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Abstract

Understanding the behaviour of a system through the properties of the elements
of the system is a central problem in several fields of contemporary research. Ap-
pealing approaches for gaining such understanding have been proposed in complex
systems studies. One particular approach is based on the scheme of agent-based
modelling, in which the elements of the system are described by a set of precise
rules which are implemented by computer programs. This dissertation is focused
on topics related to two types of agent-based models: minority games and spatial
two player games.

The first part of the thesis deals with minority games that have been extensively
studied in the physics literature during the past eight years. A minority game de-
scribes a society of adaptive individuals with bounded rationality competing for
scarce resources. Questions arising from such a model are associated with the
efficiency of the system and the success of its individuals in utilizing the scarce
resources. Previous studies have indicated that in case the individuals are allowed
to evolve, they tend to evolve such that the efficiency of the system improves.
However, the actual level of efficiency substantially depends on the type of evolu-
tion present in the system. We have applied genetic algorithms to make the system
evolving. Our results indicate that natural selection and genetic algorithms can lead
the system perform optimally and increase the success of individuals remarkably.

The second part of the thesis describes aspects of games that model strategic
interaction situations between individuals. Especially, the focus of this part of the
thesis is on models that aim at explaining the emergence and persistence of coop-
erative behaviour in an animal or human society. Previous studies have indicated
that spatial structure of the society largely contributes to the maintenance of coop-
eration in these models. However, much of the research has been carried out by
relying on evolutionary dynamics of the society associated with changes occurring
in long times. We have explored a spatial game by allowing the individuals in
the system be adaptive and act on short times, and our results show that the char-
acteristic behaviour of the system is different from that observed in studies using
evolutionary dynamics.
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Chapter 1

| ntroduction

The study of complex systems (CS) has recently become an important area of re-
search in natural and social sciences [1, 2]. In general, complex systems are com-
posed of many interacting elements. Often, the elements are non-identical, and
their interactions stochastic. Although the elements may follow simple rules, the
properties emerging at the higher, collective level of the system itself, the so-called
emergent properties, can show complex behaviour. Moreover, such a system often
evolves towards a state that exhibits organized patterns without any form of central-
ized control. This phenomenon is known as self-organization [3]. If the elements
in a complex system are adaptive, such that they can change their reactions as a
response to environmental changes, the system is called a complex adaptive system
(CAS) [4, 5].

There are numerous natural systems that can be considered as CASs, for exam-
ple the human immune system [6, 7, 8], and several ecological [9], and economical
[2, 10, 11, 12] systems. In the human immune system, the interacting elements are
specialized cells (e. g. the B-cells). When a pathogen disturbs the homeostasis (see
p. 7-12 of Ref. [13]) of our body, individual cells strive to eliminate the pathogen
in order to recover the homeostasis. This procedure takes place without central-
ized control, i. e. , the system of cells self-organizes to defeat the pathogen. As an
emergent property, one can observe that the numbers of different types of cells in
the body evolve in time, and finally settle down to stable levels [6]. Economical
and ecological systems are examples of large-scale systems which are composed
of small sub-units. Depending on the level of coarse-graining at which one views
these systems, the systems can be divided into units. For example, on a very coarse-
grained level, a local ecosystem of a specific continent can represent one unit, and
the units interact when some animal species, like butterflies and birds, move across
continents due to seasonal changes. On a lower level of coarse-graining, species
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2 CHAPTER 1. INTRODUCTION

of an animal can be considered as a unit, and interactions between the units arise
when the species populate a specific territory. In the simplest case, one can con-
sider two species, which can be rivals, symbiotic partners, a host and a parasite, or
a predator and a prey [14, 15]. For instance, baleen whales and Antarctic krill live
in a predator—pray relationship in the Southern Ocean (see p. 400 in Ref. [14]). As
an emergent property arising from interactions between these two species, one can
see oscillations in their population densities. The co-existence of both species is
an instance of self-organization. Also, the free market economy can be viewed as
a CAS, in which the elementary units are the people who purchase goods [11, 12].
Self-organization appears such that the numbers of goods on sale are limited but at
the same time there is no considerable lack of them in general, that is, the supply
and demand of goods are on the average balanced, without centralized control. As
an emergent property, one can observe complex patterns in the prices of goods that
are traded.

Other examples of natural CASs are ant colonies which efficiently utilize their
food resources and optimally organize their traffic in crowded conditions [16, 17];
the Magicicadas insects that synchronize their life-cycles to appear in prime num-
bers, possibly in order to hinder predators from predicting their appearance [18];
various complex networks, such as the neural network of the worm C. elegans, or
the collaboration between film actors [19]; cooperative swarming in the bacterium
Myxococcus xanthus [20]; or competitive interactions among viruses [21].

At present, there is no a formal definition for a CAS, but it is likely that the
definition would include features we have discussed above. These features are
rather ubiquitous, and thus the number of systems which can be interpreted as
CAS around us is astronomical. However, the number of theoretical models that
can appropriately describe these CASs is more moderate. A typical problem in
modelling a real-world CAS is how to capture the interaction patterns between the
elementary units of the system. It may also be problematic to include a multitude
of elementary units into the model, so that the modelled system would describe
the real CAS in a proper scale. Several classical approaches for modelling CASs
lead to equilibrium considerations of the system under study [5]. A famous exam-
ple is the Lotka-Volterra model [14] for predator—prey interactions. This model,
as its more sophisticated modifications [14, 15], examine the existence of equilib-
rium states or limit cycles [15] in the numbers of predator and prey. In economy,
a famous historical example of an equilibrium-oriented consideration is Cournot’s
model of duopoly [22]. Cournot’s model depicts how much of a commodity two
firms should produce in order for both firms to gain maximal profits, assuming
that the functional connection between price of the commaodity and its demand are
known. Analysis of the Cournot’s model reveals that there is an amount that satis-
fies both participants. Cournot’s model is an archetypical example in conventional



economics, about which Arthur states (Ref. [23] p. 108): “Conventional economics
thus studies consistent patterns: patterns in behavioural equilibrium that would in-
duce no further reaction.”

Equilibrium-oriented models are convenient for theoretical studies because they
are often analytically tractable, but they have been criticized for at least two reasons
[5, 9, 23]. First, assumptions about the actors, like humans in economy, tend to be
unrealistic in equilibrium-oriented models. For instance, in the classical economic
theory a typical assumption concerns the rationality of a human being, which is as-
sumed to be perfect, logical and deductive [10]. Psychologists, on the other hand,
have a remarkably different opinion on the human rationality, based on several ex-
periments that have indicated that humans are only moderately good at deductive
logic and in addition susceptible to emotions.! Second, even if a natural system
would converge to equilibrium, the question of how such an equilibrium arises
may remain unanswered within equilibrium-oriented models. For instance, con-
cerning human ‘players’ in strategic decision making situations, Camerer (p. 265
in Ref. [24]) states: “Equilibrium concepts implicitly assume that players either
figure out what equilibrium to play by reasoning, follow the recommendation of
a fictional outside arbiter (if that recommendation is self-enforcing), or learn or
evolve toward the equilibrium”. This statement highlights the fact that equilibrium-
oriented considerations often disregard the process of learning [24, 25], which is
likely to be of great importance in CAS, at least if these CASs include human or
animal actors. Another mechanism that is likely to play a role in CAS is evolu-
tion [26]. Like adaptation and learning, evolution may also appear to be difficult
to include into models that aim to be analytically feasible. In short, there seems
to be a need for modelling CAS with methods that can overcome difficulties re-
lated to several conventional, equilibrium-oriented models in various disciplines of
science.

One possibility for describing CASs theoretically is to utilize agent-based mod-
els, which can be implemented by computer programs. The basic idea in these
models is, quoting Srbljinovi¢ and Skunca of Croatian Ministry of Defence’s In-
stitute (p. 2 in Ref. [27]): "to specify the rules of behaviour of individual entities,
as well as the rules of their interaction, to simulate a multitude of the individual
entities using a computer model, and to explore the consequences of the specified
individual-level rules on the level of population as a whole, using results of the
simulation runs”. The basic structure of these agent-based models strongly resem-
bles the structure of actual CASs. Furthermore, computerized simulations allow
to consider heterogeneous agents and interactions. Thus, some unrealistic assump-
tions that make equilibrium-oriented models analytically tractable can be relaxed

*For experiments about human behaviour in several strategic situations see Ref. [24].



4 CHAPTER 1. INTRODUCTION

in computerized agent-based models. As an example, Arthur reasoned that in eco-
nomic theory, the assumption of perfectly rational human agents can be replaced
with a more realistic assumption of boundedly rational human agents [10, 11, 23].

The strengths and weaknesses of agent-based models are both related to the
level of realism one wishes to attain with these models. On one hand, one can
try to construct models that reproduce realistic phenomena as accurately as pos-
sible, without regard to the complexity of these models. As a drawback of such
approach, it may turn out that it is difficult to understand precisely which aspects
of the model are responsible for the results. On the other hand, one can study in
detail the simplest possible models that capture at least some of the most basic
underlying dynamics that may appear in the system under study. Such simplified
models, while not necessarily accurately modelling the ‘ingredients’ of any spe-
cific system, have the virtue of being controllable and potentially understandable.
Still, these simple models can describe the system under study more appropriately
than conventional equilibrium-oriented models. Thus, these models can help us
address the most basic issues of CASs and give us great insight not only into what
types of emergent behaviour we can expect to result from various fundamental un-
derlying dynamics, but also what the appropriate questions are that we can ask of
such systems.

In this thesis we shall consider two types of agent-based models: minority
game models and spatial two-player game models. These models are simple enough
to be analyzed with analytic methods to some extent, but still they can be said to
capture factors that are believed to influence behaviour of CASs composed of as
complicated creatures as human or animal actors.

In chapter 2 we shall review minority games (MG), in which the interest is fo-
cused on self-organization in a population of agents with limited capabilities when
they compete for scarce resources. Such competitive situations may arise, for in-
stance, when predators choose turfs for hunting preys, or when routers in the In-
ternet decide how to transfer data packets from one place to another. The minority
game is a simple agent-based model reminiscent of these systems [28]. The game
consists of NV agents who decide between two alternatives, A or B. Those who
belong to the minority, win. The agents have access to a global history, in other
words to a historical record of the past M winning sides, and they are endowed
with S strategies that assign a choice for each possible history. Regardless of the
individual agents’ self-interested pursuit, the population of agents shows coordi-
nated behaviour [29]. Previous studies indicate that when the agents are allowed
to evolve, they tend to evolve such that the population as a whole performs opti-
mally [30, 31]. In order to allow evolution, we have applied genetic algorithms
to the MG. Our results show that natural selection and genetic algorithms are effi-
cient methods for boosting the performance of the population as well as that of the



individual agents in this toy world (Publications I-V).

In chapter 3 we shall describe spatial two-player games, and focus in particular
on the so-called snowdrift game [32]. Two-player games are well-studied in the
field of traditional game theory [33] that deals with rational strategic behaviour,
mainly related to human behaviour or the behaviour of human societies. Later on,
two-player games have also been applied to various problems in biology, due to the
maturation of evolutionary aspects of game theory [15, 34]. For example, competi-
tive interactions among viruses [21], evolution of ATP-producing pathways [35], or
cooperative swarming in the bacterium Myxococcus xanthus [20] have been mod-
elled with two-player games. One of the central problems in biology and socioe-
conomics is to understand the emergence and persistence of cooperative behaviour
between unrelated individuals. Standard metaphors for investigating this problem
are two particular two-player games: the so-called prisoner’s dilemma game and
its variant, the so-called snowdrift game [15, 22, 34]. In relation to these games,
several studies have proven that spatially structured populations are in an important
role in explaining the emergence and persistence of cooperative behaviour [36, 37].
In these studies, the viewpoint has largely been that of biological evolution, which
is typically associated with time scales that are longer than the lifetime of an indi-
vidual. In order to study whether conclusions of cooperative behaviour in spatially
structured two-player games remain the same also in the case where the individu-
als act adaptively for short time scales, we studied a spatially structured snowdrift
game in (Publication VI). Our results show that there are differences in the results
obtained by considering dynamics at different time scales.
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Chapter 2

Minority Games

The minority game (MG) was introduced for modelling emergent properties in a
system of individuals with bounded rationality and inductive thinking. The original
work of Challet and Zhang [28] was inspired by Arthur’s El Farol bar problem (BP)
[10, 23].

In his 1994 paper, “Inductive reasoning and bounded rationality”, Arthur gave
reasons for why conventional assumptions about perfectly rational and deductively
thinking agents, widely adapted in economics, decision making and game the-
ory [33], may not be appropriate for describing real human behaviour. Based on
psychological experiments carried out by others, Arthur argued ([10],p. 406) that
“Modern psychology tells us that as humans we are only moderately good at de-
ductive logic, and we make only moderate use of it. ... We carry out localized
deductions based on our current hypotheses and act on them. As feedback from
the environment comes in, we may strengthen or weaken our beliefs ...” In order
to model this type of behaviour, Arthur proposed the BP, inspired by the EI Farol
bar in Santa Fe, which offers Irish music on Thursday nights. In the BP, N peo-
ple independently decide each week whether to go to the bar in which space is
limited. The evening is enjoyable only if fewer than 60 percent of the possible N
people are present, but in advance there is no sure way to tell the numbers coming
to the bar, and therefore a person goes if he/she expects fewer than 60 percent to
show up, or stays at home if he/she expects more than 60 percent to attend. The
choices are affected only by the available information of the numbers of visitors
who came to the bar in the past weeks. Of interest in this context is the dynamics
of the number of people attending each week. Arthur constructed a computational
model for this problem in which agents are given a certain number of predictors, in
the form of functions that map the attendance figures of the few past weeks to the
attendance figure of the next week. Then, each agent keeps track of the accuracy of

7



8 CHAPTER 2. MINORITY GAMES

his/her predictors and uses the one that is, by some criterion, the most accurate at
the present moment. Arthur found that in this simulated BP, the mean attendance
always converges to 60 percent. Furthermore, the predictors were found to self-
organize dynamically such that 40 percent of them anticipate that more than 60
percent of the agents will attend the bar next week, and 60 percent of the predictors
predict the opposite [10].

