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Spatial snowdrift game with myopi agentsMarko Sysi-Aho 1,∗ Jari Saramäki 1, János Kertész 1,2, and Kimmo Kaski 1

1Laboratory of Computational Engineering,Helsinki University of Tehnology, Espoo, Finland
2Department of Theoretial Physis,Budapest University of Tehnology and Eonomis, Budapest, HungaryAbstratWe have studied a spatially extended snowdrift game, in whih the players are loated on the sitesof two-dimensional square latties and repeatedly have to hoose one of the two strategies, eitherooperation (C) or defetion (D). A player interats with its nearest neighbors only, and aims atplaying a strategy whih maximizes its instant pay-o�, assuming that the neighboring agents retaintheir strategies. If a player is not ontent with its urrent strategy, it will hange it to the oppositeone with probability p next round. Here we show through simulations and analytial approah thatthese rules result in ooperation levels, whih di�er to large extent from those obtained using therepliator dynamis.INTRODUCTIONUnderstanding the emergene and persis-tene of ooperation is one of the entralproblems in evolutionary biology and soioe-onomis [1, 2℄. In investigating this prob-lem the standard framework utilized is evolu-tionary game theory [2, 3, 4℄. Espeially twomodels, the Prisoner's Dilemma [5, 6, 7℄ andits variation, the snowdrift game [3, 8℄, haveattrated most attention. In both games,the players an either ooperate for ommongood, or defet and exploit other players inattempt to gain bene�ts individually. In thePrisoner's Dilemma, the preondition is that

it pays o� to be non-ooperative. Beauseof this, defetion is the only evolutionarilystable strategy (ESS) in populations whihare fully mixed, i.e. where eah player in-terats with any other player [9℄. However,several models whih are extensions of thePrisoner's Dilemma have proved to sustainooperation. These models inlude those inwhih the players are assumed to have mem-ory of the previous interations [10℄, or har-ateristis that allow ooperators and defe-tors to distinguish eah other [11℄, or playersare spatially distributed [12, 13, 14℄.A typial spatial game is suh whereplayer-player interations only take plae1



within restrited neighborhoods on regularlatties [14, 15, 16, 17℄ or on omplex net-works [18℄. These games have been foundto generate highly omplex behavior and en-able the persistene of ooperation. Regard-ing the latter, the opposite was reently seenin the ase of the snowdrift game played on atwo-dimensional lattie [12℄, where the spa-tial struture resulted in dereased ooper-ator densities ompared to the fully mixed�mean-�eld� ase. This result was surpris-ing, as intermediate levels of ooperation per-sist in unstrutured snowdrift games, and theommon belief has been that spatial stru-ture is usually bene�ial for sustained levelsof ooperation.In these studies the viewpoint has largelybeen that of biologial evolution, as repre-sented by the so-alled repliator dynamis[4, 19, 20℄, where the fration of playerswho use high-payo�-strategies grow (stohas-tially) in the population proportionally tothe payo�s. This mehanism an be viewedas depiting Darwinian evolution, where the�ttest have the largest hane of survival andreprodution. Overall, the fators in�uen-ing the outomes of these spatially struturedgames are (i) the rules determining the pay-o�s (e.g. Ref. [21℄), (ii) the topology of thespatial struture (e.g. Ref. [17℄), and (iii)the rules determining the evolution of eahplayer's strategy (e.g. Ref. [22, 23℄). We have

studied the e�et of hanging the strategyevolution rules (iii) in the two-dimensionalsnowdrift game similar to that disussed inRef. [12℄. In our version, the rules havebeen de�ned in suh a way that hanges inthe players' strategies represent player dei-sions instead of di�erent strategy genotypesin the next evolutionary generation of play-ers. Thus, the time sale of the popula-tion dynamis in our model an be viewedto be muh shorter than evolutionary timesales. Instead of utilizing the evolution-inspired repliator dynamis, we have en-dowed the players with primitive �intelli-gene� in the form of loal deision-makingrules determining their strategies. We showwith simulations and analyti approah thatthese rules result in ooperation levels whihdi�er largely from those obtained using therepliator dynamis.
In this study we will onentrate on anadaptive snowdrift game, with agents inter-ating with their nearest neighbor agents ona two-dimensional square lattie. In whatfollows we �rst desribe our spatial snow-drift model and then analyze its equilibriumstates. Next we present our simulation re-sults and �nally draw some onlusions.2



