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In this paperwe introduceandstudyvariousadaptiveminority gamemodelsin which agentstry to improve
their performancesby modifying their strategiesthroughgeneticalgorithmbasedcrossovermechanism.One
aim of this studyis to find out whathappensat thesystemaswell asat the individual agentlevel.Adaptation
is found to improvethe performanceof individual agentsquite remarkably, to tightenthe competitionamong
theagents,andto drive thewholesystemtowardsmaximumefficiency. Resultsfrom four adaptativeminority
gamesandthebasicminority gamearecompared,andtheparameterdependenciesof thebestperforminggame
arediscussed.
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I. INTRODUCTION

Various systemsof natural and societal origin show a
complexbehavior, which canbe attributedto a competition
amonginteractingagentsfor scarceresourcesand their ad-
aptationto continuouslychangingenvironment@1–5#. Such
agentscouldbediversein form, function,andcapability, for
example,cells in an immunesystemor firms in a financial
market.The natureof interactionsbetweenagentsis depen-
denton their capabilities,andthebehaviorof anagentcanbe
consideredas a collection of rules governingresponses to
stimuli. In order to model thesesystems,a major concernis
theselectionandrepresentationof thestimuli andresponses,
throughwhich the behaviorand strategiesof the agentsare
defined.In a model,the rulesof actionserveasa directway
to describethe strategiesof agents,and their behavior is
studiedby monitoringthe effect of rulesactingsequentially.
The otherkey processto be includedin the model is adap-
tation, which in biology servesasa mechanismfor anorgan-
ism to try to makeitself fit to changingenvironment.What
makesthesesystemsfascinatinglycomplex is the fact that
theenvironmentof a particularagentincludesotheradaptive
agents,all competingwith eachothers.Thus,a considerable
amountof anagent’s effort goesinto adaptationandreaction
to the other agents.This is the main sourceof interesting
temporalpatternsandemergentbehaviorthesesystemspro-
duce.

In this paper, we will study a simple game model, in
which agentsadaptdynamicallyto competeandperformbet-
ter. In sucha model the strategies,which an agentusesto
decidethecourseof action,mustbevery goodor bestfor the
agentsto survive—similar to the ‘‘survival of the fittest’’
principlein biology. So just asanorganismadaptsitself to its
naturalenvironment,we proposethat the agentsof a game
adaptthemselvesby modifying their strategiesfrom time to
time, dependingon their currentperformances.For this pur-
posewe borrow the conceptof geneticcrossoverfrom biol-
ogy anduseit to modify thestrategiesof agentsin thecourse
of thegame,in thesameway asin geneticalgorithms@6–8#.
More specifically we apply this adaptationschemeto the

minority game,introducedin Refs.@9–13#. Althoughthebe-
havior of the minority gameis believedto exposea number
of important characteristicsof complex evolving systems,
oneof its weaknessesis thatagentshavelimited possibilities
to improve their own performancewhereasin real competi-
tive environmentattemptsto improve onesskills continu-
ously are imperative.Our adaptationscheme@14,15# pro-
posesa naturalandsimpleway to takethis essentialfeature
into account,and its application turns out to give results
quitedifferentfrom thoseof thebasicminority gameandits
variants@9,16–18#.

This paperis organizedsuch that next we briefly intro-
duceour minority gamemodeltogetherwith variousgenetic
algorithmbasedadaptationmechanismsfor strategychanges.
This is followed by Sec.III, wherewe first comparecompre-
hensivecomputersimulationresultsof theseadaptivegames
andthenanalyzetheparameterdependenciesof thebestper-
forming game.Finally we draw conclusions.