Arthur’s BP model has at least two notable features. The first one is that the
agents in the BP can adaptively react to changes in their environment by switching
from one strategy to another. The second one is that there is no universally good
predictor that could always predict the attendance better than other predictors in
the game in all possible circumstances. This is due to the fact that the attendance
depends fully on the predictions of the other predictors. Unfortunately, the BP
model is considerably ‘large’ problem to be analyzed thoroughly. One reason for
this is that the class of predictors is not restricted in any way, and another reason is
that the information provided to the BP agents, the number of past weeks attendees,
is quite fine-grained.

Later Challet and Zhang simplified Arthur’s BP model such that the resulting
model, the minority game, was more appropriate for detailed analysis but still cap-
tured the important features of the original BP model [28]. Since their 1997 paper,
“Emergence of cooperation and organization in an evolutionary game”, the MG
has been a subject of intensive study, and the original model has been modified in
various ways. The MG as such is an interesting model with the basic idea being
associated with competition for scarce resources. The game has some potential
applications in biology, technology, economics and social sciences. For instance,
predators occupying turfs for hunting prey, data packets sent to a mobile network,
taxi drivers choosing routes between two places, or students who aim at educat-
ing themselves into fields with high demand of labour but shortage of workers all
benefit from being in the minority. The rules of the game are simple, yet the sys-
tem of agents produces interesting emergent properties such as coordination and
self-organization.

Several MG papers have been published during the past eight years. The aim
of this chapter is to give an overview of the various studies on MGs. Our pre-
sentation will not be detailed, and the reader is encouraged to check the original
references. For an extensive review of minority game research, the reader may
wish to consult the MG web page [38], which contains an excellent collection of
links to various papers, theses and other reviews with short descriptions of their
contents. The topics and papers to be discussed in this chapter have been selected
from the main lines of MG research, but the selection is necessarily somewhat sub-
jective and some papers containing original and important ideas may have been left
out. To give a continuous view of the subject, the author’s and collaborators’ own
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publications are presented in the text shortly, without highlighting them later on in
a separate chapter. For a more detailed view on these publications and the author’s
contribution, the original publications are included at the end of this thesis.

The outline of this chapter is as follows. In section 2.1 the MG is described in
its original form. In section 2.2 typical features of interest in the MG are discussed
and concepts that are used to quantify these features presented. In section 2.3 the
Nash Equilibria in minority games are shortly discussed and section 2.4 provides
a short review of the results of the original MG, with emphasis on the quantities
described in section 2.2. In section 2.5 the reasons why the results of section 2.4
emerge are pondered and in section 2.6 some works that approach the MG analyt-
ically are discussed. Sections 2.7-2.9 will focus on modifications and applications
of the MG such that section 2.7 introduces some financial MG models, section 2.8
reviews evolutionary extensions to the MG, and section 2.9 discusses other mod-
ifications of the game, including multichoice MG models and games where the
information available to the agents is different from the information in the basic
MG. In section 2.10 a look at recent experiments that have been conducted with
human players is taken. Finally, section 2.11 concludes the chapter with a critical
view on the applicability of MGs to describe real-world social phenomena.

2.1 Description of the basic minority game

In the MG, N players, henceforth called agents, compete with each other and act
based on induction and adaptation. At each time step of the game, each agent joins
one of two groups labeled -1 (say group A) or 1 (group B). Each agent that is in the
minority group at that time step is awarded one point, while each agent belonging
to the majority group loses one point. At a given step an agent chooses the group
to join based on the prediction of a strategy, which is defined to be the next action
(to be in -1 or 1) given a specific binary signal, s, of length M comprising the
minority groups of the previous M time steps. The parameter M denotes the length
of the the memory, and a total of P = 2M hit strings, the so-called histories, can
be constructed using these M bits. At the beginning of the game each agent i
is randomly assigned S of the possible 2% strategies, which shall be denoted by
lower case s. The response of the sth strategy of an agent 7 to a history wup; is
af’f € {+1,—1}. Agents keep track of the performance of their strategies such

that at time ¢, the accumulated score of the sth strategy of agent 7 is
Ui () = Ui (t = 1) — a4 (4(1)) 1)

points, where A(t) is the difference between number of agents who chose 1 and
-1, and x(z) is an odd, increasing function of z. Typically, x(z) = sgn(z) or
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x(z) = z. The agents are inductive, such that at each moment of the game an
agent uses the strategy which has been the most rewarding, i. €. , the strategy with
the highest score. Ties among the strategies of an agent are decided by a coin
toss. The strategy s;(¢) that agent ¢ actually plays at time step ¢ is called the active
strategy of that agent. Due to the fact that the agents have more than one strategy,
the game is adaptive in that the agents can choose to play different strategies at
different moments of the game in response to changes in their environment. The
course of the game is illustrated in Fig. 2.1.

2.2 Typical observables and features of concern

The behaviour of the MG can be viewed both at the system-level and at the level
of an individual agent. A basic observable quantity at the system-level is the atten-
dance, the difference between the numbers of agents who choose side 1 and those
who choose side -1 at time ¢, that is,

A(t) = Z ai(t), (2.2)

where a;(t) = +1 indicates the actual choice of an agent s, i. e. , the prediction of
his/her active strategy at time ¢. A simulated example of A(t) in the basic MG is
shown in Fig. 2.2. Alternatively, one can measure the number of agents who attend
one of the two sides, say side 1, at time step ¢, A;(¢). Note that this can sometimes
lead to confusion, as both definitions have been used in MG literature. For instance,
the most frequently studied characteristic in MG research, a2/N of Eq. (2.4), takes
different values depending on the definition used (cf. , e. g., Fig. 2.3 and Fig. 4
in [29]). One can also measure the size of the minority group at time step ¢ and
compare it to the maximal size of the minority group (see, e. g., Eg. (1) in P4).

The most widely studied system-level property of minority games is coordi-
nation among the agents. One way to quantify the amount of coordination is to
measure fluctuations of the attendance, Eq. (2.2),

0% = (A?), 2.3)

where the average is taken over time. The smaller o2 is, the larger the typical
minority group is, and thus the choices of the agents are better coordinated. In
literature, it is common to report the values of the per capita fluctuations

_ 4
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Figure 2.1: Schematic diagram to illustrate the MG. The game consists of N =
3 agents: left, middle and right. Each agent has two strategies that indicate an
action, +1 or -1, for each possible history u; comprising the minority groups of
the previous M = 2 time steps. The number of such histories is P = 2M =
4, and accordingly the length of the strategies of the agents is P = 4. At the
outset of the game, the strategies of each agent are drawn at random such that
each entry in a strategy is —1 or 1 with probability 1/2. Initially, the scores of
the strategies—declared in the ‘legs’ of the agents, the rounded boxes below the
strategies of the agents— are set to zero. In subsequent time steps, the agents
always use the strategy with the highest score, and in case of a tie, they flip a
coin. In order to start the game, one needs to draw the first history at random.
Random choices are pointed out by shading in the figure. For instance, at¢t = 0
the history and the choices of the agents between their two strategies are all drawn
at random. After each agent has selected his/her strategy, the minority group can
be identified, and thereby the new values for the strategy scores as well as the
new history can be determined. The ‘head’ of the winning agent at time ¢, and
his/her active strategy are circled with heavy lines in the figure. One point is added
to (subtracted from) the scores of those strategies that had predicted the minority
group correctly (incorrectly). The previous minority group in each history, the
score of active strategies, and the actions determined by the active strategies are
marked with bold typeface in the figure. The wealth of an agent is declared in the
‘head’ of the agent. The wealth of each agent is increased (decreased) by one unit,
if the agent succeeds in choosing the minority (majority) group.
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A

Figure 2.2: A simulated attendance time series, A(t), from the basic MG with
N =101, M =5, and S = 3. The attendance values fluctuate around zero.

which shows specific dependence on the control parameter z = P/N, a property
that will become clear below. In order to state whether a system of agents shows
coordinated behaviour or not, one needs a reference system for comparison. A
natural choice for the reference system is the random choice game (RCG), where
each agent chooses his/her action, -1 or 1, independently, randomly and with equal
probability [29, 39]. The variance of A = Y"1¥ | a;, where P(a; = 1) = P(a; =
—1) = 1/2,is 02 = N. Thus, 02/N = 1 is the level of per capita fluctuations
in the RCG. Then if 62/N < 1 in a game, the game is more coordinated than the
RCG, whereas in the opposite case, 02/N > 1, the game is less coordinated than
the RCG.

Another important question at the system-level concerns the predictability of
the next minority choice, that is, whether an agent can extract such information
from the record of minority groups that helps him predict the next winning side.
During the course of the game, it could happen that after a particular history w s
which, of course, can occur several times, the winning side would be 1 more of-
ten than -1. Thus, an agent who used a strategy with response 1 to w s, would
win in the long run. In order to find out whether such predictable patterns exist,
one can study statistical properties of the time series of the minority groups, G.
Even though this time series might contain clear patterns, an agent cannot neces-
sarily utilize this information if they appear in periods k that are longer than the

IStrictly speaking this is true only if the agent who observed such patterns would not be involved
in the game, but who could profit from playing the game. An action taken by such an external agent
would not contribute to the attendance A(¢). This assumption is crucial, because if |A(t)| = 1, itis
enough for one agent to switch his/her action to the opposite to change the minority group sign.
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length of the memory of the agent, M. Savit et al. [29] and Manuca et al. [39]
presented a straightforward method to study the existence of such patterns. They
suggested that one can estimate the conditional probabilities P(1|uy) of having a
minority group 1 immediately following each of the binary strings uj, of length &
in G. If the agents efficiently used the information accessible to them, they should
be able to eliminate predictable patterns for & < M. If there are no predictable
patterns, the next minority choice can not be guessed, and the conditional prob-
abilities P(1|ug) should be about 1/2 for each uyg. If, instead, the conditional
probabilities are rugged, i. e. , they are not equal for each ug, some histories are
more likely followed by a particular winning (losing) side than others. Since the
conditional probabilities are estimated for each wuy, there are 2¥ numbers P(1|uy)
to be estimated. For moderate values of &, this is easily done by inspecting a graph
where the conditional probabilities are plotted against their corresponding history
string labels, (labeled, for instance, by decimal presentation of the binary strings,
see, . ¢., Fig. 3in [29]). However, if k is large, such graphs may be inconvenient
to use. Then one may wish to compress the information presented by the condi-
tional probabilities into one number. One possibility is to use the predictability
introduced by Challet and Marsili [40] 2:

6 =B [(4)°] =3 P(unr) (AJun)?, (25)

where E[-] denotes the expectation over the history strings s which occur with
probability P(ups), and the sum runs over all strings. Values 6 > 0 indicate that
an agent may succeed in predicting the next minority group, and win in the long
run by continually playing — (sgnA|uas) in response to the history u .

At the level of individual agents, the focus of MG studies often lies on the
wealth of the agents. A straightforward way to define the agent wealth is to follow
the original idea by Challet and Zhang [28], such that the wealth of an agent at
time ¢ is defined to be the number of times the agent has won minus the number
of times the agent has lost. In some financial extensions of the MG the agent
wealth may be defined differently, e. g., by allocating the initial capital of an agent
between risky and riskless assets with prices evolving during the game. There are
numerous possibilities for defining the capital evolution process, some of which
will be discussed in section 2.7, but no further account will be presented in this
thesis. The reader may wish to consult Refs. [44, 45, 46, 47, 48, 49] and references
therein for more details.

It may also be of interest how similarly the agents in the game act. Since
the strategies determine the actions of each agent, the question basically concerns

2For other choices that convey the same idea as Eq. (2.5) see, e. g. , Refs. [39, 41], or for more
complicated measures Refs. [42, 43].
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the similarity between the strategies of the agents. In order to quantify similarity
between strategies which are represented as binary strings, it is customary to use the
Hamming distance (HD). The normalized HD between a pair of strategies (s;, s;)
of the same length P is the proportion of bits that are different at the corresponding
positions in the two strategies:

P
HD (s, ) = 575 3 [si(k) — 5;(R)]. (26)
k=1

The larger the HD is, the further the two strategies are from each other. The strat-
egy s whose every bit is different from the bits of a given strategy s is said to be
anticorrelated to s, HD(s,s) = 1, and if HD(s;,s;) = 1/2, the strategies s; and
s; are said to be uncorrelated with each other. In practice, the HD is often used to
measure differences between the strategies of a single agent, in which case we will
call it the intra-agent HD, or between the active strategies of two different agents
at a given time step, in which case we will call it the inter-agent HD.

