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In this paperwe introduceandstudyvariousadaptiveminority gamemodelsin which agentgry to improve
their performancedy modifying their strategieghroughgeneticalgorithm basedcrossovermechanismOne
aim of this studyis to find out what happensat the systemaswell asat the individual agentlevel. Adaptation
is found to improve the performanceof individual agentsquite remarkably to tightenthe competitionamong
the agentsandto drive the whole systemtowardsmaximumefficiency Resultsfrom four adaptativeminority
gamesandthe basicminority gamearecomparedandthe parametedependenciesf the bestperforminggame

arediscussed.
DOI: 10.1103/PhysRevE.69.036125

I. INTRODUCTION

Various systemsof natural and societal origin show a
complexbehavior which can be attributedto a competition
amonginteractingagentsfor scarceresourcesand their ad-
aptationto continuouslychangingenvironmentf1-5|. Such
agentscould be diversein form, function, and capability for
example,cells in animmune systemor firms in a financial
market. The natureof interactionsbetweenagentsis depen-
denton their capabilitiesandthe behaviorof anagentcanbe
consideredas a collection of rules governing responses to
stimuli. In orderto modelthesesystemsa major concernis
the selectionandrepresentationf the stimuli andresponses,
throughwhich the behaviorand strategiesof the agentsare
defined.In a model,therulesof actionserveasa directway
to describethe strategiesof agents,and their behavioris
studiedby monitoringthe effect of rulesactingsequentially
The otherkey procesgo be includedin the modelis adap-
tation, whichin biology servesasa mechanisnfor anorgan-
ism to try to makeitself fit to changingenvironmentWhat
makesthesesystemsfascinatinglycomplexis the fact that
the environmenbf a particularagentincludesotheradaptive
agentsall competingwith eachothers.Thus,a considerable
amountof anagents effort goesinto adaptatiorandreaction
to the other agents.This is the main sourceof interesting
temporalpatternsand emegent behaviorthesesystemspro-
duce.

In this paper we will study a simple game model, in
which agentsadaptdynamicallyto competeandperformbet-
ter. In sucha model the strategieswhich an agentusesto
decidethe courseof action,mustbe very goodor bestfor the
agentsto survive—similarto the “survival of the fittest’
principlein biology. So justasanorganismadaptstself to its
naturalenvironment,we proposethat the agentsof a game
adaptthemselvesdy modifying their strategiesfrom time to
time, dependingon their currentperformanceskor this pur-
posewe borrow the conceptof geneticcrossoverfrom biol-
ogy anduseit to modify the strategie®f agentsn the course
of thegame,in the sameway asin geneticalgorithms[6—8].
More specifically we apply this adaptationschemeto the
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minority game,introducedin Refs.[9—-13]. Althoughthe be-

havior of the minority gameis believedto exposea number
of important characteristicsof complex evolving systems,
oneof its weaknessess thatagentshavelimited possibilities
to improvetheir own performancenvhereasn real competi-
tive environmentattemptsto improve onesskills continu-
ously are imperative. Our adaptationscheme[14,15 pro-

posesa naturaland simple way to take this essentiafeature
into account,and its applicationturns out to give results
quite differentfrom thoseof the basicminority gameandits

variants[9,16-18].

This paperis organizedsuchthat next we briefly intro-
duceour minority gamemodeltogethemwith variousgenetic
algorithmbasedadaptatiormechanisméor strategychanges.
Thisis followed by Sec.lll, wherewe first comparecompre-
hensivecomputersimulationresultsof theseadaptivegames
andthenanalyzethe parametedependenciesf the bestper
forming game.Finally we draw conclusions.

Il. MODEL

Let usfirst describethe basicminority game(BG) model
of Challetandco-workerg9,10]. Thereoneassumesn odd
numberof agentsN which canperform one of two possible
actionsdenotedhereby 0 or 1. An agentwins a round of a
game if it choosesthe action belongingto the minority
group.All the agentsare assumedo haveaccesgo a finite
amountof “‘global” information, in the form of a common
bit-string ““memory” of M most recent outcomesof the
game,suchthat thereare 2™ possible*history” bit strings.
An agents “strategy’ consistsof two possibleresponses,
i.e., anaction0 or an action 1, to eachpossiblehistory bit

string.Thus,thereareZ2M possiblestrategieconstitutingthe
whole “strategy space’ (), from which eachagentpicks S
strategiesat randomto form its own pool Q;, wherei
=1, ... N denotesan agentnumber Eachtime the gameis
played, time t is incrementedby unity and one “‘virtual’’
point is assignedto the strategiesthat have predictedthe
correctoutcomeand the beststrategyis the one which has
the highestvirtual point score.An agents performanceis
measurecby the numberof times the agentwins, and the
strategy which the agentusedto win, getsa “real” point.
The number of agentswho chooseone particular action
changeswith time, andis denotedby x; .

