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Abstract

In this paper, we study the properties of a minority game with evolution realized by using

genetic crossover to modify fixed-length decision-making strategies of agents. Although the

agents in this evolutionary game act selfishly by trying to maximize their own performances

only, it turns out that the whole society will eventually be rewarded optimally. This ‘‘invisible

hand’’ effect is what Adam Smith over two centuries ago expected to take place in the context

of free market mechanism. However, this behaviour of the society of agents is realized only

under idealized conditions, where all agents are utilizing the same efficient evolutionary

mechanism. If on the other hand part of the agents are adaptive, but not evolutionary, the

system does not reach optimum performance, which is also the case if part of the evolutionary

agents form a uniformly acting ‘‘cartel’’.
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1. Introduction

In his book of 1776 Adam Smith outlined a mechanism which he supposed to

describe the behaviour of economic societies [1]. He postulated that individuals who

try to maximize their own gain without active regard to the society’s welfare will

eventually reward the society most effectively. As the mechanism how this should

actually happen Smith described it as an ‘‘invisible hand’’ of a benevolent deity

administering human happiness by leading individuals to act in a certain way. In the

modern context invisible hand processes have been studied as part of game theory, a

branch of mathematics dealing with payoffs and strategies, where the interrelation-

ships between the best productivity of individual actors and the society has been

refined by John Nash through equilibrium concept [2–4]. He indicates that

individuals could only maximize their own benefit by taking other individuals into

account. However, Smith’s assumption about the optimal performance of the society

through selfish individuals turns out to be valid in certain circumstances. For

example, this is the situation for the minority game introduced by Challet and Zhang

[5], see also Refs. [6–12].

Minority games are repeated coordination games [2,3] where agents use a number

of different strategies in order to join one of the two available groups, A or B,

and those who belong to the minority group are rewarded. In the original MG [5]

the agents are exposed to P different histories and the strategy of an agent

determines the choice of the group for each history. Thus, the length or dimen-

sion of a strategy equals P, and the set of all possible 2P strategies composes a

strategy space from which the agents’ strategies are randomly drawn in the beginning

of the game. Strategies are cumulatively scored based on correct minority group

choices, and at each step of the game the choices of the agents are determined

by their highest-scoring strategies. In the following, we shall refer to this basic

minority game with the above-described adaptation mechanism as BMG, and use

the abbreviation MG to refer to the minority game concept in a more general

fashion.

Minority games can be viewed as simulating the performances of competing

individuals and the welfare of the society they compose. This kind of mechanism

could coarsely speaking be involved in a stock market where investors share

information and make buy-or-sell decisions in order to gain profit. If the number of

sellers of a particular stock is larger than the number of buyers, supply exceeds

demand and one expects a decrease in the stock price [13]. Then the buyers, being in

minority, would win due to the low price levels. In the opposite case sellers would

win, because excess demand would increase the price of the stock. In the long run,

the price of the stock eventually settles down to its equilibrium value, i.e., supply and

demand are, on average, close to each other and the public information has been

efficiently utilized. In relation to this the utility or performance of the society can be

viewed as the number of content individuals. In other words if everybody agrees on

the price, both the sellers and buyers are content. In the framework of MG, this

means that the numbers of buyers and sellers are as close to each other as possible

and the game is in one of its pure-strategy Nash equilibria [2,3,14–16]. On the other
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hand if the numbers deviate from equilibrium, either one of the groups is dissatisfied

and thus the overall ‘‘happiness’’ of the society decreases.

In these games the long-term system performance is of major interest. It is

measured as the variation of the minority group size around its maximum, such

that the larger the minority group size at every time step is, the better the aggre-

gate system performance is. Usually, the behaviour of the system performance

depends on a control parameter z [8], which combines the dimension of the strategy

space and the number of players in the game. In the BMG the best system

performance occurs at z ¼ zc; which depends on the number of the strategies each
agent has [17]. On the other hand, applying an evolutionary mechanism to the

agents’ strategies usually changes the behaviour of the game remarkably. Roughly

speaking, the evolutionary mechanisms studied in the context of minority games can

be divided into two groups, i.e., to those mechanisms that are applied to pure

strategies and do not explicitly include probabilities in strategy selection or decision-

making of the agents (e.g. Ref. [18]), and those that do so (e.g. Refs. [15,16,19,20]). A

further division can be made between fixed (e.g. Ref. [18]) and variable-length

strategies (e.g. Ref. [21]).