Sometimes it is useful to select strategies for the agents from a reduced set of
strategies (RSS) [41]. A RSS consists of uncorrelated and anticorrelated strategies,
that is, for each strategy pair (s;,s;) in a particular RSS the HD is 1/2 or 1. Such
strategies are kept markedly different from each other. The use of a RSS makes it
possible to analyze some characteristics of the MG with ease. For instance, if the
strategies of agents are drawn from a RSS it is easy to understand why fluctuations
of Eq. (2.3) are of the certain order for different values of the control parameter z,
as will be discussed in section 2.5. Furthermore, the number of strategies in a RSS
is only 2P, as opposed to the 2F strategies in the full strategy space.

There are also other quantities that are useful for characterizing the behaviour
of an MG [40, 50], but in this thesis we will mainly confine ourselves to the quan-
tities described above. For instance, Challet and Marsili [40] have studied the
autocorrelation of the minority group choices conditional to the histories. This
measure gives valuable information about the persistence of the actions of agents,
indicating whether the agents tend to repeat their last actions 2. In addition, they
have studied a quantity ¢, which tells how big fraction of the strategies of an agent
population is not used.

2.3 Nash equilibria

Generally, in strategic games like the MG, the agents have a number of strategies
from which they can choose one at any time step. If an agent always uses a uniquely

3c(t,t + 7) = E[(sgnA(t)sgnA(t + 7)|uns)], where E[-] denotes the expectation over the his-
tories uas and (-|unr) denotes the expectation over time conditional to uas (t) = unm (¢ + 7) = k.
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determinded strategy in response to a particular state of his/her environment, the
agent is said to play pure strategies. If, instead, for each state of the game, an
agent may probabilistically choose among several strategies, the agent is said to
play mixed strategies. In the context of games, a pertinent concept is that of the
Nash equilibrium (NE). The Nash equilibria can be said to be those states which
are stable under the payoff incentives, given the choices available to the agents (for
the formal definition see, e. g. , Ref. [22], p. 8, or Ref. [51], p. 481). This means
that the predicted action of an agent must be the best response of the agent to the
predicted actions of the other agents. If such a state is obtained, no agent will have
an incentive to deviate from that state.

A good description of NE in minority games is given by Marsili et al. in
Ref. [52], or by Marsili and Challet in Ref. [47]. In order to illustrate NE in an
MG, let us restrict our attention to a stage-game* and one history, P = 1. On one
hand, if the agents play mixed strategies, the MG has a unique NE in which each
agent chooses his/her action, 1 or -1, with equal probability 1/2. The agents in the
random choice game described in section 2.2 play such mixed strategy NE, and in
that case o2 = N. On the other hand, if the agents play pure strategies the MG
has multiple NE. These are the states for which |A| = 1, and the number of these
states is the number of ways (IV — 1)/2 agents out of NV can choose one side, and
the rest (IV + 1)/2 agents the other side. If the MG is in a pure strategy NE, the
fluctuations are minimal, o2 = 1.

2.4 Results from the basic minority game

The most prominent feature of the basic MG is its behavioural dependence on the
control parameter z = P/N. There are three regimes, low, intermediate and high
values of z, where the game clearly shows different behaviour. In this section we
describe results from the basic MG, trying to illuminate how the characteristics like
fluctuations, predictability, and agent wealth introduced in section 2.2 depend on
z.

2.4.1 Fluctuations

Savit et al. [29] were the first who pointed out that for a fixed number of strate-
gies per agent S, the per capita fluctuations, o2 /N, show universal behaviour as
a function of the control parameter z. They simulated the MG for a fixed number
of strategies per agent®, S, by varying the values of M and IV, and observed that

4A stage-game is a game that is played only once, not iteratively.
5They reported the case S = 2.
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a2/N as a function of z always followed the same curve. It turned out that for
small values of z, the level of coordination among the agents is low, the fluctua-
tions are large, o2 ~ N2, which is clearly higher than the RCG (random choice
game, see section 2.2) limit ¢2 = N. On the other hand, for large z the fluctuations
were found to be of the same order as the fluctuations in the RCG, 62 ~ N. Fur-
thermore, it was noted that transition between these two behaviours of o2 occurs
in the intermediate-z region wherein the best emergent coordination is achieved,
by 02/N having the minimum value at z = z.. Values of 02 /N at around z, are
notably lower than the RCG limit, 02 /N = 1, and approach this limit as z grows
large. The behaviour of 2 /N as a function of z is illustrated in Fig. 2.3 for several
values of S.

Numerical results show that if the agents in a basic MG use strategies that
are in a RSS (reduced set of strategies, see section 2.2), the behaviour of o2/N
does not qualitatively change as compared to the situation where the agents use
strategies from the full strategy space [41, 50]. The qualitative behaviour of o2
is also otherwise robust. For instance, the minimum of o2/N at some z, which
need not to be z = z, where the minimum occurs in the basic MG for a fixed S,
persists under various circumstances: the real history that comprises the previous
M winning groups can be replaced with a random signal [53], the agents can use
different types of payoff functions x(z) of Eq. (2.1) when they update the scores
of their strategies [54], the information (history) to the agents need not be the same
for all the agents [55, 56], the interactions among the agents may change [57], or
the strategies of the agents may evolve over time [30, 31].

242 Predictability

Regarding the predictability of the next minority group, Savit et al. [29] and Manuca
et al. [39] found that in the low-z region the conditional probabilities P(1|uas) are
about 1/2, independent of u s, and fluctuate inversely proportionally to the sim-
ulation time.® Thus, in the low-z region, the agents can not extract predictive
information from the time series of the minority group, G. However, G is not a
random sequence with no regularities. There is information in G that can be de-
tected by studying histories of length larger than M, but this information cannot be
detected by the agents with memory length M. By contrast, in the high-z region,
the probabilities P(1|uas) appear to be rugged, indicating that some histories are
more likely followed by a particular winning (losing) side than others. Because of
this asymmetry there is significant information available to the agents, and some
agents are more likely to win than others. The transition from even probabilities

b1t is notable that for the RCG the conditional probabilities P(1|uar) would be also about 1/2,
but fluctuations would be larger, inversely proportional to the square root of the simulation time.



24. RESULTSFROM THE BASIC MINORITY GAME 17

101l L L

10"

Figure 2.3: Per capita fluctuations 2 /N versus the control parameter z = P/N
(P =2M) for S = 2 (circles), S = 3 (stars), and S = 4 (triangles) obtained from
numerical simulations of the MG. We have used M = 5, and let the simulation
run for a warm-up period of ¢ = 200P = 6400 time steps, after which the o2/N
value was calculated using the subsequent ¢ = 300P = 9600 time steps. The
symbols in the figure represent average values of a2 /N over 200 sample runs. The
solid symbols correspond to the basic MG simulation with real histories u , i. €. ,
histories that comprise the previous M minority groups, whereas the open symbols
correspond to simulations with random histories, i. e, , histories that are drawn from
a uniform distribution of numbers {1,..., P}. The straight line depicts the rate of
decay of 2 /N in the low-z region, and it is o 1/z. The dashed line, 02 /N = 1,
depicts the level of fluctuations in the RCG. In general, the fluctuations are high
in the low-z region, smallest in the intermediate-z region, and approach the RCG
limit in the high-z region. The behaviour of o2/N as a function of z does not
seem to be sensitive to replacing real histories with random ones. For each .S, there
isa z = z. at which the curve obtains a minimum value. When S is increased,
2. increases, as does the minimum value of o2 /N. For large S the shape of the
minimum around z, smooths out such that after the initial decay o< 1/z, the curves
directly approach the RCG limit (see Fig. (2.6) for S = 5 and S = 21). Due to
the universal behaviour of 2 /N versus z, the results do not depend on the value
of M.
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to rugged ones occurs in the neighbourhood of z ~ z, i. e. ,roughly in the same
region where the coordination among the agents is the highest. This point was
further clarified by Challet and Marsili in Ref. [40]. They demonstrated that the
predictability, 8 of Eq. (2.5), starts to deviate from zero after z exceeds a critical
value, z.. This behaviour of 8 as a function of the control parameter z is illustrated
in Fig. 2.4 for several values of S.

24.3 Agent wealth

The evolution of the wealth of agents in the basic MG is quite monotonic. Challet
and Zhang [28] observed that the gap between the rich and the poor agents appears
to increase linearly with time. Manuca et al. [39] analyzed the wealth of agents
separately in the low-z region and in the high-z region. They found that in the
low-z region the agents tend to be the wealthier the smaller their intra-agent HD
(Hamming distance, see section 2.2) is, without regard to the bits of those strate-
gies, or to the bits of the strategies of the other agents. By contrast, in the high-z
region the intra-agent HD did not seem to correlate with the agent wealth. Instead,
it turned out that the agents whose inter-agent HD is large, that is, their strategies
are maximally distant from all other strategies, gain wealth fastest. Thus, in the
high-z region the success of the strategy of an agent is highly dependent on the
other strategies in the game.

24.4 Nash equilibria

Generally, the dynamics of the basic MG does not lead the game into a Nash equi-
librium. One could think that in the high-z region the agents might play the mixed
strategy NE, in which each agents chooses 1 or -1 with probability 1/2, since the
fluctuations, Eq. (2.3), are close to the RCG limit. However, as Manuca et al. ar-
gue (Ref. [39], p. 605): “Although the agents do choose between their strategies
randomly, they do not choose the minority groups randomly. It would be possible,
therefore, for some agents to choose some other deterministic ordering of choices
for his strategies and increase his wealth. That this is possible, in principle, follows
from the fact that G is not an 1D sequence.” The basic MG does not either converge
to any pure strategy NEa, which would be characterized by minimal fluctuations,
o? = 1. The situation may dramatically change if the basic MG is slightly modi-
fied, for instance, by introducing agents that can take into account their impact on
the attendance, Eq. (2.2), when they update the scores of their strategies [58]. For
the time being we will postpone the discussion of such modifications until section
2.5.4.
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Figure 2.4: The predictability 6 versus the control parameter z = P/N (P = 2M)
for S = 2 (circles), S = 3 (stars), and S = 4 (triangles) obtained from numerical
simulations of the MG. We have used M = 5, and let the simulation run for a
warm-up period of ¢ = 200P = 6400 time steps, after which the value of 8 was
calculated based on the subsequent ¢ = 300P = 9600 time steps. The symbols
in the figure represent the average values of 8 over 200 sample runs. The solid
symbols correspond to simulations with real histories u s, i. €., histories that com-
prise the previous M minority groups, whereas the open symbols correspond to
simulations with random histories, i. e. , histories that are drawn from a uniform
distribution of numbers {1,..., P}. The dashed line indicates the zero level. Be-
haviour of @ as a function of z is quantitatively sensitive to replacement of real
histories with random signals. However, in both cases, # = 0 in the low-z region,
indicating that the agents in the game can not predict the next minority group. Af-
ter a critical value, z., which increases with S, @ starts to deviate from zero, and
appears to grow monotonically as a function of z. Thus, in the high-z region the
outcome of the game is not symmetric, but some histories are more likely followed
by a particular winning side than others. The behaviour of 6 as a function of z for
a fixed S is universal, as it does not depend on the value of M (see [40]).
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2.5 Understanding the results

The above results indicate that both the system-level and the individual agent level
behaviour depends on the control parameter z. The generic pattern is as follows:
in the low-z region a characteristic quantity of the game behaves in one way and in
the high-z region the same quantity behaves in another way, the transition between
the two behaviours taking place in the intermediate-z region. In this section we
will review some explanations that aim at providing understanding to these results.

2.5.1 Fluctuations

Savit et al. proposed that the large fluctuations in the low-z region, o2 ~ N2, are
due to the so-called period-2 dynamics [29]. A detailed description of this dynam-
ics is provided by Manuca et al. in Ref. [39]. Basically, the period-2 dynamics is
related to how the scores of the agents’ strategies evolve over time, and thus which
actions the agents take at consecutive time steps. In brief, the agents’ responses
to an odd occurrence of a given history look random and cause, within statistical
fluctuations, about half of the agents to choose one side.” In contrast, the next even
occurrences of the same history is followed by a large number of agents choos-
ing just the opposite side to that which happened to be the winning side at the
last odd occurrence of the same history. Accordingly, the fluctuations grow large,
0% ~ NZ2. The agents’ strategies tend to be similar due to the fact that for low
z = P/N, a large number of agents N share only a few, 27, strategies. Numerical
results reported by Challet and Marsili in Ref. [40] indicate that in the low-z region
the autocorrelation function of the minority groups conditional to the histories is
periodic with period 2P. Thereby, the agents tend to switch their responses to a
particular history with period P, a result that is in harmony with the explanation of
the period-2 dynamics.

