CJ and loop inductance [20]. Sample JJ1,

also with intermediate Josephson coupling, was a single junction between long inductive

biasing lines.

The schematic of the sample with low coupling energy, SQJJ, is presented in Fig.

10. The sample consists of a single tunnel junction, a dc-SQUID and a long inductive

line connected together in the middle. We assumed that the dc-SQUID is providing the

tunable environment for the single junction. The distance between a dc-SQUID and a

single junction was approximately 100 µm and a long inductive line was connected in

between for separate biasing. The length of the line was around 2.5 mm leading to an

inductance of ∼ lµ0 ≈ 3 nH.

The schematic of the experimental setup is presented in Fig. 5. Measurements

were done in dilution refrigerators with minimum temperatures around 20 - 30 mK. The

refrigerators were equipped with strongly filtered lines (Thermocoax R© and π-filters).
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Switching probabilities have been measured by applying a set of short trapezoidal

current pulses through the sample and by measuring the number of resulting voltage

pulses. The statistical switching probability is thus simply P = #V pulses / #Ipulses.

Current pulses were created by applying voltage pulses either from the PC data

aqcuisition card or from Agilent 33220A function generator through a large (100 kΩ

-10 MΩ) resistor. Voltage across the sample was amplified and recorded by using the

same data aqcuisition card. The normal delay time between current pulses was 500

µs, and it was measured to be long enough for cooling the sample after the dissipative

switching event. For reducing flux noise we have used both superconducting lead and

low temperature µ-metal shields in 4 K helium bath.

At the sample stage we used low pass RC-filters (surface mount components near

the sample) as presented in Fig. 5. We use 4-wire configuration in all measurements,

and thus there were 2 RC-filters connected to each electrode of the samples. In

the measurements on a samples JJ1 and SQJJ we used surface mount capacitors

(Cs = 680 pF), but in the measurements on sample SQ1 we had π-filters in series

with resistors, with Cs ∼ 5 nF capacitance to ground. The resistors were Rs = 500 Ω

in the measurements on SQ1 and 680 Ω in the measurement on samples JJ1 and SQJJ.

The sample was connected to filters by ultrasonic bonding. The inductance of the

bonding wires is of the order of nH, but the accurate value is not known. The agreement

between theory and experiments (descibed below) is good by assuming that the inductive

reactance is negligible at frequencies close to plasma frequency (fp = ωp/2π = 1−10 GHz

with current bias, see Table 1).

I

Ls sRLs Cs

Cs

Cs

V
10 mm Cs

sRsR

sR

LsLs

1mm

Figure 5. The schematic of the experimental setup for escape measurements and

the electron micrograph of sample SQ1. The lower right corner of the figure presents

the close-up of the tunnel junction. We use RC-filters at the sample stage. In the

measurements on samples JJ and SQJJ the resistors close to sample RS were 681 Ω

and the value of the shunting capacitors CS was 681 fF. In the measurements on a

sample SQ1 we have RS = 500 Ω and CS ≈ 5 nF. In the case of sample SQ1 we also

had a 20 kΩ resistor in parellel with voltage amplifier, to speed up the retrapping.
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4. Josephson junctions with intermediate coupling

With decreasing critical current, the simple picture based on TA and MQT to

explain the switching from the zero-voltage S-state to the free running N-state fails

when EJ is comparable to ~ωp or kBT [21]. The first condition is due to the

small number of quantized energy levels inside the well in this limit and thus the

continuum approximation is not valid anymore. The latter one is explained by a

change in the escape dynamics due to dissipation effects. Typically for a 500 Ω

environmental impedance these effects occur for EJ ≤ 10kBT which defines the condition

of intermediate coupling.

