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Intelligent Minority Game with geneti
-
rossover strategiesMarko Sysi-Aho,∗ Anirban Chakraborti,† and Kimmo Kaski‡Laboratory of Computational Engineering,Helsinki University of Te
hnology,P. O. Box 9203, FIN-02015 HUT, Finland.We develop a game theoreti
al model of N heterogeneous intera
ting agents 
alled the intelli-gent minority game. The �intelligent� agents play the basi
 minority game and depending on theirperforman
es, generate new strategies using the one-point geneti
 
rossover me
hanism. The per-forman
es 
hange dramati
ally and the game moves rapidly to an e�
ient state (�u
tuations in thenumber of agents performing a parti
ular a
tion, 
hara
terized by σ2, rea
hes a low value). Thereis no �phase transition� when we vary σ2/N with 2
M/N , where M is the �memory� of an agent.The dynami
s of intera
ting agents 
ompeting fors
ar
e resour
es are believed to underlie the behaviour of
omplex systems in natural [1, 2, 3℄ and so
ial [4, 5℄ s
i-en
es. The agents have to be the best in order to survive�similar to the idea of �survival of the �ttest� in biol-ogy. In studies of market behaviour, tools of statisti
alphysi
s have been 
ombined with theories of e
onomi
s[6, 7, 8, 9℄, like game theory, whi
h deals with de
isionmaking of a number of rational opponents under 
ondi-tions of 
on�i
t and 
ompetition [10, 11, 12, 13, 14, 15℄.In this letter, we present a game theoreti
al modelof a large number of heterogeneous intera
ting agents
alled the intelligent minority game, based on the mi-nority game [11℄. This provides an alternative to therepresentative approa
h of mi
roe
onomi
s, where onehas a theory with a single (representative) agent, basedon the assumption that all the agents are identi
al [16℄.The minority game model 
onsists of agents having a �-nite number of strategies and �nite amount of publi
 in-formation, intera
ting through a global quantity (whosevalue is �xed by all the agents) representing a marketme
hanism. In the original model the agents 
hoose theirstrategy through a simple adaptive dynami
s based onindu
tive reasoning [5℄. Here, we introdu
e the fa
t thatthe agents are intelligent and in order to be the best orsurvive in the market, modify their strategies periodi-
ally depending on their performan
es. For modifyingthe strategies, we 
hoose the me
hanism of one-point ge-neti
 
rossover, following the ideas of geneti
 algorithmsin 
omputer s
ien
e and operations resear
h. In fa
t,these algorithms were inspired by the pro
esses observedin natural evolution [17, 18, 19℄ and it turned out thatthey solve some extremely 
ompli
ated problems with-out knowledge of the de
oded world. In nature, one-point
rossover o

urs when two parents ex
hange parts of their
orresponding 
hromosomes after a sele
ted point, 
reat-ing o�springs [19℄.The basi
 minority game 
onsists of an odd number ofagents N who 
an perform only two a
tions, at a giventime t, and an agent wins the game if it is one of themembers of the minority group. The two a
tions, su
has �buying� or �selling� 
ommodities, are denoted here by

0 or 1. Further, it is assumed that all the agents havea

ess to �nite amount of publi
 information, whi
h is a
ommon bit-string �memory� of the M most re
ent out-
omes. Thus the agents are said to exhibit �boundedrationality� [5℄. For example, in 
ase of memory M = 2there are P = 2M = 4 possible �history� bit strings: 00,
01, 10 and 11. A �strategy� 
onsists of a response, i.e., 0or 1, to ea
h possible history bit strings; therefore, thereare G = 2P = 22