The crowd-anticrowd theory (CAT) of Johnson et al. provides another appeal-
ing explanation for the behaviour of o2 [59, 60, 61]. The basic idea of the CAT is
to investigate how many agents are using the same, or similar, strategies at a time.
The subset of agents n; using a particular strategy, say s;, will all act in the same
way and thus constitute a crowd. However, at the same time there may be a num-
ber of agents n} who are using the opposite, or at least very dissimilar, strategies
to the subset n;. This second group constitutes the anticrowd. Then, by utilizing
random-walk analysis with step size N; = n; — n} one can approximate the order
of o2 for different z. The actual analysis of CAT utilizes the RSS. This is conve-

’Odd (even) occurrence of a strategy refers to the numbers of times the strategy has appeared
during the game. For example, the odd (even) occurrence of strategy was means that the strategy
appears the 1st (2nd), 3rd (4th), 5th (6th), etc. time.
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nient for the reason that when the strategies in the RSS are ranked as best, second
best, third best, etc. , according to their score, the rth strategy is anticorrelated with
the (2P — r 4 1)th strategy. This makes it easier to find out the probabilities with
which the rth strategy and the strategy anticorrelated to it are played in the game,
and thereby to estimate how many agents play similarly. In the low-z region where
M is small and N is large, for most values of .S each agent carries a considerable
fraction of all possible strategies. In this region there are practically no anticrowds,
and the crowds dominate. Therefore, N; is large, yielding 02 ~ N2 [59].

In the high-z region the fluctuations are close to the RCG limit, 2 ~ N.
Savit et al. [29] and Manuca et al. [39] argued that such fluctuations emerge as a
consequence of the agents’ decreasing capability to coordinate their choices. Dif-
ficulties to coordinate are due to the large number of possible histories, P, and
the large number of possible strategies in the strategy space, 2F. In terms of the
CAT, when the strategy space is very large the agents will have a low chance of
holding the same strategy. Moreover, the probability that an agent’s best strategy
is anticorrelated to another agent’s best strategy is small. Accordingly, the crowds
and anticrowds effectively disappear and the agents act independently, yielding
o2~ N.

In the intermediate-z region o2 /N is the smallest. The CAT suggests that the
crowds and the anticrowds are of the same order in this region, and thus their effects
tend to cancel out.

252 Predictability

The period-2 dynamics of Savit et al. also explains why there is no predictable in-
formation available to the agents in the low-z region [29, 39]. As mentioned in sec-
tion 2.4, the conditional probabilities P(1|uy) lie around 1/2, and the predictability
0 = 0 in this region. These results emerge because the agents tend to participate
opposite groups in the even and odd occurrences of a particular history. Thus, the
level of participation in 1 and -1 is quite regular, and thereby P(1|ug) = 1/2, with
variance that is even smaller than the variance of these probabilities for 11D random
series of binary numbers.

Challet et al. explained the behaviour of 8 by describing the MG as a spin-glass
model [40, 58]. Their method of inference is sketched in sections 2.5.4 and 2.6
below. In regard to the predictability, an important result is that the dynamics of the
basic MG tends to minimize 8, which, however, is a priori biased by the term Q4»
that appears in Eq. (2.11) (see section 2.5.4). In the low-z region there are enough
agents to overcome this bias term and force the predictability to zero, whereas in
the high-z region there are not enough agents to do this. In the intermediate-z
region the compensating effect of the agents on the bias term is of the order of the
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bias term.

253 Agent wealth

Manuca et al. provided a good explanation for the observed dependence of agent
wealth on the intra-agent HD and on the inter-agent HD [39]. In the low-z re-
gion there is no predictive information available to the agents, and consequently,
no emergent coordination among the agents’ choices. Therefore, any attempt to
use the apparent information encoded in the histories leads to ill-adaptive herding
behaviour. Agents do best when they ignore the information in the histories and do
not adapt to the changing environment. This effectively happens when the strate-
gies of an agent are as similar as possible, since in that case, the choices made by
the agent practically make no difference. On the other hand, in the high-z region
the agents can make use of the available information. In this case, the agents pos-
sessing strategies that allow them to behave maximally differently from the other
agents will win more frequently. This is the reason of the positive correlation be-
tween an agent’s wealth and the intra-agent HD.

Recent results reported by Yip et al. support the above explanations [62]. They
found that the wealth of individual agents, and also the system performance, can
be enhanced in the low-z region, if the agents are allowed to participate the game
in a random fashion. The reason for this is that randomly participating agents can
avoid ill-adaptive herding.

254 Nash equilibria

In order to understand why the basic MG does not converge to NEa one needs to
study the dynamics of the game. In particular, the following questions should be
addressed: what is the long term outcome of the game and how does it depend
on the agents’ ability (or disability) to take into account their own impact on the
attendance, Eq. (2.2). Several authors have been working on these questions, for
instance, Marsili et al. [47, 63], Challet et al. [58, 64], and De Martino and Marsili
[65]. Their reasoning is build on similarity between the MG model and the spin
glass model [66], and their works are based on game-theoretic [47, 63, 64] and
statistical mechanics [58, 65] approaches. Here, we will not review these works
in detail, but will limit the discussion to three central concepts underlying each of
these works: 1) sophisticated agents, 2) the probabilistic strategy selection rule,
and 3) continuous time and state variables.

1. Sophisticated agents. Agents in the basic MG are naive in that they are not
able to take into account the impact of their own action on the attendance
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A(t) when they update scores of their strategies. In other words, an agent
1 does not understand that if he/she had played the action a;."f,’(t) of his/her
strategy s’ instead of the action a;(t) of his/her active strategy s;(t) as a
response to the history wuys, the attendance A(t) of Eq. (2.2) would have
changed in case a;{g’{ (t) # a;(t). Consequently, the agents underestimate
the success of their active strategies as compared to the success of their other
strategies. Thus, it would be useful to modify the strategy update rule of
Eg. (2.1) such that the inactive stragies of an agent are penalized in order to
take into account the fact that the winning group, or the amount of points
gained by each agent at any time step, could have changed if the agent had
played one of his/her inactive strategies instead of his/her active strategy.
For that purpose, one can introduce a parameter n € R, which regulates how
strongly all but the active strategy of an agent are penalized, such that the
scores of agent ¢’s strategies are updated according to the map

]- u u u
Uss(t+1) = Uia(t) = aiaOx (4@ - (a2 - atv ™). @7)

If n = 0, one recovers the basic MG, and if n = 1 each agent updates the
score of his/her strategy s as if he/she had actually played s and as if all
the other agents had kept their strategies fixed. If n > 0, the agents are
said to be sophisticated, and due to that the behaviour of the MG changes
dramatically. It is also typical, for mathematical convenience, to choose
x(z) = z instead of x(z) = sgn(z). This is a minor change and it does not
alter the qualitative behaviour of the MG, as is proven in several studies (see,
e. g., Refs. [50, 54, 58]).

2. The probabilistic strategy selection rule. In order to analyze the long time
dynamics of the MG, it is useful to get rid of the discrete characteristics of
the game, such as the ‘always play the best strategy” rule. Instead, one can
introduce a probabilistic strategy selection rule that favours well performing
strategies. One possibility is to impose that agent ¢ adopts his/her strategy s
with probability

exp[T'U; 4]

_PZ(S) exp[zs’ FUi,s’] )

where I' > 0 is the learning rate (‘the inverse temperature’) that regulates
how strongly the good strategies are favoured over the bad ones. For exam-
ple, when T' = 0 the strategies are played randomly, and when ' — oo one
recovers the original ‘always play the best strategy’ rule. Intermediate values
of T" interpolate between these two extremes.

(2.8)
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This rule was first time applied to the MG by Cavagna, whose work [67]
will be discussed in section 2.6 below. In papers that map the MG to spin
glasses, it is common that the treatment is limited to S = 2 strategies, and
these strategies are marked with signs S = +1. Note that this is an indexing
convention, and it does not refer to agent’s actions which are denoted by

azg’f = azl‘ﬁl.
3. Continuous state and time variables. For mathematical convenience, it is
also customary to introduce the continuous time variable ¢* = t/P, when
P — oo, such that one can consider a simple differential equation instead
of the discrete time equation for updating state variables of the MG. At time
t the state of the basic MG is determined if one knows each agent’s active
strategy s;(t), ¢ = 1,..., N, and the history upas(¢). Similarly, when one
wants to know at what state the game is in the long time stationary limit,
one needs to know what strategy each agent tends to play. For that, one can
reduce the actually played strategies, s;(t) = £1 fori = 1,..., N, to their
time averages
m; =(s;), t=1,...,N, (2.9)

and consider the dynamics of these continuous ‘strategy index’ variables.

Moreover, it is convenient to introduce the auxiliary variables [40]

UM UM upM _ UM
L e S (2.10)
¢ 2 ¢ 2
With these notations the attendance of Eq. (2.2) reads
N
Alt) = v 13 e W), (2.11)

i=1

where QUM = Zf\;l wi™ . In the end, it turns out that the stationary states of the

(2

MG correspond to the minima of the function

1,N N
Hy = S B mm; 423 BIQ" & )m;
i#j i=1
! N
+n > EBIE™)?)(1 — mi) + Bl(Q“)?, (2.12)
=1

where E[-] means expectation over the different histories. For details, the reader
may wish to check, e. g., Refs. [58, 65].
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Thus, the basic MG case, n = 0, corresponds to minimizing Hy = E[(A)z],
which is just the predictability 8 of Eq. (2.5). By contrast, if one were to obtain NEa
with the MG dynamics, the minimized quantity should be o2 of Eq. (2.3), which
in turn corresponds to setting 7 = 1 and minimizing H; = E[(A?)]. In other
words, the basic MG does not converge to NEa because the dynamics minimizes
the predictability instead of o2. However, the latter is minimized if the agents can
take into account their own impact on the attendance as shown by the form of H;.

2.6 Analytic approaches

Analytic treatment of the MG has proceeded progressively. The crowd-anticrowd
theory by Johnson et al. [68] provided an explanation for behaviour of o2 as a
function of z. The geometric viewpoint of Challet et al. that utilizes the RSS gave
also insight into the behaviour of o2 [41, 50], and D’hulst and Rodgers [69] studied
the success rates of agents and their strategies by applying probabilistic arguments
to the inter-agent Hamming distances. Manuca et al. [39], in turn, used a mean-
field description to depict the game behaviour in the low-z region. Nowadays, the
analytic understanding of the basic MG, with slight modifications like the ones
mentioned in section 2.5.4, is rather solid. In this section we shall briefly review
some important works that have promoted this understanding.

One of the major obstacles to an analytic study of the basic MG is the pres-
ence of an explicit time feedback via the memory M. One way to overcome this
problem was provided by Cavagna in 1999 [53]. He suggested that instead of us-
ing the signal that emerges endogenously from the agents’ responses to the last M
outcomes of the game, one could use an exogenous signal, drawn from a uniform
distribution, that represents a piece of common information to the agents. Based on
numerical studies, Cavagna reasoned that (Ref. [53],p. R3785) “in order to obtain
all the crucial features of the minority game, the presence of an individual memory
of the agents is irrelevant”. By memory he meant that the parameter M was irrel-
evant, and only the dimensionality of the strategy space P = 2™ was meaningful.
As shown in Fig. (2.3), at least the behaviour of o2 /N as a function of z is similar
both by using real histories and a random signal. Later, however, it turned out that
this statement was specious. In a reply to Cavagna’s comment [70] on their ear-
lier paper [29], Savit pointed out [71] that even though the MG showed the same
behaviour both by using endogenous and exogenous information, the memory is
not irrelevant, since in both cases the agents have memory which is reflected in the
relative rankings of their strategies that give rise to the observed behaviour of fluc-
tuations o2, Furthermore, using De Bruijn graphs, Challet and Marsili proved that
the memory plays a significant role in the minority game [72]. This is especially
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true if the basic minority game is modified, e. g. , in such a way that the agents
can take into account their own impact [52, 64], n > 0 in Eg. (2.12). Also, the be-
haviour of 6 in Fig. (2.4) seems to depend on whether the information provided for
the agents is the real history or a randomly generated sequence of events. Despite
of some deficiencies, it is helpful to use a randomly generated sequence of events
instead of the real history when studying minority games analytically.

In 1999 Cavagna et al. introduced the so-called thermal minority game (TMG)
model that is a continuous version of the basic MG [67]. The TMG differs from the
basic MG in the following three aspects: i) The real history u s is replaced with a
randomly drawn signal, 77(t), from a continuous uniform distribution. The signal
lies in RP and its norm is set to be one. ii) The deterministic ‘always use the best
strategy’ rule has been replaced with a probabilistic strategy selection rule. The
probabilities are determined according to Eq. (2.8). iii) The agents’ P-dimensional
binary string strategies are replaced with continuous real-valued strategies R of
length +/P in RP. An agent’s response to a given history is then defined to be
the scalar product of the strategy and the information, b(R) = R - j(t). The sum
of responses, A = Zf\;l b;(t) over the agents 7 is analogous to the attendance,
Eq. (2.2).

The TMG produces qualitatively similar behaviour of o2 /N versus z as does
the basic MG. Interestingly, however, the level of o2 /N falls below the levels ob-
tained by the basic MG or by the RCG within a certain interval of the parameter T,
i. e., the level of coordination is higher. This property was further studied by Jef-
feries et al. [73] and Hart et al. [74]. Jefferies et al. analyzed how the fluctuations,
o2, depend on the fraction of players who play the TMG, while the others play the
basic MG. On one hand, they found that if the fraction of TMG agents is below a
certain threshold value, o is larger than the RCG limit, 02 = N, regardless of the
inverse temperature I". On the other hand, if the fraction of TMG agents increases,
or if the probability by which the TMG agents play other than their best strategy
increases, o2 decreases. Hart et al. [74] reasoned that the improved coordination is
due to the probabilistic strategy selection rule, which results in a cancellation be-
tween the actions of a crowd, with agents acting collectively and making the same
decision, and those of an anticrowd, with agents acting collectively by making the
opposite decision to that of the crowd. So, the uncertainty in strategy selection par-
tially smooths out the harmful crowding effect (see section 2.5). Moreover, Garra-
han et al. [75] have provided a rather theoretical study of continuous time dynamics
of the TMG. Their description is based on the formalism introduced by Challet and
Marsili in Ref. [40] and later adopted in many works, see Refs. [47, 52, 58, 64, 65].