II. MODEL

Let us first describethe basicminority game~BG! model
of Challetandco-workers@9,10#. Thereoneassumesanodd
numberof agentsN which canperformoneof two possible
actionsdenotedhereby 0 or 1. An agentwins a roundof a
game if it choosesthe action belonging to the minority
group.All the agentsareassumedto haveaccessto a finite
amountof ‘‘global’’ information, in the form of a common
bit-string ‘‘memory’’ of M most recent outcomesof the
game,suchthat thereare2M possible‘‘history’’ bit strings.
An agent’s ‘‘strategy’’ consistsof two possibleresponses,
i.e., an action 0 or an action 1, to eachpossiblehistory bit
string.Thus,thereare22M

possiblestrategiesconstitutingthe
whole ‘‘strategyspace’’ V, from which eachagentpicks S
strategiesat random to form its own pool V i , where i
51, . . . ,N denotesan agentnumber. Eachtime the gameis
played, time t is incrementedby unity and one ‘‘virtual’ ’
point is assignedto the strategiesthat have predictedthe
correctoutcomeand the beststrategyis the one which has
the highestvirtual point score.An agent’s performanceis
measuredby the numberof times the agentwins, and the
strategy, which the agentusedto win, getsa ‘‘real’’ point.
The number of agentswho chooseone particular action
changeswith time, andis denotedby x t .

In orderto describethe collectivebehaviorof the agents,
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we definethe conceptof scaledutility in termsof x t , in the
following way:

U~x t!5$@12u~x t2xM !#x t1u~x t2xM !~N2x t!%/xM ,

~1!

wherexM5(N21)/2 is themaximumnumberof agentswho
canwin, and

u~x t2xM !5H 0 when x t<xM

1 when x t.xM

is the Heaviside unit step function. When x t5xM or x t
5xM11, the scaledutility of the systemis maximal,Umax
51, as the highestnumberof agentswin. The systemis
more efficient when deviationsfrom the maximum utility
Umax are small, or in other words, the fluctuations in x t
aroundthe mean(N/2) aresmall.

At thelevel of individualagents,their performancesin the
basicminority gameevolvesuchthat the agentswho begin
to perform badly do not improve with time, and thosewho
do well continue doing so @9,14#. This indicates that by
chancewell performingagentswereblessedwith goodstrat-
egieswhile badlyperformingagentsgot badstrategies.How-
ever, therearecompetitiveenvironmentsin which individual
agentsneedto adaptthemselvesto do betteror to survive.
But beinggoodat onemomentdoesnot guaranteethat one
would stay good later. In fact, thereare many examplesin
business,sports,etc. which show that thosewho have de-
cidedto reston their laurelshavebeensupersededby those
who havedecidedto adaptandfight back,persistently. This
featureof dynamiccompetitionneedsto be includedin the
model,and it can be simply realizedby allowing agentsto
modify strategiesin their individual pools. How well an
agentdoesthen, in reality, dependson the agent’s capabili-
ties andskills, andhow an agentrefinesits strategies.

For the adaptationor strategymodificationwe havecho-
sengeneticalgorithms@8#, which haveturnedout to be use-
ful in variousoptimizationproblems.Within the framework
of the minority gamethe adaptationis realizedby letting
agentsto check their performancesafter a time interval t,
and if an agentfinds that it is amongthe worst performing
fraction n ~where0,n,1), it modifiesits strategiesby ap-
plying geneticoperandsto its strategypool @14,15#. Herethe
quantityt describesa time scalethatcharacterizestheadap-
tation rate of agentsin the system.Henceit can vary on a
wide rangefor systemsof naturalorigin to systemsof soci-
etal nature.

In the geneticadaptationschemesof this study, an agent
choosestwo ‘‘parents’’ from its current pool of strategies
V i(t),V, anddrawsa ~uniformly distributed! randomnum-
ber to determinethe crossoverpoint. Then the partsof the
strategies,aboveand below this point, are interchangedto
producetwo new strategiescalledthe ‘‘offsprings.’’ In addi-
tion there are various choicesas for which strategiesare
selectedastheparentsandalsowhich strategiesarereplaced
by the reproducedoffsprings.The mechanismwhich works
the best dependson the circumstancesand can vary from
systemto system.In somecasesit is possiblethatsavingthe

parentstrategieswould threatenthe successof the newborn
strategiesor createtoo stiff a competitionamongthe strate-
gies leadingto possibledisorder, and in othercasesthe op-
positemight happen.In this study, we haveconsideredfour
differentadaptationschemesby first selectingfrom thestrat-
egy pool of an agent,the parentstrategiesto performa ge-
netic one point crossoverfor reproducingoffsprings, and
then selectingtwo old strategiesfrom the samepool to be
substitutedby the offspring strategies.