In orderto describethe collective behaviorof the agents,
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we definethe conceptof scaledutility in termsof x,, in the
following way:

U(x0) ={[1— 0(x;—Xm) IX¢+ 0(Xt—Xm) (N=X) H Xy
(1)

wherexy, = (N—1)/2 is the maximumnumberof agentsvho
canwin, and

0 when x;=<xy
O(Xy— X)) =
XM= hen X > X

is the Heaviside unit step function. When x;=xy, or X,
=Xy + 1, the scaledutility of the systemis maximal, U .«
=1, as the highestnumberof agentswin. The systemis
more efficient when deviationsfrom the maximum utility
Uax are small, or in other words, the fluctuationsin x;
aroundthe mean(N/2) aresmall.

At thelevel of individual agentstheir performancen the
basicminority gameevolve suchthat the agentswho begin
to perform badly do not improve with time, and thosewho
do well continue doing so [9,14]. This indicatesthat by
chancewell performingagentswereblessedvith goodstrat-
egieswhile badly performingagentgyot badstrategiesHow-
ever therearecompetitiveenvironmentsn which individual
agentsneedto adaptthemselvego do betteror to survive.
But being good at one momentdoesnot guaranteehat one
would stay good later. In fact, there are many examplesin
businesssports, etc. which show that thosewho have de-
cidedto reston their laurelshavebeensupersedethy those
who havedecidedto adaptandfight back, persistently This
featureof dynamiccompetitionneedsto be includedin the
model,andit canbe simply realizedby allowing agentsto
modify strategiesin their individual pools. How well an
agentdoesthen, in reality, dependsn the agents capabili-
ties andskills, and how an agentrefinesits strategies.

For the adaptatioror strategymodificationwe havecho-
sengeneticalgorithms[8], which haveturnedout to be use-
ful in variousoptimizationproblems.Within the framework
of the minority game the adaptationis realized by letting
agentsto checktheir performancesafter a time interval 7,
andif an agentfinds thatit is amongthe worst performing
fractionn (whereO<<n<1), it modifiesits strategiedy ap-
plying geneticoperanddo its strategypool [14,15. Herethe
guantity = describesa time scalethatcharacterizethe adap-
tation rate of agentsin the system.Henceit canvary on a
wide rangefor systemsof naturalorigin to systemsof soci-
etal nature.

In the geneticadaptationschemef this study an agent
choosestwo “parents’ from its current pool of strategies
Q;(t)CQ, anddrawsa (uniformly distributed randomnum-
ber to determinethe crossoverpoint. Then the partsof the
strategiesabove and below this point, are interchangedo
producetwo new strategiescalledthe *“offsprings.’ In addi-
tion there are various choicesas for which strategiesare
selectedasthe parentsandalsowhich strategiesarereplaced
by the reproducedffsprings. The mechanismwhich works
the bestdependson the circumstancesand can vary from
systemto system.n somecasest is possiblethat savingthe
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parentstrategiesvould threatenthe succes®f the newborn
strategiesor createtoo stiff a competitionamongthe strate-
giesleadingto possibledisorder andin othercaseshe op-
positemight happenln this study we haveconsideredour
differentadaptatiorschemedy first selectingfrom the strat-
egy pool of an agent,the parentstrategiedo performa ge-
netic one point crossoverfor reproducingoffsprings, and
then selectingtwo old strategiesfrom the samepool to be
substitutedby the offspring strategies.

(A) Two parentstrategiesare selectedat random, and af-
ter one-pointgeneticcrossovetthe parentstrategiesare sub-
stitutedwith the two new strategieqoffsprings.

(B) Two parentstrategiesreselectedat random andafter
one-pointgeneticcrossoverthe two worst performing strat-
egiesaresubstitutedvith the two new strategiegoffsprings
while the parentstrategiesare saved.

