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Abstract

Algorithms for classifying one-factorizations of regular graphs are studied. The
smallest open case is currently graphs of order 12; one-factorizations of r-regular
graphs of order 12 are here classified for r ≤ 6 and r = 10, 11. Two different
approaches are used for regular graphs of small degree; these proceed one-factor
by one-factor and vertex by vertex, respectively. For degree r = 11, we have one-
factorizations of K12. These have earlier been classified, but a new approach is
presented which views these as certain triple systems on 4n − 1 points and utilizes
an approach developed for classifying Steiner triple systems. Some properties of the
classified one-factorizations are also tabulated.

1 Introduction

An r-factor of a graph G is an r-regular spanning subgraph of G. An r-factorization
of G is a partition of the edges of G into r-factors. We consider here one-factorizations
(alternatively, 1-factorizations) of small regular graphs of even order 2n and degree 1 ≤
k ≤ 2n − 1. The complete graph K2n is the unique regular graph of order 2n and degree
2n − 1.
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Two one-factorizations are isomorphic if there exists a bijection between the vertices
of the graphs that maps one-factors onto one-factors; such a bijection is an isomorphism.

The problem of classifying one-factorizations of regular graphs up to isomorphism was
solved for 2n ≤ 10 in the mid-1980s [12, 28, 29]. With hundreds of objects for order 10,
we have millions of objects for order 12; still Dinitz, Garnick, and McKay managed to
classify the one-factorizations of K12—there are 526,915,620 such objects—in the early
1990s in less than eight months by distributing the problem to a network of workstations
[10]. The order 12 case has remained open for other degrees (except for the smallest,
trivial ones), and in fact does so for some parameters even after this study.

In this paper several algorithms for classification of one-factorizations of regular graphs
are considered. In Section 2, we discuss algorithms for classifying one-factorizations that
are based on a coding-theoretic viewpoint. Two algorithms are utilized, one that proceeds
a one-factor at a time, and one that proceeds a vertex at a time. In Section 3, we present
an algorithm for classifying one-factorizations that is based on viewing one-factorizations
as certain triple systems. We also show how a classification of one-factorizations of K2n

can be used to deduce the one-factorizations of graphs of degree 2n − 2; up to isomor-
phism there is exactly one such graph, the graph obtained by deleting a one-factor from
K2n. In this manner, classification results for regular graphs of order 12 are obtained
for degrees k ≤ 6 and k = 10, 11. Hence the cases k = 7, 8, 9 remain open. In none of
the algorithms presented is a classification of regular graphs utilized. The classification
results are summarized in Section 4.

2 One-Factorizations of Graphs with Small Degree

The algorithms for constructing one-factorizations of regular graphs of small degree k can
be divided roughly into two types.

Algorithms of the first type utilize a classification of the underlying regular graphs (see
[22] for an efficient classification algorithm for regular graphs) and classify the nonisomor-
phic one-factorizations one graph G at a time. This approach is employed in [28]. Also
the approach to be presented in Section 3 admits generalization from complete graphs
K2n to arbitrary regular graphs, but such a generalization is not considered here.

Algorithms of the second type construct the one-factorizations directly without relying
on a classification of regular graphs. Possibilities for such an algorithm include construct-
ing the one-factorizations either vertex by vertex or factor by factor. The latter of these
strategies is employed in [10]. (Strictly speaking, the algorithm in [10] is optimized for
the case k = 2n − 1; if the algorithm is used for k < 2n − 1, it must be slightly relaxed.)

In this section we describe two algorithms that are based on viewing one-factorizations
as certain error-correcting codes.

2.1 One-Factorizations and Codes

We recall some standard coding-theoretic terminology. Let Zq = {0, 1, . . . , q − 1} and
write Z

`
q for the set of all ordered `-tuples (words) x = x(1)x(2) · · ·x(`) over Zq. For a
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word x we say that x(i) is the symbol at coordinate i ∈ {1, 2, . . . , `}. The (Hamming)
distance between two words x, y ∈ Z

`
q is

d(x, y) = |{i ∈ {1, 2, . . . , `} : x(i) 6= y(i)}|.

A q-ary code of length ` is a nonempty set C ⊆ Z
`
q. The minimum distance of a code

is d(C) = minx,y∈C:x 6=y d(x, y). A code is equidistant if d(x, y) = d(C) for all distinct
x, y ∈ C. An (`, M, d)q code is a q-ary code of length `, cardinality M , and minimum
distance d. A code is equireplicate if q divides |C| and every symbol occurs |C|/q times
in every coordinate of the code.

Two codes are equivalent if the words in one code can be mapped onto the words of the
other code by permuting the coordinates and the symbols separately in each coordinate
of the code. In other words, denoting by Sd the symmetric group of degree d, two codes
are equivalent if and only if they are in the same orbit under the coordinate- and symbol-
permuting action of the wreath product Sq oS` on subsets of Z

`
q. The automorphism group

Aut(C) of a code C is the subgroup of Sq oS` that consists of all group elements that map
C onto itself.

By a result of Semakov and Zinov’ev [31], the one-factorizations of K2n—which in the
context of [31] should be interpreted as resolutions of a 2-(2n, 2, 1) design—correspond to
(2n−1, 2n, 2n−2)n codes. For convenience we here give a description of the correspondence
in graph-theoretic terminology.

A one-factorization of K2n gives rise to a (2n−1, 2n, 2n−2)n code as follows. Let F =
{F (1), F (2), . . . , F (2n−1)} be a one-factorization of K2n where F (1), F (2), . . . , F (2n−1)
are the one-factors. For each one-factor F (i), label the edges in F (i) with numbers
0, 1, . . . , n − 1 so that no two edges in F (i) are labeled with the same number. Now
associate with each vertex v in K2n a word xv such that the symbol xv(i) is the label of
the edge incident with v in F (i). It is straightforward to check that the resulting code
{xv : v ∈ V (K2n)} has the desired parameters.