~A! Two parentstrategiesareselectedat random, andaf-
ter one-pointgeneticcrossoverthe parentstrategiesaresub-
stitutedwith the two new strategies~offsprings!.

~B! Two parentstrategiesareselectedat random andafter
one-pointgeneticcrossoverthe two worst performingstrat-
egiesaresubstitutedwith the two newstrategies~offsprings!
while the parentstrategiesaresaved.

~C! Two best performingstrategiesareselectedasparents,
andafter one-pointgeneticcrossoverthe parentsaresubsti-
tutedwith the two new strategies~offsprings!.

~D! Two best performingstrategiesareselectedasparents
and after one-pointgeneticcrossovertwo worst performing
strategiesare substitutedwith the two new strategies~off-
springs! while the parentstrategiesaresaved.

We would like to proposethat theseadaptationschemes
could be consideredin a loose senseto bear someresem-
blanceto reality. Fromthepoint of view of choosingparents
at random,schemes~A! and~B! correspondto ‘‘democratic’’
or equal opportunity reproduction,while schemes~C! and
~D! are ‘‘elitist’ ’ due to selectingthe bestparentsfor repro-
duction.As for substitutionsin the agents’strategypools,in
schemes~A! and ~C! parentsgive spacefor their offsprings
to live anddevelopwithout the needto fight with them for
limited resources,a sacrificefor improving the survival of
thespecies.Examplesof parentsdying afterreproductionare
numerousin nature.In decisionmakingthe interpretationof
killing the parentstrategiesis that old strategies—unableto
lead into success—areremovedto give way to hopefully
better strategies.Schemes~B! and ~D!, with parentsbeing
savedand agentsgetting rid of their worst strategies,bear
someresemblanceto ‘‘naturalselection’’ of thefittestsurviv-
ing species.On theotherhand,in decisionmakingsituations
thesetwo schemescorrespondto agentseradicatingtheir los-
ing strategies.Thus it is expectedthat schemes~B! and ~D!
lead to a tightening competition betweenagents.Further-
more,it could be expectedthat scheme~D! is the mosteffi-
cient one, becauseit removesthe worst strategiesand re-
placesthem with crossoversof the bestones,while saving
the so far two beststrategiesin the game.In order to study
the effectsof the stiff competitionbetweenagentswith con-
tinuously improving strategiesin more detail, large scale
simulationsareneeded.In thesesimulationsit turnsout that
when agentsusegeneticoperands,the scaledutility of the
systemincreasesand tendsto maximizewith different rates
dependingon the mechanismand the parametersof the
game.

It should be noted that our genetic algorithm based
mechanismsof evolutionareconsiderablydifferentfrom the
mechanismsappliedbeforewithin the frameworkof the mi-
nority games@9,16–18#. Here,the strategiesarechangedby
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the agentsthemselvesand they belongto the samestrategy
spaceV, that is not changingin sizeanddimension.

III. RESULTS

A. Comparison between adaptation mechanisms

In order to comparethe above introducedfour genetic
adaptationmechanisms,we first studythequantityx t , which
describesthenumberof agentstakinga particularactionat a
giventime.For this we chosetheparametersof thegamesas
follows: N5801 agentswith M56 memories,S516 strate-
gies,andan adaptationtime t540 for the worst performing
fractionn50.4of theagents,which we expectto berelevant
in termsof thesystemsizeandobtainablestatistics.Also we
found out that in the gamewith adaptationscheme~D! the
fluctuationsincreasemonotonicallywith the control param-
eter z52M/N, i.e., without showinga phasechange,unlike
in thebasicminority game.Thusfor anevencomparisonthe
parameterswere adjusted for the same phase in all the
games.The simulationresultsaredepictedin Fig. 1.