(C) Two best performingstrategiesreselectedasparents,
and after one-pointgeneticcrossoveithe parentsare substi-
tutedwith the two new strategiegoffsprings.

(D) Two best performingstrategiesreselectedasparents
and after one-pointgeneticcrossovernwo worst performing
strategiesare substitutedwith the two new strategies(off-
springs while the parentstrategiesare saved.

We would like to proposethat theseadaptationschemes
could be consideredn a loose senseto bear someresem-
blanceto reality. Fromthe point of view of choosingparents
atrandom,schemegA) and(B) correspondo ‘‘democratic’
or equal opportunity reproduction,while schemegC) and
(D) are*“‘elitist’” dueto selectingthe bestparentsfor repro-
duction.As for substitutiondn the agents’strategypools,in
schemegA) and (C) parentsgive spacefor their offsprings
to live and developwithout the needto fight with them for
limited resourcesa sacrificefor improving the survival of
the speciesExamplesof parentglying afterreproductiorare
numeroudn nature.In decisionmakingthe interpretationof
killing the parentstrategieds that old strategies—unabl&®
lead into success—areemovedto give way to hopefully
better strategies.SchemegB) and (D), with parentsbeing
savedand agentsgetting rid of their worst strategiesbear
someresemblancéo “natural selection” of thefittestsurviv-
ing speciesOn the otherhand,in decisionmakingsituations
thesetwo schemesorrespondo agentseradicatingheir los-
ing strategiesThusit is expectedthat schemegB) and (D)
lead to a tightening competition betweenagents.Further
more, it could be expectedhat schemegD) is the most effi-
cient one, becauset removesthe worst strategiesand re-
placesthemwith crossoverf the bestones,while saving
the so far two beststrategiesn the game.In orderto study
the effectsof the stiff competitionbetweenagentswith con-
tinuously improving strategiesin more detail, large scale
simulationsare neededIn thesesimulationsit turnsout that
when agentsuse geneticoperandsthe scaledutility of the
systemincreasesandtendsto maximizewith differentrates
dependingon the mechanismand the parametersof the
game.

It should be noted that our genetic algorithm based
mechanism®f evolutionare considerabhydifferentfrom the
mechanismsppliedbeforewithin the frameworkof the mi-
nority gameg9,16-18]. Here, the strategiesare changedoy
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FIG. 1. Plotsof x; (the numberof agentsmaking a particular
action as a function of time, for the four adaptationmechanisms
(A)—(D) describedn Sec.ll.

the agentsthemselvesand they belongto the samestrategy
space(}, thatis not changingin size anddimension.

I11. RESULTS
A. Comparison between adaptation mechanisms

In orderto comparethe above introducedfour genetic
adaptatiormechanismsye first studythe quantityx; , which
describeghe numberof agentgaking a particularactionat a
giventime. For this we chosethe parametersf the gamesas
follows: N=801 agentswith M =6 memoriesS= 16 strate-
gies,andan adaptatiortime 7= 40 for the worst performing
fractionn= 0.4 of the agentswhich we expectto berelevant
in termsof the systemsizeand obtainablestatistics Also we
found out that in the gamewith adaptationscheme(D) the
fluctuationsincreasemonotonicallywith the control param-
eterz=2M/N, i.e., without showinga phasechange unlike
in the basicminority game.Thusfor anevencomparisorthe
parameterswere adjustedfor the same phasein all the
games.The simulationresultsare depictedin Fig. 1.

First, in Fig. 1(@) we presentthe results of adaptation
schemeg(A), in which the randomlychosenparentstrategies
arereplacedwith the reproducedffspring strategiesin this
caseit turned out that fluctuationsin x; aroundits mean
(=~400) decayvery rapidly from theinitial level, which cor
respondgo the amountof fluctuationsof the basicminority
game,to a more or lessconstantlevel of lessthan half the
initial value. This rendersthe scheme(A) gamemore effi-
cientthanthe basicminority game.Second,n Fig. 1(b) we
presentthe resultsof adaptationscheme(B), in which the
offspringsstrategieof randomlychoserparentstrategiese-
placethe two worststrategiesn theagents pool. In this case
we observethat fluctuationsin x; aroundthe meandecay
first rapidly below the value producedby scheme(A) and
thenslowerto evensmallervalues.Thusthe efficiencyof the
systemis furtherimproved.Third, in Fig. 1(c) we presenthe
resultsof adaptatiorschemgC), in which the besttwo strat-
egiesas parentsare replacedafter reproductionwith their
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FIG. 2. (8 Scaledutility U and maximum utility U,,=1
(dashedhorizontalline) and (b) utility deviation(1—U) for four
adaptationmechanismsas functions of scaledtime (one unit of
scaledtime correspondso a time averageover a bin of 50 simula-
tion time stepsg. Eachcurveis an ensembleaverageover 100 runs.
In both panels crossesepresenthe basicminority game,solid line
representsadaptationmechanism(A), the dashdotted line repre-
sentsmechanisn{B), the dottedline representsnechanisn{C), and
the dashedine representsnechanisniD).

