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THE STEINER TRIPLE SYSTEMS OF ORDER 19

PETTERI KASKI AND PATRIC R. J. ÖSTERGÅRD

Abstract. Using an orderly algorithm, the Steiner triple systems of order 19
are classified; there are 11,084,874,829 pairwise nonisomorphic such designs.
For each design, the order of its automorphism group and the number of Pasch
configurations it contains are recorded; 2,591 of the designs are anti-Pasch.
There are three main parts of the classification: constructing an initial set of
blocks, the seeds; completing the seeds to triple systems with an algorithm for
exact cover; and carrying out isomorph rejection of the final triple systems.
Isomorph rejection is based on the graph canonical labeling software nauty
supplemented with a vertex invariant based on Pasch configurations. The
possibility of using the (strongly regular) block graphs of these designs in the
isomorphism tests is utilized. The aforementioned value is in fact a lower
bound on the number of pairwise nonisomorphic strongly regular graphs with
parameters (57, 24, 11, 9).

1. Introduction

A Steiner triple system of order v, briefly STS(v), is a set of 3-element subsets,
called blocks, of a v-set of points, such that every pair of points occurs in exactly one
block. Given an STS(v), standard counting arguments show that each point must
occur in exactly r = (v− 1)/2 blocks, and that the triple system consists of exactly
b = v(v − 1)/6 blocks. Since r and b are integers, we get necessary conditions for
the existence of an STS(v), which in fact turn out to be sufficient.

Theorem 1.1. For v ≥ 3, an STS(v) exists if and only if either v ≡ 1 (mod 6)
or v ≡ 3 (mod 6).

For a survey of this result and various other aspects of triple systems, the reader
is referred to [4].

Two STS are isomorphic if there exists a bijection between the point sets that
maps blocks onto blocks; such a bijection is an isomorphism. An automorphism of a
triple system is an isomorphism of the triple system onto itself. The automorphism
group of the triple system consists of all of its automorphisms.

The number of pairwise nonisomorphic STS(v) is denoted by N(v). It is known
that N(v) grows exponentially; in [23] it is proved (subject to the van der Waerden
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Permanent Conjecture, which is proved in [6, 7]) that

(e−5v)v
2/6 ≤ N(v) ≤ (e−1/2v)v

2/6.

The first few nonzero values of the function N(v) areN(3) = 1, N(7) = 1, N(9) = 1,
N(13) = 2, and N(15) = 80. All these values were obtained in the days of hand
calculations. The (correct) manual calculation of N(15) in the 1910s is a remarkable
achievement [5, 22]; it took almost 40 years before this result could be confirmed
in one of the first computer-aided results in combinatorics [10]. Perhaps even more
remarkable is that it would take almost a century before the next open value, N(19),
could be settled, in this paper.

As long as a complete classification of Steiner triple systems of order 19 has
been lacking, various results on such designs with special properties have been
studied. The results obtained include classifications of STS(19) with nontrivial
automorphism group [3] and of STS(19) holding a STS(9) subdesign [20]. The
former of these makes a partial correctness check of our results possible; it turns
out that the results in [3] are partly in error.

Some basic results on Steiner triple systems needed in the determination of
N(19) are presented in Section 2. In particular, a connection between Steiner
triple systems and strongly regular graphs is of central importance. The main
algorithm used is presented in Section 3, whose central themes are the general
backtrack algorithm and isomorph rejection. The statistics of the search, which
took approximately two CPU years, are presented in Section 4. For each design
found, the order of the automorphism group and the number of Pasch configurations
it contains are tabulated. The total number of pairwise nonisomorphic Steiner triple
systems of order 19 is N(19) = 11,084,874,829. The total number of Steiner triple
systems of order 19 is 1,348,410,350,618,155,344,199,680,000. Using data obtained
in the computer search, this number can be calculated in two different ways. The
paper is concluded by roughly estimating the resources needed to calculate N(21).

2. Preliminaries

All graphs in this paper are undirected. The point set {1, . . . , v} is used for
all STS(v), and the vertex set {1, . . . , b} is used for all graphs of order b. The
symmetric group on {1, . . . , b} is denoted by Sb. The automorphism group of a
graph G is denoted by Aut(G). Similarly, the automorphism group of a triple
system B is denoted by Aut(B).

Given a labeling B = {B1, . . . , Bb} of the blocks of an STS(v), the block automor-
phism group of the STS(v) consists of all permutations τ ∈ Sb for which there exists
a µ ∈ Aut(B) such that µ(Bj) = Bτ(j) for all j ∈ {1, . . . , b}. From the incidence
matrix representation of an STS(v) it is easy to see that the block automorphism
group is isomorphic to Aut(B) for v 6= 3.

2.1. Block graphs. A block graph or line graph of an STS is a graph whose vertices
are in one-to-one correspondence with the blocks of the triple system, with two
vertices joined by an edge if and only if the corresponding blocks have nonempty
intersection. More formally, if we label the blocks of an STS(v) as B1, . . . , Bb, then
the block graph (subject to this labeling) over the vertex set {1, . . . , b} contains the
edge {i, j} if and only if Bi ∩Bj 6= ∅. Whenever we fix a labeling of the blocks, we
assume that the block graph has been constructed as above.
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A strongly regular graph with parameters (n, d, λ, µ), briefly srg(n, d, λ, µ), is a
graph of order n in which each pair of vertices has exactly d, λ, or µ common
neighbours depending on whether the vertices are equal, adjacent, or nonadjacent,
respectively.