First, in Fig. 1~a! we presentthe results of adaptation
scheme~A!, in which the randomlychosenparentstrategies
arereplacedwith the reproducedoffspring strategies.In this
caseit turned out that fluctuationsin x t around its mean
('400) decayvery rapidly from the initial level, which cor-
respondsto the amountof fluctuationsof the basicminority
game,to a more or lessconstantlevel of lessthan half the
initial value.This rendersthe scheme~A! gamemore effi-
cient thanthe basicminority game.Second,in Fig. 1~b! we
presentthe resultsof adaptationscheme~B!, in which the
offspringsstrategiesof randomlychosenparentstrategiesre-
placethetwo worststrategiesin theagent’s pool. In this case
we observethat fluctuationsin x t aroundthe meandecay,
first rapidly below the value producedby scheme~A! and
thenslowerto evensmallervalues.Thustheefficiencyof the
systemis furtherimproved.Third, in Fig. 1~c! we presentthe
resultsof adaptationscheme~C!, in which thebesttwo strat-
egiesas parentsare replacedafter reproductionwith their

offspringstrategies.In this casefluctuationsin x t aroundthe
meanonce again decayrapidly then stabilizing to a level
which is smaller than for adaptationscheme~A! but larger
than for adaptationscheme~B!. Fourth, in Fig. 1~d! we
presentthe resultsof adaptationscheme~D!, in which the
offspring strategiesof the besttwo strategiesas parentsre-
placethetwo worststrategiesin theagent’s pool. In this case
we seethat fluctuationsin x t die off very rapidly, thusmak-
ing the systemmostefficient.

Next we investigatethe scaledutility U(x t), definedin
Eq. ~1!, which apart from the efficienciesof the gamesis
expectedto give insight to their dynamicalbehavior. Instead
of the standardpracticeof studying the variation of s2/N
versus2M/N, whereusu standsfor thedifferencein thenum-
ber of agentsbetweenthe majority andminority groups,we
havestudiedU, becausefluctuationsin x t decaystronglyfor
adaptationmechanisms~B! and~D!, in the latter casesome-
times evendisappearingcompletely. In Fig. 2 we show the
resultsof ~a! thescaledutility U and~b! theutility deviation
12U from the maximum Umax51 as a function of the
scaledtime for the four adaptationmechanisms,using the
sameset of parametersas before ~i.e., N5801, M56, S
516, t540, and n50.4). We find that the scaledutility
rapidly saturatesfor the basicminority game,to efficiency
level considerablyless than the maximum. On the other
hand,it is clearly seenthat our four adaptationmechanisms
greatlyenhancetheutilities closeto themaximum.However,
as evident in Fig. 2~b!, the utility enhancementfor mecha-
nisms~A! and~C! seemto slow downor possiblyevensatu-
rateto valuesslightly belowUmax51 while for mechanisms
~B! and ~D! Umax is approachedmore rapidly or possibly
asymptotically. Of the latter two mechanismsthe efficiency
of scheme~D! gameimprovesthe fastestandis bestoverall.
Thesametendencieswerealsovisible in Fig. 1. Thuswe can
concludethat the ‘‘elitist’ ’ adaptationscheme,in which only
the bestperformingstrategiescanbe usedto reproducenew
offspringstrategiesto replaceworstperformingstrategies,is

FIG. 1. Plots of x t ~the numberof agentsmaking a particular
action! as a function of time, for the four adaptationmechanisms
~A!–~D! describedin Sec.II.

FIG. 2. ~a! Scaled utility U and maximum utility Umax51
~dashedhorizontal line! and ~b! utility deviation (12U) for four
adaptationmechanismsas functions of scaledtime ~one unit of
scaledtime correspondsto a time averageover a bin of 50 simula-
tion time steps!. Eachcurveis an ensembleaverageover 100 runs.
In bothpanels,crossesrepresentthebasicminority game,solid line
representsadaptationmechanism~A!, the dashdotted line repre-
sentsmechanism~B!, thedottedline representsmechanism~C!, and
the dashedline representsmechanism~D!.
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the bestadaptivegame.Later we will return to scheme~D!
gameto study in detail its parametricdependencies.

In order to examine the evolution of strategiesin the
agents’poolswe usetheHammingdistance,denotedby dH .
It measureshow similar the strategiesareandis definedbe-
tweentwo strategiesastheratio of theuncommonbits to the
total lengthof thestrategy. Thestrategiesare‘‘correlated,’’ if
all the bits are pairwise the same,i.e., dH50, ‘‘anticorre-
lated’’ if all bits are opposite,i.e., dH51, and ‘‘uncorre-
lated’’ when exactly one half of the bits differ, i.e., dH
50.5.