The one-factorization of K6 and the code in (1) illustrate the correspondence (with
the edges in each one-factor labeled 0, 1, 2 from left to right).

F (1) = {pq, rs, tu}
F (2) = {pr, qt, su}
F (3) = {pu, qr, st}
F (4) = {ps, qu, rt}
F (5) = {pt, qs, ru}

xp = 00000
xq = 01111
xr = 10122
xs = 12201
xt = 21220
xu = 22012

(1)

By the generalized q-ary Plotkin bound [2, Theorem 3], a (2n − 1, 2n, 2n − 2)n code is
equidistant and equireplicate. Thus, conversely, a (2n−1, 2n, 2n−2)n code always defines
a one-factorization of K2n. It is straightforward to check that this correspondence is one-
to-one between equivalence classes of codes and isomorphism classes of one-factorizations.
More generally, an equireplicate (k, 2n, k − 1)n code corresponds to a one-factorization of
a regular graph of order 2n and degree k.
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2.2 Two Classification Methods

Constructing one-factorizations of regular graphs of order 2n and degree k one vertex at
a time is equivalent to constructing the corresponding equireplicate (k, 2n, k − 1)n codes
one word at a time. For this purpose we may employ the algorithm described in [14, 16];
we refer the interested reader to these papers for details. Note that we do not here require
that the codes be equidistant, and the algorithm should be modified accordingly.

In what follows we describe an alternative algorithm that constructs the equirepli-
cate (k, 2n, k − 1)n codes one coordinate at a time using the canonical construction path
method [20]. In [25] this general approach is applied to classify covering codes; the nov-
elty in the present work is that there is no requirement to store any code equivalence
class representatives due to the careful design of the step that extends a code by a new
coordinate.

The coordinate-by-coordinate code classification algorithm has the top-level structure
of a backtrack search. A partial solution in the search is an equireplicate (j, 2n, j − 1)n

code Cj , 1 ≤ j ≤ k. For j = k, the algorithm outputs Ck as the representative of its
equivalence class. For j < k, the algorithm extends Cj by adding coordinate j +1 so that
the result Cj+1 is an equireplicate (j + 1, 2n, j)n code. After Cj+1 has been constructed,
it is subjected to an isomorph rejection test. If the test accepts Cj+1, then the search is
invoked recursively with Cj+1 as input; otherwise Cj+1 is rejected and the next extension
of Cj is considered.

The isomorph rejection test is based on a function m that associates to every code
C ⊆ Z

`
q an Aut(C)-orbit m(C) ⊆ {1, 2, . . . , `} of coordinates such that, for any two codes

C, C ′, any isomorphism C → C ′ maps m(C) onto m(C ′). The test accepts Cj+1 if and
only if j +1 ∈ m(Cj+1). We compute m(C) by encoding C as a vertex-colored graph (see
[24]) and executing nauty [18] on the graph. As a side effect, we obtain generators for
Aut(C).

We proceed to describe the extension step from Cj to Cj+1. Label the codewords in
Cj as x1, x2, . . . , x2n. The automorphism group Aut(Cj) acts on Cj by permuting the
words among themselves. Let H be the corresponding permutation group that acts on
the indices {1, 2, . . . , 2n} instead of the words {x1, x2, . . . , x2n}. We view each extension
of Cj into Cj+1 as an ordered 2n-tuple Y = [y1, y2, . . . , y2n] of symbols such that yi ∈ Zq

extends the word xi for all 1 ≤ i ≤ 2n. The direct product group Sq × H acts on the
set of ordered 2n-tuples of symbols by permuting the symbols and the positions. More
precisely, for α ∈ Sq and β ∈ H ,

αβY = [α(yβ−1(1)), α(yβ−1(2)), . . . , α(yβ−1(2n))].

We assume that the tuples are ordered lexicographically so that Y < Y ′ if and only if
there exists an i such that yi < y′

i and yh = y′
h for all 1 ≤ h < i.

The extension step constructs exactly one 2n-tuple Y from each orbit of Sq ×H such
that Cj extended with Y is an equireplicate (j + 1, 2n, j)n code. We use the following
orderly backtrack algorithm (see [11, 27]) for this task. For 1 ≤ m ≤ 2n, a partial solution
in the search is an m-tuple Ym = [y1, y2, . . . , ym] that is the lexicographic minimum of
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its orbit under the action of Sq × Hm, where Hm is the subgroup of H that stabilizes
m + 1, m + 2, . . . , 2n pointwise. A partial solution is discarded if it violates the minimum
distance condition or if it is not the minimum of its Sq × Hm-orbit.

To test minimality of Ym, we determine for every β ∈ Hm whether there exists an
α ∈ Sq such that αβYm < Ym. Note that minα∈Sq αβYm can be obtained from βYm by
permuting the symbols so that, in order of the positions, every occurrence of every symbol
a > 0 is preceded by an occurrence of a − 1.

Permutation group algorithms for manipulating automorphism groups can be found
in [4, 32].

3 One-Factorizations of Complete Graphs

The most efficient known algorithm for classifying one-factorizations of complete graphs
can be found in [10]; this algorithm constructs one-factors one by one and uses the method
of canonical representatives [11, 27] for isomorph rejection. We present here an alternative
approach that views one-factorizations as certain triple systems and classifies these using
a modification of the algorithm in [15].

In this way we are able to redo the classification of one-factorizations of K12 in ap-
proximately 50 MIPS years, whereas 160 MIPS years was used for the classification in
[10]. The next open instance is still out of reach, since there are apparently about 1018

nonisomorphic one-factorizations of K14 [10].

3.1 One-Factorizations as Triple Systems

One-factorizations of K2n may be viewed as certain triple systems. For such a one-factori-
zation, we define a set U = {u1, u2, . . . , u2n−1} with one element for each one-factor, a set
V = {v1, v2, . . . , v2n} with one element for each vertex of the complete graph, and a set
system containing a set {ua, vb, vc} exactly when the edge {vb, vc} occurs in the one-factor
ua. The elements of U and V are called points. For example, the following set system
describes a one-factorization of K4:

{{u1, v1, v2}, {u1, v3, v4}, {u2, v1, v3},
{u2, v2, v4}, {u3, v1, v4}, {u3, v2, v3}}.