Straightforward counting arguments establish the following well-known theorem.

Theorem 2.1. A block graph of an STS(v) is a strongly regular graph
srg(v(v − 1)/6, 3(v − 3)/2, (v + 3)/2, 9).

The converse of this theorem holds on the condition that v is large enough.
This result was obtained by Bose [1] in the early 1960s, for v > 67. The following
theorem is one of the central building blocks of our classification approach.

Theorem 2.2. For v ≥ 19, every STS(v) can be reconstructed up to isomorphism
from its block graph.

The proof of [17, Theorem 10] contains an explicit algorithm for constructing an
STS from a strongly regular graph. We do not, however, need such an algorithm
here, since every such graph will be explicitly constructed from an STS, and the
transformation between these objects is therefore known.

The following corollary is an immediate consequence of Theorem 2.2.

Corollary 2.3. For v ≥ 19, two STS(v) are isomorphic if and only if their block
graphs are isomorphic.

The following results are well known.

Lemma 2.4. For v ≥ 19, a block graph of an STS(v) contains exactly v r-cliques.

Proof. The vertices of an r-clique in the block graph clearly correspond to a set of
r blocks with pairwise nonempty intersection. A short case-by-case analysis shows
that a set of blocks with pairwise nonempty intersection in an STS(v) has size at
most 7 unless the blocks share a common point. Since each point occurs in r blocks,
and no two blocks contain the same point pair, there are exactly v sets of r blocks
with pairwise nonempty intersection when r > 7, that is, v ≥ 19. �

Theorem 2.5. For v ≥ 19, the automorphism group of an STS(v) and the auto-
morphism group of a corresponding block graph are isomorphic.

Proof. Label the blocks of an STS(v) as B = {B1, . . . , Bb}, and consider the as-
sociated block graph G. Clearly, the block automorphism group of the STS is a
subgroup of Aut(G). The converse also holds for v ≥ 19 by Lemma 2.4. Namely, a
τ ∈ Aut(G) must then permute the vertex sets of the v r-cliques in G. Since the
r-cliques correspond to the points of the underlying STS, we obtain a µ ∈ Aut(B)
such that µ(Bj) = Bτ(j) for all j ∈ {1, . . . , b}. Consequently, τ is a block automor-
phism of B. �

Corollary 2.6. Let B = {B1, . . . , Bb} and B′ = {B′1, . . . , B′b} be isomorphic
STS(v), where v ≥ 19, and suppose G and G′ are the associated block graphs.
Then, for every isomorphism τ ∈ Sb of G onto G′, there exists a ν ∈ Sv such that
ν(Bj) = B′τ(j) holds for all j ∈ {1, . . . , b}.
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2.2. Canonical labeling of graphs using nauty . Our isomorph rejection strat-
egy for STS(v) uses the graph canonical labeling software nauty [12, 13]. We need
the following definitions and facts about nauty to enable subsequent discussion.

An ordered partition of a nonempty finite set V is a sequence (V1, . . . , Vm) of
nonempty pairwise disjoint subsets of V whose union is V ; the sets V1, . . . , Vm
are called cells of the partition. Associated with each ordered partition Γ =
(V1, . . . , Vm) of V is a canonical ordered partition c(Γ) := (W1, . . . ,Wm), whose
cells are defined by

Wk := {tk + 1, tk + 2, . . . , tk + |Vk|}, t1 := 0, tk := |V1|+ · · ·+ |Vk−1|,
for all k ∈ {1, . . . ,m}. A permutation τ of V acts on an ordered partition Γ =
(V1, . . . , Vm) by τ(Γ) := (τ(V1), . . . , τ(Vm)).

Fact 2.7. For a graph G and an ordered partition Γ of the vertex set {1, . . . , b}
of G, nauty computes a canonical labeling σG,Γ ∈ Sb and generators for the group
AutΓ(G) := {α ∈ Aut(G) : α(Γ) = Γ}. The canonical labeling satisfies

σG,Γ(G) = στ(G),τ(Γ)(τ(G)),(1)

σG,Γ(Γ) = c(Γ)(2)

for all τ ∈ Sb, graphs G, and ordered partitions Γ of the vertex set {1, . . . , b}.

Let G be a set of graphs over the vertex set {1, . . . , b}, and suppose that G is
closed under permutation of the vertices. A vertex invariant for G associates to each
graph G ∈ G an ordered partition Λ(G) of {1, . . . , b} such that Λ(τ(G)) = τ(Λ(G))
holds for all G ∈ G and τ ∈ Sb.

Theorem 2.8. Let Λ be a vertex invariant for G . Then, σG,Λ(G) satisfies

(3) σG,Λ(G)(G) = στ(G),Λ(τ(G))(τ(G))

for all graphs G ∈ G and τ ∈ Sb. Moreover, Aut(G) = AutΛ(G)(G) for all G ∈ G .

Proof. Equality in (3) is an immediate consequence of (1) and the definition of a
vertex invariant. For the second part, observe that αΛ(G) = Λ(G) for all α ∈
Aut(G). �

To lighten the notation, we omit the vertex invariant whenever it is not explicitly
required. For example, (3) then becomes

(4) σG(G) = στ(G)(τ(G)).

