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Abstract

In this study we describe two techniques for handling convolutional distortion with ‘missing data’ speech recognition

using spectral features. The missing data approach to automatic speech recognition (ASR) is motivated by a model of

human speech perception, and involves the modification of a hidden Markov model (HMM) classifier to deal with

missing or unreliable features. Although the missing data paradigm was proposed as a means of handling additive noise

in ASR, we demonstrate that it can also be effective in dealing with convolutional distortion. Firstly, we propose a

normalisation technique for handling spectral distortions and changes of input level (possibly in the presence of additive

noise). The technique computes a normalising factor only from the most intense regions of the speech spectrum, which

are likely to remain intact across various noise conditions. We show that the proposed normalisation method improves

performance compared to a conventional missing data approach with spectrally distorted and noise contaminated

speech, and in conditions where the gain of the input signal varies. Secondly, we propose a method for handling

reverberated speech which attempts to identify time-frequency regions that are not badly contaminated by reverber-

ation and have strong speech energy. This is achieved by using modulation filtering to identify ‘reliable’ regions of the

speech spectrum. We demonstrate that our approach improves recognition performance in cases where the reverber-

ation time T60 exceeds 0.7 s, compared to a baseline system which uses acoustic features derived from perceptual linear
prediction and the modulation-filtered spectrogram.
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1. Introduction

Although much research effort has been ex-

pended on the development of automatic speech
recognition (ASR) systems, their performance still

remains far from that of human listeners. In par-

ticular, human speech perception is robust when

speech is corrupted by noise or by other environ-

mental interference, such as reverberation or a
ed.
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poor transmission line (for example, see Assmann

and Summerfield, 2003; Nabelek and Robinson,

1982). In contrast, ASR performance falls dra-

matically in such conditions (for a comparative
review of human and automatic speech recogni-

tion performance in noise see Lippmann, 1997). As

several researchers have observed (e.g., Cooke

et al., 2001; Hermansky, 1998; Lippmann, 1997),

the current limitations of ASR systems might re-

flect our limited understanding of human speech

perception, and especially our inadequate techno-

logical replication of the underlying processes.
The robustness of human speech perception can

be attributed to two main factors. First, listeners

are able to segregate complex acoustic mixtures in

order to extract a description of a target sound

source (such as the voice of a speaker). Bregman

(1990) describes this process as ‘auditory scene

analysis’. Secondly, human speech perception is

robust even when speech is partly masked by
noise, or when parts of the acoustic spectrum are

removed altogether (for example, by a bandlimited

communications channel). Cooke et al. (2001)

have interpreted this ability in terms of a ‘missing

data’ model of speech recognition, and have

adapted a hidden Markov model (HMM) classifier

to deal with missing or unreliable features. In their

system, a time-frequency ‘mask’ is employed to
indicate whether acoustic features are reliable or

corrupted; according to this division the features

are treated differently by the recogniser. Typically,

the missing data mask is derived from auditory-

motivated processing, such as pitch analysis

(Barker et al., 2001a; Brown et al., 2001) or bin-

aural spatial processing (Palom€aki et al., 2001, in
press). Alternatively, the mask can be set accord-
ing to local estimates of the signal-to-noise ratio

(SNR) (Cooke et al., 2001).

The missing data paradigm was conceived by

Cooke et al. as a means of dealing with additive

noise in ASR. As a result, little consideration has

been given to the ability of missing data ASR

systems to handle interference caused by the

interaction of a target sound with its environment
(such as a transmission line, audio equipment or

reverberant space). In terms of signal theory this

is regarded as convolutional interference. In this

paper, we propose a number of modifications to a
missing data ASR system which allow it to per-

form robustly in the presence of convolutional

noise.

A convolutional interference can be character-
ised by the impulse response of the corresponding

system. If the length of the impulse response is

short compared to the analysis window, then the

interference mainly causes spectral alteration (see

Avendano, 1997, Chapter 5). This follows because

convolution in the time domain is equivalent to

multiplication in the frequency domain (see Op-

penheim and Schafer (1989) for a description of
the convolution theorem of the Fourier trans-

form). The analysis window used in speech pro-

cessing is usually longer than 10 ms, which roughly

corresponds to the pitch period of an average adult

male voice. Examples of practical systems having

short impulse responses are transmission lines,

microphones and loudspeakers.

In the case of room reverberation the interac-
tion is of a different nature, because the impulse

response of a room is relatively long (from

approximately 0.2 up to 5 s) compared to the

window used for speech analysis. A typical room

impulse response consists of sparse early reflec-

tions followed by dense late reverberation (higher-

order reflections), which forms the exponentially

decaying tail of the response. The sparse early
reflections are highly correlated with the speech

signal and often contribute usefully to speech

intelligibility by increasing the loudness of the

speech. However, early reflections can also cause

some spectral deviation due to comb filtering

caused by successive reflections and the varying

frequency characteristics of surface absorption. In

contrast, the dense late reverberation is poorly
correlated with the original speech signal and

therefore behaves more like additive noise. Indeed,

early versus late reverberation has successfully

been used as a predictor of speech intelligibility in

rooms (Bradley, 1986). It is common to define a

critical delay time for early and late reverberation,

such that reflections arriving before the delay are

beneficial to auditory perception whereas reflec-
tions arriving after it will have a detrimental effect.

The European norm ISO 3382 (1997) suggests

critical delays of 50 ms for speech and 80 ms for

music perception. G€olzer and Kleinschmidt (2003)
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investigated the role of early and late reflections in

conjunction with ASR. They suggested that

reflections have a conducive effect on speech rec-

ognition accuracy up to a critical delay of 25–50
ms, assuming that late reverberation is strongly

present in the room impulse response. Further

details of the effect of room acoustics on speech

intelligibility can be found in (Bradley, 1986;

Houtgast and Steeneken, 1985).

The conventional way of tackling convolutional

interference in ASR has been to use cepstral

encoding, and to employ cepstral mean subtrac-
tion to remove the spectral distortion. Two

common examples of cepstral encoding are mel-

frequency cepstral coefficients (MFCC) (Davis and

Mermelstein, 1980) and cepstral features obtained

by perceptual linear prediction (PLP) (Hermansky,

1990). Interestingly, both of these approaches are

loosely based on known mechanisms of auditory

frequency encoding. However, they have been
found to perform inadequately with reverberated

speech (Kingsbury, 1998; Kingsbury et al., 1998).

Reverberation can also be handled via blind

source separation (BSS) using a microphone array,

or via blind deconvolution or dereverberation (for

an overview see Omologo et al., 1998). In such

approaches, the aim is to enhance subjective

speech quality rather than to find a robust acoustic
encoding. BSS gives good dereverberation perfor-

mance, but at least two microphone signals are

needed to process a single speech source (for an

overview of BSS and independent component

analysis see Hyv€arinen et al., 2001).
Kingsbury and his colleagues (Kingsbury, 1998;

Kingsbury et al., 1998) have reported that a

modulation-filtered spectral representation, the
modulation spectrogram (MSG), can improve

ASR performance with reverberated speech.