In other words, a one-factorization of K2n is a triple system on 4n − 1 points with
|U | = 2n − 1 and |V | = 2n, such that each triple, or block, contains one point from U
and two points from V . Moreover, each pair of points in V as well as each pair of one
point in U and one point in V must occur in exactly one block. Thus, such a triple
system is a group divisible design (GDD) of constant block size 3, index 1, and group
type (2n − 1)112n (see [23]).

Two triple systems of one-factorizations are isomorphic if there exists a permutation
of points (an isomorphism) that fixes U and V setwise and maps the blocks of one system
onto the blocks of the other system.
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3.2 Generating Triple Systems

The triple system representation links one-factorizations closely to Steiner triple systems
(STSs), which consist of 3-element blocks from a given set of points, such that every pair
of points occurs in exactly one block. An efficient algorithm for classifying Steiner triple
systems is presented in [15]. With small modifications that we present here, this algorithm
can be adapted to classify triple systems of one-factorizations.

The main observation behind the algorithm in [15] and the present algorithm is that
the construction of triple systems can be seen as an instance of the well known exact cover
problem. In the present context, the task is to cover all pairs of points of the form {ua, vb}
and {vb, vc} with triples of the form {ua, vb, vc}, where ua ∈ U and vb, vc ∈ V . Each triple
covers the pairs of points that occur in it, and each pair is to be covered exactly once.

The classification algorithm has two stages. The first stage is a preprocessing stage
in which the seeds—a select collection of partial triple systems of one-factorizations—for
the main search are determined. The second stage is the main search, which consists
of determining all extensions of each seed into triple systems of one-factorizations and
rejecting isomorphs. The core of the second stage algorithm is an efficient exact cover
algorithm [17] for completing the seeds into triple systems. Isomorphic triple systems are
filtered from the output of the algorithm using the canonical construction path method
[20].

In the preprocessing stage, we fix the first block, {u1, v1, v2}, and construct all pairwise
nonisomorphic triple systems consisting of blocks that intersect the first block. For K2n,
the total number of blocks in a seed is 1 + (n − 1) + 2(2n − 2) = 5n − 4. For the sake of
clarity, we now abandon a general discussion for arbitrary n and study the case n = 6.

The number of blocks in a seed for n = 6 is 5n − 4 = 26. Up to isomorphism, the
incidence matrix of these blocks is as shown in Figure 1.

To complete the 10 final blocks of Figure 1 by filling out the part A, we carry out
a backtrack search with isomorph rejection using nauty [18] and obtain 393 pairwise
nonisomorphic 26-block seeds.

Compared with the approach in [10], where a one-factor at a time is completed, we
do indeed start with a one-factor—corresponding to the six first columns in Figure 1—
but after that the search proceeds in a different direction. In fact, from the 27th block
onwards, we do not even prescribe any order, but let the heuristic of the exact cover
algorithm [17] direct the search.

3.3 Isomorph Rejection

To reject isomorphs among the generated triple systems of one-factorizations, we apply
the following two tests.

The first test associates with each triple system X an Aut(X )-orbit m(X ) of blocks
in X such that, for any two isomorphic X ,X ′, every isomorphism X → X ′ maps m(X )
onto m(X ′). A triple system X generated by extending a seed S is accepted in the first
test if and only if the block that intersects all the blocks in S occurs in m(X ).
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111111 0000000000 0000000000
000000 1000000000 1000000000
000000 0100000000 0100000000
000000 0010000000 0010000000
000000 0001000000 0001000000
000000 0000100000 0000100000
000000 0000010000 0000010000
000000 0000001000 0000001000
000000 0000000100 0000000100
000000 0000000010 0000000010
000000 0000000001 0000000001
100000 1111111111 0000000000
100000 0000000000 1111111111
010000 1000000000
010000 0100000000
001000 0010000000
001000 0001000000
000100 0000100000 A
000100 0000010000
000010 0000001000
000010 0000000100
000001 0000000010
000001 0000000001

Figure 1: The structure of seeds

The second test varies depending on the order of Aut(S). For |Aut(S)| ≤ 1000, the
second test is an exhaustive search through elements of Aut(S) that accepts X if and only
if X is the lexicographic minimum of its orbit under Aut(S). For |Aut(S)| > 1000, the
second test accepts X if and only if the canonical block graph of X (which is computed as
a by-product of the first test) does not occur in a hash table that contains the canonical
block graphs of all the triple systems encountered so far during the search for extensions
of the seed S.

A triple system is output as the representative of its isomorphism class if and only
if both tests accept it. We remark that these tests are essentially identical to those
employed in [15]; however, verifying that the tests function correctly also in the present
case requires some work. Also the implementation of the first test differs somewhat from
[15]. We proceed to describe these modifications.

A block graph or line graph of a triple system is obtained by taking one vertex for
each block and inserting edges between blocks that have at least (here, exactly) one
point in common. For the two isomorph rejection tests to function correctly, the triple
systems of one-factorizations must be strongly reconstructible (see [1]) from their block
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graphs. In other words, for any two triple systems of one-factorizations, X and X ′, and
their block graphs, L(X ) and L(X ′), the following implications must hold: if L(X ) and
L(X ′) are isomorphic, then X and X ′ are isomorphic. Furthermore, every isomorphism
L(X ) → L(X ′) must be induced by a unique isomorphism X → X ′ (cf. [15, Theorem 2.2
and Corollary 2.6]).

Theorem 1 For n ≥ 4, the triple systems of one-factorizations of K2n are strongly re-
constructible from their block graphs.

Proof. A clique in the block graph corresponds to a set of blocks that have pairwise
exactly one point in common. Such a set of blocks is called a sunflower if all the blocks
have the same point in common.