4.1. Phase diffusion regime

In the S-state the voltage across the junction is not necessarily exactly zero, because

phase can have 2π-slips, which causes a small average voltage across the junction. This

phase diffusion is a dissipative process and therefore it can be harmful in applications

where the junction is used e.g. as a quantum state detector.
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Figure 6. The different operation regimes of a small Josephson junction [21]. The

thick black line shows the cross-over temperature between thermal activation and

macroscopic quantum tunnelling regimes. The white area shows the regime where the

conventional escape into a resistive state dominates (with current pulses of ∼ 100 µs

length and with ∼ 500 Ω shunting impedance). Inset: The cosine potential. The

dynamics inside a well (upper well) and the schematic dynamics after leaving the

upper well.
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When critical current is decreasing, dissipation is starting to play a more important

role. The quality factor which is proportional to
√

EJ is decreasing with decreasing EJ .

On the other hand the escape rate is significant in the range of currents where the barrier

height is comparable to the thermal energy. For strong coupling junctions, EJ � kBT ,

this is the case when the bias current is only slightly below the critical current, but

for small junctions this rate can be large even without tilting the cosine potential at

all (I/Ic=0). At small critical currents the successive barrier tops are thus close in

energy after escaping. If escape occurs at small enough currents, there is a non-zero

probability that it will be followed by immediate relocalization to the next minimum

due to dissipation. In this process the phase is diffusing from one well to another even

though the junction can be underdamped and thus hysteretic. The maximum biasing

current when this diffusion occurs can be given as [21]

Im =
4

πQ
IC , (5)

where the value of Q corresponds to damping at plasma frequency ωp. Below Im the

phase can be localized again and the voltage rise per one escape event is negligibly small

and we are not able to count these events in a switching probability measurement, nor

can we measure the average voltage due to these rare 2π phase-slip events.

The behaviour of the junction at a different values of EJ and T is described by

the phase diagram of Fig. 6. The white area describes the region, where switching to

the N-state after escaping is certain and thus the measurements of the escape dynamics

are possible. The shaded area in this figure presents the phase diffusion regime, where

escaping does not necessarily lead to a transition into the running state with 100 µs

current pulses and with 500 Ω environmental impedance (CJ= 100 fF). This area is here

divided in two different regimes: to underdamped (Q > 1) and overdamped (Q < 1)

phase diffusion regimes. In contrast to underdamped phase diffusion (UPD), where the

phase has to localize in the succeeding minimum, in overdamped phase diffusion regime

the phase can slide down the potential with almost constant velocity.

4.2. Energy level quantization

For low lying energy levels the potential is close to the harmonic one and the level

energies are En ≈ ~ωp (n + 1
2
). The number of quantized energy levels inside the

potential well can be approximated by N =
√

EJ/2Ec (1 − I/Ic)
5/8. For example in

a 1 (µm)2 Al-AlOx-Al junction with usual oxidation parameters there are of the order

of 10 levels at zero bias and this number is decreasing strongly with increasing bias

current. In this case the basic continuum approximations do not hold anymore and

more adequate models should be used. We take into account level quantization using

the model of Larkin and Ovchinnikov [22, 23]. The scheme of the model is presented

in Fig. 7. This semiclassical model takes into account the influence of the shape of the

potential.

The total escape probability is calculated using Pesc(τ) = 1−
∑

k ρk(τ), where ρk(τ)



CONTENTS 13

g0,1/1,0

gn-1,n/n,n-1

E

G

G

G

E

E

0
1

W

E g1,2/2,1

G
2

n

0

1

2

n

j

U
(j

)

Figure 7. The dynamics inside a well. The model takes into account the

anharmonicity of the potential. The model of the dynamics considers the transitions

between the nearest neighbouring levels and the escape out of these levels.

is the probability of finding the particle in level k after the current pulse of length τ . The

kinetic equation of the phase particle can be written as dρk

dt
=

∑

j(γkjρj −γjkρk)−Γkρk.

Due to the nearly parabolic shape of the potential the model takes into account only

the transitions γkj between the nearest neighbouring levels and the tunnelling out, Γk.

The relaxation rate between levels j and (j − 1) are well approximated by equation

γj−1,j = jωp/4Q. We also assume detailed balance: γj,j−1=e−β(Ej−Ej−1)γj−1,j. The

positions and escape rates are calculated using the results in Ref. [22].