Another analytic approach to solve the MG was presented by Challet et al. in
Ref. [58] where they showed that the stationary state of the MG is described by
the ground state of a spin model which can be solved analytically. They analyzed
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the MG by means of the concepts described in section 2.5.4, and they utilized
the following three assumptions: i) a random sequence of events is drawn from
a uniform distribution instead of using the real histories u s, ii) the agents adopt
strategies according to the probabilities of Eq. (2.8), and iii) the time is rescaled to
t* =t/ P, so that when P is large, the model is continuous in time. For analyzing
the long time dynamics of the game, they also used the continuous variables of
Eqg. (2.9) that tell what strategies the agents play on average in the stationary state.
One of their important results, which is the basis of their analytic solution, was
to show that the dynamics of the MG minimizes the function H,, of Eq. (2.12).
Their actual analytic solution deals with solving the minima of H,, by using replica
method [66]. For more details, the reader may wish to consult Refs. [47, 52, 58,
64, 65, 66]. In regard to the success of replica method, the results of Challet et
al. indicate that the minima of H,, obtained with the replica method are in good
agreement with the minima obtained by numerical minimization of H,,. This work
is central to the MG research, providing answers on how the agents tend to play in
the long run, why the basic MG does not converge to NEa, and why the subsequent
actions of the agents are negatively correlated in the low-z region, or positively
correlated in the high-z region, and only short-time correlated in the intermediate-
z region. Their work reveals that in the basic MG with n = 0 the agents minimize
predictability of Eq. (2.5), and for n > 0 the agents start to growing order minimize
the fluctuations o2

Other analytic solutions to the MG include those of the Heimel and Coolen
[76] and Jefferies et al. [77]. Heimel and Coolen applied generating functional
analysis in their work and they assumed that the histories are randomly generated.
Their results consist of calculating the location of the phase transition point z., and
solving the game for z > z. exactly for large N. Furthermore, they demonstrate
that for z < z, the stationary state of the system is not unique, and that depend-
ing on the initial scores of the strategies the fluctuations o2 can either grow large
or disappear totally as z — 0. Jefferies et al. focused on the microscopic dy-
namical properties, as opposed to global statistics, of the game. They studied, for
instance, the dynamics of the strategy scores and the dynamics of the real histories.
They showed that the MG can be viewed as a stochastically disturbed deterministic
system, and that this deterministic system can be described concisely by coupled
mapping equations.

Currently known analytic methods to solve the MG may fail if rules of the
game are modified. As an example, recently Challet et al. considered the basic MG
with a simple change: scores of the strategies have a finite memory, as opposed to
the infinite memory that accumulates points from the beginning of the game in the
basic MG model [78]. Introducing the finite memory for the strategies is reasonable
since in reality individuals tend to forget, or at least the memory of happenings may
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fade slowly, as time goes on. Moreover, recent information about previous minority
groups might tell more about the current course of the game to the MG agents than
information on minority groups far in the past. If this is the case, it is reasonable
to put more weight on the contribution of recent information when deciding on
the next predicted minority group. Such weighting can be implemented, e. g., by
multiplying the strategy scores of an agent up to the previous time step ¢ — 1, the
U(t — 1) in Eq. (2.1), by a “discount’ factor (1 — A/P), and admitting points to
his/her strategies in usual fashion. Interestingly, this simple modification to the MG
rules has induced complications to the analytic treatment of the game insomuch
that Challet et al. concluded that ([78],p. 149) “all the analytical tools used so far
to study minority games fail when A > 0”. Thus, there is still need for general and
robust analytic methods to solve the MG.

2.7 Minority game and financial markets

In economics, the price of a good is typically explained by its demand and sup-
ply [12]. Usually, increase (decrease) in demand or decrease (increase) in supply
leads to higher (lower) prices. Thus, in simplistic terms, one is better off buying
(selling) when most of the others want to sell (buy), so it pays off to be in the
minority. This feature is readily encoded in the MG, if the choices of the agents
are interpreted such that +1 (-1) means selling (buying) one unit of a commodity
whose price is related to the attendance, Eg. (2.2), which depicts the difference
in the selling and buying. This is the analogy that metaphorically sets minority
games into financial or economic context. Typically, financial MG models include
one or all of the following features: i) a price forming mechanism, ii) possibil-
ity for agents not to play the game in rounds that appear unfavourable for them?8,
and iii) several types of agents with different characteristics are involved in the
game. The aim of a financial MG model is to provide answers to questions like
what the relationship between different types of agents in the market is, or does
the price time series produced with the model resemble real-world financial price
time series. One can speculate with answers to the former question, because even
though one could draw conclusions about the relationship between different types
of agents in the model, there may not be adequate information available from the
real-world to validate one’s conclusions. However, one can easily investigate the
second question, because financial price time series, or their transformations, the
return time series®, are easily available. Moreover, it is known that real-world

8A MG with this property is called a grand canonical MG.
9Typically, the return-series r. is derived from the price-series p; with one of the following ways:
Dre =pe —pe-1,2) 1¢ = (pr — pt—1)/pe—1, 0r 3) ¢ = log(p:) — log(pe—1).
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financial time series show widely observed empirical regularities called stylized
facts [79]. The most prominent of these regularities are ‘fat-tailed’ return distribu-
tions, long-ranged volatility autocorrelations, and clusters in volatility and trading
volume. It is desirable for a financial MG model, and of course for any other fi-
nancial model, that the price time series generated by the model would include as
many of these empirical properties as possible.

2.7.1 Symbiosis between producers and speculators

Slanina and Zhang were the first who applied an MG for modelling an economic
system [44]. Their model depicts capital flow and price fluctuations in a society
of N agents, divided into IV, producers and NN, speculators. By the rules of their
game, the capital flows to the producers and from them to the speculators. At each
time step, some amount of stock is traded. The stock price, z(t), is the output signal
of the market. Each player is characterized by two dynamical variables, the amount
of stock S;(t) and the amount of money B;(t), where index i denotes the player.
So, the total capital owned at time ¢ by the ith player is W;(t) = B;(t) +z(t) S;(t).
The producers follow a fixed strategy of buying and selling, irrespective of the
current or the past price. Each producer has his/her own randomly chosen period
7; and time scale T; during which he/she invests. At the outset of the game, the
investment of producer ¢, a;(t), is drawn from a uniform distribution in the interval
[—1,1] with the restriction Z:‘:‘Ol a;(t) = 0, that is, the investment is balanced
over ¢’s own investment period ;. The producers participate in the game only if
they have positive capital. In that case, they attempt to buy a certain number of
stocks. The actual number they are willing to buy depends on a;(t), =, T;, z(t),
and (W), i. e., the average wealth of the players. As opposed to the producers,
the speculators are able to analyze the past price time series. They observe the
M previous values of the price and simplify this information into two signs, one
denoting rise in price and the other denoting fall in price between two consecutive
time steps, such that the information to the speculators is analogous to the history
in the basic MG. The strategies of the speculators define a buy or a sell decision
for each possible history. If the scores of the strategies of a speculator are low,
the speculator can abstain from playing. Otherwise, the speculator is willing to
buy or sell a number of stocks depending on his/her strategy. The total numbers
of stocks that the speculators and the producers are willing to sell and buy define
the supply and demand, which, in turn, induce a new stock price for the next time
step. The new price depends on the imbalance between supply and demand, as
well as on the actual capacity of the agents to trade. The emerging price time
series is the basic observable quantity in Slanina’s and Zhang’s model, and its
analysis enables one to conclude something about the relationship between the two
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agent groups. It turns out that the producers and speculators live in symbiosis.
The producers make it possible for the speculators to gain profits, whereas the
speculators even out fluctuations in the price, thus yielding stable gains for both the
producers and the speculators. Slanina’s and Zhang’s model is somewhat tangential
to ‘conventional” MG models and their work has gained little attention compared
to some other financial MG models, like the one presented by Challet et al. in 2000
[58].

Like Slanina and Zhang [44], also Challet et al. [58] divided the agents into
two main groups, the producers and the speculators whose characteristics strongly
resemble those introduced by Slanina and Zhang. In Challet’s et al. ’s version the
producers are MG agents who possess one strategy only, and they feed information
into the system. The speculators, on the other hand, are regular MG agents that
possess several strategies, and they try to make use of the information that the
producers inject into the system. Challet et al. did not concentrate on any price
time series but they draw conclusions about the evolution of the wealth of the
agents and the relationship between the two agent groups. The strategies of the
agents in their model are similar to the strategies in the basic MG, and agent ¢’s
gain at time step ¢ is defined to be g;(¢) = _“ZZ((:))A(t) with the notations of
section 2.5.4. Again, it turns out that the producers and the speculators live in
symbiosis. Benefits to each group depend on the parameters. For example, when
the number of producers is large compared to the number of speculators, the bias
term QUm of Eq. (2.11) is large, and consequently the predictability € of Eq. (2.5)
tends to be non-zero. Note that only speculators have various strategies, and thus
only they can overcome the bias effect of Q“M . If § > 0, the speculators can make
use of the information encoded in the histories (see section 2.5) and they tend to
win, whereas producers who are endowed with only one strategy can not make
use of this information and they tend to lose. Challet et al. also investigated what
happens if an agent can freely choose whether to attend the game or not [58]. They
allowed each speculator to abstain from playing if the scores of the strategies of the
agent were less than or equal to zero. As a result, the game is in the asymmetric
phase, where the predictability 8 > 0, but almost at the transition point, such that
the average losses of the producers are extremely small. They found that when the
number of producers is increased, the a priori asymmetry of the outcome increases
(due to Q“™ in Eq. (2.11)), and due to that more and more agents actually play
the game. If the game includes also noise traders that toss coin, the per capita
fluctuations of Eq. (2.4) grow and the payoffs of the agents are reduced by their
presence. However, deep in the symmetric phase (where 8 = 0), noise traders
reduce the fluctuations. Moreover, Challet et al. studied the effect of privileged
agents and insider-trading on the outcome of the game. The priviledged agents are
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endowed either with more strategies S’ > S or with a larger memory parameter
M' > M than the other agents. The insider-traders, in turn, know in advance
the choice which some group of agents will make. The gain of an agent with
S’ > S was found to be < v/In S’, in other words very slowly. Large memories
M' > M turned out to be disadvantageous in the asymmetric region (6§ > 0),
rather indifferent in the transition region, and advantageous in the symmetric region
(6 = 0). An agent with insider information was always found to perform better than
other agents, except at a critical point characterized by short-term time correlations.

2.7.2 Majority-minority games

The previously discussed models assume two types of agents with apparently dif-
ferent interests and functions in the market. However, if one considers speculative
markets, such as stock markets, it appears more convincing that the agents in the
market all share the common interest of making maximal profits by trading stocks.
For instance, investors may want to buy a stock at low price and later sell it at high
price. In such markets, the heterogeneity of agents may not appear explicitly as
different functions of the agents in the market but it may be hidden in the agents’
different beliefs about the behaviour of price evolution of the stock. Majority-
minority games are aimed for modelling speculative markets with two groups of
agents, the trend followers and the contrarians, which differ in their beliefs about
the price but share the common interest of making profits by trading. The trend
followers play the majority game, because they believe that when most agents buy
a stock, its price will increase in the future. Beliefs of this kind can be justified, for
example, by looking at the continual rise of stock-market indices in late 1990s and
early 2000. On the other hand, the contrarians behave as minority game players
who believe that the stock has a ‘fundamental’ price which reflects its real value.
If there are more agents who want to buy the stock than there are agents who want
to sell, the contrarians believe that the price of the stock will temporarily rise be-
yond the fundamental price, after which it will inevitably come down. The fall in
stock-price indices after early 2000 is a reminiscent feature justifying beliefs of
this kind.

In Ref. [46] Jefferies et al. introduced contrarian and trend follower agents in
a financial MG model, but their discussion was not very detailed. However, about
the same time, Marsili published a paper with the sole focus being on majority-
minority game models [63]. Marsili considered a situation where a certain number
of agents is set to play the majority game and the rest of the agents are set to play
the minority game. On one hand, fixing the numbers of each agent type in the game
allows controlled study of the model. On the other hand, real financial agents may
be able to temporarily change their beliefs if they detect changes in the market
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that favour one type of belief over the other. Such additional degree of freedom
was introduced into the majority-minority game by Andersen and Sornette in [49].
Their work, which also includes a sensibly defined price forming mechanism, is a
serious attempt to make the majority-minority game based toy model behave like
a real financial market. Their numerical simulations indicate that, within certain
assumptions, the characteristics of price time series emerging from their model are
quite similar to typical real-world financial price time series with several stylized
facts.

Other studies of the majority-minority games are provided by De Martino et
al. in Refs. [80, 81], and Kozlowski and Marsili have studied the pure majority
game in [82].