By a result of Deza [8, 9], a set of m triples that have pairwise exactly one point in
common is a sunflower if m > 7; if m = 7, the triples form either a sunflower or a Fano
plane.

Recall that a Fano plane consists of seven triples over a set of seven points, such
that each point occurs in exactly three triples, and each pair of points occurs together
in exactly one triple. In a triple system of a one-factorization, exactly one of the three
points in every triple is in U . Thus, a putative Fano plane in a triple system of a one-
factorization must contain at least one point ui ∈ U . Furthermore, since ui can occur
only in three of the seven triples, the putative Fano plane must contain another point
uj ∈ U . By the structure of a one-factorization of a triple system, the points ui and uj

do not occur together in a triple. On the other hand, the putative Fano plane requires
these points to occur together in a triple. This contradiction shows that a triple system
of a one-factorization cannot contain a Fano plane.

Consequently, for 2n − 1 ≥ 7 the maximum cliques of size 2n − 1 in the block graph
are in a one-to-one correspondence with the sunflowers induced by the 2n vertices in V .
This enables reconstruction of the V part of the triple system: a point vi ∈ V appears
in exactly those blocks that occur in the maximum clique that corresponds to vi. To
complete the U part of the triple system, just check the blocks that are nonintersecting
in the V part to see if the corresponding vertices are joined by an edge.

Any isomorphism between block graphs must map maximum cliques onto maximum
cliques, which induces a unique isomorphism between the underlying triple systems. This
establishes strong reconstructibility. �

3.4 Implementation Details for Isomorph Rejection

Following the ideas in [3], we implement the first isomorph rejection test as a sequence
of subtests of increasing computational difficulty. For this purpose, we require a fast
invariant for distinguishing between blocks in a triple system. A Pasch configuration, also
called a fragment or a quadrilateral, is a set of four triples of the form

{u, w, y}, {u, x, z}, {v, w, z}, {v, x, y}. (2)
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Pasch configurations have been used in a number of studies as isomorphism invariants for
Steiner triple systems—see [6, 7] and the references therein. Pasch configurations are also
fundamental to the success of the approach in [15], where the number of times a block
occurs in a Pasch configuration is used as a vertex invariant for speeding up isomorphism
computations on block graphs. Exactly the same invariant is natural in the context of
triple systems of one-factorizations as well. For such triple systems, a Pasch configuration
takes the form

{ua, va, vb}, {ua, vc, vd}, {ub, va, vd}, {ub, vb, vc}.
This means that the one-factors ua and ub form a 4-cycle in the vertices {va, vb, vc, vd}.
(The cycle structure of a one-factorization is an important property of one-factorizations
[33, 34] and a cornerstone in the approach in [10].)

The implementation of the first isomorph rejection test consists of four subtests. Let
X be a triple system generated as an extension of a seed S. In the first subtest, we
form an ordered partition of the blocks in X according to the number P (X , B) of Pasch
configurations in which a block B ∈ X occurs. The cells of the partition consist of blocks
with equal P (X , B) value; the cells are ordered by decreasing value of P (X , B). The
first subtest rejects X unless the block that induces S occurs in the first cell (with the
maximum P (X , B) value).

The second subtest refines the first cell of the partition based on the quantity

Q(X , B) =
∑

x:x∈B

∑

B′:x∈B′∈X
P (X , B′).

The subtest rejects X unless the block that induces S occurs in the first cell (with the
maximum P (X , B) and Q(X , B) value).

The third subtest accepts X if the first cell consists of a single block; otherwise we
proceed to the fourth and final subtest. Note that if the third subtest accepts X , the
unique block that induces S is fixed by all automorphisms of X . Thus, Aut(X ) is a
subgroup of Aut(S).

In the fourth subtest we use nauty [18] to compute an Aut(X )-orbit m(X ) of blocks.
We input the triple system X into nauty as the block graph L(X ) together with the
ordered partition of blocks resulting from the first two subtests. As a by-product of
executing nauty on L(X ) we obtain generators for Aut(L(X )) ∼= Aut(X ) together with
a canonically labeled version of L(X ) that can be used for isomorph rejection in the
case |Aut(S)| > 1000. The orbit m(X ) is the Aut(X )-orbit of blocks that maps under
isomorphism to the orbit containing the first (that is, lowest numbered) vertex in the
canonically labeled version of L(X ). The fourth subtest accepts X if and only if the block
that induces S occurs in m(X ).

3.5 One-Factorizations of Degree 2n − 2 and Order 2n

Uniqueness of a regular graph of degree 2n−2 and order 2n follows directly from unique-
ness of its complement graph, which is a regular graph of order 2n and degree 1, that
is, a one-factor. Since a one-factorization of degree 2n − 2 and order 2n can always be
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extended to a one-factorization of a complete graph, we can use a classification of the
latter objects to classify the former objects.

From each one-factorization of the complete graph of order 2n, there are 2n − 1 one-
factors to remove, and we can get 2n − 1 one-factorizations of degree 2n − 2. But some
of these may be isomorphic, and such isomorphs must be detected. However, if we know
the automorphism group of a one-factorization—in particular, the orbits of one-factors
under the automorphism group—this information can be used to directly find the desired
objects. Namely, the new one-factorizations we get are nonisomorphic if and only if the
removed one-factors are in different automorphism orbits. As a special case, if the full
automorphism group is trivial, we obtain 2n−1 nonisomorphic one-factorizations of degree
2n − 2.

Since we get information about the automorphism groups in classifying one-factoriza-
tions of complete graphs as described earlier, it is a straightforward task to classify the
one-factorizations of degree 2n − 2 simultaneously. Unfortunately, this approach cannot
easily be generalized to graphs of order 2n with smaller degree than 2n − 2 because the
complement of such a graph does not necessarily admit a one-factorization.

4 The Results

The approaches in Sections 2 and 3 were used to carry out classifications of one-factoriza-
tions of regular graphs of order 12 for degrees k ≤ 6 and k = 10, 11, respectively. The
cases k = 7, 8, 9 still remain open.