Spectral bands are processed by a modulation fil-

ter, which emphasizes the strongest speech modu-

lations and effectively removes reverberant or

noisy regions that are not modulated in the same

way as speech signals. This approach is consistent

with studies that demonstrate the importance of
low frequency modulations in human speech rec-

ognition (Houtgast and Steeneken, 1985; Drull-

man et al., 1994) and in ASR (Kandera et al.,

1999).
In this study we address the problem of han-

dling convolutional distortion in a missing data

ASR system which uses spectral speech features.

Two conditions are considered; one in which
speech is subject to spectral distortion and additive

noise, and another in which speech is reverberated.

In the first case, we derive a missing data mask

from estimates of the SNR in local time-frequency

regions, and employ spectral subtraction to re-

move the noise background. Furthermore, we

introduce a new method for normalising spectral

features that is compatible with the missing data
ASR framework. In reverberant conditions, a

modulation filtering scheme is used to generate the

missing data mask. This approach exploits tem-

poral modulations of speech in order to find

spectro-temporal regions which are not severely

contaminated by reverberation.

The current study extends our previous work in

several important respects. A related scheme for
spectral normalisation was presented in (Palom€aki
et al., in press), but it was applied only to a very

specific purpose (speech recognition using a bin-

aural hearing model). Here, we develop and eval-

uate the normalisation scheme more thoroughly,

and evaluate it on a more general speech recogni-

tion task with different types of spectral distortion.

Our early work on modulation mask estimation
(Palom€aki et al., 2002) suffered from the drawback
that the algorithm needed to be hand-tuned to each

different reverberation condition. This problem has

now been addressed by an adaptive scheme, in

which the parameters of the algorithm are set

according to an estimate of the degree of rever-

beration present in the signal. This allows the same

system to be used in a wide range of reverberation
conditions without the need for hand-tuning. Fi-

nally, in (Palom€aki et al., 2002) the system was

evaluated on a limited number of simulated room

impulse responses (RIRs), whereas here we use real

RIRs which vary in their T60 reverberation time
between 0.7 and 1.5 s. The results obtained with

our new method are also compared against

Kingsbury (1998) recogniser for reverberated
speech, which uses MSG and PLP features.

Section 2 of the paper describes the overall

architecture of the missing data ASR system and

the acoustic features used. In Section 3, we present
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a processing pathway that is optimised for condi-

tions in which speech is subject to spectral distor-

tion and additive noise. A processing pathway for

reverberant conditions is described in Section 4.
The system is evaluated under a number of noise

conditions in Section 5, and compared against a

baseline approach. We conclude with a discussion

in Section 6.
2. Speech recogniser

The missing data speech recognition system is

shown schematically in Fig. 1. In this section we

describe the front-end processing, which extracts
spectral features using an auditory model, and

explain the missing data ASR approach.

2.1. Acoustic features

Typically, HMM-based ASR systems model

each state as a mixture of Gaussians with diagonal

covariance, and therefore assume that the acoustic

features are statistically independent. Cepstral

features are widely used because they meet this

requirement, since they are an approximately
orthogonal encoding of spectral shape (see Gold
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Fig. 1. Schematic diagram of the system. In the processing pathway
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malised by a factor gr.
and Morgan (2000) for a review). Additionally,

cepstral mean subtraction can be employed to deal

with spectral distortion (Atal, 1974; Rosenberg

et al., 1994).
However, in the context of missing data ASR

there are good reasons for using an acoustic

encoding based on spectral features, rather than

cepstral coefficients. Firstly, noise that is local in

frequency only disrupts local spectral features,

whereas it is distributed over a wide range of fea-

tures in the cepstral domain (Morris, 2002; see also

Droppo et al., 2002). Furthermore, mask estima-
tion techniques which are based on our under-

standing of human perception are most naturally

implemented in terms of spectral features, because

the peripheral auditory system decomposes sound

into frequency bands (Moore, 2003).

Here, we derive spectral acoustic features for

the recogniser from a simple model of peripheral

auditory processing. Cochlear frequency analysis
is simulated by a bank of 32 bandpass ‘gamm-

atone’ filters, with centre frequencies spaced uni-

formly on the equivalent rectangular bandwidth

(ERB) scale between 50 Hz (1.837 ERB) and 3850

Hz (26.772 ERB). Spacing between adjacent filter

channels is therefore 0.804 ERB, which is close to

the 3-dB bandwidth of the gammatone filter (0.887
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described in Section 3, a mask ms is derived from local SNR
rate map ys, which is normalised by a factor gs. In the pathway
is passed to the recogniser together with the rate map y, nor-



Fig. 2. (A) Rate map for the male utterance ‘‘zero one zero five nine’’ without added noise. (B) Rate map for the same utterance in the

presence of noise with an SNR of 5 dB. (C) Soft SNR mask (black pixels are reliable, white pixels are unreliable).
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ERB; see Patterson et al., 1988). For details of the

digital implementation of the gammatone filter see

Cooke (1993), Brown and Cooke (1994).

The instantaneous Hilbert envelope is com-
puted at the output of each filter. This is smoothed

by a first-order lowpass filter with an 8-ms time

constant, sampled at 10 ms intervals, and finally

compressed by raising it to the power of 0.3 to give

a crude simulation of auditory nerve firing rate (a

‘rate map’; see Fig. 2 for an example). Here, we use

the notation yði; jÞ to denote the value of the rate
map for auditory filter channel j at time frame i.
2.2. Missing data speech recognition

Automatic speech recognition is a classification

problem in which an observed acoustic vector Y
must be assigned to a class of speech sound C.
Using Bayes’ rule and assuming the prior f ðY Þ to
be constant, the posterior probability f ðCjY Þ can
be expressed as the product of a likelihood f ðY jCÞ
and a prior f ðCÞ, and hence classification can be
performed by finding the class C which maximises
f ðY jCÞf ðCÞ. However, when noise is present some
elements of the acoustic feature vector Y may be
unreliable or missing, and it is not possible to

compute f ðY jCÞ in the usual manner. One solution
to this problem is the ‘missing data’ technique

(Cooke et al., 2001). This addresses the problem by

partitioning Y into reliable and unreliable compo-
nents, Yr and Yu. The reliable components Yr are
directly available to the classifier in the form of the

marginal distribution f ðYrjCÞ. Additionally, the
true value of the unreliable features Yu can often be
assumed to lie within a certain range. This provides

an additional constraint by bounding the range of

possible values over which the unreliable features

are integrated. This technique is known as ‘boun-
ded marginalisation’ (Cooke et al., 2001; for an

alternative approach see Raj et al., in press). Here,

we use boundedmarginalisation where Y is a vector
of simulated auditory nerve firing rates; thus the

lower bound Yu;low is zero (since a firing rate cannot
be negative) and the upper bound Yu;high is the ob-
served firing rate. Assuming diagonal Gaussian

mixture components (indexed by k), this leads to
the following integral over the unreliable parts Yu:Z Yu;high

Yu;low

f ðYujk;CÞdYu ð1Þ

We cannot calculate the likelihood f ðY jCÞ as some
of the components of Y , though bounded, are not
precisely known. Instead, we calculate, f ðY jCÞ, the
average of the likelihood f ðYr; YujCÞ over the range
of allowable Yu values. This can be expressed as,

f ðY jCÞ ¼
XM
k¼1

P ðkjCÞf ðYrjk;CÞ
1

Yu;high � Yu;low

�
Z Yu;high

Yu;low

f ðYujk;CÞdYu ð2Þ

where P ðkjCÞ are the Gaussian mixture coeffi-
cients. For justification of Eq. (2) see Barker et al.