2.3. Pasch configurations. A Pasch configuration (or fragment or quadrilateral)
in an STS is a set of four blocks and six points of the form {u, v, w}, {w, x, y},
{u, x, z}, {v, y, z}. Algorithms for finding the Pasch configurations in a Steiner
triple system are considered in [18]. An STS is said to be anti-Pasch if it does not
contain a Pasch configuration. Note that the blocks in a Pasch configuration have
pairwise nonempty intersection. However, all sets of four blocks that have pairwise
nonempty intersection do not form a Pasch configuration. A detailed study of four-
line configurations in Steiner triple systems appears in [8]; the following theorem
suffices for our purposes.

Theorem 2.9. Each block of an STS(v) occurs in exactly (v−3)(v2−12v+99)/16
sets of four blocks that have pairwise nonempty intersection but do not form a Pasch
configuration.
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Proof. Consider any set of four blocks with pairwise nonempty intersection. A short
case-by-case analysis shows that, unless the blocks form a Pasch configuration, there
exists a unique point x that occurs in at least three of the four blocks. Fix any
block B of an STS(v). We count the sets of four blocks of the type above in which
B occurs by splitting the count into subcases as follows.

Case 1. The point x has multiplicity 3, and x ∈ B. First, there are three
possibilities for x ∈ B. Second, there are r− 1 choices for a block B1 that contains
x. Third, there are four choices for a block B2 that has nonempty intersection with
both B and B1 but x /∈ B2. Block B3 that contains x and has nonempty intersection
with B2 is unique. Since the choices for B1 and B3 can be interchanged, the total
number of sets of four blocks that contain B in this subcase is 6(r − 1).

Case 2. The point x has multiplicity 3, and x /∈ B. There are v − 3 choices for
x. Since x is unique, the three blocks in addition to B are uniquely determined as
the blocks that contain {x, y}, where y ∈ B.

Case 3. The point x has multiplicity 4. Clearly, x ∈ B. There are 3
(
r−1

3

)
sets

of four blocks that contain B in which x ∈ B occurs with multiplicity 4. Namely,
there are three ways to choose x and

(
r−1

3

)
ways to choose the other three blocks

after x has been fixed.
Since the subcases are nonoverlapping, we have that B occurs in exactly

6(r − 1) + (v − 3) + 3
(
r − 1

3

)
=

(v − 3)(v2 − 12v + 99)
16

sets of four blocks that have pairwise nonempty intersection but do not form a
Pasch configuration. �

The 4-cliques of a block graph are divided into those that correspond to Pasch
configurations and those considered in Theorem 2.9. Fix a labeling B1, . . . , Bb of
the blocks of an STS(v), and let G be the associated block graph. Denote by C4(j)
the number of 4-cliques in G that contain vertex j, and denote by P (Bj) the number
of Pasch configurations in the STS that contain Bj . Then,

(5) C4(j) =
(v − 3)(v2 − 12v + 99)

16
+ P (Bj).

Motivated by this observation, we can build a vertex invariant for block graphs
by partitioning the vertices according to the number of Pasch configurations in
which a block occurs. The Pasch configuration invariant is faster to compute than
an invariant that partitions the vertices based on the number of 4-cliques because
we need not consider the 4-cliques arising from other four-block configurations.
Theorem 2.9 shows that when v = 19 there are already 232 such “redundant”
4-cliques for each vertex.

Let G be any block graph of an STS(v), and let B = {B1, . . . , Bb} be any
STS(v) for which G is the associated block graph. Let {p1, . . . , pm} := {P (Bj) :
j ∈ {1, . . . , b}}, where p1 > p2 > · · · > pm. Define the ordered partition ΛP (G) :=
(V1, . . . , Vm) by Vi := {j ∈ {1, . . . , b} : P (Bj) = pi}.

Theorem 2.10. For v ≥ 19, the function ΛP is well defined and constitutes a
vertex invariant for the set of all block graphs derived from STS(v).

Proof. Let G be a block graph, and let B = {B1, . . . , Bb} be any STS(v) for which
G is the associated block graph. Select any τ ∈ Sb. (To establish well-definedness,
take the identity permutation.) Put G′ := τ(G), and let B′ = {B′1, . . . , B′b} be
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any STS(v) for which G′ is the associated block graph. Suppose that ΛP (G) =
(V1, . . . , Vm) and ΛP (G′) = (V ′1 , . . . , V ′m′). By Corollary 2.3, B and B′ are isomor-
phic. So, Corollary 2.6 implies that there exists a ν ∈ Sv such that ν(Bj) = B′τ(j)

holds for all j ∈ {1, . . . , b}. Thus, P (Bj) = P (B′τ(j)) holds for all j ∈ {1, . . . , b},
which implies m = m′, pi = p′i, and τ(Vi) = {τ(j) : P (Bj) = pi} = {j :
P (B′j) = p′i} = V ′i for all i ∈ {1, . . . ,m}. Consequently, ΛP is well defined, and
τ(ΛP (G)) = ΛP (τ(G)). �

3. Classification of Steiner triple systems

The correspondence between Steiner triple systems and strongly regular graphs
given by Theorem 2.2 is very useful from an algorithmic point of view since we
can alternate between representations and use the best representation for the task
at hand. The core of our algorithm is an efficient exact cover algorithm [11] for
constructing STS(19). Isomorph-free generation [15] is achieved using the block
graph representation and nauty supplemented with the Pasch configuration vertex
invariant. The details of our approach are as follows.

The construction process has two stages. The first stage is a preprocessing stage
in which the seeds for the main search are determined. The second stage consists
of determining all extensions of each seed to an STS(19) and rejecting isomorphs.