Our evolutionary MG belongs to the pure-strategy class with fixed-length

strategies. However, the main difference between our game and the game discussed

in Ref. [18], belonging also to the same class, is the genetic-algorithm-based

mechanism by which the strategies of an agent are modified. We find that enhancing

the BMG with one-point genetic crossover mechanism results in the birth of new

strategies based on well-performing parent strategies and leads to behaviour

resembling Smith’s ‘‘invisible hand’’. Previously, we have studied the effect of genetic

crossover of strategies on the MG performance [22–24], and shown that our simple

pure-strategy evolutionary mechanism leads to highly enhanced performance, both

at the system as well as at the individual agent level. Recently, Yang et al. [25] have

reported results of a study using a genetic-algorithm-based evolutionary mechanism,

which turned out to be quite similar to those of ours [22–24]. Below we will show that

with our evolutionary mechanism the optimal system performance can be reached

for a wide range of control parameter values. In contrast to Ref. [18], increasing the

number of strategies increases the system performance. Furthermore, the optimal

performance is typically reached for all possible histories independent of their order

of appearance, as the histories are randomly drawn from a uniform distribution in

order to avoid any repetitive history cycles.

This paper is organized such a way that we first introduce our evolutionary

minority game (EMG) model. Then we show simulation results on the system

performance and compare them with the optimal limit as well as with results of

simulations using the BMG. Furthermore, we investigate using the minimum

and maximum spanning tree methods whether similarly performing evolutionary

agents form clusters in the sense that they would play similar strategies, and whether

well-performing agents’ strategies tend to be different from those of the badly

performing ones. In addition, we briefly discuss the effect of a fraction of the agents

forming a uniformly acting group, ‘‘cartel’’, on society utility. Finally we draw

conclusions.

ARTICLE IN PRESS

M. Sysi-Aho et al. / Physica A 347 (2005) 639–652 641



2. Model

Let us first briefly describe the BMG, and then discuss the strategy evolution

method we have applied. The BMG [5] consists of (odd) N agents who

simultaneously choose between two options, denoted 1 and �1: After the decisions
of the agents, votes are counted, and those who belong to the minority group gain

profit. The winning minority is publicly announced after every round. The game is

repeated, and at each round the choice of an agent is determined by a component of

a P-dimensional binary vector called the strategy of the agent. Each of the P

components indicates a response corresponding to a particular history vector of

length M, which comprises of the minority choices during the last M rounds. As

there are 2M possible histories, P ¼ 2M [5].

In the BMG histories are explicitly determined by the choices of the agents, but

instead we have decided to draw the histories randomly from a uniform distribution.

The motivation for this was to avoid occurrences of any cyclic patterns of repeating

histories, thus pre-empting the agents’ possibilities for history-pattern-based

coordination. Furthermore, previous results [22] with deterministic histories show

that with our evolutionary mechanism, the game would finally repeat a single history

only. The method of randomly selecting histories provides a stronger basis to justify

the success of the chosen evolutionary mechanism in explaining the observed highly

efficient system performance. (For discussion on the effect of using random versus

non-random histories, see e.g. Refs. [26–28]). In the BMG each agent has S

randomly chosen strategy vectors si that are scored according to their cumulative

success in predicting the minority group, with unit score added for the right choice

and deducted in the opposite case. At each round an agent uses the strategy vector si
with the highest score.

We define the performance of an agent at each round to be the number of times it

has belonged to the minority minus the number of times it has belonged to the

majority, and then scaled into the interval ½0; 1�: In order to measure characteristics
of the whole system of agents we define the society utility uðtÞ 2 ½0; 1� at each round t
to be the number of agents who belong to the minority group divided by ðN � 1Þ=2
(the maximum size of the minority group). In the minority game studies a common

measure to characterize the model is the attendance [17]

aðtÞ ¼
XN

i¼1

siðtÞ ; (1)

where siðtÞ 2 f�1; 1g denotes the action which the agent i takes at round t. Thus the

attendance gets values a 2 f�N;�N þ 2; :::; 1;�1; :::;N � 2;Ng and it is related to

the society utility as

uðtÞ ¼
N � jaðtÞj

N � 1
: (2)