For calculating the full dynamics properly, nonlocalized states above (but close to)

the barrier top must be included in the model as well. Actually, also the states just

below the barrier (E > ∆U − 0.4~ωp) must be calculated in a similar manner. The

expressions for calculating the shape of these broad levels is given in the Ref. [22].

The final state ρ ≡ [ρ1 ρ2 . . . ρk] is calculated by numerically integrating the

equation N(τ) = 1
τ

∫ τ

0
eA(t)N(0)dt, where

A =











−(γ0,1 + Γ0) γ1,0

γ0,1 −(γ1,0 + γ1,2 + Γ1) γ2,1

γ1,2
. . . γn,(n−1)

γ(n−1),n −(γn,(n−1) + Γn)











(6)

is the tridiagonal transition matrix including all the transition elements. The current

bias is set to zero in the beginning, and the initial state ρ(0) is Boltzmann distributed.

The possibility that the phase particle can relocalize in the succeeding well after

tunnelling must be taken into account in the model as well. The dissipated energy

in transition from one well to another can be approximated by Ed ≈ 8EJ/Q and by

using that and the fact that the energy difference between the two successive maxima
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is −2πEJI/Ic, we can write that the level energy E must fulfill the condition

∆U − E < EJ (2πI/Ic − 8/Q) (7)

to secure switching into the N-state. If condition (7) is not fulfilled, tunneling rate at

that energy level is set to zero in the model. This means that in the next well the

thermal distribution is reached immediately. With the low Q values in the experiment,

the phase relaxes in the next well in a time ∼ ω−1
p ∼ 100 ps, which is far shorter than

the typical time interval between phase diffusion events with studied current bias values

(10...100 µs), and the assumptions of zero tunnelling rate and immediate recovery to

the Boltzmann distribution in the next well are thus valid. Note that Eq. (7) gives

the same threshold as Eq. (5) for the special case ∆U = E, but in Eq. (7) we have

taken into account the fact that after tunnelling the energy of the phase particle is not

necessarily that at the potential maximum.

4.3. Results

In Fig. 8 we present the measured cumulative switching histograms (open circles) of

sample SQ1 at different fluxes and temperatures. If we assume that the two junctions

in the dc-SQUID are identical, we can infer that the corresponding critical currents

at the lowest temperature are Ic(Φ) = 200 nA, 128 nA and 55 nA, at Φ/Φ0 = 0, 0.28

and 0.41 respectively. The measurements were done both at the negative and positive

values of flux in order to make sure that the external flux did not change during the

measurements. The number of repetitions was 104 and the length of the current pulses

was 200 µs. In the measurement of sample JJ1 we use 10 ms current pulses and the

number of repetitions was 200.

4.3.1. The different operation regimes of samples In Figs. 9 (a) and (b) we show

measured histogram positions I50% [P (I50%) ≡ 0.5] and widths ∆I (≡ I90% − I10%) of

samples SQ1 and JJ1. The position is normalized by the corresponding critical current.

We also present the results of the basic TA and MQT model simulations. The weak

effect of dissipation on MQT and TA rates was not included in the simulations. At low T

all the measured data are consistent with MQT results. On increasing the temperature

the parameters are constant up to the estimated cross-over temperature T0. Above this

the width is increasing and the position is moving down as TA model predicts. The

qualitative agreement is good for most of the results up to a temperature, which we

denote TD. At TD ∆I starts to decrease abruptly and the position of the histogram

saturates. The dc-SQUID data measured at Φ = ±0.41Φ0 are not following the simple

theory even at low temperatures, since TD ≤ 30 mK in this case.

In the diagram of Fig. 6 we also present the critical current of SQ1 at fluxes 0,

±0.28Φ0 and ±0.41Φ0 by horizontal dashed lines. The phase diagram was calculated

assuming a realistic shunting impedance R(ωp) ' 500 Ω (the value of the surface mount

resistors). It can be seen that the intersections of the dashed lines and the boundary of

the phase diffusion regime are very close to the experimentally determined temperatures
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TD. The cross-over from thermal escape into underdamped phase diffusion regime is thus

causing the re-entrant steepness of the histograms.