SPATIAL SNOWDRIFT MODELThe snowdrift model[27℄ an be illustratedwith a situation in whih two ars are aughtin a blizzard and there is a snowdrift blokingtheir way. The ars are equipped with shov-els, and the drivers have two hoies: eitherstart shoveling the road open or remain in thear. If the road is leared, both drivers gainthe bene�t b of getting home. On the otherhand, learing the road requires some work,and ost c an be assigned to it (b > c > 0).If both drivers are ooperative and willingto shovel, this workload is shared betweenthem, and both of them gain total bene�t of
R = c− b/2. If both hoose to defet, i.e. re-main in their ars, neither one gets home andthus both obtain zero bene�t P = 0. If onlyone of the drivers shovels, both get home, butthe defetor avoids the ost and gains bene-�t T = b, whereas the ooperator's bene�t isredued by the workload, i.e. S = b − c.The above desribed situation an be pre-sented with the bi-matrix [24℄ (Table I),where

T > R > S > P. (1)In ase of the so alled one-shot game, eahplayer has two available strategies, namelydefet (D) or ooperate (C). The playershoose their strategies simultaneously, andtheir individual payo�s are given by the ap-propriate ell of the bi-matrix. By onven-

Table I: Snowdrift game. Player 1 hooses anation from the rows and player 2 from theolumns. By onvention, the payo� to the rowplayer is the �rst payo� given, followed by thepayo� of the olumn player.D CD P, P T, SC S, T R, Rtion, the payo� to the so-alled row player isthe �rst payo� given, followed by the payo�of the olumn player. Thus, if for exampleplayer 1 hooses D and player 2 hooses C,then player 1 reeives the payo� T and player2 the payo� S.The best ation depends on the ation ofthe o-player suh that defet if the otherplayer ooperates and ooperate if the otherdefets. A simple analysis shows that thegame does not have stable evolutionary strat-egy [19℄, if the agents use only pure strategies,i.e., they an hoose either to ooperate orto defet with probability one, but they arenot allowed to use a strategy whih mixes ei-ther of these ations with some probability
q ∈ (0, 1). This leads to stable existene ofooperators and defetors in well-mixed pop-ulations [12℄.In order to study the e�et of spatial stru-ture on the snowdrift game, we set the playerson a regular two-dimensional square lattieonsisting of m ells. We adopt the nota-3



tion of Ref. ([25℄) and identify eah ell byan index i = 1, . . . , m whih also refers toits spatial position. Eah ell, representinga player, is haraterized by its strategy si,whih an be either to ooperate (si = 1) orto defet (si = 0). The spatio-temporal dis-tribution of the players is then desribed by
S = (s1, . . . , sm) whih is an element of a 2mdimensional hyperube. Then every player �heneforth alled an agent � interats withtheir n nearest neighbors. We use either theMoore neighborhood in whih ase eah agenthas n = 8 neighbors, in N,NE,E,SE,S,SW,Wand NW, or the von Neumann neighborhoodin whih ase eah agent has n = 4 neighbors,in N,E,S and W ompass diretions [26℄. Werequire that an agent plays simultaneouslywith all its n neighbors, and de�ne the pay-o�s for this (n + 1) − player game suh thatan agent i who interats with ni

c ooperatorsand ni
d defetors, ni

c +ni
d = n, gains a bene�tof

ui(si = 0) = ni
cT + ni

dP (2)
ui(si = 1) = ni

cR + ni
dS, (3)from defeting or ooperating, respetively.For determining their strategies, theagents are endowed with primitive deision-making apabilities. The agents retain nomemory of the past, and are not able topredit how the strategies of the neighbor-