If a ¼ 1 or �1; the society utility is at its maximum u ¼ 1: When a increases, the

society utility u decreases. In the minority game studies it is a common practice to
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observe the normalized fluctuations of attendance

ha2i=N ¼
1

NT

XkþT

t¼kþ1

a2ðtÞ (3)

as function of the control parameter z ¼ 2M=N; see Ref. [8]. The square of
attendance Eq. (1) is averaged over T time-steps and then normalized by the number

of agents. In the BMG with a fixed number of strategies S per agent one can separate

three regions in the normalized fluctuations as z changes: for small values of z

fluctuations are large, for intermediate values of z they reach a minimum, and for

large values of z they start to converge towards the limit of random decisions, being

unity (decisions taken by flipping a coin) [17]. According to Eq. (2), small normalized

fluctuation values indicate large values of the society utility. If we increase S in the

BMG, normalized fluctuations also increase and thus the society utility decreases. As

we will see later, the behaviour is very different in our EMG: increasing S leads to

larger society utility values, and separate regions of fluctuation levels do not exist.

In contrast to the BMG [5], where the strategies remain the same throughout the

game, we utilize an evolutionary mechanism that allows agents to change their

strategies for better personal gain. This mechanism is as follows: after every r rounds

the agents observe the performances of their neighbours, and if they are doing worse

than a neighbour, they cross two of their best S strategies and replace the two worst

strategies with the resulting ones. The crossover is done in a typical genetic algorithm

fashion [29,30]: a crossover point pc 2 ½0;P�; is randomly selected, and the children
inherit pc strategy components from one parent and P� pc from the other. For

example, if the parent vectors were ð1 1 1 1Þ and ð�1� 1� 1� 1Þ and the crossover

point pc ¼ 2; the resulting vectors would be ð1 1� 1� 1Þ and ð�1� 1 1 1Þ:
The rule of when and which agents will attempt to improve their strategies can be

implemented in many ways. The only aim of determining the rule is to obtain large

enough rate of convergence in the fluctuation of attendance Eq. (1). In these studies

we have determined the neighbours by spanning a scale-free tree whose nodes denote

the agents, and whose links determine the neighbours of an agent. With this

approach we get fast convergence in fluctuations of attendance, because the typical

node-to-node distance within a scale-free network is short, and thus the information

on the performance of ‘‘good’’ agents spreads rapidly. Other possibilities include, for

example, taking the worst fraction of agents and making them cross, or letting an

agent observe its own performance only, and if it continuously decreases, allowing

the agent cross its strategies.

3. Results

In our numerical simulations we have observed that in our EMG the society utility

tends to maximize within a wide range of control parameter z ¼ 2M=N values,

provided that agents are given enough strategies at the beginning. In addition we

observed that agents whose performance is close to each other do not form groups in
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the sense that they would use similar strategies. Also we investigated the effects of

group decision-making as well as endowing only part of the agents with strategy

improvement capability. These results are explained in detail below.

In what follows, we define the time scale of the simulation in terms of P rounds,

such that C ¼ const:� P: The strategy length P is a natural measure of time, since on
average, it takes P rounds to go through all the components of a particular strategy,

and thus an agent can for each history get response to the success or failure of its

choice. In Fig. 1 we show the development of attendance Eq. (1) during one

simulation run. We see that the fluctuations start at a high level, but are then rapidly

damped towards the minimum, indicating that the society utility Eq. (2) maximizes.

In terms of the trading analogy this means that the numbers of sellers and buyers

become as close to each other as possible, and thus the price of the commodity settles

down to its equilibrium value. In this simulation run we have used M ¼ 6; S ¼ 21;
r ¼ 2P and C ¼ 1000P (64; 000 rounds). The behaviour of our EMG differs

considerably from that of the BMG, in which the fluctuation level would remain high

because the control parameter value (z � 0:06) lies within the low-z-high-fluctuation
region, and because the number of strategies S is high [17].

In our EMG model the evolutionary strategy changes mean that agents can

develop and strive to optimize their strategies with the proven crossover method [22],

whereas in the BMG model the agents are restricted to their original strategies.