(2000b). In practice, a ‘mask’ mði; jÞ is used to
indicate whether the acoustic evidence in each

time-frequency region is reliable. In the simplest
case, a binary judgement is made as to whether
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data is reliable (1) or unreliable (0). Alternatively,

the mask elements may be set to real values in the

range [0,1] to give soft reliability decisions rather

than binary ones (Barker et al., 2000b). In this
case the equations for the bounded marginalisa-

tion computation are rewritten so as to effectively

interpolate between the two interpretations of each

acoustic feature (i.e., the interpretation that the

feature is reliable, and the interpretation that the

feature is unreliable).

In this study, auditory rate maps were used to

train a missing data ASR system for recognition of
connected digit strings (such as ‘‘three five six

zero’’). Twelve word-level HMMs were trained (a

silence model, ‘oh’, ‘zero’ and ‘1’ to ‘9’), each

consisting of 16 no-skip, straight-through states

with observations modelled by a 7 component

diagonal Gaussian mixture. Note that the missing

data algorithm is only applied during the testing

phase, not during training.
3. Processing for spectral distortion and additive

noise

In this section we describe a processing pathway

that compensates for spectral distortion and addi-

tive noise. Our approach is based on the combi-
nation of three techniques; estimation of a missing

data mask on the basis of SNR in local time-fre-

quency regions (Section 3.1), spectral subtraction

(Section 3.2) and an approach to spectral feature

normalisation which is suitable for missing data

ASR in the presence of additive noise (Section 3.3).

3.1. SNR mask estimation

If an estimate of the noise spectrum is available,

the local SNR in each frequency channel of the
rate map at each time frame can be used to derive

a missing data mask. Local time-frequency regions

with a high SNR (i.e., dominated by speech) are

labelled as reliable in the mask, and those with a

low SNR are labelled as unreliable.

Following previous work (Cooke et al., 2001)

we compute the local SNR from stationary noise

estimates, which are obtained by averaging the
acoustic spectrum over a short period in which
speech is believed to be absent. Specifically, we

estimate the noise spectrum from the first K ¼ 10
frames (i.e., 100 ms) of the rate map,

zðjÞ ¼ 1

K

XK
i¼1

yeði; jÞ ð3Þ

where yeði; jÞ ¼ yði; jÞ3:333 and zðjÞ is the noise
estimate for frequency channel j. Note that zðjÞ is
estimated from a version of the rate map, yeði; jÞ,
to which compression has not been applied. The

noise estimate is used to calculate a local SNR

sði; jÞ,

sði; jÞ ¼ 20 log10
yeði; jÞ � zðjÞ

zðjÞ

� �
ð4Þ

which is subsequently used to estimate the missing

data mask. Here, we employ a ‘soft’ mask in which

each value is a real number in the range 0–1

(Barker et al., 2000b). Such masks can be inter-

preted as giving the probability that each time-
frequency region is dominated by the speech signal.

The mask values are produced by passing each

local SNR estimate sði; jÞ through a sigmoidal
function rð Þ, i.e.,

msði; jÞ ¼ r½sði; jÞ� ¼ 1

1þ expf�a½sði; jÞ � b�g ð5Þ

where msði; jÞ is the mask value for channel j at
time frame i, a is the slope of the sigmoid and b is
its centre point. Note that time-frequency regions
with a higher local SNR are assigned to a higher

value in the mask. The values of the parameters a
and b were found empirically (Barker et al.,

2000b). Note that for a ¼ 0 all mask values are 0.5,
indicating complete uncertainty about the signal

and noise. With increasing a the sigmoid (5) be-
comes steeper, so that the decision between clean

and noisy data approaches a binary one. Here, we
use a ¼ 3 and b ¼ 0:4.

3.2. Spectral subtraction

The missing data approach aims to identify

speech features which are relatively uncontami-

nated by noise, and to pass these ‘reliable’ features
to the speech recogniser. In practice, even acoustic

features which are classified as reliable by the mask
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estimation process will contain some degree of

noise, and hence there will be a mismatch between

the observed acoustics and models trained on

clean speech. This mismatch can be reduced by
subtracting the noise estimate zðjÞ from the ob-

served (uncompressed) noisy features yeði; jÞ. The
‘cleaned’ rate map is therefore given by:

ysði; jÞ ¼ f½yeði; jÞ � zðjÞ�þg0:3 ð6Þ

The operator [ ]þ denotes half-wave rectification;

this ensures that ysði; jÞ contains only positive
values. Note that spectral subtraction is performed

on the uncompressed rate map, which is subse-
quently compressed before passing to the recogn-

iser.
3.3. Normalisation

Conventionally, spectral features are norma-

lised by the mean and variance in each frequency

band (for example, see Kingsbury, 1998). A

problem with this approach is that clean regions of
the speech signal may be normalised by a mean

and variance that are computed when both speech

and noise sources are present. This is particularly

harmful in missing data ASR, which requires that

reliable features presented to the recogniser should
Fig. 3. Selection of time–frequency regions for spectral normalisation,

(B) mixed with subway noise at a SNR of 5 dB. Black areas correspo

rule.
be scaled in the same way as the clean speech

features used for training.

Here, we take a different approach in which a

normalisation factor is computed only from those
acoustic features that are likely to be dominated by

speech (i.e., uncorrupted by noise). Scaling based

only on these regions is likely to reduce the mis-

match between the clean training and noisy rec-

ognition conditions. Of course, this normalisation

technique requires that speech-dominated features

can be identified in approximately the same way

during training and recognition. Fortunately, this
is achievable in practice, as illustrated by the plots

of speech-dominated regions for clean and noisy

rate maps shown in Fig. 3.

Here, we use a simple implementation of this

scheme in which the acoustic features in each

channel are normalised by the mean of the L
largest features in that channel. We compute the

normalisation factor gsðjÞ for channel j as follows:

gsðjÞ ¼
1

L

X
i2CsðjÞ

ysði; jÞ ð7Þ

where ysði; jÞ is the ‘cleaned’ rate map and CsðjÞ is a
set containing the indices of the L largest values of
ysði; jÞ in channel j. The rationale for Eq. (7) is that
selection of the L largest values in each channel of
the rate map gives a comparable result with clean
for the male utterance ‘‘seven two one nine’’ when (A) clean and

nd to the regions selected for scaling according to the L-largest



Table 1

Speech recognition accuracy (percent) for different values of the

parameter D, for SNRs between 0 and 20 dB, and for clean
speech

D 0 10 20 Clean

2 51.5 85.3 94.2 98.0

3 53.8 86.4 95.0 97.6

5 54.0 86.8 94.9 97.5

7 53.8 86.1 94.4 97.4

10 52.7 85.8 94.2 97.3
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(training) and noisy (recognition) data, so long as

the noise is fairly stationary and the global SNR is

favourable.
The value of L must be set empirically, and

depends on two conflicting constraints. Firstly, L
should be chosen small for good performance in

very noisy conditions, since relatively few features

in the rate map will be reliable. On the other hand,

if L is too small then a stable estimate of the
normalisation factor cannot be obtained.