Here we will consider the averageHamming distance,
which is calculatedby first taking the averageof the Ham-
ming distancesover all possiblestrategypairsin the agent’s
pool,andthentakingtheaverageoverall theagents.While it
is obviousthat individual Hammingdistancesbetweenstrat-
egy pairs can changeas a result of geneticcrossovers,the
situation is more complex for the averageHamming dis-
tance.As a matterof fact in theadaptationschemesin which
theparentstrategiesaftercrossoverarereplacedby their off-
springs@i.e., schemes~A! and~C!#, all thebits in theagent’s
strategypool andfor that matterin the whole strategyspace
remain the same,and thus the averageHamming distance
doesnot change.Therefore,this measureis useful only for
the gameswherethe bits in a strategypool canchangeover
time, i.e., adaptationschemes~B! and ~D!, for which the
resultsaredepictedin Fig. 3. Hereit is seenthatasthegame
evolves, the averageHamming distancedecreasesin both
casestowardssmall values,but for scheme~B! gamethis
happensconsiderablyslowerthanfor the scheme~D! game.

In the latter casedH reachesa very small value, indicating
that eachagenttendsto endup usinga particularstrategyin
its pool for the bestperformance.In the caseof scheme~B!
the sameseemsto happenbut it takesat leastan order of
magnitudelongertime.On theotherhandtheplotsof x t ~i.e.,
the numberof agentschoosinga particularaction,depicted
in Fig. 1! showsthat thesestrategiesare suchthat the total
utility, and thus the efficiency of the systemtendsto maxi-
mize.

In Fig. 3 the resultsare shownfor varying the memory
size M and the numberof strategiesS in eachagent’s pool.
We have observedthat for adaptationmechanism~B! in-
creasingM while keepingS510 fixed makesthe decayin
the averageHamming distancefaster, yielding M58, the
fastestdecayingcase.On the other hand, increasingS and
keepingM56 fixed doesnot seemto yield any systematic
behavior, while the S510 caseseemsto give rise to the
fastestdecayin the averageHammingdistance.For adapta-
tion mechanism~D! the situation is even less systematic,
sinceincreasingM andkeepingS510 fixed yieldsthefastest
decayingM56 case,and increasingS and keepingM56
yields the fastestdecayingS550 case.

As a final comparison between different adaptation
mechanismswe havestudieda mixedgame,in which agents
canchangetheir strategieswith differentadaptationschemes.
In this gameall theagentsstartby playingthebasicminority
game up to a given time t53120 simulation time steps.
Thereafter, three players continue playing with adaptation
scheme~A! and anotherthreewith adaptationscheme~D!,
while the remainingplayerscontinueplaying the basicmi-
nority game using their initially introducedstrategypools
without adaptation.From the simulationresults,depictedin
Fig. 4, we find that theadaptiveagents,someof which were
the worst performing agents at the beginning, become
quickly successfulandoutperformall the agentsplaying the
basicminority game.As a matterof fact the slopesof the
performancecurves,i.e., thesuccessratesof adaptiveagents,
is by far betterthanthebestagentplayingthebasicminority
game.In addition,we observethatall theagentsusingadap-
tation scheme~D! perform better than thoseusing scheme
~A!, and that the competitionbetweenthesethreeis tough.
This servesasfurtherevidencethatadaptationscheme~D! is
the mostefficient oneof the gamesdiscussedhere,andthus
interestingfor a moredetailedanalysis.

B. Parametric studies

In this sectionwe study the dependenceof our adaptive
game~D! on themodelparameters,i.e., thememorysizeM,
the numberof strategiesS in eachagent’s pool, the adapta-
tion time t, and the fraction of worst performingagentsn.
This is donein termsof the scaledutility U, definedin Eq.
~1! anddescribingthe efficiencyof the game.Herewe will
use the quantity 12U to illustrate the deviation from the
maximumutility Umax51. Below we presentresultsof ex-
tensivesimulationsfor utility deviationvs scaledtime ~one
unit of scaledtime correspondsto a time averageover a bin
of 50 simulationtime steps! whenthe parameterswerevar-
ied in pairs: ~i! t andM ~Fig. 5!, ~ii ! S andM ~Fig. 6!, and
~iii ! n andM ~Fig. 7!.