2.7.3 MG based market models and stylized facts

Jefferies et al. were among the first who studied whether an MG based market
model is an adequate tool for modelling some empirically observed financial phe-
nomena [46]. In their model each agent is assigned S;(0) risky assets and B;(0)
riskless assets at the outset of the game. Agents in the game are heterogeneous in
terms of wealth, investment size and investment strategy. Each trade made by an
agent is the exchange of one quantum of a riskless asset for one quantum of a risky
asset, irrespective of the wealth of the agent or price of the asset. Moreover, the
agents can abstain from playing the game if they have no trust in their possibilities
to make profits. Agent i’s confidence is measured by his/her historical success, r;,
and the variability of his/her success, std(r;), such that the agent plays only if the
score of his/her best strategy is larger than rmin; = max[0, —(r; — Astd(r;)], where
) is a coefficient of risk-aversion. When a trade is made, it is made at the market
price p(t), which is determined by a market-making mechanism. The market-
making mechanism must be separately defined for the model. In the real-world
markets, the so-called market-maker is responsible for setting a reasonable price
according to the demand-supply imbalance [83]. In Ref. [46] Jefferies et al. used
two approaches for modelling the effect of the market-maker on the price p(t). In
the first one it is assumed that the supply and demand are in equilibrium at each
time step, and in the other one this unrealistic assumption is relaxed. The numbers
of stocks that an agent trades are proportional to the agent’s wealth and his/her con-
fidence in his/her strategies. If an agent loses all his/her assets, he/she can no longer
trade. This represents the bankruptcy of that agent. The investment strategies of
agents can fall into two broad classes, value and trend. At each time step, a value
investor aims at making profits from buying low and selling high. A trend investor,
in turn, considers the movement of the stock and aims at making profits from buy-
ing an upward moving asset and selling a downward mover. A population of only
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value investors have a minority game character, whereas a population of trend in-
vestors create a majority game of self-fulfilling prophecies (see section 2.7.2). In
general, the population of traders is a combination of these types. Using a model
with these ingredients, Jefferies et al. [46] were able to produce return time series
reminiscent of real financial return time series with fat-tailed distributions, clus-
tered volatility and high-volume autocorrelation. They also showed that this type
of agent model can be used to predict price movements of the asset, predictions be-
ing better if an ensemble of individual agents’ predictions is combined together in
a proper way instead of using only individual agent’s predictions. Moreover, they
applied their model to measure and control risk in a portfolio management setting.

Challet et al. have also constructed a financial MG model with the aim of pro-
ducing stylized facts of financial price time series [84, 85, 86, 87]. Their model
is simple and minimalistic, yet it is able to produce interesting results. Similarly
to their earlier work in Ref. [58], Challet et al. assume that two groups of agents,
the producers (V) and the speculators (IV,), with different interests exist. Some
versions of their model also include noise traders that choose their actions ran-
domly, like agents in the RCG. However, we will not discuss this additional feature
here. The producers have one strategy only and they play the MG every time step,
whereas the speculators have several strategies and they play the game only if they
have a strategy which gives an average gain larger than some ’risk free’ interest rate
e. Thus, each speculator has also an inactive strategy and at each time step of the
game only part of the speculators are active and actually play the game. Otherwise,
the rules of their financial MG model are very similar to the rules of the basic MG.
The price time series is defined in a particularly simple fashion,

logp(t+ 1) =logp(t) + A(t)/, (2.13)

where X is a tunable parameter that describes the market liquidity. It turns out that
this model, as the basic MG, shows a phase transition, and the behaviour of p(t)
depends on in what phase the game is simulated. The phases are determined by
the numbers of speculators and producers as well as the number of histories P.
We will not discuss the phase structure here, but a good description of it can be
found in Ref. [86]. A particularly interesting region is the the symmetric phase,
where the predictability, Eq. (2.5), is zero. It turns out that within this model, four
prominent characteristics that are present in real financial price time series emerge
in the symmetric phase in which 8 = 0. The first one is that the price time series,
Eg. (2.13), intermittently shows crashes [79]. In reality, it is troublesome to extract
the factors that give rise to crashes but in the model the frequency of crashes has
been found to increase with N, and decrease with e. The second interesting feature
is the clustering of p(t) and the clustering of trading activity, measured by the
number of active speculators at any one time step. The third interesting result is
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that the autocorrelation function of the return time series decays slowly, and the
fourth result is that the probability distribution function of the return time series
is fat tailed. There is some evidence that real financial return time series could
follow a power-law distribution [88] but it is speculative what factors affect the
exponent. In the model by Challet et al. the exponent depends on N, N, and e.
It is also interesting that in the symmetric phase of the game, many speculators
refrain from playing and the level of active speculators N is just barely sufficient
to exploit the information injected into the market by producers, thus making the
market efficient in the long run. By contrast, locally in time, the market may not
be efficient. This behaviour reflects efficient usage of information, a subject that
has been under intensive study in financial literature [89, 90]. However, all these
features crucially depend on the fact that agents neglect their market impact. If
the agents can account even approximatively for their market impact, the results
change dramatically: the phase transition disappears, and the dynamics converges
to a state where each speculator plays one strategy at all times or does not play at
all. Also volatility clustering and fat-tailed distribution of returns disappear if the
agents can take into account their market impact.

The two previously discussed models are meant to suggest explanations for
several stylized facts with one model. Giardina et al. , for their part, tried to
explain one particular stylized fact, the long ranged volatility correlations, with
several models [45]. They assumed that the volatility clustering and the volume
clustering emerge as a consequence of a generic pattern where financial market
agents compare performance of different strategies on a signal that looks random.
A common strategy for each agent at all times is the inactive ‘do nothing’ strategy.
Relying on such an assumption they consider a simple case where each agent has
two strategies, one of them being the inactive strategy, and the difference between
the score of these two strategies will behave, as a function of time, like a random
walk. The survival time of any of these strategies will be given by the return time
of a random walk to zero. Since these return times follow a power-law distribu-
tion, the non-trivial volume autocorrelation will emerge. Volatility and the volume,
in turn, are strongly correlated in financial markets [91], and thus the explanation
should apply to volatility clustering as well. Giardina et al. tested their hypoth-
esis with an MG that included an inactive strategy. They found that the volume
activity of the agents is in accordance with their generic explanation. Furthermore,
they noted that a similar mechanism might also be present in other models where
agents can switch between different strategies or classes of strategies. For exam-
ple, in Ref. [49] the agents may switch from contrarian behaviour to trend follower
behaviour, and in Ref. [84] the speculator agents can be inactive or active.

Later on Giardina et al. introduced an elaborate artificial market model that
was based on the MG but included several additional parameters depicting various
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real-world financial market phenomena [48, 92]. Although the number of parame-
ters in their model is large, only two parameters play a crucial role; one determines
how sensitive the market price of their model is to the agents’ actions, and the
other determines whether an agent behaves as a contrarian or as a trend follower.
Depending basically on the values of these two parameters the market shows three
different behaviours: oscillatory, intermittent and stable. One of their major results
is a rough phase diagram that shows the ranges of these two parameters that cor-
respond to each behaviour. Their model produces particularly interesting results in
the intermittent parameter region. Emerging properties in this region include, for
instance, volatility clustering, bubbles, crashes and fat-tailed return distributions.
The emergence of volatility clustering in their model is due to the generic mech-
anism discussed above [45]. Overall, their model is a serious attempt to depict
the behaviour of real financial markets, and Refs. [48, 92] include several good
references for developing artificial market models.

Common to MG based market models for producing stylized facts seems to be
that they are at least as complicated as the basic MG. However, Liu et al. [93] gave
recently evidence that also the basic MG can produce real-market like behaviour
with several stylized facts in the low-z region, if the time horizon during which the
score of each strategy is updated is limited.

2.74 Predictingtimeseries

The MG has also been applied to time series prediction. Jefferies et al. introduced
a method to predict the sign of the next price change in a time series [46]. In-
dividual agents are provided a historical record of the previous signs of the price
changes and they predict the next sign according to their best strategy like the
basic MG agents predict the next minority group. Then, the actual prediction of
the sign of price change is based on a composition of the individual agents’ pre-
dictions. Johnson et al. tested this prediction method in a controlled setting [94].
They asked whether one can successfully predict the sign of price change from
a price time series that is produced by another MG. The answer turned out to be
positive. Moreover, Lamper et al. showed that the level of predictability increases
prior to a large change in price [95], and thus large changes arise as a predictable
consequence of information encoded in the global state of the system.

2.8 Evolutionary extensions

All the MG models discussed so far are adaptive in the sense that agents can change
their actions by selecting strategies in response to changes in their environment.
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However, the models do not allow for evolution of the strategies, and an interesting
question concerns what would change in the behaviour of MGs if evolutionary
mechanisms were applied to the agents’ strategies. This question is not a new
one. Challet and Zhang have explored the effect of applying natural selection and
evolution to the strategies of the MG agents on the game behaviour at a very early
stage of the MG research [28, 41]. However, they did not study the problem very
deeply. In this section, we review MGs with evolutionary attributes. The models
can be roughly divided into two groups: one in which the agents choose either their
strategies or their actions stochastically, and one in which the agents choose them
deterministically.

2.8.1 Modelswith probabilistic features

The first evolutionary MG (EMG) model was presented by Johnson et al. in 1999
[68]. Their model is different from the basic MG model in several aspects. Firstly,
each agent in the EMG has access to a common register that contains the outcomes
from the most recent occurrences of all 2M possible history bit strings of length M,
that is, the register contains information about the last winning side corresponding
to every possible history. In case M = 2, the register could be (111-1), for ex-
ample. Reading from left to right, these numbers tell what were the last winning
sides following the possible histories (-1-1), (1-1), (-1,1) and (11) correspondingly.
Secondly, the strategy of an agent is a single number, p, which is the probability to
play the previous winning side corresponding to a particular history, stored in the
common register. With probability 1 — p the agent plays the opposite action. Each
time an agent chooses the righ minority (majority) group, he/she gains (loses) one
point. If the agent’s score falls below a value d < 0, then his/her strategy is modi-
fied; i. e., a new value for p is randomly drawn from a uniform distribution so that
p € [po — R, po + R], where py is the current value of p. The boundaries p = 0 and
p = 1 are reflective. Numerical simulations and analytic inference that Johnson
et al. carried out with this model reveal that the agents tend to self-segregate into
opposing groups characterized by extreme behaviour. About half of the agents end
up having strategy values near p = 0 and about half of the agents end up having
values near to p = 1. Cautious agents, those for which p = 1/2, perform poorly
and tend to become rare.

The evolutionary MG model by Johnson et al. [68] led to a number of other
studies. Ceva [96] pointed out that the results of Johnson et al. [68] depend on the
type of update rules used. In another paper, Johnson et al. [97] studied the same
evolutionary mechanism in more general setting, where the fraction of agents who
can win per round is not fixed to 50 percent as in the MG, but is an adjustable
parameter. Burgos and Ceva [98] simplified the model such that it does not make
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use of memories at all, and found that this simplified model produces the same
results as the original model of Johnson et al. [68]. Lo et al. [99], in turn, endowed
each agent in the evolutionary MG with one strategy that is similar to the strategies
in the basic MG, and analytic consideration of the evolutionary MG was carried
out by Lo et al. in Ref. [100].

In 2002, Hod and Nakar [101] presented an appealing idea that they applied
to the evolutionary MG of Johnson et al. by proposing that the reward of winning
should not necessarily be equal to the fine of losing in the game. In the extreme
situation, the fine may be larger than the reward. For instance, a successful hunt of
a predator could maintain the predator for a few days, but an unsuccess in hunting
could lead to the death of the predator. Hod and Nakar introduced the reward to
fine ratio parameter, R, such that R = 1 corresponds to the original MG model,
whereas for R < 1 the reward is smaller than the fine, and for R > 1 the oppo-
site holds. With this modification they showed that the self-segregation is a special
feature that occurs only if the reward to fine ratio is sufficiently high. For R < 1,
cautious strategies p ~ 1/2 tend to become most popular, in other words, under
hard conditions individuals tend to behave similarly and do the same as the ma-
jority. In addition, they found that the distribution of the p-values of the agents
display temporal oscillations around p = 1/2 such that the smaller the value of
the reward to fine ratio, the farther the system is from a steady state distribution.
This observation points out that the analysis of Lo et al. in Ref. [100], based on
the assumption of steady-state, is not valid for R < 1. Later, Hod provided insight
on the behaviour of this MG model using time-dependent random walk arguments
[102]. Also the observed temporal oscillations were further studied by Nakar and
Hod in Ref. [103].

Another model that is in some ways related to the EMG model of Johnson et
al. was presented by Reents et al. in Ref. [104]. They assumed that an agent ¢ has
a strategy that assigns an action a;(t) to that agent, so that if the agent is successful
in a given turn, he/she will make the same decision next turn, a;(t + 1) = a;(t).
Otherwise, the agent will change his/her action to the opposite one with a certain
probability p such that P(a;(t + 1) = —a;i(t)) = p. This model is a stochastic
one-step process, and it has a stationary distribution that can be solved analytically.
One of the main results by Reents et al. is that o2 /N can be decreased even to the
optimal level for a suitably chosen p.