Note that normalisation proceeds on an utter-
ance-by-utterance basis, and could therefore be

affected by utterance length. Here we have at-

tempted to account for this by normalising by a

factor L ¼ I=D, where I is the number of time
frames in the input and D is a constant parameter.
The training section of the corpus used here con-

tained utterances with a minimum, maximum and

mean duration of 0.59, 5.15 and 1.76 s respectively.
Values ofD between 2 and 10 were considered, with
D ¼ 5 found to give the best performance (Table 1).
Fig. 3 illustrates the feature selection process for

D ¼ 5. It shows that very similar regions of strong
speech can be spotted in clean and noisy rate maps

using the proposed technique.
1 The specific function call was fir2(100,[0 0.04 0.07

0.1 0.11 0.21 0.5 1], [9.3 7.44 4.65 2.883 3.162 0

0 0]), using MATLAB 6.5 release 13.
4. Processing for reverberation

This section describes a processing pathway for

missing data ASR in reverberant conditions (see

Fig. 1). In the first stage, modulation filtering is

used to derive a mask that identifies the speech

features that are least contaminated by reverber-

ation. Following this, spectral features are nor-

malised using a modification of the technique
described in Section 3.3.
4.1. Reverberation mask estimation

Previously, Kingsbury et al. (1998) have shown

that modulation filtering can be used to derive ro-
bust features for speech recognition in the presence

of reverberation. Here, we use modulation filtering

in a different way. Specifically, it is used to identify

spectro-temporal regions that contain strong

speech energy (i.e., regions that are not badly

contaminated by reverberation), and hence to de-

rive a ‘reverberation mask’ for missing data ASR

using spectral features. We use a modulation filter
hðnÞ of the following form, where the time index n is
measured in frames (see Section 2.1):

hðnÞ ¼ hlpðnÞ  hdiffðnÞ ð8Þ

This is a finite impulse response (FIR) filter con-

sisting of a linear phase lowpass component hlp
and a differentiator hdiff (the operator  denotes

convolution). Parameters of the differentiator part
are the following, hdiffð0Þ ¼ 1, hdiffð1Þ ¼ �0:999
and hdiffðnÞ ¼ 0 when n 6¼ f0; 1g. The lowpass part
hlp was designed using the MATLAB fir2 func-

tion 1 (Mathworks, 2003). Amplification in the

lowpass part was greater than zero in order to set

the gain in the pass-band of the combined filter to

approximately 0 dB. The resulting modulation

filter hðnÞ is bandpass (see Fig. 4), with 3 dB cutoff
frequencies at 1.5 and 8.2 Hz. The limiting zeros

are placed at 0 and 11.7 Hz. The filter hðnÞ is used
to derive a modulation-filtered rate map yrði; jÞ by
filtering each channel j of yrði; jÞ as follows:

yrði; jÞ ¼
X1
k¼�1

hðkÞyði� k; jÞ ð9Þ

The aim of this filtering scheme is to detect regions

of reverberated speech in which direct sound and

early reflections dominate, and to mask the areas

that contain strong late reverberation. This ap-

proach is motivated by observations on human

perception of reverberated speech, which empha-

size the important role of early reflections on
speech intelligibility, and the deleterious effects of
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late reverberation (Drullman et al., 1994; Houtgast

and Steeneken, 1985). The role of the lowpass
component hlp is to detect and smooth modula-
tions in the speech range. Following this, the dif-

ferentiator hdiff emphasizes abrupt onsets, which
are likely to correspond to direct sound and early

reflections.

Subsequently, a threshold is applied to the

modulation-filtered rate map in order to produce a

binary mask for the missing data speech recogn-
iser:

mrði; jÞ ¼
1 if yrði; jÞ > hðjÞ
0 otherwise

�
ð10Þ

Additionally, the masks are shifted backwards in

time to compensate for the group delay of the

modulation filter hðnÞ. The filter has a linear phase
impulse response which is 102 frames in length,

and has a group delay (constant across frequen-

cies) of 50 frames. Rather than correct for the

group delay exactly, a backward shift of 48 frames
is applied. Maintaining a two-frame offset was

found to be beneficial, probably because it dis-

cards reverberation contaminated frames that

occur just before speech onsets. Note that in con-

trast to the scheme described in Section 3, here we

use a binary mask rather than a real-valued mask:

initial testing showed that there was no perfor-

mance gain when using the latter.
The value of the threshold hðjÞ should depend

on the degree to which the speech is reverberated.

In our previous work hðjÞ was hand-tuned to each
reverberation condition (Palom€aki et al., 2002),
but more recently we have developed a technique

for estimating its value directly from an utterance.

Specifically, the threshold is set according to a

simple ‘blurredness’ metric, which exploits the fact
that reverberation tends to smooth the rate map
by filling the gaps between speech activity with

energy originating from reflections. The blurred-

ness metric B is given by

B ¼
XJ

j¼1

1
I

PI
i¼1 yði; jÞ

maxi½yði; jÞ�

( )
ð11Þ

where I is the number of time frames in the
utterance and J ¼ 32 is the number of frequency
channels. In practice, we have found that it is

preferable for hðjÞ to depend not only on B, but
also on the mean value over time in channel j of
the filtered rate map yr. Accordingly, we compute
the average firing rate eðjÞ for each filtered rate
map channel j as

eðjÞ ¼ 1
I

XI

i¼1
fyrði; jÞ �min

i
½yrði; jÞ�g ð12Þ

Note that the minimum in the channel is sub-

tracted to ensure that negative values in yr arising
from filtering by Eq. (9) are shifted to positive

values.

Finally, the threshold hðjÞ is set according to a
sigmoidal function of the average firing rate eðjÞ
and blurredness B,

hðjÞ ¼ eðjÞ � k
1þ expð�cðB� dÞÞ ð13Þ

where c ¼ 16 is the slope, d ¼ 0:42 is the centre
point and k ¼ 1:24 determines the width of the
sigmoid. These parameters were determined by a

series of experiments on a validation set consisting

of 300 utterances (different from the training and

test sets), which were processed with two different

RIRs. A sigmoidal shape was chosen for Eq. (13)

in order to allow saturation of the threshold at

high blurredness values (i.e., long reverberation

times).
The bandwidth of the modulation filter hðnÞ

was also derived through experimentation on a

validation set of 300 utterances. Each utterance in

the validation set was convolved with three RIRs,

one for each room used in the evaluation. For

these, reverberation times T60 and microphone to
source distances were 0.7 s and 3.05 m, 1.2 s and

3.05 m, and 1.5 s and 18.3 m. Subsequent recog-
nition testing on the reverberated validation set
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yielded a recognition accuracy for each reverber-

ation condition. The average recognition accuracy

over these three conditions was investigated for a

number of different filter parameters. For sim-

plicity, the threshold was chosen as hðjÞ ¼ eðjÞh0,
0
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Fig. 6. Distributions of blurredness B for three reverberation
conditions, computed from a test set of 300 utterances.
where h0 was hand-tuned to be optimal for each

reverberation condition. Fig. 5 shows the recog-

nition accuracy obtained for various configura-

tions of the modulation filter. The left panel (A)

demonstrates the effect of varying the lowpass
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Fig. 7. Demonstration of modulation filtering-based mask

estimation. (A) Output of the rate map channel with a centre

frequency of 103 Hz. (B) Rate map channel filtered by the

lowpass part hlpðnÞ of the modulation filter. (C) Rate map
channel filtered by the whole modulation filter hðnÞ. The hori-
zontal line indicates the value of the threshold h. (D) Estimated
reliable regions (solid line) and unreliable regions (dotted line).