3.1. Constructing and extending seeds. In the preprocessing stage, we fix the
first block, {1, 2, 3}, and construct all pairwise nonisomorphic designs consisting of
3-element blocks that intersect the first block so that the total number of blocks
is 25 (r = 9 for an STS(19)) and no pair in {1, 2, . . . , 19} occurs in more than one
block. Up to isomorphism, the incidence matrix of such a design is as shown in
Table 1.

Table 1. Structure of seeds.

1 11111111 00000000 00000000
1 00000000 11111111 00000000
1 00000000 00000000 11111111
0 10000000
0 10000000
0 01000000
0 01000000
0 00100000
0 00100000
0 00010000 A B
0 00010000
0 00001000
0 00001000
0 00000100
0 00000100
0 00000010
0 00000010
0 00000001
0 00000001
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Table 2. Possible choices for the A matrix.

10000000 10000000 10000000 10000000 10000000 10000000 10000000
01000000 01000000 01000000 01000000 01000000 01000000 01000000
10000000 10000000 10000000 10000000 10000000 10000000 10000000
01000000 01000000 01000000 01000000 00100000 00100000 00100000
00100000 00100000 00100000 00100000 01000000 01000000 01000000
00010000 00010000 00010000 00010000 00100000 00010000 00010000
00100000 00100000 00100000 00100000 00010000 00100000 00100000
00010000 00010000 00001000 00001000 00001000 00010000 00001000
00001000 00001000 00010000 00010000 00010000 00001000 00010000
00000100 00000100 00001000 00000100 00000100 00000100 00000100
00001000 00001000 00000100 00001000 00001000 00001000 00001000
00000100 00000010 00000010 00000010 00000010 00000010 00000010
00000010 00000100 00000100 00000100 00000100 00000100 00000100
00000001 00000001 00000001 00000001 00000001 00000001 00000001
00000010 00000010 00000010 00000010 00000010 00000010 00000010
00000001 00000001 00000001 00000001 00000001 00000001 00000001

To fill out the parts A and B in Table 1, a backtrack search with isomorph
rejection is carried out. Actually, the A part can be completed up to isomorphism
using combinatorial arguments; there are only seven such completions, which are
shown in Table 2. From left to right these correspond to the seven partitions,

4 + 4 + 4 + 4, 4 + 4 + 8, 4 + 6 + 6, 4 + 12, 6 + 10, 8 + 8, 16,

of 16 into even integers greater than or equal to 4. (Each completion corresponds
to a 1-factor of the complete graph K16 that is disjoint from the 1-factor in columns
2 to 9 of Table 1. The union of two such 1-factors is a 2-regular graph consisting
of even-length cycles only; up to isomorphism these correspond to the partitions
above.)

To complete the B part for each of the seven A matrices and to carry out isomorph
rejection, the use of a computer is inevitable. (Note that it not necessary to optimize
these algorithms, since the amount of computer time consumed in this stage is only a
fraction of the total time.) For each completion we perform isomorph rejection with
nauty against a stored collection of orbit representatives. Each design is encoded
as a vertex-colored bipartite graph in which vertices of one color correspond to the
points, vertices of another color correspond to the blocks, and edges encode the
incidence relation between points and blocks [13, p. 23]. In total, 14,648 pairwise
nonisomorphic 25-block seed subdesigns are obtained in this way.

The problem of finding all extensions of a seed subdesign to an STS(19) is that
of finding all solutions to an instance of exact cover. In the exact cover problem,
we are given a set and a collection of its subsets; the task is to cover the set with
given subsets so that each element of the set is covered exactly once. With our
25-block seed subdesigns, we want to cover the remaining uncovered pairs with 32
3-subsets so that each pair is covered exactly once. A fast, state-of-the-art exact
cover algorithm can be found in [11], to which we refer the reader for details.

In fact, it turns out that data of a complete search described above can be
combined with previous results to calculate the number of pairwise nonisomorphic
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STS(19) as follows. Let B1, . . . ,BN(19) be representatives from the isomorphism
classes of STS(19). Then the orbit-stabilizer theorem gives as the total number of
STS(19),

(6)
N(19)∑
i=1

19!
|Aut(Bi)|

.

Let the seed subdesigns be Si, 1 ≤ i ≤ 14,648, and let Mi denote the total number
of completions of Si to STS(19). Again, the orbit-stabilizer theorem can be used
to get the total number of STS(19):

(7)
1
57

14,648∑
i=1

19!
|Aut(Si)|

·Mi.

Since we know [3] the number of STS(19) for which |Aut(Bi)| > 1, and all values
in (7) are known after the search, it is straightforward to determine from (6) the
number of STS(19) with trivial automorphism group.

However, to be able to verify the final result in two different ways, and also to
be able to check all designs for certain properties, we enhance the search to be able
to identify all pairwise nonisomorphic STS(19). Actually, in this way we are able
to discover fatal errors in [3].

3.2. Isomorph rejection. The most involved part of the algorithm is the elimi-
nation of isomorphic STS(19) from consideration. There are three issues that need
to be addressed.

First, the main search must be conducted in parallel because of the consider-
able resource requirements. This presents a difficulty since the parallel runs should
preferably be independent of each other, whereby no comparisons between isomor-
phism class representatives encountered in distinct runs are allowed. Second, the
search is to be conducted in part on computers that do not have enough main
memory to store the millions of isomorphism class representatives potentially en-
countered as extensions of a single seed subdesign. Third, isomorphism testing
must be fast since there are in the order of, as we now know, 7 · 1011 STS(19)
candidates that are to be tested for isomorphism. Luckily enough, all of the above
difficulties are essentially solved by a recent algorithm framework for isomorph-free
exhaustive generation [15].