At the temperature TD the position of the sample SQ1 histograms is saturating at

about the same value I ' 0.35Ic at all magnetic fluxes (JJ1 at I ' 0.3Ic). If we assume

R(ωp) ' 500 Ω, we obtain Q ≈ 4 (Ic = 200 nA and CJ = 100 fF), which yields indeed
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179

162

132 mK

38

50
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113
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Figure 8. Cumulative histograms of the dc-SQUID at different temperatures. The

rightmost curves are measured at zero field and in the left and in the middle we present

histograms measured at 0.41Φ0 and 0.28Φ0 respectively. The curves are shifted for

clarity and the vertical spacing between ticks corresponds to escape probability of

unity. Solid red lines are from simulations based on Larkin and Ovchinnikov model

[22, 23] described in the text and black dotted lines show the results of the basic model

where MQT and TA rates are added together. Inset: The blue squares and red circles

are the fitted quality factors at different temperatures at zero flux and Φ = 0.28Φ0,

respectively. The number of repetitions at each current, Ntot, was 104 and the length

of the current pulses was 200 µs.
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Im ' 0.35Ic through Eq. (5) like in the experiment. In the case of a single junction

R(ωp) ' 681 Ω gives Q ≈ 13 yielding Im ≈ 0.1 Ic instead of the measured 0.3 Ic. The

latter current would rather correspond to R(ωp) ' 230 Ω giving Q ≈ 4 and an estimated

TD = 700 mK which is consistent with the measurements.

In chapter 2.4 we discussed the sensitivity of the Josephson junction threshold

detection characterized by the steepness of the cumulative histograms. In the

underdamped phase diffusion regime, however, the re-entrant steepness is due to missed

escape events and relocalisation, and it might be harmful in some detector applications,

where dissipation is to be avoided.

4.3.2. The effects due to finite number of quantized energy levels In Fig. 8 we present

results of both the simulations with quantized energy levels (QEL) and dissipation (solid

red lines) and with basic TA-MQT model (dotted line). The results of the TA-MQT

model are presented only for data measured at zero flux. Figure 8 shows that the plain

TA-MQT models cannot account for our observations. Except for the data at the lowest

temperatures the width and the position of the measured histograms deviate from the

simulated ones (dotted line). Dissipation alone cannot explain the difference. The basic

TA model yields ∆I ∝ T 2/3 [10] and it can be seen in Figs. 8 and 9 that the dc-SQUID

has weaker temperature dependence even well below TD. In these samples there are just

few energy levels in the well and thus the assumptions of continuous energy spectrum

are not valid here [10]. We present results of QEL-model simulations for data at zero

and ±0.28Φ0 fluxes. At ±0.41Φ0 Ic is so small that the escape probability is large

JJ1

SQ1

Figure 9. (a) The positions (I50 %) and (b) the widths (∆I) of the measured

histograms. The position is normalized to the corresponding calculated critical current

Ic(Φ) at T = 0. For non-zero fluxes we present data measured at both positive

and negative values of flux. Black solid and dotted lines are results (with known

junction parameters) of thermal activation and macroscopic quantum tunnelling model,

respectively, ignoring dissipation. Blue, red and orange solid lines are the corresponding

quantities from simulations based on Larkin and Ovchinnikov model.
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even at zero bias (except at the lowest temperatures). This means that the phase is

running constantly rather than infrequently escaping from well to another, and thus our

model does not work anymore. The only fitting parameter was the quality factor Q,

and the fitted values (presented in the inset of the Fig. 8) were in a very reasonable

range. At Φ = 0 we find Q ≈ 6 at the lowest temperature, and it decreases with

increasing temperature up to 4 at 325 mK. At Φ = ±0.28Φ0 Q ≈ 3...4, again decreasing

with temperature. The agreement between simulation and measurements is excellent.