Amplitude maxima in each graph are normalised to fit to the

same scale.
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cutoff frequency when the highpass cutoff is fixed

at 1.5 Hz. The right panel (B) shows the effect of

varying the highpass cutoff frequency when the

lowpass cutoff frequency is fixed at 8.2 Hz. From
these experiments it is clear that recognition per-

formance is mainly determined by the highpass

cutoff frequency.

The reverberation mask estimation process is

illustrated in Figs. 6 and 7. Fig. 6 shows the dis-

tribution of the blurredness metric computed for

300 utterances, when no reverberation is present

and when the T60 reverberation time is 0.7 and 1.5
s. Note that the distribution shifts to the right (i.e.,

the mean blurredness increases) with increasing

reverberation time.

Fig. 7 demonstrates the mask estimation pro-

cess for a single frequency channel with a centre

frequency of 103 Hz. The top panel (A) shows the

rate map values in this channel, which are

smoothed with a lowpass filter hlp (B) and then
differentiated by filtering with hdiff (C). Also in
panel C, the threshold hðjÞ obtained from Eqs.

(11)–(13) is shown as a solid line. Finally, the

bottom panel (D) shows the reliable regions (solid

line) and unreliable regions (dotted line) of the rate

map selected by Eq. (10). Note that these regions

tend to be high in energy, and usually correspond

to the first part of a sustained acoustic input (i.e.,
late reflections are suppressed).

4.2. Normalisation

In reverberant conditions, we do not use a noise

estimate; rather, we select the L largest values from
the regions of yði; jÞ which are marked as clean
according to the reverberation mask. Specifically,

we define a normalisation factor grðjÞ as follows:

grðjÞ ¼
1

L

X
i2CrðjÞ

ycði; jÞ ð14aÞ

ycði; jÞ ¼ mrði; jÞ � yði; jÞ ð14bÞ

Here, mrði; jÞ is the binary reverberation mask and
CrðjÞ is the set containing the indices of the L
largest values of ycði; jÞ in channel j. Generally L is
set as described in Section 3.3. In cases where the

value of L computed in this way is less than the
number of reliable regions, L is set to the number
of reliable regions exactly. Moreover, if channel j
does not contain any speech dominated features,

i.e., when CrðjÞ ¼ £, the scaling factor grðjÞ is
interpolated from adjacent channels (or extrapo-
lated in the case of the lowest and highest fre-

quency channels).
5. Evaluation

5.1. Corpus and recogniser configuration

The missing data ASR system was evaluated

using a subset of the Aurora 2.0 connected English

language digits recognition task (Pearce and Hir-
sch, 2000). The sampling rate of all speech data

was 8 kHz. Auditory rate maps were obtained for

the clean training section of the Aurora corpus,

and were used to train 12 word-level HMMs (see

Section 2.2). The training section contained 8440

clean (noiseless) utterances. For the evaluation of

the missing data system we trained two kinds of

recognisers, one which used spectrally normalised
rate map features (denoted MD-SN) and another

which used non-normalised rate map features

(denoted MD). It should be emphasised that the

MD-SN recogniser was always tested with spec-

trally normalised features, and the MD recogniser

was always tested with non-normalised features.

In the first experiment (see below), the perfor-

mance of the missing data ASR system was com-
pared against an Aurora 2.0 baseline recogniser.

Mel frequency cepstral (MFCC) feature vectors

were produced using scripts provided with Aurora

2.0. HMMs were also trained using scripts pro-

vided with Aurora. The MFCC feature vectors

consisted of 12 mel-cepstral coefficients (the zeroth

term was excluded) and logarithmic frame energy.

In addition, first and second order temporal
derivatives were included, giving a total of 39

features per vector. Aurora 2.0 provides two

alternatives for generating MFCC features. We

used the version which is based on the HTK

implementation (Young et al., 2001) and includes

cepstral liftering. The results obtained using these

features differ slightly from those for the second

version, which are reported by Pearce and Hirsch
(2000).
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The training configuration of the MFCC base-

line system differed from that of the missing data

system, in that the MFCC system used only three

mixture components to model each state whereas
seven components were used for the missing data

system trained on rate maps. It was noted that

using more mixtures caused the MFCC-based

models to overfit to clean speech. All models were

trained with clean (noiseless and unreverberated)

signals.

For the recogniser evaluation, the Aurora test

sets were used as specified in the following sub-
sections. The data corresponding to these tests is

presented in Tables 2–5. Each data point in these

tables corresponds to a recognition accuracy for

one noise condition averaged over 1001 utterances.

In the experiments involving reverberation or only

spectral distortion, test utterances were convolved

with either a room or microphone impulse re-

sponse, respectively. All of the utterances were
presumed to start from silence.

5.2. Baseline hybrid HMM-MLP recogniser

In the following experiments we compare our

system against a hybrid HMM-MLP (hidden

Markov model multi-layer perceptron) recogniser

described by Kingsbury (1998). Kingsbury’s sys-

tem uses two streams of acoustic features which

provide robust encoding of speech in the presence

of reverberation; cepstral features (plus their deltas
and double deltas) obtained by perceptual linear
Table 2

Speech recognition accuracy (percent) and mean estimator for the mi

Noise type Method )5 0 5

Subway MD-SN 28.7 54.0 74.8

MD 30.0 54.2 75.3

MFCC 12.6 27.3 53.4

MASK-AVE 0.12 0.16 0.2

Street MD-SN 24.5 51.6 73.2

MD 28.7 52.9 73.2

MFCC 10.1 18.7 38.2

MASK-AVE 0.12 0.15 0.2

Each row shows the results for three different recognisers: missing data

recogniser without spectral normalisation (MD) and Aurora MFCC b

by MASK-AVE. The test cases are subway noise and street noise, add

also shown.
prediction (PLP), together with modulation-fil-

tered spectrogram (MSG) features. Here, we have

adapted Kingsbury’s system for comparison with

our missing data recogniser, following the config-
uration presented in (Kingsbury, 1998, pp. 148–

152). The system was implemented using the

STRUT (1997) speech recognition toolkit. On the

test corpus, we present results for three configu-

rations of the hybrid recogniser, firstly using PLP

features alone, secondly using MSG features

alone, and finally by combining likelihood esti-

mates from PLP and MSG features. Modulation
filtered spectrogram features were obtained using

the SPRACHcore computer program (version

nogui-2001-05-14). However, the program re-

quired some modification in order to produce the

desired features. Specifically, the modulation filters

were configured as a 8 Hz lowpass filter and 8–16

Hz bandpass filter (see Kingsbury, 1998, pp. 148–

149), corresponding to filter files lo0_hi8_
n21_dn5.sos and lo8_hi16_n21.sos respectively.