FIG. 3. The averageHammingdistancevs the numberof ge-
netic operations~one geneticoperationtakesplace after every t

time steps! for different adaptationmechanismsand parameters.
The simulationwasdonewith N5801, t580, n50.4 andfor dif-
ferent combinationsof memoriesM, strategiesS, and adaptation
schemes@~B! or ~D!#, as indicatedin the legend.Eachpoint is an
ensembleaverageover 20 runs. The averageHamming distance
dH50.5 is shownas a dashedhorizontalline.
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In Fig. 5 we show the effect of changingthe adaptation
time t510, 20, 40, 80, and 160 ~eachpanel! and memory
M55, 6, 7, and8 ~separatepanels!. For memoryM55 and
6 ~two upperpanels! andfor all thestudiedadaptationtimes
the utility deviationcurvesafter initial transientperiodsare
found to decrease;thus the gamesbecomemore efficient.
This transientappearsto be directly proportionalto the ad-
aptation time, and the curves show more or less a linear
decayregion in scaledtime, suchthat eachregionseemsto

fit reasonablyto a power-law form 12U;(scaledtime)2x,
with x'1.9. However, in the late time behaviorof curves
with small adaptationtimest510 and20, we seea slowing
down in the utility improvementto apparentlyconstantval-
uesof utility, which for t520 turns out to be nearerUmax
51 than for t510. On the other hand,for memoryM57
and8 ~two lower panels! theoverallbehavioris fairly similar
to that for smallermemory(M55 and 6!, thoughthe total
improvementin utility appearsto beconsiderablylesswithin
the total simulationtime used.In fact the changein the effi-
ciency of the games seemsto decreasewith increasing
memorysize.This is due to transientperiod getting longer
andutility improvementslowing down or saturatingearlier.
~In the M58 panelthe utility saturationis clearly visible at
late timesfor the adaptationtimest510, 20, and40, while
for t580 a slowing down in the utility improvementfirst

FIG. 4. Performancesof selectedagentsasa functionof time for
a mixed gamewith agentshavingdifferentadaptationschemes.The
performancesarescaledsuchthat the meanperformanceof all the
agentsis zero.At t53120, six agentsbeginto modify their strate-
giessuchthat threeof them ~the threeuppermost! usedadaptation
scheme~D! and the other three~the next threefrom top! usedad-
aptationscheme~A!. All the rest of the agentsplayed the basic
minority gamewithout adapting;theperformancesof only thebest,
the worst, and two randomly chosenagentsare shown ~the four
lowermostcurves!. Simulationswere done with N5801, M58,
S516, n50.3, andt580.

FIG. 5. Utility deviation 12U vs scaledtime: Effects of the
adaptationtime t and memoryM. Simulationswere donewith N
51001, S510, and n50.3, and ensembleaveragingeachcurve
over 50 runs.

FIG. 6. Utility deviation 12U vs scaledtime: Effects of the
numberof strategiesS andmemoryM. Simulationsweredonewith
N51001, t540, n50.3, andensembleaveragingeachcurveover
50 runs.

FIG. 7. Utility deviation 12U vs scaledtime: Effects of the
fraction n of the worst performingagentsandmemoryM. Simula-
tions weredonewith N51001, S510, t580, andensembleaver-
agingeachcurveover 50 runs.
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appears,possiblyturning later to saturation,and for t5160
is not yet visible but likely to becomesoevenlater in scaled
time!. Betweenearly and late time regions 12U curves
show a linear decaywith an exponentx comparableto that
above,thoughthefitting is unreliabledueto shrinkageof the
linear decayregion.

It is interestingto notethat longeradaptationtimeseven-
tually leadto a betterutility, i.e., a higherefficiency. This is
becausefor a higher dimensionalstrategy space ~due to
memory increase! it takes a longer time until sufficiently
many historiesare gone through to verify the successof a
particular strategy. On the other hand, if we do not allow
enough time for the adaptationto happen,strategiesare
changedtoo often and eventhe good onesare likely to be
disregarded.We will discussthis issuelaterby exploringthe
interplay between the adaptationtime and simulation or
gametime.