The position and the width of the measured histograms coincide and, in particular, at

higher temperatures the simulated histograms also start to get steeper again. At higher

temperatures the upper energy levels, whose escape rate is significant with smaller

potential tilting angles, are populated as well. The histograms thus peak at smaller

currents and the condition of Eq. (7) is not necessarily fulfilled anymore. Dissipation

is screening part of the events and the histogram gets distorted. What remains in the

measured (and simulated) histograms is the escape from the levels at the tail of the

Boltzmann distribution above the dissipation barrier. The measured samples can thus

be tuned from pure escape regime deep into phase diffusion by varying temperature and

flux.

5. Josephson junctions with weak coupling

When the coupling energy EJ is of the order of kBT , the escape rate is significant even

without bias current. This means that the junction is dissipative also with zero bias.

Figure 6 demonstrated that when Ic < 60 nA the system is in the phase diffusion regime

even at the lowest temperatures with 500 Ω environmental impedance. The measured

weak coupling junctions are thus not obeying simple escape dynamics from a metastable

potential well into a free running state, but the escape occurs over a dissipation barrier

instead. The measured histograms of both the dc-SQUID and the single junction of

sample SQJJ (data not shown here) indeed show qualitatively similar behaviour as

what is presented in Fig. 9 (a) and (b) at Φ = ±0.41Φ0.

5.1. Zero-bias resistances

Predominantly unshunted hysteretic junctions can be overdamped due to frequency

dependent environmental impedance [R(ωp) ∼ Z0≈ 377 Ω]. This can be the case

especially on the samples with small EJ , which usually means also small ωp like in

the sample SQJJ. Small coupling energy (EJ ∼ kBT ) yields also to large escape rate

and further to large phase diffusion rate. If the rate is large enough, the average voltage

across the junction start to be measurable (but still � 2∆/e). In SQJJ, the escape

rate of the single junction is large, i.e. the phase diffusion is strong, leading to a

small measurable voltage (� 2∆/e) across the junction. Therefore the current-voltage

characteristics present a finite slope even at zero current. Ingold et al. have shown that
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for overdamped junctions this zero-bias resistance can be given as [24, 9]

R0 =
R

I20[EJ/kBT ] − 1
, (8)

where I0 is the modified Bessel function and R is a shunting impedance.

The zero-bias resistances R0 due to phase diffusion of both the single junction and

the dc-SQUID are plotted at different temperatures by using lock-in technique in Fig.

11. They are fitted by the predicted resistance given by Eq. (8) using R = 270 Ω as a fit

parameter. The theory closely follows the measurement over two decades in resistance.

The measurement noise level sets the minimum measurable resistance to somewhere

around 10 Ω which corresponds to the flat background in Fig 11 (a) and 11 (b). R0 of

the dc-SQUID was also measured at different magnetic fields [Fig 11 (a)].

We observe that R0 can be tuned by changing magnetic flux inside the dc-SQUID.

The zero-bias resistance is increasing strongly with decreasing critical current as Eq.

(8) predicts. With critical currents of the order of 10 nA, R0 is larger than 10 Ω even

at the lowest temperatures.

5.2. Tunable environment

Escape from the phase diffusion branch to the running state is a complicated process

and it does not have similar simple analytical expressions as, e.g., the basic thermal

activation has. Yet this thermally activated process is strongly environment dependent

as our Monte Carlo simulations, based on Refs. [14, 15], clearly demonstrate. Turlot
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Figure 10. (a) Schematics of the sample SQJJ with tunable environment and

micrographs of the junctions in this sample. The distance between the single junction

and the dc-SQUID is about 100 µm. In the actual measurement we use 4-wire

configuration and there were thus 2 RC-filters connected to every electrode. The value

of the capacitors to ground was 680 pF for one filter, and the resistors were 680 Ω

each (the actual high frequency shunting resistance to ground was thus ≈ 340 Ω). (b)

Circuit model of sample SQJJ.
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Figure 11. (a) The zero-bias resistance R0 of the dc-SQUID of sample SQJJ at

different magnetic fields and temperatures. The measurement noise level sets the

minimum measurable resistance to about 10 Ω (the flat region). The saturation to

250 Ω close to half of flux quantum is due to the saturation of the lock-in amplifier.