ing agents will hange. Every agent simplyassumes that the strategies of other agentswithin its neighborhood remain �xed, andhooses an ation that maximizes its ownpayo�. In this sense the agents are myopi.The payo� is maximized, if an agent (a) de-fets when ui(0) > ui(1), and (b) ooperateswhen ui(1) > ui(0). If () ui(0) = ui(1) thesituation is indi�erent. Using Eqs. (2) and(3) we an onnet the preferable hoie ofan agent and the payo�s of the game. Let usdenote
1

r
= 1 +

S − P

T − R
. (4)Then, if

ni
c

n
> 1 − r defeting is pro�table, or if (5)

ni
c

n
< 1 − r ooperating is pro�table, or if(6)

ni
c

n
= 1 − r hoies are indi�erent. (7)Thus, for eah individual agent, the ratio

r determines a following deision-boundary
θ = n(1 − r), (8)whih depends on the neighborhood size nand the �temptation� parameter r. Beause

r is determined only by the di�erenes T −Rand S−P , we an �x two of the payo� values,say R = 1 and P = 0. Based on the above,we de�ne the following rules for the agents:1. If an agent i plays at time t a strategy4



si(t) ∈ {0, 1} for whih ui(si) ≥ ui(1 −

si), then at time t + 1 the agent plays
si(t + 1) = si(t).2. If an agent i plays at time t a strategy
si(t) ∈ {0, 1} for whih ui(si) < ui(1 −

si), then at time t + 1 the agent plays
si(t + 1) = 1− si(t) with probability p,and si(t + 1) = si(t) with probability
1 − p.Hene, the strategy evolution of an individualagent is determined by the urrent strategiesof the other agents within its neighborhood,with the parameter p ating as a �regulator�whih moderates the rate of hanges.EQUILIBRIUM STATESA spatial game is in stable state or equi-librium if retaining the urrent strategy isbene�ial for all the agents [4℄. There anbe numerous equilibrium on�gurations, de-pending on the temptation parameter r, ge-ometry and size of the n-neighborhood, andthe size and boundary onditions of the lat-tie upon whih the game is played. An ag-gregate quantity of partiular interest is thefration of ooperators Fc in the whole popu-lation (or, equivalently, that of the defetors

Fd). Below, we derive limits for Fc, �rst in a�mean-�eld� piture based ooperator densi-ties within neighborhoods and then by inves-

tigating loal neighborhood on�gurations.Mean-�eld limits for ooperator densityWithout detailed knowledge of loal equi-librium on�gurations we an already derivesome limits for the fration of ooperators inequilibrium. Let us onsider a square lattiewith m = L × L ells with periodi bound-ary onditions, where L is the linear size ofthe lattie, and assume that k ells are o-upied by ooperators. We denote by aj thenumber of those agents who have j oopera-tors eah in their n-neighborhood, exludingthe agents themselves, and denote the loaldensity of ooperators in suh neighborhoodsby fc = j/n. Hene, the total amount of o-operators k an be written in terms of thedensities as follows
k =

n
∑

j=0

ajfc =
n

∑

j=0

aj

j

n
. (9)From Eqs. (5)-(7) we an infer that aooperator will retain its urrent strategy,if it has at most c ooperators in its n-neighborhood, where c is the integer part of