In Fig. 6 we show the effect of changingthe numberof
strategiesS55, 10, 20, and40 ~eachpanel! andthememory
size M55, 6, 7, and8 ~separatepanels!. We found that for
eachM value the dependenceof the utility deviation,12U
on S, is, in termsof a transient,of linear decaywith a fitted
powerlaw exponent,andhasa late-timesaturationbehavior
quite similar with the dependenceon t, thoughto a lesser
extent.However, unlike previously, increasingthenumberof
strategiesseemsto shift the utility deviationcurve slightly
up, suchthat the systemreachessimilar efficiencyvaluesto
thosein Fig. 5 later. On the other hand,the dependenceof
theutility improvementon thememorysizeis asdramaticas
in the previouscase.

In Fig. 7 we show the effect of changingthe fraction of
the worst performing agentsn50.2, 0.3, 0.4, 0.5, and 0.6
~eachpanel! andthememorysizesM55, 6, 7, and8 ~sepa-
ratepanels!. Onceagainwe foundthatthedependenceof the
utility deviation,12U on n is in termsof a transient,andof
linear decaywith a fitted power law exponent,quite similar
to the dependenceon t or S. However, increasingthe frac-
tion of the worst performingagentsseemsto pushthe late-
time utility slowing down or saturationto evenlater scaled
times.Onceagaintheeffect of memorysizeis asdramaticas
before.

In Figs.5–7 we seeoscillationsspecificallyin panelswith
larger memorysizes.They seemto be proportionalto 2M,
i.e., thenumberof historiesin thegame.Thereasonfor these
oscillationsis mostprobablytheapproximatelyperiodicrep-
etition of histories:part of the agentsstick to their favorite
strategies,which are repeatedas a particular history next
time around.

Earlier we found that the late-timebehaviorof the scaled
utility changesfor differentadaptationtimes.This is because
larger memory values increasethe dimensionality of the
strategyspaceand thus require longer adaptationtimes. In
order to study this behavior in more detail we have done
simulationsfor severalmemorysizesM55, 6, 7, 8, and 9
paired either with the total simulation time T510000 or
20000. In Fig. 8 we presentthe resultsfor the utility devia-
tion 12U vs the adaptationtime t, which for a given M
showsan overall utility improvementdue to doubling the
total simulation time. For shorter T510000 and all M’s

thereappearminima in 12U or efficiency maxima,which
for T520000 andthe sameM showshifts to higheradapta-
tion times. Thus we expect that increasingthe simulation
time without limits would makethe12U vs t curvebehave
monotonically, approachingan asymptoticallymaximumef-
ficiency. This canbe interpretedthat the longeranagentcan
observeits strategiesthe morecertainit canbe of their per-
formances.On the other hand,if the adaptationtime is re-
ducedtoo much, crossoverswould take placemore at ran-
dom. For finite simulation times thesecurves could give
guidancefor a preferableadaptationtime. Intuitively, one
could guessthat a good adaptationtime would be close to
2M, becauseif the occurrenceof historieswere uniformly
distributedthis would constitutethe expectationtime for an
agentto go throughall the historiesonceand thusseehow
successfula responsedeterminedby a strategyhasbeenin
eachcase.

IV. DISCUSSIONS

In this paperwe havestudiedvariousgeneticalgorithm
basedadaptationmechanismswithin the framework of the
minority game,and found significantchangesin the collec-
tive andindividual behaviorsof theagents.It turnedout that
the adaptationmechanismin which the best two strategies
are chosenas parentsand their offspring strategiesreplace
the two worst strategiesin the agent’s pool leadsthe system
fastestandnearestto maximumutility or efficiency. Thepre-
eminenceof the bestadaptationmechanismcan be seenat
the systemlevel aswell asat the agentlevel: fluctuationsin
x t smooth down quickly and the agentsoutperform those
usingothermechanismsparticipatingin thesamegame.The
overallsuccessof geneticalgorithmbasedadaptationmecha-