2.8.2 Modelswithout probabilistic features

The models discussed in section 2.8.1 are quite different from the basic MG model.
In this section we review studies that are in closer relation to the basic MG.
Li et al. [30, 31] carried out an extensive study of the effects of evolutionary



38 CHAPTER 2. MINORITY GAMES

mechanisms on the basic MG. Their evolutionary rules resemble those that Challet
and Zhang mentioned in Refs. [28, 41]. In Ref. [30] Li et al. examine evolution
in games in which the dimension of the strategy space is the same for all agents
and fixed for all time. To make the MG evolving, they define a time 7, which is
the lifetime of one generation. During 7 time steps, the agents’ strategies do not
change. After 7 time steps, the agents are ranked by wealth accumulated during
that generation, and half of the so-called poor agents, those who belong to the
lowest percentile w of agent wealth, are selected at random and removed. A re-
moved agent is replaced with a new agent who inherits the wealth of the old agent
but gets new randomly chosen strategies with scores set to zero. Li et al. con-
ducted their simulations with real histories and they found that evolution results in
a substantial improvement in overall system performance, though the best system
performance still occurs (minimum of o2?/N exists) at z, the same value as in
the basic MG. They discovered that in the low-z region the evolutionary mecha-
nism tends to select against high intra-agent HDs and against low inter-agent HDs.
Thus, the strategies of an agent become more similar, whereas the active strategy
of the agent moves away from the active strategies of the other agents. In the high-
z region, only the latter tendency of evolutionary selection appears to take place.
In Ref. [31] Li et al. continued their study of evolution in minority games by ex-
amining games in which agents with poorly performing strategies can trade their
strategies for new ones from a different strategy space that consists of strategies
with different length, M. Similarly to Ref. [30], they defined a generation of 7
time steps, and replaced half of the poor agents, whose wealth is in the lowest
percentile w with new ones. They applied two rules of replacement. In the first
one, an agent that is chosen for replacement is given strategies of any memory
1 < M < 16 with equal probability. In the second one, an agent with memory
M chosen for replacement is given strategies with memory M + 1 or M — 1 with
equal probability. It turns out that in the presence of such evolutionary mechanisms
the most wealthy agents are those who have low values of M. For a given number
of agents NV, the wealth per agent is roughly a step function as a function of M
with a transition occurring at M = M. — 1, where M, is the value of M at which
a2 /N attains a minimum value for fixed N. It also turned out that the numbers of
agents who have strategies with length M are quite equal for M < M, — 1, and
close to zero for M > M, — 1. This means that the system tends to evolve such
that the effective size of the strategy space occupied by most of the agents is about
2Me 10 Thys, the system evolves into a state where it performs the best, that is, z
moves close to the critical value z, where ¢2/N has its minimum. A prominent

OThe effective size is approximatively 2M< since 2 4 ...2Me~1 = 2Mc _ 9 Terms on the left
hand side are the lengths of the strategies that most of the agents use.
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Figure 2.5: Schematic diagram to illustrate the mechanism of crossover for pro-
ducing new strategies. The strategies s; and s; are the parents. We choose the
cut-off point randomly and cross the entries

result both in Ref. [30] and in Ref. [31] is that such a minimum of o2 /N occurs.

Sysi-Aho et al. (Publications 1-V) applied genetic algorithms to the basic MG.
Their models belong to the same class of evolutionary modifications as those stud-
ied by Li et al. in Ref. [30] in that the dimension of the strategy space is the same
for all agents and fixed for all time. The genetic algorithm works such that two
of an agent’s S strategies are chosen to be parent strategies, say s; and s;, and
then these two strategies are cut into two pieces at a randomly chosen cut-off point
k. e {1,..., 2M} that is the same for both strategies. Then, two child strategies,
sy and s;, are formed,; the first one by catenating the first k. components of strategy
s; with the last 2M — k. components of strategy s;, and the second one by cate-
nating the first k. components of strategy s; with the last 2™ — k. components of
strategy s;. Schematic diagram of the crossover mechanism for M = 2 and k. = 2
is shown in Fig. 2.5.

There are various alternatives for defining i) when the agents should apply
the genetic-crossover, and ii) how the parent strategies and the children strategies
should be chosen. For i) the authors adapted the convention of Li et al. [30] by
defining a generation of 7 time steps during which the strategies of the agents
do not change. In (Publications I-1V), the agents are ranked by wealth accumu-
lated during the entire game up to the current time step at the end of every = time
steps, and those agents who belong to the lowest percentile, w, of agent wealth
are allowed to cross their strategies. In (Publication V) the agents are arranged
on a scale-free network [105], and an agent compares his/her wealth to the wealth
of his/her nearest neighbours after every 7 time steps. Those agents who have a
neighbour with a higher wealth, cross their strategies. For ii) several cases were
studied:

1. Two parent strategies are selected at random and after the crossover the par-
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ent strategies are substituted with the two new children.

2. Two parent strategies are selected at random, and after the crossover the two
worst performing strategies are substituted with the two new children.

3. Two best performing strategies are selected as parents and after the crossover
the parents are substituted with the two new children strategies.

4. Two best performing strategies are selected as parents and after the crossover
two worst performing strategies are substituted with the two new children.

The mechanisms were found to differ from each other with respect to their
efficiency in improving the system performance and increasing the wealth of in-
dividual agents. In these terms, the fourth mechanism outperformed the others.
However, all the mechanisms were found to improve the system performance as
well as the individual agent wealth in various circumstances: in (Publications | and
1) the histories were real, and in (Publications 111-V) they were random™*; in (Pub-
lications 1 and 1) the agents’ strategies were drawn from a reduced set of strategies
such that initially the Hamming distance, Eq. (2.6), Hq(si, s;) = 1/2 for all 4, 7,
and in (Publications 111-V) they were drawn from the full set of strategies.

Application of genetic algorithms to the agents’ strategies was found to cause
a locking effect in case of using real histories (Publication I1). In the locking effect,
one history starts to repeat over and over again, and consequently the agents di-
vide into two groups, those who win every time step and those who lose every time
step. Using randomly generated signals instead of real histories provides a mean of
preventing the locking effect. Furthermore, the use of random histories eliminates
the occurrence of histories in cyclic patterns, and consequently the agents cannot
benefit from any prediction method based on such cycles. Thus, in order for the
strategies of the agents to be ‘good’, the strategies should provide successful deci-
sions for individual agents and result in small fluctuations at the system-level for
an unpredictable occurrence of any history u ;. This means that the use of random
histories sets the strategies of the agents into harder test of success than the use
of real histories would do, and consequently the success of the genetic algorithms
in modifying the strategies can be more generally judged. In regard to this, there
is a remarkable result in (Publication V) which indicates that ¢2/N can obtain
minimal values for a wide range of control parameter values z. This property is
illustrated in Fig. 2.6, where o2 /N approaches the optimal limit 1/N when S is
increased. Thus, for sufficiently high S, o2/N is minimal all the time and there

1A real history comprises the last M minority groups, and a random history is just drawn from
a uniform distribution of numbers {1,...,2}. For discussion about real and random histories see
Refs. [53, 72], and section 2.6.
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Figure 2.6: The per capita fluctuations o2 /N versus the control parameter z =
2M /N for S = 5 (triangles), S = 8 (asterisks), S = 13 (plus-signs), and S = 21
(circles) in MG where the genetic-algorithm rule of (P5) is applied to the agents’
strategies. For comparison, o2/N versus z in the basic MG is also plotted for
S = 5 (crosses) and S = 21 (stars). We used M = 6, = = 2P, simulated for
64000 time steps, and calculated o2 /N from the last 1000 time steps averaging
over 200 ensemble runs. Compare with Fig. 2.3.

is no turning point at any z = 2z, a result that is different from several previous
studies where the existence of such a point has proven to be highly robust under
various modifications of the basic MG (see, e. g., Refs. [30, 31, 53, 54, 57]). It was
found also that in the course of the game, the intra-agent Hamming distances tend
to converge toward small values, close to zero (Publications I1-1V), whereas the
inter-agent Hamming distances avoid clustering (Publication V). These findings
are qualitatively consistent with those that Li et al. made in Ref.[30].

Yang et al. [106] applied genetic algorithms to the MG with variable length
strategies by studying two variations. In the first one each agent has two strategies,
S = 2, with equal length, but the strategies of different agents may vary in length.
The evolution is realized such that after each generation of 7 time steps, the agents
are ranked by wealth, and the poorest fraction w of agents will adjust their strate-
gies. The rule of adjustment is defined by a cutting operator and a splicing operator,
from which one at a time is applied with probability 1/2. For an agent adopting the
cutting operator, each of his/her strategies will be cut into two halves, and only one
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half of them is kept as new strategies. For an agent adopting the splice operator,
a random binary string of length equal to the length of the current strategy of that
agent is generated, and catenated with the old strategy.

In the second variation of Yang et al. , an agent has four strategies, S = 4, of
different length. After every generation part of the agents are selected for modi-
fying their strategies as described above. An agent who is selected for crossover
again uses either the cut operator or the splice operator. However, now an agent
who adopts the cut operation will select his/her best strategy, and cut it into two
halves, which are then used to replace the two worst strategies of the agent. In
case an agent adopts the splice operator, he/she selects two of his/her best strate-
gies, catenate them together and use the resulting strategy to replace the strategy
with the worst strategy. The results of Yang et al. [106] indicate that their second
variation leads the system into a more efficient state than the first variation, though
both systems improve the system performance considerably compared to the basic
MG. Furthermore, as the game evolves, the number of agents who posses strategies
with length P = 2™ resemble a step function as a function of M, a result that is
qualitatively consistent with the result of Li et al. in Ref. [31].

2.9 Other modifications

A major part of the MG papers that have been published so far concern the topics
described above. In this section we will take a look at few other variations of the
game.

2.9.1 Multichoice minority game

One immediate question that arises in context of minority games is what happens
if each agent has more than two options among which to choose? Extensions of
the MG model to multiple choices try to answer this question. Ein-Dor et al. [107]
introduced a multichoice MG, where each agent chooses one of the NV, states, aim-
ing to choose the state with the smallest number of agents at each time step. Their
model closely resembles neural network models and differs quite significantly from
the basic MG. Each agent has one strategy which evolves according to its perfor-
mance, and the reward of winning need not be the same as the fine from losing (for
reasons of using asymmetric payoffs see Ref. [101]).

Another multichoice MG model that is in closer contact with the basic MG
was introduced by Chau and Chow [108]. In their model each agent has to choose
among N, states according to a strategy which assigns a choice to each possible
history of the past M time steps. Likewise in the basic MG, the history comprises
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knowledge of the past minority groups. For memory M, there are NM possible
histories, and a strategy is composed of NM entries that assign a choice to each
of these histories. Furthermore, like in the basic MG, each agent initially has S
randomly chosen strategies that amass points during the course of the game. One
point is assigned to each strategy that predicted the group which happened to have
the least non-zero number of agents in a turn, and one point is subtracted from all
the other strategies. Thus, the extended model of Chau and Chow [108] is strongly
analogous to the basic MG of Challet and Zhang [28]. Results from numerical
simulations also indicate that the multichoice MG behaviour is qualitatively sim-
ilar to the behaviour of the basic MG. In particular, there is a control parameter,
and a critical value of this control parameter at which ¢2/N attains a minimum
value. Also the overall behaviour of a2 /N as a function of this control parameter
is reminiscent of the behaviour of o2 /N in the basic MG as a function of its con-
trol parameter, z. Chow and Chau carried out further analysis of basically the same
model in [109], and their results strengthen the finding that their multichoice MG
behaves similarly to the basic MG.

2.9.2 Networks, local neighbourhoods and changes in information

One branch of MG modifications concentrates on a network arrangement where the
agents are placed on the nodes of a network, and some type of information flows
through edges connecting the nodes. Often the information to an agent consists of
knowledge of choices made by agents who are connected to that agent, or knowl-
edge of the minority group sign in the local neighbourhood of that agent. Typically,
the agents are placed on one of the following network types:

Type 1 - Circle. A regular one dimensional chain, where each agent is connected
to his/her K nearest neighbours that are on his/her right and on his/her left.
In addition, boundaries are chosen to be periodic such that the chain forms a
circle.

Type 2 — Two dimensional lattice. A regular two dimensional lattice, where each
agent is connected either to his/her four nearest neighbours (‘North’, “‘East’,
‘South’, “West’), or to his/her eight nearest neighbours (NE, SE, SW, NW in
addition). Boundaries are usually chosen to be periodic.

Type 3 — Random network. A random network where each agent is connected to
K other agents that are selected at random among the other agents such that
each agent can be selected only once.

Paczuski et al. studied an MG model on networks of Type 3 [110]. In their
model each agent has one strategy that determines an action, 1 or —1, for each pos-
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sible state of the neighbouring agents.’2 Thus, the information provided for each
agent consists of the states of the neighbouring agents, as opposed to the sequence
of past M minority groups. The performance of an individual agent is measured
by counting the number of times each agent has been in the majority. After a pe-
riod of time, defining an epoch (similar to generation in Refs. [30, 31]), the worst
performer who was in the majority most often changes his/her strategy. The new
strategy is chosen at random. As a result of their model, Paczuski et al. [110]
observed that irrespective of the initial conditions, the network ultimately self-
organizes into an intermittent steady state at the borderline between two dynamical
phases. Furthermore, their numerical simulations indicate that the distribution of
attractor lengths in the self-organized state is broad and consistent with power-law
behaviour for large enough attractor lengths.