Also, bandpass features in adjacent frequency

bands were summed (Kingsbury, 1998, p. 149,

Fig. 5.2).

Following Kingsbury’s approach, four different

MLPs were trained for likelihood estimation. The

first two of these were used for tests with PLP and

MSG features alone, and the second two were used
for the combined features. The MLP network

topologies were 189 · 488 · 25 (input layer ·hid-
den layer · output layer) for PLP features alone
and 189 · 328 · 25 for MSG features alone. For the
ssing data mask for non-distorted test cases

10 15 20 Clean

86.8 92.1 94.9 97.5

85.9 92.6 95.7 98.8

78.7 92.9 97.0 98.8

0 0.26 0.31 0.36 0.62

85.1 91.6 94.3 97.2

84.9 91.8 94.9 98.6

66.8 88.3 95.8 99.0

0 0.24 0.30 0.36 0.62

recogniser with spectral normalisation (MD-SN), missing data

aseline (MFCC). The mean estimator for the mask is indicated

ed at SNRs between )5 and 20 dB. Results for clean speech are



Table 4

Speech recognition accuracy (percent) in the gain modulation test

Noise type Method )5 0 5 10 15 20 Clean

Subway MD-SN 28.6 54.2 75.0 86.5 91.9 94.8 97.5

MD 24.0 47.4 67.9 79.6 87.0 91.1 96.2

MFCC 12.3 27.2 52.7 75.0 90.3 95.9 98.8

Street MD-SN 25.2 51.4 73.1 84.9 91.8 94.2 97.1

MD 24.8 46.0 66.0 78.6 86.9 90.4 96.1

MFCC 10.6 19.0 38.5 64.1 84.1 93.6 99.0

Each row of the table shows the results for three different recognisers: missing data recogniser with spectral normalisation (MD-SN),

missing data recogniser without spectral normalisation (MD) and Aurora MFCC baseline (MFCC). Test conditions are gain mod-

ulations with peak amplitude change of ±10 dB after mixing with subway noise or with street noise. For each noise condition, results

are shown for SNRs between )5 and 20 dB, and for clean speech (i.e., gain modulation but no added noise).

Table 3

Speech recognition accuracy (percent) for spectrally distorted test cases

Noise type Method )5 0 5 10 15 20 Clean

MIRS

subway

MD-SN 28.4 55.0 75.8 85.8 91.7 94.5 97.3

MD 20.7 44.3 67.3 81.5 89.6 92.9 97.6

MFCC 12.1 26.0 52.8 75.2 87.6 94.5 99.0

MIRS street MD-SN 25.8 51.7 73.2 83.6 91.4 94.3 96.9

MD 19.4 40.8 63.9 78.9 87.2 91.7 96.8

MFCC 10.7 21.6 48.9 75.2 89.7 95.1 99.0

Microphone

1 subway

MD-SN 26.8 52.4 72.8 85.1 91.2 94.4 97.3

MD 22.2 45.4 69.1 83.6 91.1 94.2 98.3

MFCC 8.9 17.6 48.3 76.6 90.9 96.0 98.7

Microphone

1 street

MD-SN 23.9 50.9 71.7 84.5 90.6 93.6 96.8

MD 22.2 44.3 67.9 81.2 89.7 94.2 97.7

MFCC 9.4 15.1 35.4 66.2 87.9 95.8 98.8

Microphone

2 subway

MD-SN 23.9 48.4 69.3 82.1 90.1 93.6 97.1

MD 14.4 28.0 46.2 60.2 72.5 80.3 88.7

MFCC 7.7 7.3 8.0 14.7 28.5 50.5 93.8

Microphone

2 street

MD-SN 21.8 47.5 70.1 83.6 90.0 93.0 95.9

MD 17.6 32.9 49.2 62.1 72.9 80.0 87.8

MFCC 9.0 12.8 23.1 37.2 55.6 71.8 94.1

Each row shows the results for three different recognisers: missing data recogniser with spectral normalisation (MD-SN), missing data

recogniser without spectral normalisation (MD) and Aurora MFCC baseline (MFCC). The test cases are (from top to bottom) MIRS

characteristic, first microphone characteristic and second microphone characteristic. In each condition, the filtering characteristic was

applied after mixing with subway noise or street noise, at SNRs between )5 and 20 dB. The ‘clean’ column indicates performance when
the respective filtering characteristic was applied to speech without added noise.
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recogniser using both features, the number of units
in the hidden layer of each network was halved, as

described by Kingsbury (1998).

Acoustic models for 23 phonemes, silence and

unknown (required by the STRUT tools) were

obtained from the training part of the Aurora 2.0
corpus (see also Hermansky et al., 2000). Dura-
tional information was included in the HMM

model for each phone by matching the number of

states in the model to half the average duration of

the phone, computed from the training set (see

Kingsbury (1998, p. 45) for details).



Table 5

Speech recognition accuracy (percent) in the reverberation task

T60 and source–receiver
distance

Hybrid PLP Hybrid MSG Hybrid

MSG+PLP

MD-SN MASK-AVE

1.5 s, 18.3 m 53.3 53.5 59.8 64.3 0.36

1.5 s, 6.1 m 55.2 62.0 64.0 67.8 0.36

1.2 s, 3.05 m 59.1 66.6 69.5 76.6 0.40

1.2 s, 2.0 m 60.2 71.3 71.5 78.4 0.41

0.7 s, 3.05 m 88.0 93.0 93.5 92.4 0.57

0.7 s, 2.35 m 89.5 94.0 95.1 93.1 0.60

Unreverberated 98.2 98.0 98.5 97.0 0.80

Results are shown for four systems in six reverberation conditions, and for unreverberated speech. Columns indicate the performance

of the hybrid HMM-MLP recogniser using PLP features alone (HYBRID PLP), modulation spectrogram features alone (HYBRID

MSG) and both features together (HYBRID MSG+PLP), and for the missing data system (MD-SN). The mean estimator for the

missing data mask is indicated by MASK-AVE.
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Our system differed in some respects from

Kingsbury’s (1998) original system. Firstly, dif-

ferent corpora were used; Kingsbury used the

Numbers-95 corpus (Cole et al., 1995), whereas we

used Aurora 2.0. Secondly, the vocabulary size of

the two corpora were different; the Numbers-95

corpus contains 30 words whereas Aurora has only

11 words. Thirdly, we used a smaller number of 23
phonemes, whereas Kingsbury used 32 (Kings-

bury, 1998, p. 112, 158). Finally, Kingsbury used a

simple bigram language model which we did not

use. This choice was made in order to allow a fair

comparison against the missing data recogniser,

which does not use a language model.