FIG. 8. Utility deviation12U as a function of the adaptation
time t, for different valuesof memory M and simulation times
~indicatedby T). Eachpoint is the time averageover the last 500
time stepsof the simulationandensembleaveragesover 70 runs.
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nismsin minority gamessuggeststhey alsobe usedin other
game theoretic optimization problems.It should be noted
that the minority gamedeviatesfrom the traditionaloptimi-
zationproblemsbecauseit doesnot includea particularob-
ject function or functionsto be maximized.This makesour
findingsvery interesting,exposinga certaincharacteristicof
the minority game,namely, if agentshavethe possibility to
adapt through the responsesto the stimuli, they drive to-
wardsa statewheretheir own performanceimprovesandthe
collective of all agentsgainsa maximumamountof utility
every time the game is played. This property stemsfrom
convergenceof strategiesin the strategyspacetowards,in a
way, the optimal ones.They are optimal only in the sense
thattheytendto bring themaximumutility for thecollective,

meaningthatat eachtime stepthenumberof agentswinning
is aslargeaspossible,i.e., thenumberof satisfiedindividual
agentsis at a maximum.In conclusionit seemspossiblethat
simple adaptationschemesand especiallythosemimicking
naturecould further extendthe classof phenomenawhich
minority gametype modelswould be ableto describe.

ACKNOWLEDGMENTS

This researchwaspartially supportedby theAcademyof
Finland,ResearchCenterfor ComputationalScienceandEn-
gineering,ProjectNo. 44897~Finnish Centreof Excellence
Programme2000-2005!.

@1# G. Parisi,PhysicaA 263, 557 ~1999!.
@2# B.A. Huberman,P.L.T. Pirolli, J.E.Pitkow, andR.M. Lukose,

Science280, 95 ~1998!.
@3# M. Nowak andR. May, Nature~London! 359, 826 ~1992!.
@4# T. Lux andM. Marchesi,Nature~London! 397, 498 ~1999!.
@5# W.B. Arthur, Am. Econ.Rev. 84, 406 ~1994!.
@6# J.H. Holland, Adaptation in Natural and Artificial Systems

~University of Michigan Press,Ann Arbor, MI, 1975!.
@7# D.E. Goldberg, Genetic Algorithms in Search, Optimization

and Machine Learning ~Addison-Wesley, Reading, MA,
1989!.

@8# Handbook of Genetic Algorithms, editedby D. Lawrence~Van
NostrandReinhold,New York, 1991!.

@9# D. ChalletandY.-C. Zhang,PhysicaA 246, 407 ~1997!.
@10# D. Challet,M. Marsili, andR. Zecchina,Phys.Rev. Lett. 84,

1824 ~2000!.
@11# R. Savit, R. Manuca,andR. Riolo, Phys.Rev. Lett. 82, 2203

~1999!.
@12# A. Cavagna,J.P. Garrahan,I. Giardina, and D. Sherrington,

Phys.Rev. Lett. 83, 4429 ~1999!.
@13# D. Lamper, S.D. Howison,andN.F. Johnson,Phys.Rev. Lett.

88, 017902~2002!.
@14# M. Sysi-Aho,A. Chakraborti,andK. Kaski,Eur. Phys.J.B 34,

373 ~2003!.
@15# M. Sysi-Aho,A. Chakraborti,and K. Kaski, PhysicaA 322,

701 ~2003!; Phys.Scr. T106, 32 ~2003!.
@16# D. ChalletandY.-C. Zhang,PhysicaA 256, 514 ~1998!.
@17# Y. Li, R. Riolo, andR. Savit,PhysicaA 276, 234 ~2000!.
@18# Y. Li, R. Riolo, andR. Savit,PhysicaA 276, 265 ~2000!.

SEARCHINGFOR GOOD STRATEGIESIN ADAPTIVE . . . PHYSICAL REVIEW E 69, 036125 ~2004!

036125-7


	Copyright: © 2004 American Physical Society. Reprinted with permission from Physical Review E 69 (2004) 036125.
	Copyright APS: Readers may view, browse, and/or download material for temporary copying purposes only, provided these uses are for noncommercial personal purposes. Except as provided by law, this material may not be further reproduced, distributed, transmitted, modified, adapted, performed, displayed, published, or sold in whole or part, without prior written permission from the publisher.