4.1 Computing Resources

Before proceeding to the classification results, we briefly outline how the classification was
carried out in practice. The classification runs were distributed using the batch system
autoson [19] to a network of Linux PCs with CPU clocks ranging from 233 MHz to 1.66
GHz.

The duration of the classification of one-factorizations of k-regular graphs of order 12
was as follows. The case k = 3 can be solved in a few seconds on a 1.66-GHz PC, for
k = 4 the time requirement is a few minutes, for k = 5 a little over six hours.

For k = 6, we divided the codeword-by-codeword search into 413 batch jobs, where
each batch job consisted of carrying out the search starting from four of the 1652 six-
codeword partial codes. In total the codeword by codeword search required approximately
120 MIPS years (years of time on a computer that executes one million instructions per
second; in deriving the MIPS values we used the rough estimate that a PC running
backtrack search executes one instruction in one clock cycle, 1 MIPS year corresponds
to approximately 5.3 hours of CPU time on a 1.66-GHz PC). The clique search in the
algorithm, see [14], took place after nine codewords had been fixed.

The coordinate by coordinate search for k = 6 was likewise divided into 157 batch
jobs, where each job consisted of carrying out the search starting from one of the 157
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three-coordinate partial codes. In total the coordinate by coordinate search required
approximately 160 MIPS years.

For k = 7, 8, 9, we classified only the uniform one-factorizations (see the following
section) by discarding all partial solutions that were not uniform. This required a little
less than a day on a 1-GHz PC.

For k = 10, 11, one batch job consisted of carrying out the main search from one of the
393 seeds. In total, the classification for k = 10, 11 required 50 MIPS years, whereas 160
MIPS years were required in [10]. This suggests a performance improvement; however,
it should be noted that the number of executed instructions per second is a somewhat
poor performance measure across different CPU architectures and instruction sets. A
classification of the one-factorizations of K12 can now be carried out in just under eleven
days on a single 1.66-GHz PC, compared with just over 8 years of CPU time required by
[10] one decade ago.

4.2 The Classification

The number of nonisomorphic one-factorizations of regular graphs of order 12 appears
in Table 1 for each possible degree k, with the exception of k = 7, 8, 9, which remain
open after this study. Also displayed in the table is the number of nonisomorphic regular
graphs for each degree and order 12, from [11]. For k = 11, our results corroborate those
obtained by Dinitz, Garnick, and McKay [10].

Table 1: One-factorizations of regular graphs of order 12

Degree Regular graphs [11] One-factorizations
2 9 4
3 94 157
4 1547 32,741
5 7849 5,122,910
6 7849 298,222,859
7 1547 ?
8 94 ?
9 9 ?

10 1 5,794,885,778
11 1 526,915,620

We focus on two key properties of the classified one-factorizations: the structure of
the automorphism group and the cycle structure, that is, the collections of cycles that
result in combining distinct one-factors in all possible ways. Of interest are those one-
factorizations for which the cycle structure is uniform in the sense that all pairs of distinct
one-factors result in isomorphic collections of cycles. In particular, a one-factorization is
perfect if the union of every pair of distinct one-factors is a Hamiltonian cycle.
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Table 2 contains the number of uniform one-factorizations for each of the four possible
cycle structures

4 + 4 + 4, 4 + 8, 6 + 6, 12.

The six uniform one-factorizations of K12 appear in [10]. The uniqueness of the type 6+6
one-factorization of K12 was shown in [5] and the five perfect one-factorizations of K12

were classified in [26]. The other classification results for k ≥ 3 in Table 2 are new. Note
that the classification is complete in the sense that also the cases k = 7, 8, 9 are included.

Table 2: Uniform one-factorizations of regular graphs of order 12

Degree 4+4+4 4+8 6+6 12 Total
2 1 1 1 1 4
3 2 5 6 32 45
4 0 14 6 2,115 2,135
5 0 21 9 57,106 57,136
6 0 14 4 357,239 357,257
7 0 4 3 471,152 471,159
8 0 2 2 110,624 110,628
9 0 1 1 3,775 3,777

10 0 0 1 28 29
11 0 0 1 5 6

A uniform one-factorization of type 4 + 4 + 4 is only possible for three graphs of order
12: the disjoint union of three copies of C4, the disjoint union of three copies of K4, and
the union of K4 and the cube K2 × K2 × K2. For each graph the one-factorization is
unique up to isomorphism.

The complement of the disjoint union of three copies of C4 is the only 9-regular graph
of order 12 that admits a uniform one-factorization of type 4 + 8. This one-factorization
is unique up to isomorphism and can be obtained by letting the automorphism group

〈(0, 1)(2, 10, 3, 11)(6, 8, 7, 9), (2, 9)(3, 8)(4, 5)(10, 11)〉

act on the two representatives of one-factor orbits

{{0, 1}, {2, 3}, {4, 5}, {6, 7}, {8, 9}, {10, 11}},
{{0, 3}, {1, 2}, {4, 11}, {5, 6}, {7, 8}, {9, 10}}.

4.3 Structure of Automorphism Groups

The nontrivial automorphisms of one-factorizations can be divided into those of prime
order and nonprime order. A one-factorization with a nontrivial automorphism group
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must necessarily admit at least one automorphism of prime order. For one-factorizations
of K12, the types of different automorphisms were determined by Seah and Stinson [30].
There are six types of automorphisms of prime order (acting on the 12 vertices):

1424, 1225, 1252, 11111, 26, 34.

Additionally, there are eight types of automorphisms of nonprime order:

1442, 12101, 122142, 122181, 2242, 21101, 43, 62, 121.

(See [13] for an analysis of the possible automorphism groups of one-factorizations of K12

conducted without the use of computers.)
For k = 10, the automorphism group of a one-factorization must be a group of au-

tomorphisms of a one-factorization of K12 such that the group fixes at least a single
one-factor. Thus, the admissible nontrivial automorphisms form a subset of the case
k = 11. In fact, the only type of automorphism that does not occur in the k = 10 case is
11111, which necessarily acts transitively on the 11 one-factors.