offspring strategieslin this casefluctuationsin x; aroundthe
mean once again decay rapidly then stabilizing to a level
which is smallerthan for adaptationscheme(A) but larger
than for adaptationscheme(B). Fourth, in Fig. 1(d) we
presentthe resultsof adaptationscheme(D), in which the
offspring strategiesof the besttwo strategiesas parentsre-
placethetwo worststrategiesn the agents pool. In this case
we seethat fluctuationsin x, die off very rapidly, thus mak-
ing the systemmostefficient.

Next we investigatethe scaledutility U(x,), definedin
Eqg. (1), which apartfrom the efficienciesof the gamesis
expectedo give insightto their dynamicalbehavior Instead
of the standardpracticeof studying the variation of ¢?/N
versus2M/N, where| | standsfor thedifferencein thenum-
ber of agentsbetweenthe majority and minority groups,we
havestudiedU, becausdluctuationsin x; decaystronglyfor
adaptatiormechanismgB) and (D), in the latter casesome-
times evendisappearingcompletely In Fig. 2 we showthe
resultsof (a) the scaledutility U and(b) the utility deviation
1-U from the maximum U,=1 as a function of the
scaledtime for the four adaptationmechanismsusing the
sameset of parametersas before (i.e., N=801, M=6, S
=16, =40, and n=0.4). We find that the scaledutility
rapidly saturatedor the basic minority game,to efficiency
level considerablyless than the maximum. On the other
hand,it is clearly seenthat our four adaptatiormechanisms
greatlyenhancehe utilities closeto the maximum.However
as evidentin Fig. 2(b), the utility enhancementor mecha-
nisms(A) and(C) seemto slow down or possiblyevensatu-
rateto valuesslightly below U ,,,= 1 while for mechanisms
(B) and (D) U .« is approachednore rapidly or possibly
asymptotically Of the latter two mechanismshe efficiency
of schemgD) gameimprovesthe fastestandis bestoverall.
The sametendenciesverealsovisible in Fig. 1. Thuswe can
concludethatthe “elitist”” adaptatiorschemejn which only
the bestperformingstrategiesanbe usedto reproducenew
offspring strategiego replaceworst performingstrategiesis
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FIG. 3. The averageHammingdistancevs the numberof ge-
netic operations(one genetic operationtakesplace after every =
time step$ for different adaptationmechanismsand parameters.
The simulationwasdonewith N=801, 7=80, n=0.4 andfor dif-
ferent combinationsof memoriesM, strategiesS and adaptation
schemeg(B) or (D)], as indicatedin the legend.Eachpoint is an
ensembleaverageover 20 runs. The averageHamming distance
dy=0.5is shownas a dashechorizontalline.

the bestadaptivegame.Later we will returnto scheme(D)
gameto studyin detail its parametricdependencies.

In order to examinethe evolution of strategiesin the
agents’poolswe usethe Hammingdistancedenotedby d; .
It measure$iow similar the strategiesareandis definedbe-
tweentwo strategiesstheratio of the uncommorbits to the
total lengthof the strategy The strategiesare*‘correlated,” if
all the bits are pairwise the same,i.e., d,=0, “anticorre-
lated” if all bits are opposite,i.e., d4=1, and “‘uncorre-
lated’ when exactly one half of the bits differ, i.e., dy
=0.5.