According to Smith, individuals who are striving towards maximizing personal

gain eventually promote the whole society most effectively. This is exactly what

happens in our EMG, as the agents do not have any explicit rules to lead the

society utility to the maximum. Note, however, that unlike in the real world, all
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Fig. 1. The evolution of fluctuations in the EMG during one simulation run, with the number of agents

N ¼ 1069; memory length M ¼ 6; number of strategies per agent S ¼ 21; crossover period r ¼ 2P; and
simulation length C ¼ 1000P; where P ¼ 2M : The numbers of minority and majority group members

(‘‘sellers’’ and ‘‘buyers’’) eventually become as close to each other as possible.
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agents are here equal in their ‘‘skills’’. The effect of differing agent abilities will be

discussed below.

In Fig. 1 we gave an example of the evolution of attendance Eq. (1) and

maximization of the society utility Eq. (2) (minimization of jaðtÞj) in one parti-

cular realization of the game with fixed parameter set. Fig. 2 shows the normal-

ized fluctuations of attendance Eq. (3) versus the control parameter z ¼ 2M=N;
illustrating how the optimum is reached, if enough strategies are given to the

agents at the beginning of the game. For each point on the curve we have used

M ¼ 6; r ¼ 2P and C ¼ 1000P; and averaged over 200 estimates. An estimate
for the normalized fluctuations Eq. (3) is calculated using the last 1000 simu-

lation rounds. The number of rounds r after which the agents check their neigh-

bours and decide about crossing their strategies is two whole periods. In this

time an agent gets, on the average, two responses for its actions for every

history, and thus has time to learn which of its strategies perform better than

others.

There are two reference lines in Fig. 2: the horizontal dotted line ha2i=N ¼ 1 and

the solid line ha2i=N ¼ 1=N: The former indicates the level of normalized
fluctuations, if the random decision (coin flipping) strategy is used, and the latter

the minimum value of the normalized fluctuations (maximum society utility). The

four series below the random decision strategy line display normalized fluctuations

for S ¼ 5 (triangles), S ¼ 8 (asterisks), S ¼ 13 (plus-signs) and S ¼ 21 (circles). All
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minimum line.
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series fall around lines whose slopes � 1 which is the same as that of the

minimum normalized fluctuations line. As the number of strategies increases,

the lines start to converge towards the minimum normalized fluctuation line.

This indicates that the society utility is maximized. With S ¼ 21 the level of

normalized fluctuations Eq. (3) is very close to its minimum value for all values

of the control parameter z. Thus, in our EMG the society utility Eq. (2) increases,

if we increase the number of strategies per agent S. The reason for this is that

larger initial strategy sets allow more crossover combinations, among which the

agents can find good ones with higher probability. Thus, the strategy set size

can be seen as representing the initial capabilities of agents, and also sets a

limit for improvement. If S is too small, it is possible that combina-

tions do not include those strategies which finally lead to the society utility

maximum.

A remarkable property in the case of SX21 is that the normalized fluctu-

ation values Eq. (3) are minimized for all simulated z. The result is robust and

shows how efficient the utilized evolutionary method is. For comparison, we have

also plotted normalized fluctuations for the BMG for S ¼ 5 (crosses) and S ¼ 21

(stars). Contrary to our EMG, the normalized fluctuations increase, if more

strategies are added to agents’ initial strategy sets [17]. Here we can also separate

the behaviour of normalized fluctuations in the low, middle and high-value regions

of the control parameter z. In our EMG, S ¼ 5 case is the most inefficient compared

to the games with higher S in the sense of society utility, but still considerably

more efficient than the BMG for S ¼ 5: In fact the difference is huge—of the
order of � 100–1000—in the low z region. This difference is even bigger for higher

values of S.

The assumption that agents are potentially equal in their skills is important for

reaching the minimum of normalized fluctuations. If a fraction of agents is not able

to adapt by crossing their strategies, the system utility will not reach its maximum

value. This can be seen in Fig. 3 where we studied the development of normalized

fluctuations Eq. (3) as the percentage of evolutionary agents increases for N ¼

99; 205; 429; and 891. We used M ¼ 6; S ¼ 21; r ¼ 2P; C ¼ 1000P for one sample

run, and averaged over 50 samples. If none of the agents is evolutionary, the level of

normalized fluctuations is that of the BMG using the same parameters. If all agents

are evolutionary, the normalized fluctuations Eq. (3) are minimized as in Fig. 2.