Our basic isomorph rejection strategy is to use nauty to compute the canonical
labeling and automorphism orbits of the block graph of a generated STS(19). To
enable parallelization we must guarantee that algorithm runs performed on different
seed subdesigns do not output isomorphic STS(19). This can be accomplished by
using the output of nauty to test that a generated STS(19) originates from the
correct parent seed subdesign. This test is motivated by the general theory in [15].

We fix the following labeling convention to connect the seed subdesign to a block
graph. (Recall that the block {1, 2, 3} occurs in every seed subdesign.)

Requirement 3.1. We require that the block {1, 2, 3} corresponds to the vertex
labeled 1 in a block graph whenever the test (8) below is performed.

For every STS(19) generated from a seed subdesign, we construct its block graph
G and test with nauty that the following condition is satisfied (recall that σG
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denotes the canonical labeling computed by nauty for G):

(8) 1 ∈ {α(σ−1
G (1)) : α ∈ Aut(G)}.

If the test fails, we reject the STS(19) from further consideration.
To establish correctness of the test (8) we must prove that the test is sound; that

is, any two isomorphic STS(19) that pass the test are generated from the same seed
subdesign. Moreover, we must prove that the test is complete in the sense that a
generated STS(19) from every isomorphism class of STS(19) will pass the test.

Theorem 3.2. Let B and B′ be two generated STS(19) that pass the test (8). If B
and B′ are isomorphic, then they have been constructed by extending the same seed
subdesign S. Moreover, there exists an automorphism of S that is an isomorphism
of B onto B′.
Proof. Let S and S′ be the seed subdesigns from which B and B′ have been con-
structed. Suppose B = {B1, . . . , Bb} and B′ = {B′1, . . . , B′b} satisfy Requirement
3.1, and let G and G′ be the associated block graphs. Since both graphs pass the
test (8), there exist α ∈ Aut(G) and β ∈ Aut(G′) such that

α(σ−1
G (1)) = 1 = β(σ−1

G′ (1)).

By Corollary 2.3 and (4) we have

σG(α−1(G)) = σG(G) = σG′(G′) = σG′(β−1(G′)).

So, τ := βσ−1
G′ σGα

−1 is an isomorphism of G onto G′ that keeps the vertex 1 fixed.
Since B1 = B′1 = {1, 2, 3} by Requirement 3.1, Corollary 2.6 applied to τ gives
an isomorphism ν ∈ Sv of B onto B′ such that ν({1, 2, 3}) = {1, 2, 3}. Conse-
quently, ν(S) = S′, so S and S′ are isomorphic and hence equal because exactly
one representative from each isomorphism class of seed subdesigns is considered for
extension in the main search. Thus, B and B′ have been constructed from the same
seed subdesign and ν is an automorphism of S. �
Theorem 3.3. For every isomorphism class of STS(19), there exists an STS(19)
that is an extension of a seed subdesign and that passes the test (8).

Proof. Let B = {B1, . . . , Bb} be an arbitrary STS(19) and suppose G is the associ-
ated block graph. (Requirement 3.1 need not apply to G.) Put p := σ−1

G (1). By the
structure of an STS(19), the set of blocks S := {Bi : Bp ∩ Bi 6= ∅} is isomorphic
to exactly one seed subdesign S′ considered in the main search. Let µ ∈ Sv be an
isomorphism of S onto S ′. Put B′ := µ(B). Since S′ ⊂ B′, B′ will eventually be gen-
erated as an extension of the seed subdesign S′. Fix any labeling B′ = {B′1, . . . , B′b}
that satisfies Requirement 3.1, and suppose G′ is the associated block graph. We
now show that G′ satisfies (8). Define τ ∈ Sb by the rule µ(Bj) = B′τ(j) for all
j ∈ {1, . . . , b}. Clearly, G′ = τ(G). Since Bp is the only block whose points occur
with multiplicity r in S, and the same holds for the block {1, 2, 3} in S′, we must
have µ(Bp) = {1, 2, 3}. Consequently, τ(p) = 1 since Requirement 3.1 applies to
G′. By (4) we have σ−1

G σG′τ ∈ Aut(G), or equivalently, α := τσ−1
G σG′ ∈ Aut(G′).

But this implies that G′ satisfies (8) since ασ−1
G′ (1) = τσ−1

G (1) = τ(p) = 1. �
After the test (8) we must still perform isomorph rejection on those STS(19)

that have been generated from the same seed subdesign.
If the automorphism group of the seed subdesign is large, then the further test

we employ is simply a hash table query to see whether the canonically labeled block
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graph σG(G) computed by nauty during the test (8) has been encountered earlier.
If σG(G) does not occur in the hash table, then we accept the STS(19) and insert
σG(G) into the hash table; otherwise we reject the STS(19). By Corollary 2.3 this
suffices for isomorph rejection together with the test (8).

When the automorphism group of the seed subdesign is small, we employ an
alternative test, also motivated by [15], based on automorphisms of the seed subde-
sign. With this test it is not necessary to store the isomorphism class representatives
encountered. Let S be a seed subdesign and suppose Aut(S) is the corresponding
automorphism group (acting on the points). Suppose B ⊃ S is an extension of S
to an STS(19). We test whether B satisfies

(9) for all µ ∈ Aut(S), B ≤ µ(B),

where “≤” is any (for example, lexicographic) total order on the set of STS(19). For
performance reasons it is useful to perform the test (9) first, that is, if a generated
STS(19) satisfies (9), then we proceed with the test (8); otherwise we immediately
reject the STS(19).