Here we will considerthe averageHamming distance,
which is calculatedby first taking the averageof the Ham-
ming distanceover all possiblestrategypairsin the agents
pool, andthentakingthe averageoverall theagentsWhile it
is obviousthat individual Hammingdistancedetweenstrat-
egy pairs can changeas a result of geneticcrossoversthe
situation is more complex for the averageHamming dis-
tance As a matterof factin the adaptatiorschemes$n which
the parentstrategiesfter crossovemrereplacedy their off-
springs]i.e., schemegA) and(C)], all the bits in the agents
strategypool andfor that matterin the whole strategyspace
remain the same,and thus the averageHamming distance
doesnot change.Therefore,this measures useful only for
the gameswherethe bits in a strategypool canchangeover
time, i.e., adaptationschemes(B) and (D), for which the
resultsaredepictedin Fig. 3. Hereit is seenthatasthe game
evolves,the averageHamming distancedecreasesn both
casestowards small values, but for scheme(B) gamethis
happensonsiderablyslowerthanfor the schemegD) game.
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In the latter casedy reachesa very small value, indicating
thateachagenttendsto endup usinga particularstrategyin
its pool for the bestperformanceln the caseof scheme(B)
the sameseemsto happenbut it takesat leastan order of
magnituddongertime. On the otherhandthe plotsof x; (i.e.,
the numberof agentschoosinga particularaction, depicted
in Fig. 1) showsthat thesestrategiesare suchthat the total
utility, andthusthe efficiency of the systemtendsto maxi-
mize.

In Fig. 3 the resultsare shownfor varying the memory
size M andthe numberof strategiesS in eachagents pool.
We have observedthat for adaptationmechanism(B) in-
creasingM while keepingS= 10 fixed makesthe decayin
the averageHamming distancefaster yielding M =8, the
fastestdecayingcase.On the other hand,increasingS and
keepingM =6 fixed doesnot seemto yield any systematic
behavior while the S=10 caseseemsto give rise to the
fastestdecayin the averageHammingdistance For adapta-
tion mechanism(D) the situationis even less systematic,
sinceincreasingVl andkeepingS= 10 fixed yieldsthe fastest
decayingM =6 case,and increasingS and keepingM =6
yields the fastestdecayingS=50 case.

As a final comparison between different adaptation
mechanismsve havestudieda mixed game,in which agents
canchangeheir strategiesvith differentadaptatiorschemes.
In this gameall the agentsstartby playingthe basicminority
game up to a given time t=3120 simulation time steps.
Thereafter three players continue playing with adaptation
scheme(A) and anotherthreewith adaptationscheme(D),
while the remainingplayerscontinueplaying the basic mi-
nority game using their initially introducedstrategy pools
without adaptationFrom the simulationresults,depictedin
Fig. 4, we find that the adaptiveagents someof which were
the worst performing agents at the beginning, become
quickly successfubndoutperformall the agentsplaying the
basic minority game.As a matter of fact the slopesof the
performancesurves,.e., the successatesof adaptiveagents,
is by far betterthanthe bestagentplaying the basicminority
game.In addition,we observethatall the agentsusingadap-
tation scheme(D) perform better than thoseusing scheme
(A), andthat the competitionbetweenthesethreeis tough.
This servesasfurther evidencethatadaptatiorschemegD) is
the mostefficient one of the gamesdiscussedere,andthus
interestingfor a more detailedanalysis.

B. Parametric studies

In this sectionwe study the dependencef our adaptive
game(D) on the modelparametersi,.e., the memorysize M,
the numberof strategiesS in eachagents pool, the adapta-
tion time 7, andthe fraction of worst performingagentsn.
This is donein termsof the scaledutility U, definedin Eq.
(1) and describingthe efficiency of the game.Here we will
use the quantity 1—U to illustrate the deviation from the
maximumutility U,,,,=1. Below we presentresultsof ex-
tensivesimulationsfor utility deviationvs scaledtime (one
unit of scaledtime corresponds$o a time averageover a bin
of 50 simulationtime step$ whenthe parametersvere var
ied in pairs: (i) = andM (Fig. 5), (ii)) SandM (Fig. 6), and
(i) nandM (Fig. 7).
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FIG. 4. Performancesf selectecagentsasafunctionof time for
amixed gamewith agentshavingdifferentadaptatiorschemesThe
performancesre scaledsuchthat the meanperformanceof all the
agentsis zero.At t=3120, six agentsheginto modify their strate-
giessuchthat three of them (the threeuppermost usedadaptation
scheme(D) andthe otherthree (the next threefrom top) usedad-
aptationscheme(A). All the rest of the agentsplayed the basic
minority gamewithout adapting;the performance®f only the best,
the worst, and two randomly chosenagentsare shown (the four
lowermostcurves. Simulationswere done with N=801, M=8,
S=16, n=0.3, and 7=80.