θ = n(1−r). Similarly, a defetor will remaina defetor if it has more than c ooperatorsin its neighborhood. Thus, in equilibrium,all agents having j ≤ c ooperators in theirneighborhood are likewise ooperators, andthus ∑c

j=0
aj = k. We denote by 〈

fc|c

〉

=5
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c|dFigure 1: In equilibrium the average density ofooperators in the nearest neighborhood of defe-tors must be 1−r ≤
〈

fc|d

〉

≤ 1 and in the nearestneighborhood of ooperators 0 ≤
〈

fc|c

〉

≤ 1 − r(shaded area). If the total number of playersin the lattie is m, the lines k
〈

fc|c

〉

+ (m −

k)
〈

fc|d

〉

= k depit the identity of k oopera-tors in the lattie. Equilibrium is not possible,if the fration of ooperators Fc = k/m is suhthat the lines do not pass through the shadedarea.
1

k

∑c

j=0
aj

j

n
the average density of oopera-tors as the nearest neighbors of ooperators.Similarly, 〈

fc|d

〉 denotes the average densityof ooperators as the nearest neighbors of de-fetors, i.e. 〈

fc|d

〉

= 1

m−k

∑n

j=c+1
aj

j

n
. Thenwe an write Eq. (9) as

k = k
〈

fc|c

〉

+ (m − k)
〈

fc|d

〉

. (10)The density fc|c of ooperators aroundeah ooperator is bounded: fc|c ≥ 0, fc|c ≤

c/n, and as c ≤ θ = n(1 − r), the relation
0 ≤

〈

fc|c

〉

≤ 1 − r holds for the averagedensity. Similarly, the density of ooperatorsaround eah defetor fc|d an be at most 1

and is at least (1 − r), and thus the averagedensity 1 − r ≤
〈

fc|d

〉

≤ 1. Using these re-lations together with Eq. (10) we obtain thefollowing limits for the density of ooperators
Fc = k/m in the whole agent population (seealso Fig. 1):

1 − r

2 − r
≤ Fc ≤

1

r + 1
. (11)Loal equilibrium on�gurationsIn the above derivation we ignore how thestrategies an atually be distributed in thelattie. Hene, it is of interest to examinepossible loal equilibrium on�gurations ofthe player strategies. Again, Eqs. (5)-(7) tellus how many ooperative neighbors eah de-fetor or ooperator an have in the equi-librium state. The number of ooperatorsaround eah agent depends on the value ofthe temptation parameter r, and for a givenvalue of r the lattie has to be �lled suh thatthese onditions hold for the neighborhood ofeah agent. In a lattie with periodi bound-ary onditions, the lattie size m = LX ×LYand the neighborhood size n obviously havean e�et on the elementary on�gurations.Hene, we restrit ourselves to in�nite-sizedlatties, �lled by repeating elementary on�g-uration bloks, and look for the resulting lim-its on the ooperator density Fc. Note thatthese onlusions also hold for �nite latties6



Table II: Limits for the equilibrium fration ofooperators based on repeating elementary on-�guration bloks. When rl < r < ru, the numberof ooperators in eah defetor's neighborhood
Nc|d must be at least 9 − i and the number ofooperators in eah ooperator's neighborhood
Nc|c at most 8 − i. Considering possible repeat-ing on�guration bloks whih ful�ll these on-ditions, we obtain lower limits Fc,L and upperlimits Fc,U for the density of ooperators.i rl ru Nc|d ≥ Nc|c ≤ Fc,L Fc,U1 0 1/8 8 7 3/4 8/92 1/8 2/8 7 6 2/3 4/53 2/8 3/8 6 5 1/2 2/34 3/8 4/8 5 4 1/2 2/35 4/8 5/8 4 3 4/9 1/26 5/8 6/8 3 2 1/3 1/27 6/8 7/8 2 1 2/9 1/38 7/8 8/8 1 0 1/9 1/4with periodi boundary onditions, if LX and
LY are integer multiples of X and Y , respe-tively, where X × Y is the elementary bloksize. Here, we will restrit the analysis to thease of the Moore neighborhood with n = 8.As an example, onsider the loal on�g-urations when r = 0.1, and hene the de-ision boundary value θ = n(1 − r) = 7.2.Thus, from Eqs. (5)-(7) one an infer thatin equilibrium all defetors should have morethan 7.2 ooperators in their Moore neighbor-hoods. Beause the number of ooperatingneighbors an take only integer values, thismeans that every one of the n = 8 neighborsof a defetor should be a ooperator. On the
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Fc = 8/9. This on�guration is illustrated inFig. (2), as ase 1, right blok.By ontinuing the analysis of elementary7