We conclude this section by proving that the tests (8) and (9) work together as
intended. First, we prove that the two tests are sound.

Theorem 3.4. Let B and B′ be distinct extensions of a seed subdesign S to an
STS(19). If both B and B′ pass the tests (8) and (9), then they are nonisomorphic.

Proof. To reach a contradiction, suppose B and B′ are distinct and isomorphic. By
Theorem 3.2 there exists a µ ∈ Aut(S) such that µ(B) = B′. Hence, either B or B′
is rejected in the test (9). �

It remains to show completeness, that is, at least one generated STS(19) from
every isomorphism class of STS(19) will pass both tests. For an arbitrary isomor-
phism class of STS(19), let B be a generated STS(19) from the isomorphism class
that passes the test (8); the existence of B is guaranteed by Theorem 3.3. Let S be
the seed subdesign from which B is generated and let Bmin be the (lexicographic)
minimum of the Aut(S)-orbit of B. The following theorem shows that Bmin also
passes the test (8). Since Bmin by definition passes the test (9), we conclude that
at least one generated STS(19) from every isomorphism class will pass both tests.

Theorem 3.5. Let B be an extension of a seed subdesign S to an STS(19). Then,
B passes the test (8) if and only if µ(B) passes the test (8) for all µ ∈ Aut(S).

Proof. It suffices to prove the “only if” direction. Let µ ∈ Aut(S). Suppose that
B = {B1, . . . , Bb} and B′ := µ(B) = {B′1, . . . , B′b} satisfy Requirement 3.1, and
that G and G′ are the associated block graphs. Define τ ∈ Sb from the rule
µ(Bj) = B′τ(j) for all j ∈ {1, . . . , b}. Clearly, G′ = τ(G). Since G passes the test
(8), there exists an α ∈ Aut(G) for which ασ−1

G (1) = 1. From (4) we obtain that
β := τασ−1

G σG′ ∈ Aut(G′). Thus, βσ−1
G′ (1) = τασ−1

G (1) = τ(1) = 1, where the last
equality follows from µ(S) = S and Requirement 3.1. This shows that G′ passes
the test (8). �
3.3. Implementation details. The use of a vertex invariant is required to guar-
antee good performance from nauty on strongly regular graphs. The Pasch configu-
ration invariant ΛP derived in Section 2.3 succeeds most of the time in partitioning
the vertex set of a block graph so that a single application of the partition refine-
ment procedure of nauty produces a discrete partition.
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Another significant performance gain is obtained from the following observation.

Theorem 3.6. Let G be a block graph of an STS(19), and suppose that σG =
σG,ΛP (G). Then, G passes the test (8) only if 1 occurs in the first cell of ΛP (G).

Proof. Let ΛP (G) = (V1, . . . , Vm) and c(ΛP (G)) = (W1, . . . ,Wm). Since ΛP (G) is a
vertex invariant, any automorphism α ∈ Aut(G) satisfies α(ΛP (G)) = ΛP (G). So,
since σ−1

G,ΛP (G)(W1) = V1 by (2), we have ασ−1
G,ΛP (G)(W1) = V1 for all α ∈ Aut(G).

Thus, because 1 ∈W1, G will not pass the test (8) unless 1 ∈ V1. �

In other words, if the vertex invariant ΛP is used, a block graph will not pass
the test (8) unless the number of Pasch configurations in which the block B1 occurs
is the maximum taken over all blocks of the STS(19).

This observation translates into the following algorithm for performing the test
(8). Suppose a block labeling B = {B1, . . . , Bb} that satisfies Requirement 3.1 has
been fixed.

1. Starting from i = 1, compute for every block Bi the number of Pasch
configurations P (Bi) in which the block occurs.

2. If P (Bi) > P (B1) for some i, then reject the STS(19).
3. Construct the block graph and partition its vertices into maximal cells of

constant Pasch value. Sort the cells into order of decreasing Pasch value so
that the cell with the largest Pasch value becomes the first one.

4. Input the ordered partition to nauty together with the block graph.
5. Perform the test (8) based on the canonical labeling and the automorphism

orbits output by nauty.
Note that in steps 1 and 2 of the algorithm above we can compute P (Bi) directly
from the STS(19) without constructing the block graph. In this way we avoid the
overhead of constructing the block graph if the STS(19) is rejected anyway based
on Theorem 3.6.

Our implementation of the test (9) precomputes the elements of Aut(S) for each
seed subdesign S, and stores these in an array [2]. The test (9) in the main search is
implemented as an exhaustive search that considers each permutation in the array
and tests whether the permuted STS(19) is lexicographically smaller than the input
STS(19). Since most of the seed subdesigns either have a trivial automorphism
group—in which case the test (9) is trivial—or have small automorphism group
order, this näıve test suffices for our purposes.

In the search, the threshold automorphism group order was set to 200 elements;
the seed subdesigns with automorphism groups larger than this were processed
using the isomorph rejection strategy based on storing the canonically labeled block
graphs in a hash table. The maximum number of block graphs that had to be stored
in the hash table was 100,813 for the 11 seed subdesigns processed in this way.

The main search took approximately 2 years of CPU time. The search was dis-
tributed using the batch system autoson [14] to a network of 65 IBM Intellistation
Pro workstations with 450-MHz Pentium II CPUs and 15 other workstations with
CPUs ranging from 1-GHz Athlon Thunderbird to 200-MHz Pentium.