In Fig. 5 we show the effect of changingthe adaptation
time 7=10, 20, 40, 80, and 160 (eachpane) and memory
M =5, 6, 7, and8 (separatganel$. For memoryM =5 and
6 (two upperpanels andfor all the studiedadaptatiortimes
the utility deviationcurvesafter initial transientperiodsare
found to decreasethus the gamesbecomemore efficient.
This transientappeardo be directly proportionalto the ad-
aptationtime, and the curves show more or less a linear
decayregionin scaledtime, suchthat eachregionseemsto
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FIG. 5. Utility deviation1—U vs scaledtime: Effects of the
adaptationtime 7 and memory M. Simulationswere donewith N
=1001, S=10, and n=0.3, and ensembleaveragingeachcurve
over 50 runs.
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FIG. 6. Utility deviation1—U vs scaledtime: Effects of the
numberof strategiesS andmemoryM. Simulationsweredonewith
N=1001, =40, n=0.3, andensembleveragingeachcurve over
50 runs.

fit reasonablyto a powerlaw form 1— U~ (scaledime)™*,
with x~1.9. However in the late time behaviorof curves
with small adaptatiortimes 7= 10 and 20, we seea slowing
downin the utility improvementto apparentlyconstantval-
uesof utility, which for 7= 20 turnsout to be nearerU .«
=1 thanfor 7=10. On the otherhand,for memoryM =7
and8 (two lower panel$ the overallbehavioris fairly similar
to that for smallermemory (M =5 and 6), thoughthe total
improvemenin utility appeargo be considerablyesswithin
the total simulationtime used.In fact the changein the effi-
ciency of the gamesseemsto decreasewith increasing
memorysize. This is dueto transientperiod getting longer
and utility improvementslowing down or saturatingearlier
(In the M =8 panelthe utility saturationis clearly visible at
late timesfor the adaptationtimes 7= 10, 20, and 40, while
for 7=80 a slowing down in the utility improvementfirst

10"
Scaled time

Scaled time

FIG. 7. Utility deviation1—U vs scaledtime: Effects of the
fraction n of the worst performingagentsand memoryM. Simula-
tionsweredonewith N=1001, S=10, =80, andensemblever
agingeachcurveover 50 runs.
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appearspossiblyturning later to saturationandfor =160
is not yet visible but likely to becomeso evenlaterin scaled
time). Betweenearly and late time regions 1—-U curves
show a linear decaywith an exponentx comparablego that
above thoughthefitting is unreliabledueto shrinkageof the
linear decayregion.

It is interestingto notethatlongeradaptatiortimeseven-
tually leadto a betterutility, i.e., a higherefficiency This is
becausefor a higher dimensionalstrategy space (due to
memory increaseg it takesa longer time until sufficiently
many historiesare gone throughto verify the succesof a
particular strategy On the other hand, if we do not allow
enoughtime for the adaptationto happen,strategiesare
changedtoo often and eventhe good onesare likely to be
disregardedWe will discusghis issuelater by exploringthe
interplay betweenthe adaptationtime and simulation or
gametime.

In Fig. 6 we showthe effect of changingthe numberof
strategiesS=5, 10, 20, and40 (eachpane) andthe memory
sizeM=5, 6, 7, and8 (separatgpanel$. We found that for
eachM valuethe dependencef the utility deviation,1—U
on S is, in termsof a transient,of linear decaywith a fitted
powerlaw exponentandhasa late-timesaturationbehavior
quite similar with the dependencen 7, thoughto a lesser
extent.However unlike previously increasinghe numberof
strategiesseemsto shift the utility deviation curve slightly
up, suchthatthe systemreachessimilar efficiencyvaluesto
thosein Fig. 5 later. On the other hand,the dependencef
the utility improvemenbn the memorysizeis asdramaticas
in the previouscase.

In Fig. 7 we showthe effect of changingthe fraction of
the worst performing agentsn=0.2, 0.3, 0.4, 0.5, and 0.6
(eachpane) andthe memorysizesM =5, 6, 7, and8 (sepa-
ratepanel$. Onceagainwe foundthatthe dependencef the
utility deviation,1—U onn is in termsof a transientandof
linear decaywith a fitted powerlaw exponentquite similar
to the dependencen = or S However increasingthe frac-
tion of the worst performingagentsseemsto pushthe late-
time utility slowing down or saturationto evenlater scaled
times.Onceagainthe effect of memorysizeis asdramaticas
before.