5.3. Experiment 1: Spectral distortion with additive

noise

In the first experiment, the performance of the

spectral normalisation method was evaluated

using the Aurora 2.0 task. The Aurora corpus

contains three different test sets, labelled A, B and

C. Test sets A and B are comprised of different

utterances and also differ from each other due to
the types of additive noise. We chose to use parts

of these test sets that contain speech with added

subway noise A1 (test set A, noise 1) and car noise

B2 (test set B, noise 2). Also, test sets A and B have

transmission line characteristics defined by G.712

(ITU-T, 1996a), which is the same characteristic

applied to the training part of the corpus. There-

fore, test sets A and B are not regarded as spec-
trally distorted.
For testing the effect of transmission line dis-

tortion, test set C is provided. Test set C is a subset

of the speech and noise mixtures from sets A and

B––including utterances with added subway and

car noises––but in addition the signals are filtered

with the MIRS telephone front-end (ITU-T,

1996b). MIRS differs in its spectral characteristic

to G.712; the latter has a flat response in the
telephone band of 300 Hz–3.4 kHz, whereas MIRS

has a rising gain at higher frequencies and some

attenuation at low frequencies. MIRS defines an

official recommendation for the frequency char-

acteristic of a telecommunication channel sender

and receiver, including the microphone and

speaker respectively.

In order to evaluate the effect of spectral dis-
tortion we used test signals which shared com-

mon noise types (subway and car noises) in the

spectrally matching test sets (A1 and B2) and

spectrally mismatching case (C1 and C2). We

also created two additional spectrally distorted

test conditions by convolving samples (speech

with subway noise, test set A; and speech with

street noise test set B) with impulse responses
of poor quality microphones. The impulse re-

sponses of these microphones are depicted in

Fig. 8.

To put the performance of our system in per-

spective, it is tested against a missing data system

that does not use any spectral normalisation

(Barker et al., 2000b). The mask estimation pro-

cess remains the same for these two systems. We
also compare the performance of missing data
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Fig. 8. Frequency responses of the two microphones used in the

second experiment.
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systems against the MFCC baseline system, gen-

erated as recommended within the Aurora 2.0

framework (see Section 5.1). The results of the

experiment are shown in Tables 2 and 3. In addi-

tion, Table 2 shows the mean estimator for the

mask values computed over all (real-valued) masks

for the corresponding test cases. As expected, the

mean estimator decreases with decreasing SNR,
indicating that there is less reliable evidence of the

speech signal as the SNR falls. In the spectrally

non-distorted test case (test set A subway noise,

and test set B street noise), the performance of the

two missing data systems was comparable, with

both performing better than the MFCC baseline at

low SNRs (Table 2). In these particular (non-dis-

torted) test cases, the performance of the proposed
missing data system with spectral normalisation

was slightly lower than that of the system without

normalisation. However, when tested with spec-

trally distorted input (Table 3) the advantages of

the proposed normalisation technique become

evident. The differences in performance are most

noticeable in the worst spectral distortion condi-

tion (microphone 2) and at low SNRs.

5.4. Experiment 2: Random gain modulations with

additive noise

In the Aurora 2.0 test corpus the energy of each
speech sample was equalised before artificially
adding noise (Pearce and Hirsch, 2000). Clearly,

such equalisation is not representative of natural

acoustic environments, in which speech intensity

depends upon the signal path (e.g., the distance
between the speaker and the microphone) and on

the loudness of speech production itself. In previ-

ous missing data work (e.g., Barker et al., 2000a,b,

2001a,b; Cooke et al., 2001) this issue has not been

addressed; it is therefore unlikely that the results

obtained on energy-equalised corpora in these

studies will generalise to real-world acoustic envi-

ronments. Here, we demonstrate that our pro-
posed spectral normalisation scheme also

improves robustness when the input signal is sub-

ject to overall gain modulation.

For testing purposes we generated a random

gain for each utterance in the test set. This gain

was held constant for the duration of the utter-

ance. It should be noted that the same seed was

used to randomise gains in each experimental
condition; hence the corresponding speech sam-

ples were scaled with the same random value in

each condition, in order to allow a direct com-

parison.

Gain modulation tests are shown in Table 4 for

missing data systems with and without spectral

normalisation, and for the MFCC baseline system.

The gain on the input was varied randomly be-
tween )10 and 10 dB. Comparison with Table 2
indicates that the performance of the missing data

recogniser without spectral normalisation is de-

graded by gain modulation, even in the clean

condition. In comparison, the missing data system

with spectral normalisation is unaffected by gain

modulation.

5.5. Experiment 3: Reverberation

The degree of reverberation in an enclosed
space is often characterized using a simple mea-

sure called reverberation time T60, which is de-
fined as the time required for the reverberation

level to drop 60 dB below that of the original

sound onset. For example, the recommended T60
for a speech hall is 0.4 s, whereas a richer

acoustic environment (and hence a longer T60) is
required for music; a typical value for a concert
hall is 2.0 s.
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For testing the model performance under

reverberant conditions the speech samples were

convolved with impulse responses of rooms with

different reverberation characteristics. A total of 6
impulse responses were used in the testing. Four of

these responses were originally used by Kingsbury

(1998). They were recorded in a varechoic chamber

with two different settings of the wall panels using a

chirp exited system identification program

(Kingsbury, 1998, p. 90). We have verified the

quality of the responses by examining Schr€oder
plots of the responses on a dB scale. All of the re-
sponse have been truncated before they reach the

background noise level, and hence they include

only the linearly decreasing phase (in dB) of the

response. For the first wall panel setting the T60 was
0.7 s, the distances between the source and micro-

phone were 2.35 and 3.05 m, and the tail of re-

sponse was truncated at )55 dB below the level of
direct sound. For the second wall panel setting, the
T60 was 1.2 s, source-microphone distances were 2.0
and 3.05 m, and the tail of response was truncated

at )35 dB below the level of direct sound. Another
two impulse responses (not used by Kingsbury)

were measured in a larger room, having a T60 of 1.5
s and source-microphone distances of 6.1 and 18.3

m. The tails of these responses were truncated at

)50 dB below the level of direct sound.
The results of this experiment are shown in

Table 5. The missing data system with reverbera-

tion mask estimation, described in Section 4.1,

outperformed the MSG+PLP baseline in the most

reverberant test cases. However, the performance

of the MSG+PLP system was better than that of

the missing data system for the shortest T60 con-
dition, and in clean conditions (no reverberation).
The hybrid HMM-MLP recogniser using

MSG+PLP features always performed better than

configurations of this system which used MSG or

PLP features alone.