4. The STS(19)

The results of the computer search are summarized in Tables 3 to 8 and in the
following theorems. In particular, Theorem 4.3 can be obtained in two ways, using
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Table 3. The STS(19).

|Aut(B)| STS(19) Anti-Pasch

1 11,084,710,071 2,538
2 149,522 1
3 12,728 41
4 2,121 0
6 182 5
8 101 0
9 19 4
12 37 0
16 13 0
18 11 0
19 1 0
24 11 0
32 3 0
54 2 0
57 2 1
96 1 0
108 1 0
144 1 0
171 1 1
432 1 0

Total 11,084,874,829 2,591

(6) and (7), thereby indicating correctness of the results. If (6) is applied, Theorem
4.3 can be calculated from the entries of Table 3. Table 3 shows, for each possible
automorphism group order, the number of pairwise nonisomorphic STS(19) and
how many of these are anti-Pasch.

Theorem 4.1. The number of pairwise nonisomorphic STS(19) is 11,084,874,829.

Corollary 4.2. There are at least 11,084,874,829 pairwise nonisomorphic strongly
regular graphs srg(57, 24, 11, 9).

Theorem 4.3. The total number of STS(19) is

1,348,410,350,618,155,344,199,680,000.

The value of Theorem 4.1 can be compared with the estimates that have been
published in [19] and [15]; the correct value actually falls within the interval (be-
tween 1.1 ·1010 and 1.2 ·1010) estimated in [15]. The older, and not as sophisticated,
estimate in [19] (approximately 1.3 · 109) is too small.

When the results of Table 3 are compared with those of [3], one observes dis-
crepancies for the group orders 2 and 3. To obtain evidence that the results of
this paper are the correct ones, a separate calculation of the number of nonisomor-
phic STS(19) with a nontrivial automorphism group was carried out, incorporating
ideas from [3]. An STS(19) with a nontrivial automorphism group must admit an
automorphism that has one of the following basic cycle types:

191, 1129, 1136, 1328, 1726, 1734.
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Table 4. Basic automorphisms.

Order Class 191 1129 1136 1328 1726 1734 STS(19)

432 ∗ ∗ ∗ ∗ 1

171 ∗ ∗ 1

144 ∗ ∗ ∗ 1

108 ∗ ∗ ∗ ∗ 1

96 ∗ ∗ ∗ 1

57 ∗ ∗ 2

54 ∗ ∗ ∗ 2

32 ∗ ∗ 3

24 ∗ ∗ ∗ 11

19 ∗ 1

18 a ∗ ∗ 1
b ∗ ∗ ∗ 2
c ∗ ∗ 2
d ∗ ∗ ∗ 6

16 ∗ ∗ 13

12 a ∗ ∗ 7
b ∗ ∗ ∗ 8
c ∗ ∗ 12
d ∗ ∗ ∗ 10

9 ∗ 19

8 a ∗ ∗ 84
b ∗ 17

6 a ∗ ∗ 14
b ∗ ∗ 14
c ∗ ∗ 116
d ∗ ∗ 10
e ∗ ∗ 28

4 a ∗ ∗ 839
b ∗ 662
c ∗ 620

3 a ∗ 12,664
b ∗ 64

2 a ∗ 169
b ∗ 78,961
c ∗ 70,392

Total 4 184 12,885 80,645 72,150 124 164,758

For each basic automorphism type, the number of nonisomorphic STS(19) admit-
ting such an automorphism follows.

191 4
1129 184
1136 12,885
1328 80,645
1726 72,150
1734 124
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Table 5. Nonbasic automorphisms.

Class 1192 1163 113262 112144 112182 1382 1344 132262 132243 STS(19)

432 ∗ ∗ ∗ ∗ 1

171 ∗ 1

144 ∗ ∗ ∗ ∗ 1

108 ∗ ∗ 1

96 ∗ ∗ 1

57 2

54 ∗ 2

32 ∗ ∗ 3

24 ∗ 11

19 1

18a ∗ 1
18b ∗ 2
18c ∗ 6

18d ∗ 2

16 ∗ ∗ ∗ 5
∗ 6

∗ ∗ 1
∗ 1

12a ∗ 8
12b 7
12c 12
12d ∗ 10

9 ∗ 9
10

8a ∗ 2
82

8b ∗ ∗ 5
∗ ∗ 10

∗ ∗ 2

6a ∗ 14
6b 14

6c ∗ 104
12

6d ∗ 10
6e 28

4a 839
4b ∗ 498

∗ 153
11

4c ∗ 48
572

Total 10 15 137 518 16 4 185 24 48

These numbers are inconsistent with those in [3] on automorphism types 1136, 1328,
and 1726, where it is erroneously claimed that the respective numbers are 12,021,
80,591, and 80,558. (To prove that the results in [3] cannot be correct, it suffices
to check, for example, that the 12,885 STS(19) admitting an automorphism of type
1136 are indeed nonisomorphic and admit an automorphism of the required type.)
An electronic listing of all the 164,758 nonisomorphic STS(19) with a nontrivial
automorphism group is available from the authors upon request.
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Table 6. The STS(19) with |Aut(B)| = 1.