In Figs.5—7 we seeoscillationsspecificallyin panelswith
larger memory sizes.They seemto be proportionalto 2M,
i.e.,thenumberof historiesin thegame.Thereasorfor these
oscillationsis mostprobablythe approximatelyperiodicrep-
etition of histories:part of the agentsstick to their favorite
strategieswhich are repeatedas a particular history next
time around.

Earlier we found that the late-timebehaviorof the scaled
utility changedor differentadaptatiortimes.This is because
larger memory values increasethe dimensionality of the
strategyspaceand thus require longer adaptationtimes. In
order to study this behaviorin more detail we have done
simulationsfor severalmemorysizesM =5, 6, 7, 8, and9
paired either with the total simulation time T=210000 or
20000. In Fig. 8 we presentthe resultsfor the utility devia-
tion 1—U vs the adaptationtime 7, which for a given M
showsan overall utility improvementdue to doubling the
total simulation time. For shorter T=10000 and all M’s
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FIG. 8. Utility deviation1—U asa function of the adaptation
time 7, for different valuesof memory M and simulation times
(indicatedby T). Eachpoint is the time averageover the last 500
time stepsof the simulationand ensembleaverage®ver 70 runs.

thereappearminimain 1—U or efficiency maxima,which

for T=20000 andthe sameM showshiftsto higheradapta-
tion times. Thus we expectthat increasingthe simulation
time without limits would makethe1—U vs 7 curvebehave
monotonically approachingan asymptoticallymaximumef-

ficiency This canbeinterpretedthatthe longeranagentcan
observeits strategiegshe more certainit canbe of their per

formances.On the other hand,if the adaptationtime is re-

ducedtoo much, crossoversvould take place more at ran-
dom. For finite simulation times these curves could give

guidancefor a preferableadaptationtime. Intuitively, one
could guessthat a good adaptationtime would be closeto

2M, becausef the occurrenceof historieswere uniformly

distributedthis would constitutethe expectatiortime for an
agentto go throughall the historiesonceand thus seehow
successful responsealeterminedby a strategyhasbeenin

eachcase.

IV. DISCUSSIONS

In this paperwe have studiedvarious geneticalgorithm
basedadaptationmechanismawithin the framework of the
minority game,and found significantchangesn the collec-
tive andindividual behaviorsof the agentslt turnedout that
the adaptationmechanismin which the besttwo strategies
are chosenas parentsand their offspring strategiesreplace
the two worst strategiesn the agents pool leadsthe system
fastestandnearesto maximumutility or efficiency The pre-
eminenceof the bestadaptationmechanismcan be seenat
the systemlevel aswell asat the agentlevel: fluctuationsin
X; smoothdown quickly and the agentsoutperformthose
usingothermechanismgarticipatingin the samegame.The
overallsucces®f geneticalgorithmbasedadaptatiormecha-

036125-6



SEARCHINGFOR GOOD STRATEGIESIN ADAPTIVE.. ..

nismsin minority gamessuggestghey alsobe usedin other
game theoretic optimization problems. It should be noted
that the minority gamedeviatesfrom the traditional optimi-
zation problemsbecausét doesnot include a particularob-
ject function or functionsto be maximized.This makesour
findingsvery interesting,exposinga certaincharacteristiof
the minority game,namely if agentshavethe possibility to
adaptthrough the responsego the stimuli, they drive to-
wardsa statewheretheir own performancémprovesandthe
collective of all agentsgainsa maximumamountof utility
every time the gameis played. This property stemsfrom
convegenceof strategiesn the strategyspacetowards,in a
way, the optimal ones.They are optimal only in the sense
thattheytendto bring the maximumutility for the collective,

PHYSICAL REVIEW E 69, 036125 (2004

meaningthatat eachtime stepthe numberof agentswinning
is aslarge aspossiblej.e., the numberof satisfiedindividual
agentds at a maximum.In conclusionit seemspossiblethat
simple adaptationschemesand especiallythose mimicking
nature could further extendthe classof phenomenavhich
minority gametype modelswould be ableto describe.
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