Based on our classification data, we can partition the one-factorizations with a non-
trivial automorphism group into classes according to the automorphism group order and
the types of prime order automorphisms (acting on the 12 vertices) that occur. This is
done in Tables 4 to 9 for each applicable value k. (For reasons of page layout, the large
tables appear before the references in Section 4.8.) The first column in each table contains
the full automorphism group order, possibly followed by a letter to indicate division into
subclasses according to the types of prime order automorphisms that occur in the class.
The last column contains the number of nonisomorphic one-factorizations within a class.
The last row contains the total number of nonisomorphic one-factorizations that admit
an automorphism of a given type.

The automorphisms of nonprime order are summarized in Table 10 for all applicable
values k. Each column in the table gives the number of nonisomorphic one-factorizations
that admit an automorphism of the given type. Note that a one-factorization may admit
many different types of automorphisms of nonprime order.

A reader with further interest is encouraged to contact the authors for electronic
listings of the one-factorizations. For example, all the uniform one-factorizations and
the one-factorizations with an automorphism group of order three or greater are readily
available in electronic form. We shall now present some more details about the classified
one-factorizations.

4.4 Dundas Index and Tightness Index

A quantity of interest in the study of the cycle structure of one-factorizations of complete
graphs is the Q-index [21], which is defined as follows. Let F = {F (1), F (2), . . . , F (2n −
1)} be a one-factorization of K2n and let Q be a set of 2-regular graphs of order 2n.
Partition the one-factors into classes such that if distinct F (i) and F (j) are in the same
class, then F (i)∪F (j) is isomorphic to a graph in Q. The index of a partition is the size
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of the smallest class in it. The Q-index of F is the maximum index of a valid partition
of the one-factors in F . The spectrum of a Q-index is the set BQ(2n) that consists of all
possible values for the Q-index over one-factorizations of K2n.

A special case of the Q-index is the Dundas index D(F), where Q consists of a single
cycle of length 2n. Clearly, a one-factorization satisfies D(F) = 2n − 1 if and only if it
is perfect. Mendelsohn and Rosa [21] conjecture that when 2n ≥ 8, the spectrum of the
Dundas index satisfies

BD(2n) = {1, 2, . . . , n − 1, 2n − 1}.
Previously this has been confirmed for 2n = 8 and 10 [33]. Based on the classification
data, we obtain that the conjecture holds in the case 2n = 12; Table 3 partitions the
nonisomorphic one-factorizations of K12 into classes based on the Dundas index.

Table 3: Dundas index in one-factorizations of K12

Index #
1 888,275
2 270,717,478
3 253,189,600
4 200,202
5 1,920,060

11 5

Another special case of the Q-index is the tightness index T (F), where Q consists
of n/2 4-cycles (n even) or one 6-cycle and (n − 3)/2 4-cycles (n odd). Based on the
nonexistence of type 4 + 4 + 4 uniform one-factorizations of order 12 for k > 3 (see Table
2), we obtain that the tightness spectrum BT (12) satisfies BT (12) ⊆ {1, 2, 3}. Moreover,
since 3 does not divide 11, we have BT (12) ⊆ {1, 2}. For a perfect one-factorization of
K12 we obviously have T (F) = 1. The case T (F) = 2 occurs for the one-factorization in
Figure 2. (We remark that a number of such one-factorizations exist.) Hence, we have
BT (12) = {1, 2}.

4.5 Number of 4-Cycles

During the main search for k = 11 the number of 4-cycles in a one-factorization of K12

is easily obtained as a by-product of executing the Pasch configuration invariant. Table
11 partitions the nonisomorphic one-factorizations of K12 into classes according to the
number of 4-cycles in the cycle structure.

The unique one-factorization of K12 with the maximum number of 4-cycles (81 in
total) is given in Figure 2.
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F (1) : 0,1 2,3 4,5 6,7 8,9 10,11
F (2) : 0,2 1,3 4,7 5,6 8,10 9,11
F (3) : 0,3 1,2 4,9 5,8 6,10 7,11
F (4) : 0,4 1,5 2,8 3,9 6,11 7,10
F (5) : 0,5 1,4 2,11 3,10 6,8 7,9
F (6) : 0,6 1,7 2,9 3,8 4,11 5,10
F (7) : 0,7 1,6 2,10 3,11 4,8 5,9
F (8) : 0,8 1,9 2,7 3,6 4,10 5,11
F (9) : 0,9 1,10 2,6 3,4 5,7 8,11
F (10) : 0,10 1,11 2,4 3,5 6,9 7,8
F (11) : 0,11 1,8 2,5 3,7 4,6 9,10

Figure 2: The one-factorization of K12 that contains 81 4-cycles

4.6 A Digression: Order 10

In the process of developing the algorithms of this paper, they were tested against pub-
lished classification results for small instances. This led to the discovery of two erroneous
results on the number of nonisomorphic one-factorizations of regular graphs of order 10 in
[28]: for degree 4 the number should be 310 instead of 313, and for degree 5 the number
should be 3468 instead of 3472.

4.7 Correctness

To gain confidence in correctness of the classification, the classification for degrees k ≤ 6
was carried out using both algorithms from Section 2. For k = 10, 11, data from the
computer runs can be used to arrive at a double counting argument. During the main
search, we record for each seed Si the order of the automorphism group Aut(Si) and the
total number Mi of triple systems found by the exact cover algorithm as extensions of
Si. Similarly, for each isomorphism class Xj of triple systems, we record the order of the
automorphism group Aut(Xj). This allows us to count in two different ways the total
number of triple systems of one-factorizations of K12. By the orbit-stabilizer theorem,

1(
12
2

)
393∑

i=1

11! · 12! · Mi

|Aut(Si)| =

526,915,620∑

j=1

11! · 12!

|Aut(Xj)| . (3)

Note that the scaling on the left-hand side of (3) is necessary because the left-hand side
sum counts every triple system once for each of the

(
12
2

)
seeds that occur in a triple

system. Using the classification data, both the left-hand side and the right-hand side of
(3) evaluate to 10,070,314,878,246,926,155,776,000.