Between these two extremes the normalized fluctuations decrease monotonically as

the percentage of evolutionary agents increases. We found that the results are best

described by parabolic decrease (ha2i=N ¼ q2x
2 � q1xþ q0) of fluctuations as

function of the fraction x of evolutionary agents (see dashed lines in Fig. 3). The

values of the coefficients of parabolas seem to obey a power-law qi / z�1; as
indicated by the inset in Fig. 3.

Returning to the setting where all agents are evolutionary, we studied whether

agents whose performance is close to each other form groups within which

agents use similar strategies. If such groups exist, there might be particular strate-

gies in the whole strategy space which are preferred compared to others, and

agents who use the same or similar strategies would perform about equally
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successfully. Here we measure the similarity of two strategies k1; and k2 with the

Hamming distance

dk1k2 ¼

PP
i¼1jk1ðiÞ � k2ðiÞj

P
: (4)

In order to study the formation of groups we have simulated our EMG with N ¼ 65;
M ¼ 6; S ¼ 21; r ¼ 2P; C ¼ 3000P; and observed the performances of the agents
from the last 100P rounds of the simulation. The large number of simulation rounds

guarantees that agents make a sufficient number of crossovers and that the evolution

of their strategy pools has more or less stopped. In our simulations such a

stabilization happens often in C ¼ 1000P rounds. At the end of the simulation run

we take notice of the used strategy of each agent and calculate the Hamming distance

for all possible strategy pairs between agents.

In order to visualize the clustering of either winning or losing strategies we have

used the minimum/maximum spanning tree methods formed by using pairwise

Hamming distances. The minimum/maximum spanning tree is the shortest/longest

tree graph which can be spanned between the nodes [31]. If some strategy pairs

resemble each other, their Hamming distances are small, and thus these distance

pairs of the whole Hamming distance matrix with NðN � 1Þ=2 elements will be
extracted for the minimum spanning tree, whereas in the maximum spanning tree,

interconnected strategies are far from each other in the strategy space. In Fig. 4 we

show the resulting spanning trees—minimum on the left, maximum on the right—

which are coloured according to the performance of an agent, scaled into the range
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of ½0; 1� such that red stands for the best-performing agents while blue for the worst-
performing agents. A more coarse-grained division of the performances of agents is

indicated by three symbols: triangles for the best-performing third of the agents,

circles for the worst-performing third and squares for the agents whose performance

is in the middle of these two. On one hand, the minimum spanning tree shows that

there is no clear clustering of strategies for similarly performing agents, because if

such clusters existed, these would be seen as similarly coloured clusters of agents. On

the other hand, the best-performing agents are typically connected to less well-

performing agents in the maximum spanning tree. This indicates that the strategies

of well-performing agents tend to be far from the strategies of less well-performing

agents. Furthermore, because well-performing agents are never connected to other

well-performing agents in the maximum spanning tree, their strategies cannot be

very far from each other in the strategy space. In addition it is worth mentioning that

distribution of the performances of agents turned out to be approximatively

Gaussian.

So far, we have considered the agents in the game as individuals making

independent decisions. To investigate effects of the presence of a uniformly acting

group, ‘‘cartel’’, on the outcome of the game, we have developed a variation of our

EMG where a certain fraction of agents make a group decision and its members

always obey this decision in their actions. The group decision is done in such a way

that every round the agents of the ‘‘cartel’’ make tentative minority group votes

according to their strategies, and then the ‘‘cartel’’ decides the final minority group

choice for all its members based on these votes. This is done taking into account the

‘‘minority wins’’—aspect of the game, such that the final group decision is the one

for which the minority of the agents voted. All agents in the group then act according

to this decision.
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In Fig. 5 we show the normalized fluctuations as the size of the uniformly acting

group increases for N ¼ 891 (asterisks), N ¼ 619 (plus-signs), and N ¼ 429

(crosses). We used M ¼ 6; S ¼ 21; r ¼ 2P; C ¼ 1000P; and averaged over 50
samples. For very small group sizes, i.e., 0–2 percent of the whole population, the

system does not suffer from a big loss in the society utility, but as the group size

grows, the normalized fluctuations increase until they reach a local maximum at

group size of about � 10–13 percent of the agent population. After this, there is as

yet unexplained decrease in the fluctuation values. As the group size further increases

over � 21 percent, the fluctuations begin increasing monotonically with the group

size, and finally reach N in accordance with the Eq. (3). The inset in Fig. 5 shows an

example of this growth in the case N ¼ 429: The local peaks and the minima of the
curves are rather counter-intuitive, as group decisions mean that part of the agents

are forced to vote similarly. Therefore, one could expect that the normalized

fluctuations always increase with the group size. One possible explanation for the

minimum might be that as the group size increases, while still remaining below some

certain limit, the group is better able to predict the minority choice using statistics

provided by its own members.