P STS(19)

0 2,538
1 35,742
2 263,580
3 1,314,921
4 4,958,394
5 15,095,241
6 38,479,651
7 84,328,790
8 162,042,722
9 276,885,482
10 426,046,203
11 596,271,490
12 765,950,843
13 910,509,472
14 1,008,606,577
15 1,047,848,142
16 1,027,119,044
17 954,708,823
18 845,586,319
19 716,600,889
20 583,312,837
21 457,752,251

P STS(19)

22 347,316,148
23 255,585,528
24 182,930,596
25 127,610,069
26 86,994,788
27 58,048,786
28 38,001,524
29 24,453,668
30 15,483,681
31 9,660,784
32 5,948,963
33 3,621,508
34 2,183,650
35 1,300,661
36 770,041
37 451,540
38 263,545
39 151,688
40 89,084
41 50,804
42 29,632
43 16,852

P STS(19)

44 10,567
45 5,943
46 3,864
47 2,125
48 1,558
49 715
50 664
51 350
52 316
53 78
54 126
55 68
56 93
57 19
58 56
59 5
60 11
62 17
64 1
66 2
70 2

We now correct the tables in [3]. The basic automorphism structure of STS(19)
with a nontrivial automorphism group is summarized in Table 4. The format of

Table 7. The STS(19) with |Aut(B)| = 2.

P STS(19)

0 1
2 35
4 216
6 794
7 3
8 2,024
9 18
10 4,119
11 63
12 6,506
13 242
14 8,538
15 571
16 9,748
17 1,247
18 9,354
19 2,049
20 8,604
21 2,920
22 7,920

P STS(19)

23 3,602
24 7,756
25 3,943
26 8,078
27 3,892
28 8,432
29 3,261
30 8,132
31 2,657
32 7,481
33 1,751
34 6,277
35 1,247
36 4,994
37 742
38 3,915
39 386
40 2,848
41 203
42 1,814

P STS(19)

43 120
44 1,184
45 50
46 687
47 23
48 436
49 7
50 261
51 8
52 135
54 121
55 1
56 38
58 28
60 7
62 23
64 1
66 6
70 3
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Table 4 is identical to [3, Table 1] for ease of reference. The STS(19) are partitioned
into classes according to the order of the full automorphism group. Each such class
is partitioned further into subclasses according to the types of basic automorphisms
that the STS(19) admit. Whenever more than one subclass exists, these are denoted
by the letters a, b, c, d, e. For example, the class 4b contains the 662 STS(19) that
have full automorphism group order 4 and admit only automorphisms of type 1328

among the basic automorphism types.
In [3] it is also obtained that, in addition to the basic automorphism types, an

STS(19) can admit a nonbasic automorphism whose type belongs to the list

1192, 1163, 113262, 112144, 112182, 1382, 1344, 132262, 132243.

Together with the basic automorphism types, these are the only nontrivial types of
automorphism an STS(19) can admit.

The classes in Table 4 partition further into subclasses according to the nonbasic
automorphisms admitted by an STS(19). This subdivision is given in Table 5. Table
5 is identical to [3, Table 2] with the exception of the class 8a, which partitions into
two subclasses instead of the one given in [3]. Namely, among the 84 STS(19) in
class 8a there exist two STS(19) whose full automorphism group has order 8 and
that admit automorphisms of type 1328, 1726, and 1344. Accordingly, the number
of STS(19) that admit an automorphism of type 1344 is 185 instead of the 183
reported in [3].

The maximum number of Pasch configurations in a Steiner triple system of
order v is denoted by P (v). See [21] for a discussion of P (v) and [9] for some
recent results on this function. Obviously, P (v) is known for v ≤ 15; for v = 19
it had been known that P (19) ≥ 84 with three known designs attaining this value.
In this work, the exact value of P (19) is obtained. We also find the number of

Table 8. The STS(19) with |Aut(B)| = 3.

P STS(19)

0 41
1 16
2 31
3 240
4 70
5 131
6 602
7 190
8 266
9 1,016
10 350
11 441
12 1,298
13 404
14 556
15 1,306
16 416
17 528
18 987
19 352

P STS(19)

20 421
21 694
22 224
23 296
24 412
25 156
26 200
27 251
28 86
29 135
30 148
31 54
32 67
33 76
34 36
35 43
36 40
37 18
38 18
39 27

P STS(19)

40 6
41 11
42 14
43 2
44 6
45 4
46 4
47 3
48 16
49 2
50 1
51 1
52 5
54 2
57 1
58 1
59 1
60 5
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nonisomorphic anti-Pasch STS(19); previously it had been known that there are
more than one thousand such designs [16]. The large number of nonisomorphic
anti-Pasch STS(19) prohibits listing them here; however, the authors are happy to
provide them electronically to anyone interested.

Theorem 4.4. The maximum number of Pasch configurations in an STS(19) is
P (19) = 84; there are three such designs (with automorphism groups of order 108,
144, and 432). The number of nonisomorphic anti-Pasch STS(19) is 2,591.

It appears that the maximum number of Pasch configurations are to be found
among the STS with large automorphism group. In Tables 6 to 8, the frequency of
STS(19) with a given number of Pasch configurations, indicated by P , are shown
for the automorphism groups of order at most 3.

Because not too many CPU years were consumed to obtain a classification of
STS(19)—and an enumeration can be completed in much shorter time—one may
ask whether an enumeration or a classification of STS(21) is within reach. To answer
this question, the seed subdesigns for STS(21) were classified—there are 219,104
seeds—and a few of these were fed to the completion algorithm. It turned out that
we were not able to process these seeds within reasonable time. The amount of
CPU time needed to process one such seed was estimated to be more than one year
on a 500-MHz personal computer. A total amount of hundreds of thousands of
CPU years needed for a classification of STS(21) does not look promising.
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