We can extend the double counting argument to work for k = 10 as follows. For each
isomorphism class X ′

j encountered for k = 10, we record the order of the automorphism
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group Aut(X ′
j). By the orbit-stabilizer theorem, the total number of triple systems for

k = 10 is
5,794,885,778∑

j=1

10! · 12!

|Aut(X ′
j)|

. (4)

These systems are in a one-to-one correspondence with the systems counted in (3): delete
the last one-factor from a triple system for k = 11 to get a triple system with k = 10;
conversely, append the unique missing one-factor to a triple system with k = 10 to get
back the original triple system with k = 11. Evaluating (4) using the classification data
gives the same result as (3), which gives us confidence that the classification for k = 10
is correct.

4.8 Tables

Table 4: Automorphisms of prime order for degree k = 3

Class 1822 1623 1632 1424 1333 1225 26 34 #
2304 ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1
432 ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1
192 ∗ ∗ ∗ ∗ ∗ ∗ 1
72 ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1

64a ∗ ∗ ∗ ∗ ∗ 1
b ∗ ∗ ∗ 1

48 ∗ ∗ ∗ ∗ ∗ 1
32a ∗ ∗ ∗ ∗ ∗ 1

b ∗ ∗ ∗ ∗ 1
24a ∗ ∗ ∗ 1

b ∗ ∗ ∗ 3
c ∗ ∗ ∗ 3

18 ∗ ∗ ∗ 1
16 ∗ ∗ ∗ 1

12a ∗ ∗ ∗ ∗ 1
b ∗ ∗ ∗ 1
c ∗ ∗ 2

8a ∗ ∗ 1
b ∗ ∗ 5
c ∗ ∗ 3

6a ∗ ∗ 1
b ∗ ∗ 1

4a ∗ ∗ ∗ 2
b ∗ ∗ 15
c ∗ ∗ 4
d ∗ 13
3 ∗ 1

2a ∗ 6
b ∗ 24
c ∗ 25

Total 8 11 2 42 9 47 88 15 123
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Table 5: Automorphisms of prime order for degree k = 4

Class 1623 1632 1424 1225 26 34 #
72 ∗ ∗ ∗ ∗ 1

48a ∗ ∗ ∗ ∗ ∗ 2
b ∗ ∗ ∗ 2

36 ∗ ∗ ∗ 1
24a ∗ ∗ ∗ 7

b ∗ ∗ ∗ 2
16a ∗ ∗ ∗ ∗ 4

b ∗ ∗ 1
12a ∗ ∗ ∗ 2

b ∗ ∗ ∗ 3
c ∗ ∗ 12

8a ∗ ∗ ∗ ∗ 1
b ∗ ∗ 6
c ∗ ∗ ∗ 3
d ∗ ∗ 1
e ∗ ∗ 44
f ∗ 1
g ∗ ∗ 13

6a ∗ ∗ 1
b ∗ ∗ 13

4a ∗ ∗ ∗ 2
b ∗ ∗ ∗ 2
c ∗ ∗ 2
d ∗ ∗ 6
e ∗ 10
f ∗ ∗ 139
g ∗ ∗ 8
h ∗ 258
3 ∗ 13

2a ∗ 22
b ∗ 206
c ∗ 190
d ∗ 1,821

Total 41 5 435 234 2,348 56 2,799
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Table 6: Automorphisms of prime order for degree k = 5

Class 1623 1632 1424 1225 1252 26 34 #
240 ∗ ∗ ∗ ∗ 2
120 ∗ ∗ ∗ ∗ 1
72 ∗ ∗ ∗ ∗ 2

48a ∗ ∗ ∗ ∗ ∗ 4
b ∗ ∗ ∗ 4

36 ∗ ∗ ∗ 2
24a ∗ ∗ ∗ ∗ ∗ 1

b ∗ ∗ ∗ 2
c ∗ ∗ ∗ 12
d ∗ ∗ ∗ 7

20 ∗ ∗ 1
16a ∗ ∗ ∗ ∗ 10

b ∗ ∗ 21
12a ∗ ∗ ∗ ∗ 4

b ∗ ∗ ∗ 1
c ∗ ∗ ∗ 2
d ∗ ∗ ∗ 6
e ∗ ∗ ∗ 2
f ∗ ∗ 32

10a ∗ ∗ 1
b ∗ ∗ 4
c ∗ ∗ 2

8a ∗ ∗ ∗ ∗ 18
b ∗ ∗ 8
c ∗ ∗ ∗ 11
d ∗ ∗ 1
e ∗ ∗ 198
f ∗ 1
g ∗ ∗ 48

6a ∗ ∗ 2
b ∗ ∗ 2
c ∗ ∗ 8
d ∗ ∗ 21
e ∗ ∗ 53
5 ∗ 7

4a ∗ ∗ ∗ 14
b ∗ ∗ ∗ 38
c ∗ ∗ 4
d ∗ ∗ 70
e ∗ ∗ 508
f ∗ 66
g ∗ ∗ 112
h ∗ 2,094

3a ∗ 4
b ∗ 78

2a ∗ 78
b ∗ 3,476
c ∗ 7,414
d ∗ 38,046

Total 184 20 4,432 7,779 18 41,263 236 52,503
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Table 7: Automorphisms of prime order for degree k = 6

Class 1623 1632 1424 1333 1225 1252 26 34 #
432 ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1
240 ∗ ∗ ∗ ∗ 2
216 ∗ ∗ ∗ ∗ ∗ 1
144 ∗ ∗ ∗ ∗ ∗ ∗ 1