(b) Filled circles are the R0 of the dc-SQUID of sample SQJJ at Φ = 0.42 Φ0 at

different temperatures. Open circles presents the similar results on the single junction

of sample SQJJ. Lines are the results of the model for overdamped junctions [Eq. (8)]

assuming the same fitted value 270 Ω of shunting in both cases. EJ of the dc-SQUID

was estimated from the flux value and the normal state resistance, and assuming a

symmetric structure.

et al. have measured how thermally activated escape rate over a tilted cosine potential

barrier varies with changing impedance of the frequency dependent environment [25].

It was shown in their work that if 1/Re{Y(ω)} does not vary too rapidly close to

plasma frequency, the dominant part of the dissipation happens in the vicinity of ωp

[25, 26]. With frequency dependent environment the thermal activation rate ΓTA thus

approximately varies like 1/Re{Y(ωp)} with changing impedance [Eq. (1)].

In this work we measured the dynamics of escape from the phase diffusion regime to

the free running state by varying environmental impedance. The escaping rate follows

a similar Arrhenius law

ΓPD
TA = ade

−(Us−Ui)/kBT , (9)

as the standard thermal activation, but now escape occurs over a dissipation barrier

Us − Ui instead (s corresponds to a saddle point and i to the initial state) [6]. The

prefactor ad is similarly a dissipation dependent parameter as at for thermal activation

over cosine potential barrier [Eq. (1)]. We thus assume that the escape rate ΓPD
TA from

the phase diffusion regime varies also like 1/Re{Y(ωp)}.
In our sample the environment presented by the dc-SQUID on the single junction,

and vice versa, are strongly inductive. The Josephson inductance of the dc-SQUID at

zero field is of the same order of magnitude (LJ ≈ 4.5 nH) as the inductance of the long

line, but it is increasing strongly with increasing magnetic field. We consider the dc-

SQUID here as a tunable environmental inductance of the single junction and measured
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how changing the Josephson inductance of the dc-SQUID is affecting escape dynamics

of the single junction.

The sample is approximated by an equivalent circuit presented in Fig. 10 (b).

In this model the dc-SQUID is approximated by a parallel combination of Josephson

inductance and junction capacitance similarly as Warburton et al. successfully did with

high-Tc intrinsic Josephson junctions [27]. We have not taken into account the fact

that close to Φ = 0.5Φ0 the dc-SQUID is also in the dissipative phase diffusion regime,

which might affect escape dynamics. The parallel resistance of the dc-SQUID is assumed

to be large. Notice that this does not mean that the dissipation that the dc-SQUID

can see at high frequencies is small. The capacitance Cs= 10 pF is assumed to be the

sum of capacitances of the surface mount capacitors and of the stray capacitances of

the line. The high frequency dissipation is modeled with resistance Rs, which is most

probably close to the value of surface mount resistors (∼ 340 Ω) or to the value of

vacuum impedance (Z0 ≈ 377Ω). Figure 12 (a) presents the calculated real part of the

admittance of the model environment of the single junction which corresponds to the

dc-SQUID with the inductive line (Fig. 10). In calculations we used the value 3 nH for

the inductance of the long line and the parameters of the dc-SQUID are given in Table 1.

The impedance is modified by changing the flux through the SQUID. The environmental

admittance of the single junction at the attempt frequency ωp is presented in Fig. 12

(b).

We measured the escape probability of the single junction as a function of flux

through the dc-SQUID. In the measurement the current bias was fed through the single

junction line (A electrode in Fig. 10) to the long inductive line (C) and the voltage

was measured between these electrodes. At each temperature we first measured the

amplitude of the current pulse, which corresponds to approximately 70 % switching

probability at zero flux. We measured escape probability of the single junction as a

function of flux at this fixed current amplitude. Results are presented in Fig. 12 (c)

and the inset of Fig. 12 (c) shows I70% at zero flux at each measuring temperature.