on�guration bloks in similar fashion for dif-ferent values of r, we obtain lower and upperlimits for the fration of ooperators, whihare listed in Table II. The orresponding ele-mentary on�guration bloks are depited inFig. (2). The table is read so that when thevalue of the temptation parameter is withinthe interval rl < r < ru, the number of oop-erators in eah defetor's neighborhood Nc|dmust be at least 9 − i and the number of o-operators in eah ooperator's neighborhood
Nc|c an be at most 8− i. Here rl = (i−1)/8,
ru = i/8 and i = 1, . . . , 8 These onditionsare those of Eqs. (5)-(7) and they are ful-�lled by the on�guration bloks depited inFig. (2), for whih the minimum and max-imum densities of ooperators are Fc,L and
Fc,U .SIMULATION RESULTSWe have studied the above desribed spa-tial snowdrift model with disrete time-stepsimulations on a m = 100 × 100-lattiewith periodi boundary onditions. We havespei�ally analyzed the behavior of the o-operator density Fc, and equilibrium lattieon�gurations. In the simulations, the lat-tie is initialized randomly so that eah ellontains a ooperator or defetor with equalprobability. However, biasing the initial den-sities toward ooperators or defetors was

found to have no onsiderable e�et on theoutome of the game. We have simulated thegame using both the Moore and the von Neu-mann neighborhoods with n = 8 and n = 4nearest neighbors, respetively. In the sim-ulations we update strategies of the agentsasynhronously [26℄ with the random sequen-tial update sheme, so that during one simu-lation round, every agent's strategies are up-dated in random order. In the following, thetime sale is de�ned in terms of these simu-lation rounds.First, we have studied the development ofthe ooperator density Fc as a funtion oftime. As expeted, the probability p of dis-ontent agents hanging their strategies playsthe role of de�ning the onvergene time saleonly[28℄, as in the long run Fc onverges toa stable value irrespetive of p. This is de-pited in Fig. 3, whih shows Fc as funtionof time for several values of p and two di�er-ent values of the temptation r. In these runs,we have used the Moore neighborhood, i.e.
n = 8. In all the studied ases, Fc turns outto onverge quite rapidly to a onstant value,
Fc ∼ 0.7 for r = 0.2 and Fc ∼ 0.3 for r = 0.8.It should be noted that Fc does not haveto onverge to exatly the same stable valuefor the same r; even if the game is onsid-ered to be in equilibrium, there an be somevariane in Fc, whih is also visible in Fig. 3.However, the value of Fc was found to even-8
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Figure 3: Dynamis of the fration of ooper-ators Fc. The upper urves that onverge to
Fc ∼ 0.7 are for r = 0.2, and the lower urvesthat onverge to Fc ∼ 0.3 are for r = 0.8. Inboth ases the probability of being disontent isvaried as p = 1, 0.1, 0.01, 0.001 from left to right,and the lattie size is m = 100x100.tually remain stable during individual runs,i.e. no osillations were deteted.Next, we have studied the average equi-librium fration of ooperators 〈Fc〉 in theagent population as funtion of the tempta-tion parameter r. We let the simulations runfor 500 rounds (with p = 0.1), and averagedthe fration of ooperators for the subsequent500 rounds. In all ases, the fration had al-ready onverged before the averaging rounds.Fig. (4) shows the results for the von Neu-mann neighborhood (n = 4), illustrated asthe squares. The dotted lines indiate theupper and lower limits of Eq. (11), and thedashed diagonal line is Fc = 1 − r, orre-sponding to the fration of ooperators in thefully mixed ase [4, 12, 19℄. The fration of