4. Conclusions

To summarize, we have presented an evolutionary modification to the original

minority game model [5], where individual agents are capable of learning from the
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outcomes of their past decisions and changing their strategies accordingly. This

modified game leads to a stable situation where the majority and minority group

sizes become almost equal for a wide range of simulation parameters. Typically, this

happens for all possible histories, and each agent’s choice for each history

corresponds to one of the game’s pure-strategy Nash equilibria. This phenomenon

can be seen as an example of self-organization in a complex evolutionary system

[32,33], where the evolution is driven by competition among agents. The optimized

state emerges as a result of the selfish pursuits of individual agents. If the game is

viewed as a toy model of market economy, the equal group sizes mean that the

amounts of buyers and sellers of commodity are identical, which drives the

commodity price to its equilibrium value, and society utility to its maximum. This is

analogous to the ‘‘invisible hand’’-effect predicted by Adam Smith, stating that

selfishly acting individuals who are not actively concerned with the welfare of the

whole society still eventually reward the whole society in an optimal way.

In principle, a similar equilibrium state of minimal fluctuations could be reached

by dividing the agents into two almost equal-sized groups, A and B. Then, group A’s

minority choice would always be 1 (or �1), and group B’s choice the opposite. Our

studies show that this does not happen in the EMG and thus clear clusters of agents

utilizing the same or similar strategies do not form. This is intuitively quite evident,

as using strategies different from those of other agents increases the probability of

being in the minority group. Hence, the agents’ strategies tend to move away from

each other in the strategy space, rather than converge. In addition, the strategies of

well-performing agents tend to be far from the strategies of agents with worse

performances.

We have also observed that the optimal outcome of the society is reached only

under idealized conditions, where all the agents are equally capable of modifying

their actions—a condition which is rarely met in real-world economic systems. If

only part of the agents are allowed to evolve their strategies, the fluctuations do not

reach a minimum. Furthermore, we have found that the fluctuations decrease

quadratically as a function of the fraction of evolving agents. As for the homogeneity

of the agent population is concerned, we have also investigated the effect of

simulated uniformly acting ‘‘cartels’’. The expected result emerges such that if there

is a cartel in the society its utility is not maximized, i.e., true price equilibrium is not

reached. Surprisingly we also find that introducing a uniformly acting cartel does not

lead to steadily increasing amplitude of the fluctuations as would be expected if there

is a cartel in a game where the agents chose their side randomly. Instead of a steady

increase in fluctuations we observe a local minimum when the uniformly acting cartel

includes � 20 percent of the agents, for several system sizes studied. One possible

reason might be that the minima arise from a combination of two factors. On one

hand, the agents involved in the uniformly acting cartel are able to better estimate

the winning side when the cartel size becomes large enough. On the other hand, as

the cartel size grows, the fraction of agents, which are free to choose their actions

and thus counter the effect of the cartel decreases, leading to increased fluctuations.

Previously, the existence of minimal fluctuations in minority games has been

discussed and observed by several authors for systems of agents using probabilistic
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rules for strategy selection [14,16,19,34]. In contrast, in our model, the mechanisms

for strategy selection are deterministic and do not include probabilities. In the case of

pure strategies, in Ref. [16] the authors show that minimum fluctuations can be

achieved if the agents are allowed to remove their contribution from the outcome of

the game. In other words the agents are allowed to subtract their choice from the

attendance, Eq. (1), used in determining the change in their personal utility function,

Dui ¼ �sgnða� ZsiÞ: However, in our model the strategy score updating rules are
the same as those in the original BMG [5], without any extensions or alterations.

Nevertheless, the state of minimum fluctuations is typically reached in our game, due

to the effectiveness of the genetic crossover mechanism.
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