120a ∗ ∗ ∗ 1
b ∗ ∗ ∗ ∗ 1

72a ∗ ∗ ∗ ∗ 1
b ∗ ∗ ∗ ∗ 1

60 ∗ ∗ ∗ 1
48a ∗ ∗ ∗ ∗ ∗ 2

b ∗ ∗ ∗ ∗ ∗ 1
c ∗ ∗ ∗ 4

36a ∗ ∗ ∗ 1
b ∗ ∗ ∗ ∗ ∗ 1

24a ∗ ∗ ∗ 4
b ∗ ∗ ∗ 27
c ∗ ∗ ∗ 2
d ∗ ∗ ∗ 2

18a ∗ ∗ ∗ ∗ 1
b ∗ ∗ ∗ 1

16a ∗ ∗ ∗ ∗ 7
b ∗ ∗ 48

12a ∗ ∗ ∗ ∗ 1
b ∗ ∗ ∗ 5
c ∗ ∗ ∗ 18
d ∗ ∗ 2
e ∗ ∗ 94

10a ∗ ∗ 1
b ∗ ∗ 5
9 ∗ ∗ 4

8a ∗ ∗ ∗ ∗ 4
b ∗ ∗ 24
c ∗ ∗ ∗ 14
d ∗ ∗ 715
e ∗ 1
f ∗ ∗ 59

6a ∗ ∗ 3
b ∗ ∗ 6
c ∗ ∗ 22
d ∗ ∗ 4
e ∗ ∗ 2
f ∗ ∗ 183
5 ∗ 28

4a ∗ ∗ ∗ 16
b ∗ ∗ ∗ 16
c ∗ ∗ 32
d ∗ ∗ 12
e ∗ ∗ 2,194
f ∗ 191
g ∗ ∗ 70
h ∗ 10,424

3a ∗ 7
b ∗ 396
c ∗ 415

2a ∗ 536
b ∗ 24,486
c ∗ 9,162
d ∗ 390,413

Total 641 28 27,787 445 9,377 39 404,386 762 439,676
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Table 8: Automorphisms of prime order for degree k = 10

Class 1424 1225 1252 26 34 #
240 ∗ ∗ ∗ ∗ 2
60 ∗ ∗ ∗ 1
48 ∗ ∗ ∗ 8
32 ∗ ∗ 4
24 ∗ ∗ ∗ 24
20 ∗ ∗ 2
16 ∗ ∗ 182

12a ∗ ∗ ∗ 11
b ∗ ∗ 277

10a ∗ ∗ 7
b ∗ ∗ 4

8a ∗ 20
8b ∗ ∗ 1,821
6a ∗ ∗ 2
6b ∗ ∗ 713
5 ∗ 93

4a ∗ ∗ 7,246
4b ∗ 947
4c ∗ 50,662
3 ∗ 1,809

2a ∗ 102,380
b ∗ 5,669
c ∗ 2,512,801

Total 112,649 5,676 109 2,573,756 2,847 2,684,685
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Table 9: Automorphisms of prime order for degree k = 11

Class 1424 1225 1252 11111 26 34 #
660 ∗ ∗ ∗ ∗ 1
240 ∗ ∗ ∗ ∗ 2
110 ∗ ∗ ∗ 1
55 ∗ ∗ 1
48 ∗ ∗ ∗ 6
32 ∗ ∗ 4
24 ∗ ∗ ∗ 25
20 ∗ ∗ 2
16 ∗ ∗ 76

12a ∗ ∗ ∗ 14
b ∗ ∗ 1
c ∗ ∗ 123

11 ∗ 2
10a ∗ ∗ 6

b ∗ ∗ 4
8a ∗ 20
b ∗ ∗ 590

6a ∗ ∗ 1
b ∗ ∗ 4
c ∗ ∗ 240
5 ∗ 92

4a ∗ ∗ 2,401
b ∗ 478
c ∗ 11,922
3 ∗ 669

2a ∗ 34,041
b ∗ 5,665
c ∗ 397,730

Total 37,661 5,676 109 5 413,138 1,086 454,121
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Table 10: Automorphisms of nonprime order

Type k = 3 k = 4 k = 5 k = 6 k = 10 k = 11
1661 0 0 0 1 0 0
142241 4 0 0 0 0 0
142161 0 0 0 1 0 0
1442 3 4 38 103 648 222
133161 2 0 0 2 0 0
122341 3 0 0 0 0 0
122261 2 0 0 2 0 0
122142 4 10 36 78 304 304
122181 1 0 0 0 12 12
12101 0 0 0 0 7 7
11213161 2 0 0 17 0 0
2441 5 0 0 0 0 0
2332 2 0 0 2 0 0
2361 2 3 4 11 0 0
2242 3 5 54 150 192 66
21101 0 0 4 4 3 3
3261 5 2 14 3 0 0
43 13 40 134 362 516 384
4181 1 0 0 0 0 0
62 12 32 85 191 457 235
121 5 4 10 6 4 6
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Table 11: Number of 4-cycles in one-factorizations of K12

4-C. #
0 185
1 2,152
2 15,881
3 76,254
4 282,578
5 829,195
6 2,036,931
7 4,288,776
8 7,930,913
9 13,088,463

10 19,551,367
11 26,712,470
12 33,746,800
13 39,724,409
14 43,909,462
15 45,838,895
16 45,474,022
17 43,057,701
18 39,127,228
19 34,233,721
20 28,954,857
21 23,755,756
22 18,955,373
23 14,762,731

4-C. #
24 11,241,485
25 8,400,148
26 6,155,430
27 4,453,996
28 3,168,561
29 2,240,287
30 1,553,558
31 1,082,488
32 736,461
33 505,937
34 336,998
35 231,404
36 150,563
37 104,606
38 65,710
39 46,501
40 28,340
41 20,467
42 11,817
43 9,025
44 4,843
45 4,070
46 2,004
47 1,804

4-C. #
48 782
49 854
50 303
51 375
52 135
53 211
54 43
55 85
56 23
57 88
58 6
59 33
60 3
61 22
62 1
63 11
65 10
67 3
69 6
71 1
73 1
81 1
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[11] I. A. Faradžev, Constructive enumeration of combinatorial objects, Problèmes com-
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