ooperators 〈Fc〉 is seen to follow a steppedurve, with steps orresponding to r = i/n,where i = 0, . . . , n. This is a natural on-sequene of Eqs. (5)-(7), where the deisionboundary θ = n(1 − r) an take only dis-rete values. A similar piture is given forthe Moore neighborhood (n = 8) in the mid-dle panel of Fig. (5). Furthermore, in themiddle panel of Fig. (5) the values of Fc fallbetween the limits given in Table II for all ras shown with solid lines.In both ases (i.e. with Moore and vonNeumann neighborhoods) ooperation is seento persist during the whole range r = [0, 1].This result di�ers largely from the Fc(r)-urves of the spatial snowdrift game withrepliator dynamis [12℄, where the frationof ooperators vanished at some ritial rc.Hene, we argue that no onlusions on thee�et of spatiality on the snowdrift gamean be drawn without taking into onsidera-tion the strategy evolution mehanism; loaldeision-making in a restrited neighborhoodyields results whih are di�erent from thoseresulting from the evolutionary repliator dy-namis.We have also studied the equilibrium lat-tie on�gurations for various values of r.Fig. (5) depits the entral part of the 100×

100-lattie after 1000 simulation rounds us-ing the Moore neighborhood and p = 0.1,with white pixels orresponding to oopera-9
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to eah other, and the ways to assign strate-gies within loal neighborhoods are most nu-merous. To be more exat, there are (

8

i

)ways to distribute i ooperators in the 8-neighborhood, and if e.g. 3/8 < r < 4/8,
i is at least 4 and at most 5, maximizing thevalue of the binomial oe�ient. Hene, theways of �lling the lattie with these neigh-borhoods in suh a way that the equilibriumonditions are satis�ed everywhere are mostnumerous as well.SUMMARY AND CONCLUSIONSWe have presented a variant of the two-dimensional snowdrift game, where the strat-egy evolution is determined by agent dei-sions based on the strategies of other playerswithin its loal neighborhood. We have ana-lyzed the lower and upper bounds for equi-librium ooperator densities with a mean-�eld approah as well as onsidering pos-sible lattie-�lling elementary on�gurationbloks. We have also shown with simulationsthat this game onverges to equilibrium on-�gurations with onstant ooperator densitydepending on the payo� parameters, and thatthese densities fall within the derived limits.Furthermore, the strategy on�gurations inthe equilibrium state display interesting pat-terns, espeially for intermediate temptationparameter values.10
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Figure 5: Example equilibrium on�gurations of defetors and ooperators on a m = 100 × 100lattie for various values of r when the Moore neighborhood is used. The on�gurations werereorded after T = 1000 simulation rounds. Only the middle part of the lattie is shown for thesake of larity. The middle panel depits the average fration of ooperators 〈Fc〉 in the wholepopulation as a funtion of the temptation r (squares), together with the upper and lower limitsof Eq. (11) (dotted lines) and the limits of Table II (solid lines). The values of 〈Fc〉 are averagesover the last 500 simulation rounds and the dashed diagonal line is Fc = 1 − r, orresponding tothe fration of ooperators in the fully mixed ase [4, 12, 19℄.Most interestingly, the equilibrium oop-erator densities di�er largely from those re-sulting from applying the repliator dynam-is [12℄. With our strategy evolution rules,ooperation persists through the whole temp-tation parameter range. This illustrates that
one annot draw general onlusions on thee�et of spatiality on the snowdrift gamewithout taking the strategy evolution meh-anisms into onsideration � this should, inpriniple, apply for other spatial games aswell. Care should espeially be taken when11



interpreting the results of investigations onsuh games: the utilized strategy evolutionmehanism should re�et the system understudy. We argue that espeially when mod-eling soial or eonomi systems, there is noa priori reason to assume that generalizedonlusions an be drawn based on results us-ing the evolution inspired repliator dynam-is approah, where high-payo� strategies getopied and �breed� in proportion to their �t-ness. As we have shown here, loal deision-making with limited information (neighborstrategies are known payo�s are not) an re-sult in di�erent outome.
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