Figure 12 (c) shows that the measured escape probability indeed follows the general

behaviour of the real part of the modelled environmental admittance at plasma frequency

of the single junction plotted in Fig.12 (b) as was predicted above. We do not have a

quantitative model for the flux dependence of the escape rate, but it is obvious that

the dc-SQUID acts as a tunable environment for the single junction such that it can

decouple the external noise at a certain value of flux. At Φ = 0 the plasma frequency of

the dc-SQUID is larger than that of single junction due to different thickness of the oxide

barriers (see Table 1). In this case Y (ωp) of the single junction presented by the dc-

SQUID is large. With increasing flux, the plasma frequency of the dc-SQUID reduces.

Around Φ = ±0.3Φ0 it coincides with that a of single junction and environmental

admittance is reduced and thus escape rate is significantly suppressed. The behavior is

qualitatively the same at all temperature, but at higher temperatures the escape rate

is strongly enhanced close to Φ = ±0.5Φ0. One possible explanation for this is that the

phase diffusion in the dc-SQUID is playing a role, which is not taken into account in
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Figure 12. (a) The real part of the admittance Re{Y} of the parallel combination of

the dc-SQUID and of the inductive line of Fig. 10 as a function of frequency at different

fluxes between 0 and Φ0. The vertical line corresponds to the plasma frequency of the

single junction at zero bias current. The arrow indicates the direction of increasing

Josephson inductance. The calculations are done by using the value 3 nH for long

inductive line and the parameters given in Table 1. (b) Re{Y} as a function of flux

at the plasma frequency of the single junction. (c) Measured switching probability of

the single junction of sample SQJJ at constant current bias as a function of applied

magnetic flux at several temperatures between 25 mK and 450 mK. Curves are shifted

for clarity and the vertical spacing between ticks corresponds to escape probability of

unity. Inset: The current, which corresponds to 70 % escape probability at various

temperatures, as measured on the single junction of sample SQJJ.
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our model. The flux dependence of the escape rate in the single junction suggests that

dissipation in the zero voltage state takes place mainly at plasma frequency. Further,

the dominant part of the dissipation is, in our case, physically happening far away from

the junction and the quasiparticle resistance is not playing an important role.

6. Concluding remarks

Our measurements confirm that dissipation plays a more important role in the phase

dynamics of Josephson junctions when the critical current decreases. The parameters

of the measured samples were in the intermediate range, where the simple escape from

a single metastable state, and phase diffusion both play a role. The sample with the

smallest critical current consists of a single Josephson junction and a dc-SQUID close

to each other, the latter of which acts as a tunable inductive protection for the single

junction. We were able to study the effects of dissipation on escape dynamics by varying

the temperature, flux and environment. The measurements with tunable environment

show that escape from the phase diffusion regime depends strongly on the environment.

In summary, our observations show that in order to use junctions with EJ ∼ kBT

for current detection purposes, one should pay particular attention to the environmental

circuit. With low Q values these junctions can be in the underdamped phase diffusion

regime, which might be harmful in threshold current measurements. This regime is also

dissipative, which is undesirable in some applications, e.g., in the detection of quantum

state of a superconducting quantum bit. Our measurements with tunable environment

confirm that the inductive leads can provide a way to further decrease the critical current

without losing the beneficial properties in threshold current measurements.

N ote added: since the submission of this manuscript, similar experimental results

of additional cross-over from TA to underdamped phase diffusion were reported by

Krasnov et al. and by Männik et al. [28]. Their interpretation differs from ours in

details.
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[6] D. Vion, M. Götz, P. Joyez, D. Esteve, and M. H. Devoret, Phys. Rev. Lett. 77, 3435 (1996).

[7] J. Sjostrand, J. Walter, D. Haviland, H. Hansson, and A. Karlhede, cond-mat/0406510 (2004).

[8] A. Franz, Y. Koval, D. Vasyukov, P. Müller, H. Schneidewind, D. A. Ryndyk, J. Keller, and C.

Helm, Phys. Rev. B 69, 014506 (2004).

[9] M. Tinkham, Introduction to superconductivity, 2nd ed. (McGraw-Hill, New York, 1996).

[10] U. Weiss, Quantum Dissipative Systems, (World Scientific, Signapore, 1999), 2nd ed.
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