Table 5 also shows the mean estimator of the

mask value for each reverberation condition. In

this experiment binary masks were used (see Sec-

tion 4.1), and hence the mean estimator can be
interpreted as the proportion of time–frequency

regions which are marked as reliable. As expected,

the mean mask value falls with increasing rever-

beration time.
6. Discussion

In this paper we have described techniques for

handling convolutional distortion in ‘missing data’
speech recognition, an issue which has been largely

unaddressed to date. As the convolutional inter-

ference can be quite different in nature depending

upon the length of the impulse response con-

cerned, we propose two approaches; one to handle

spectral distortion due to a transmission line or

audio equipment, and another to handle room

reverberation interference. In summary, the results
show substantial performance improvements

compared to a standard missing data recogniser

when speech is contaminated by additive noise and

spectrally distorted or when the intensity of the

input speech varies. The performance of the

missing data approach is superior to that of a

MFCC baseline system at low SNRs.

The missing data systems did not perform as
well as the MFCC baseline system in the clean and

20 dB SNR conditions (Tables 2–4). This can

possibly be explained as follows. Firstly, both the

baseline system and missing data systems model

observations using Gaussian mixtures with diag-

onal covariance, i.e., they assume statistical inde-

pendence between features. This assumption holds

better for the case of MFCCs than for the case of
rate map features. One solution to this problem

would be to use a full covariance structure, but this

has been found to be computationally prohibitive

when used in the missing data framework (Morris

et al., 1998). Secondly, for clean speech there is a

small decrease in the performance of the missing

data recogniser when spectral normalisation is

applied (for example, see Table 2). Inevitably, any
data normalization scheme makes some general-

izations over the data in order to reduce variability

between different noise conditions. Whilst this

improves performance in convolutional noise,

some sensitivity to the true variability of clean

speech samples may be lost.

The utterance-by-utterance spectral normalisa-

tion technique described here probably requires
further development before it is suitable for real-

world speech recognition applications. For exam-

ple, long silent pauses in speech would cause

the normalisation factor to be biased, since it is
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inversely proportional to the utterance length (see

Eq. (7)). Also, the proposed scheme seeks to

identify the strongest speech regions with a simple

algorithm that is blind to the content of the audio
signal. It is therefore possible that intense noise

regions during a speech pause will be selected in-

stead of clean speech. We note, however, that the

above mentioned problems may be shared with

other utterance-by-utterance normalisation

schemes. One common example of this is the use of

MFCCs with cepstral mean subtraction (Atal,

1974; Rosenberg et al., 1994).One possible solu-
tion would be to combine a frame-by-frame

adaptive normalisation scheme for constant speech

flow (e.g. Kingsbury, 1998) with the proposed

spectral normalisation technique.

Our concern in this paper was convolutional

interference, rather than additive noise. Hence, the

current mechanism for dealing with additive noise

is simplistic: SNR masks are derived from a sta-
tionary noise estimate made during a silent period

at the beginning of each utterance. More sophis-

ticated methods for adaptive SNR estimation have

been proposed (e.g., Kleinschmidt and Hohmann,

2003; Dupont and Ris, 1999; Hirsch and Erlicher,

1995; Martin, 1993), and it would be straightfor-

ward to integrate such algorithms into a missing

data recogniser. Future work will address this is-
sue.

In the random gain experiment, the gain varied

randomly between different utterances but did not

vary within each utterance. Clearly, the conditions

of this experiment favour the utterance-by-utter-

ance normalisation scheme proposed here. It

should be noted that gain deviations larger than

those observed in the Aurora corpus could also
occur within each utterance, due to changes in the

speaker-microphone distance. Nonetheless, our

random gain experiment could be considered an

approximate model for the gain changes that occur

when a telephone centre receives successive calls

from different callers.

We also developed a missing data mask esti-

mation system for reverberant speech recognition,
based on detection of the strongest modulation

frequencies of speech. Our system performs rather

better than a hybrid HMM-MLP recogniser

employing MSG and PLP features (Kingsbury,
1998; Kingsbury et al., 1998), for T60 reverberation
times of 1.2 s and greater. In the least reverberated

cases, however, the baseline system outperformed

our missing data system. This may be because our
method of estimating the amount of reverberation

present in a speech sample is not sensitive enough

to distinguish between anechoic and mildly rever-

berant conditions; future work will address this

issue. We also note that our comparison of the

missing data and baseline systems uses a relatively

crude metric; overall recognition accuracy. Further

insight could be gained into the relative perfor-
mance of these techniques by examining the kinds

of confusion made at the word and phone levels by

each system. This will be addressed in future work.

The reverberation masking system proposed

here has some parallels with RASTA-PLP (Her-

mansky and Morgan, 1994) and MSG (Kingsbury,

1998), which are used for producing noise-robust

feature vectors. Both of these techniques have a
processing chain that firstly divides the signal into

frequency bands and then (after downsampling

and compression) applies a bandpass filter to

emphasise the most noise-tolerant speech signal

regions. RASTA-PLP and MSG have both been

applied to robust ASR in reverberation, with a

combination of likelihood estimates from MSG

and PLP being most successful (Kingsbury, 1998).
Both MSG and the proposed modulation fil-

tering approach to mask estimation exploit the

fact that the strongest modulations of speech occur

at modulation frequencies roughly between 3 and

10 Hz. We believe, however, that our approach has

some advantages. When noise-robust techniques

such as MSG are used, the same acoustic features

must be used during training and recognition;
hence the filter parameters must be chosen prior to

training. This, in turn, might lead to a compromise

because the use of particular features may effec-

tively tune the ASR system to certain acoustic

conditions. In principle, the missing data approach

can overcome this problem because unreliable re-

gions are filtered out by the mask estimation

processing during recognition; acoustic models are
trained on clean speech, and hence there is no need

to re-train for different front-end configurations.

We note, however, that our system also includes

parameters whose values must be set prior to
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training, such as the parameter D in the spectral
normalisation algorithm.

In designing a modulation filter for this study,

we sought only to find the best-performing filter
which had a smooth bandpass characteristic.

Conceivably, there may be a better performing

filter of more complex design. For example,

Kingsbury (1998) best performing solution was to

produce MSGs from two differently modulation

filtered spectral features, those that were bandpass

filtered (8–16 Hz) and others that were low-

pass filtered (8 Hz). Another open question is
whether rate maps are the optimal substrate for

the modulation filtering approach presented here.

The experimental results presented in this paper

were generated for a small vocabulary of only 11

words. Clearly, transferability of the current sys-

tem to a larger vocabulary task is an important

question. Raj (2000), Raj et al. (in press) and Luo

and Du (2003) have successfully applied missing
data techniques to large vocabulary tasks.

Finally, we note that a benefit of the missing

data approach is that it does not make assump-

tions about the type of noise present. Therefore, a

missing data recogniser can be adapted to different

noise conditions simply by changing the mask

estimation rule; any assumptions about the noise

type are restricted to the mask estimation process,
allowing different types of front-end to be ‘swit-

ched in’. For example, here we have described two

front-ends for the same recogniser; one that is

robust for additive noise and another that is ro-

bust for reverberation. This approach may offer

advantages for speech recognition in mobile de-

vices, since the mask estimation process could be

dynamically altered to compensate for different
acoustic conditions as they arise. In practice,

switching between systems would require some

kind of situation classification algorithm (e.g.,

Eronen et al., 2003; Li et al., 2001; Martin, 1999;

Peltonen et al., 2002; Akbacak and Hansen, 2003).

Future work will investigate this possibility.
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