M

= 16 possible strategies whi
h 
onsti-tute the �total strategy spa
e�. In our study, we use theredu
ed strategy spa
e by pi
king only the un
orrelatedstrategies (whi
h have Hamming distan
e dH = 1/2) [20℄.At the beginning of the game, ea
h agent randomly pi
ks
k strategies, and after a game, assigns one �virtual� pointto the strategies whi
h would have predi
ted the 
orre
tout
ome; the best strategy is the one whi
h has the high-est virtual point. The performan
e of the player is mea-sured by the number of times the player wins, and thestrategy, whi
h the player uses to win, gets a �real� point.We also keep a re
ord of the number of agents who have
hosen a parti
ular a
tion, say, �selling� denoted by 1,
N1(t) as a fun
tion of time. The �u
tuations in the be-haviour of N1(t) indi
ate the total utility of the system.For example, we may have a situation where only oneplayer is in the minority and thus wins, and all the otherplayers lose. The other extreme 
ase is when (N − 1)/2players are in the minority and (N + 1)/2 players lose.The total utility of the system is highest for the latter
ase as the total number of the agents who win is maxi-mum. Therefore, the system is more e�
ient when thereare smaller �u
tuations around the mean than when the�u
tuations are larger. The �u
tuations 
an be 
hara
-terized by the varian
e σ2 so that smaller values of σ2would 
orrespond to a more e�
ient state.In our model, the players of the basi
 minority gameare assumed to be intelligent and modify their strate-gies after every time-interval τ depending on their per-forman
es. If they �nd that they are among the fra
tion
n (where 0 < n < 1) of the worst performing players, theymodify any two of their strategies 
hosen randomly fromthe pool of k strategies and use one of the new strate-gies generated. The me
hanism by whi
h they modify
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Figure 1: S
hemati
 diagram to show the me
hanism ofone-point geneti
 
rossover to produ
e new strategies. Thestrategies si and sj are the parents. We 
hoose the breakingpoint randomly and through this one-point geneti
 
rossover,the 
hildren sk and sl are produ
ed.
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Figure 2: Plots of the performan
es of the best player (bla
k),the worst player (magenta) and two randomly sele
ted players(green and blue) in (a) the basi
 minority game, where N =

1001, M = 5, k = 10 and t = 1999, and (b) in the intelligentminority game, where N = 1001, M = 5, k = 10, t = 1999,
n = 0.3 and τ = 100.their strategies is that of one-point geneti
 
rossover il-lustrated s
hemati
ally in Figure 1. The strategies siand sj a
t as the parents and by 
hoosing the breakingpoint in them randomly, and performing one-point ge-neti
 
rossover, the 
hildren sk and sl are produ
ed. Weshould note that the strategies are 
hanged by the agentsthemselves and even though the strategy spa
e evolves, itis still of the same size and dimension; thus 
onsiderablydi�erent from earlier attempts [11, 21, 22℄.In Figure 2, the performan
es of the players in ourmodel are 
ompared with those in the basi
 minoritygame. We have s
aled the performan
es of all the play-ers su
h that the mean is zero for easy 
omparison of thesu

ess of the agents in ea
h 
ase. We �nd that there are
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Figure 3: Plots of the (a) time-variation of N1 for the basi
minority game (b) time-variation of N1 for the intelligent mi-nority game (
) histogram of N1 for the basi
 minority gameand (d) histogram of N1 for the intelligent minority game.The simulations for the basi
 minority game have been madewith N = 1001, M = 5, k = 10 and t = 1999 and for theintelligent minority game with N = 1001, M = 5, k = 10,
t = 1999, n = 0.3 and τ = 100.signi�
ant di�eren
es in the performan
es of the players.The performan
e of a player in the basi
 minority gamedoes not 
hange drasti
ally in the 
ourse of the game asshown in Figure 2 (a). However, in our model, the per-forman
es of the players may 
hange dramati
ally evenafter initial downfalls, and agents often do better afterthey have produ
ed new strategies with the one-pointgeneti
 
rossovers, as illustrated in Figure 2 (b).In order to study the e�
ien
y of the game, we plotthe time-variation of N1 for the basi
 minority game in
omparison to our model in Figures 3 (a) and (b). Alsothe histograms of N1 for the basi
 minority game and ourmodel are plotted in Figures 3 (
) and (d). Clearly evi-dent from these �gures is the fa
t that when we allow one-point geneti
 
rossovers in strategies, the system movestoward a more e�
ient state sin
e the �u
tuations in N1de
reases and the histogram of N1 be
omes narrower andsharper. We have also studied the e�e
t of in
reasing thefra
tion of players n on the distributions of the number ofswit
hes and the number of geneti
 
rossovers the playersmake. The results in Figure 4 illustrate the fa
t that as
n in
reases, more players have to make large number ofswit
hes and 
rossovers in order to be the best.Furthermore, we 
al
ulate the varian
e σ2 of N1. Thevariation of σ2/N against the parameter 2M/N for thebasi
 minority game, have been studied in details in refs.[12, 20, 21, 22℄. We show the variation of σ2/N with theparameter 2M/N for k = 2 in Figure 5 (a) for both thegames, by varying M and N . Also, we plot the quan-tity σ2/N against M (varied from 2 to 12) for N = 1001players and di�erent values of k, in Figure 5 (b). For



3

0 200 400 600
0

20

40

60

80

F
re

qu
en

cy

Number of switches
0 50 100 150 200

0

50

100

150

F
re

qu
en

cy

Number of crossovers

0 50 100 150 200
0

100

200

300

F
re

qu
en

cy

Number of crossovers
0 200 400 600

0

20

40

60

F
re

qu
en

cy

Number of switches

0 200 400 600
0

50

100

F
re

qu
en

cy

Number of switches

a

0 50 100 150 200
0

100

200

300

400

F
re

qu
en

cy

Number of crossovers

d

b e

c f

Figure 4: The histograms of the number of swit
hes theplayers make in the intelligent minority game for (a) n = 0.3(b) n = 0.4 (
) n = 0.5, and the histograms of the number ofgeneti
 
rossovers the players make in the intelligent minoritygame for (d) n = 0.3 (e) n = 0.4 and (f) n = 0.5. Thesimulations have been made with N = 1001, M = 4, k = 10,
t = 1999 and τ = 10.
k = 2, the quantity σ2/N is minimum in the basi
 mi-nority game when 2M/N ≈ 0.5 and there is a �phasetransition� at this value [12, 20, 21, 22℄. As we in
reasethe value of k the e�
ien
y de
reases and this transition�nally smoothens out. However, in the intelligent minor-ity game, we �nd no su
h phase transition for any 
ombi-nations of k, M and N , we have studied. We found thatas the value of k is in
reased, the e�
ien
y de
reases,but at a rate mu
h smaller than in the basi
 minoritygame. For both games, the values of σ2/N seem to 
on-verge towards a 
ommon value for large values of M . Ifwe 
ompare the two games, we �nd that for large k val-ues and moderate values of M , the di�eren
es in σ2/Nis very large.We have observed that in our model, the worst playerswere often those who swit
hed strategies most frequentlywhile the best players were those who made the leastnumber of swit
hes after �nding a good strategy. Fur-ther, we found that the players who do not make anygeneti
 
rossovers are unable to 
ompete with those whomake geneti
 
rossovers, and their performan
es werefound to �u
tuate around the zero mean. Moreover,it was found that as the 
rossover time-interval τ is in-
reased, the time for the system to rea
h an e�
ient stateis longer [23℄.One advantage of our model is 
learly that the dimen-sionality of the strategy spa
e as well as the number ofelements in the strategy spa
e remain the same. It is alsoappealing that starting from a small number of strategies,many �good� strategies 
an be generated by the players inthe 
ourse of the game. Even though the players may nothave performed well initially, they often did better when
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Figure 5: (a) The plot of σ2/N against the parameter 2
M/Nfor k = 2, by varying M from 2 to 11 and N from 25 to 1001for the basi
 minority game (red squares) and the intelligentminority game (bla
k asterisk marks). The simulations weremade for t = 5000 and ten di�erent samples in ea
h 
ase.The parameter values 
hosen for the intelligent minority gamewere τ = 10 and n = 50. (b) The plot of σ2/N against Mfor di�erent values of k for the basi
 minority game and theintelligent minority game. For the basi
 minority game, wehave studied the 
ases of k = 2 (magenta diamonds), k =

6 (blue squares) and k = 10 (bla
k 
ross marks). For theintelligent minority game, we have studied the 
ases of k = 2(brown asterisk marks), k = 6 (green triangles) and k = 10(red 
ir
les). The simulations for the basi
 minority gamehave been made with N = 1001 and t = 5000, and for theintelligent minority game have been made with N = 1001,
t = 5000, n = 50 and τ = 10, and for �ve di�erent samples inea
h 
ase.they used new strategies generated by the one-point ge-neti
 
rossovers. Finally, it should be pointed out thateven in the framework of geneti
 algorithms, there arevarious ways to generate new strategies. One possibilityis that we make a one-point geneti
 
rossover between thetwo worst strategies and repla
e the parents by the 
hil-dren. Another possibility is to make �hybridized geneti

rossover� where we make a one-point geneti
 
rossoverbetween the two best strategies, repla
e the worst two



4strategies with the 
hildren and retain the parents as well.We defer these modi�
ations and interesting results fora future 
ommuni
ation [23℄.This resear
h was partially supported by the A
ademyof Finland, Resear
h Centre for Computational S
ien
eand Engineering, proje
t no. 44897 (Finnish Centre ofEx
ellen
e Programme 2000-2005).
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