Slightly later than Paczuski et al. , Kalinowski et al. published a paper on MG
with local information [55]. In their model, the agents are arranged on Type 1 net-
work, and the input signal to each agent consists of previous decisions of his/her
K = M nearest neighbours. Similarly to the basic MG, each agent has S strategies
that select an action, -1 or 1, as the response to each possible state of the neigh-
bouring agents. These states are strings of length M of 1s and -1s that correspond
to the actions of the neighbouring agents (and to the action of the agent itself if M/
is odd). It turns out that the behaviour of a2 /N in this local MG model is quali-
tatively similar to the behaviour of o2 /N in the basic MG. Kalinowski et al. also
studied whether the system performance could be optimized in their local MG by
applying two particular evolutionary mechanisms. In the first mechanism, which
they called the global evolutionary mechanism, the agent who performs worst is
removed after every 7 time steps and replaced with a new agent that is a variant
of the removed agent. The new variant gets the values of the parameters M and
S of the old agent, and these parameters can be increased or decreased by one
with a certain probability. The other evolutionary mechanism is local: after 7 time
steps each agent looks at his/her two neighbours, and if the best neighbour has at
least one percent more points than the agent, the agent copies the properties of this
neighbour as described above. The results of Kalinowski et al. indicate that if the
global evolutionary mechanism is applied to the game, the game behaviour does
not change significantly. By contrast, if the local evolutionary mechanism is ap-
plied to the game, some substantial changes will emerge. For instance, the values
of M and S evolve such that the degree of cooperation is the best, a feature that is
reminiscent of the basic MG behaviour under evolution as reported by Li et al. in
Ref. [31]. An interesting result of their model is that o2 /N attains a minimum

2This setting is the so-called Kauffman network [111]. The name is due to Stuart A. Kauffman
who extensively studied the properties of these networks.
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value at M = 3 irrespective of the value of N.

Moelbert et al. [112] studied minority games on Type 1 and Type 2 network
settings. After every round each agent will be announced the minority group of
his/her local neighbourhood, and points are awarded to those agents who belong to
the minority group in his/her local neighbourhood. Moelbert et al. made use of the
formalism presented in Refs. [40, 58] in order to describe their local MG in terms
of spin glasses. In this each agent has two strategies which they use with probabil-
ities of Eq. (2.8). Unlike the basic MG where the maximum number of winners is
(N —1)/2, their local MG has configurations where each individual can win, de-
pending on the nature of the regions. For instance, such a situation occurs in Type
2 network with four neighbours if each agent playing 1 (-1) has at most one other
agent in his/her neighbourhood who plays also 1 (-1). Then each agent belongs to
the minority group in his/her local neighbourhood and win. Results of Moelbert et
al. indicate that the system shows global, collective behaviour, because it benefits
from the spatial arrangement of the individuals. For individual agents it is highly
efficient to possess anticorrelated strategies, a situation that is different from the
basic MG (see, €. .g., Manuca et al. [39]). Furthermore, it is disadvantageous for
the agents to shuffle randomly between their strategies (large I' in Eq. (2.8)). By
contrast, in the basic MG it is advantageous for an agent to shuffle between his/her
strategies in the low-z region [67, 74].

Agents in the models of Paczuski et al. [110] and Kalinowski et al. [55] make
use of global information, because the success of strategies depends on the minor-
ity group with respect to the whole population. By contrast, the agents in the model
of Moelbert et al. [112] make use of local information, since the success of agents
and their strategies depends only on each agent’s local neighbourhood. However,
in the real-world people can consider both local level information, such as rumours
from peers, and global-level information, like news from the media, when they
make decisions. To study the interplay between global and local information in a
minority game, Chau et al. [113] constructed a model where the agents use both
the global and local information in their decisions. The basis of their model is the
multichoice MG of Chau and Chow [108, 109]. The global information given to
the agents is the typical time series of the past A/, minority groups of the entire
population. The local information for an agent, in turn, is the time series of the
past M; minority groups in the agent’s local neighbourhood. The local neighbour-
hood is defined by arranging the agents on a Type 1 network with K = 2. The
history that an agent receives is a catenated sequence composed of the time series
of the past M, global and the M; local minority groups. Each agent’s strategies
are rules that define an action to each possible history, just like in the basic MG or
in its multichoice extension [108, 109]. The results of this composite model indi-
cate that cooperation among agents is better than in the basic MG due to the local
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information which is disseminated through Type 1 network. In addition, with no
global information (cf. Ref. [112]), many players on the network get frozen, i. e. ,
they play the same action at all times.

Caridi and Ceva presented an MG with local information too [57]. In their
model the agents are arranged on a Type 2 network, and a fraction p of the agents
are chosen to be interacting. The positions of the pN interacting agents on the
lattice are selected at random at the outset of the game. At each time step of the
game the agents follow the rules of the basic MG, except that the interacting agents
are given the extra opportunity to modify their actions, after knowing what other
interacting agents in their nearest neighbourhood will do in the same step. Because
the interacting agents are distributed randomly, every one of them can have be-
tween zero and four other interacting agents in their nearest neighbourhood. The
interacting agents try to be in the minority of the group formed by their interacting
nearest neighbours and themselves. Results of Caridi and Ceva show that the effi-
ciency of the system improves if the fraction p is small, being worst when p — 1.
It also turns out that there exists a critical value p.(z) that depends on the control
parameter z = 2M /N. When p < p.(z) all possible P = 2M histories occur in
the system, whereas when p > p.(z) the histories tend to appear in a cyclic pattern
with period shorter than P.

The idea of providing local information to the agents has also been applied to
the evolutionary MG model introduced by Johnson et al. [68] (see section 2.8.1).
Quan et al. [114] studied effects of local information transmission and imitation
among agents on the evolutionary MG by setting the agents on Type 1 network.
Agents in their model follow the same rules as agents in the Johnson’s model
except that each agent knows the wealth and the p-values of his/her two nearest
neighbours, and if the agent has a wealthier neighbour, the agent adopts a new
p-value that is centered around that of the neighbour. This modification leads to
an enhanced cooperation with the number of winners per turn being larger in the
modified model than in the basic MG or in the standard evolutionary MG. Burgos
et al. [115] studied another type of modification to the evolutionary MG. In their
model the agents are set on Type 1 — Type 3 networks, and the agents follow rules
of the EMG except that the success of each agent is considered only in his/her
local neighbourhood. The size of the local neighbourhood can be varied. A promi-
nent result from this model is that the agents coordinate their actions well when
they base their actions on local information and disregard the global trend in the
self-segregation process.

Cara et al. [116] studied a variation of the basic MG in which information to the
agents is personal, as opposed to the global information, u 57, provided to the agents
in the basic MG. In their model agents are not set on a network, but each agent’s
personal information is defined to be the agent’s knowledge of his/her own choices
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of the previous M time steps. It has been discovered that coordination among the
agents can be improved with this change, that is, values of o2/ tend to be lower
when the agents use personal information than values of o2/N are if the agents
use the global information. Also Li et al. [56] studied MGs that were similar to the
basic MG, except for the information provided to the agents. They explored three
cases. In the first case, each agent uses his/her own personal history of successes
during the past M time steps instead of the public history, like agents in the model
of Cara et al. . In the second case, the agents are segregated into P = 2™ groups
of nearly equal size. Agents within the same group will use the same information
that is generated randomly at each time step. Groups are fixed during the course
of the game. In the third case, the arrangement is similar to that in the second
case, except that each agent forms an own group. Thus, each agent randomly
and independently chooses one of the P values of information. Consequently, the
groups that share the same information are highly fluid, and there is only random
persistence in their identity. In addition to these three cases, Li et al. [56] illustrated
an interpolated game in which all agents use private information with probability r
or public information with probability 1 — ». In all the cases, the agents and their
strategies are rewarded according to what the real minority group is in the entire
population. Results from these models show that games with private information
share a general structural similarity to the basic MG with public information in
that there are two phases; one that is reminiscent of the basic MG behaviour in the
low-z region and one that is reminiscent of the basic MG behaviour in the high-z
region. However, the microscopic behaviour of the agents differs from case to case.

2.10 Experiments on human players

If the MG is to be considered a model for bounded human rationality, it is sensible
to ask whether the agents in the game actually have something in common with
real human beings. For example, in some financial MG models (section 2.7) it
is assumed that the attendance time series A(t) of Eq. (2.2) is closely related to
the price of an asset under trade, and it would be interesting to know whether real
people produce attendance time series with similar properties to those that have
been produced by the MG agents. Also, it would be interesting to know how real
people make use of the information available to the agents in the MG. Studies that
aim at answering these questions have been carried out only recently.

Bottazzi and Devetag conducted laboratory experiments in which fixed groups
of N = 5 human players play the MG for 100 periods [117]. They compared the
system efficiency of a group of people to that of the random choice game. In order
to find out whether humans can coordinate their actions better if the amount of
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aggregate information provided to them increases, they varied the memory M that
players have regarding the game history, i. e. , the number of past outcomes of the
game announced to the players. They also varied the amount of information that
players had regarding the game history and the past actions of the other players.
Their results show that the level of coordination between human players is higher
than random. However, the amount of information that human players receive does
not significantly alter the results. Thus, one can think that human players need only
small amounts of information to coordinate efficiently, or from another perspective,
human players are unable to make use of complicated information.

Laureti et al. investigated human speculative trading behaviour and informa-
tion capacity by web-based experiments in which individual human beings played
the MG against computer-modelled agents [118]. Their data consists of records of
large number of plays in which a single person played the MG with many comput-
erized agents. The total number of agents, including the human player, was N =
95. The human player is presented with a price history, P(t + 1) = P(t) + A(t)
where A(t) is the attendance of Eq. (2.2), of the past 50 time steps. The perfor-
mance of the human player is compared to the performance of computer agents in
different ‘markets’, which differ by the memory M of the computerized agents.
Allegorically, the larger the M, the more ‘complex’ the market can be thought to
be. Results from these experiments indicate that humans typically outperform the
computer agents in ‘easy’ markets, with small M, but if M increases, humans do
much worse. Moreover, it appeared that while human decisions are correlated with
the long-term trend of the market, this correlation decreases as the markets become
more difficult, being close to zero for large M. This means that when the infor-
mation to the human beings is complicated enough, the players seem to ignore all
aspects of the information presented by the market.

Also Platowski and Ramsza conducted an experiment where human beings
played the MG [119]. In their experiment, a group of N = 15 persons played the
game for 200 time steps. At each time step the only information displayed to the
players was a historical record of the past M winning sides. Results from their
experiment support the results of Bottazzi and Devetag about human coordination;
it was found that humans do coordinate, but the length A of public information
seems to have no influence on the game behaviour. Furthermore, Platowski and
Ramsza pointed out that people can coordinate their actions better than the RCG
agents in case they are provided real information (histories) about the winning
sides, or even if they are not provided any information at all, that is, in case they
choose their actions blindly, without any feedback. But most strikingly, it turned
out that humans coordinate badly, worse than the RCG agents, if they are provided
a fake signal, that is, a randomly generated signal of the past winning groups. This
behaviour is substantially different from the behaviour of computerized MG agents
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whose coordination does not change significantly if the real history is replaced with
the randomly generated signal, as reported by Cavagna in [53]. Thereupon, one
can call into question whether the learning procedure adopted in the basic MG is
an appropriate description of actual human behaviour in this game.

2.11 Discussions

The MG is a model that depicts a population of individuals with limited capabilities
competing for scarce resources. Several existing or hypothetical phenomena occur-
ring in social, biological, economic, and technological systems have been studied
with the model, for instance, coordination among individuals, emergence of styl-
ized facts in financial markets, or the influence of evolution and natural selection
on the population of individuals. The MG model is theoretical, like much of the
research related to it, and many questions concerning the model can be answered
rather rigorously.

However, if the MG is to be considered as a model depicting real-world phe-
nomena, in particular the behaviour of human beings, one should be cautious when
interpreting the model and its results in the absence of empirical facts. For in-
stance, assumptions made for financial MG models (section 2.7) about different
agent groups with different functions in financial markets, or the assumption that
financial agents do compare different strategies when they try to make profits, or
that stylized facts in price time series emerge due to the properties introduced in
the constructed models are speculative. Apart from few exceptions, such as, the
knowledge of how the price of a stock is realized from the order book that lists
the buy and sell orders of the stock [83], the proposals that are introduced in the
financial MG models lack empirical basis. Mostly, the rules of behaviour of the
agents in the game seem to be in contrast with human behaviour.

Conducting a sufficient number of experiments with human players in con-
trolled laboratory settings could provide valuable information to remedy such con-
tradictions. However, knowledge that could be obtained from the experiments
might still be too indeterminate for mathematical modelling purposes. As an ex-
ample, one can think of the very basic observation mentioned at the beginning of
this chapter; that we, human beings, carry out localized deductions based on our
current hypotheses and act on them, and as the feedback from the environment
comes in, we may strengthen or weaken our beliefs. This observation is based on
psychological experiments, and indeed the El Farol BP and later the MG were tai-
lored for modelling such behaviour. However, recent experiments show that the
model realized with computerized MG agents does not produce results that would
be in line with the results obtained from human players who play the MG in the



50 CHAPTER 2. MINORITY GAMES

same circumstances as the MG agents (section 2.10). Thus, one’s suspicions of the
ways how human information processing abilities are modelled or how human de-
ductive thinking is modelled, arise. In particular, the finding that a group of human
players coordinate badly if they are provided a random signal instead of the real
history comprising the past minority groups in the MG shows a stark contrast to the
behaviour of a group of computerized agents that is not sensitive to such changes
(see section 2.6).

All in all, the connections between the world of MGs and the ambient real-
world of us are mostly metaphoric. Instead of trying to match the model and all
its details with the real-world, one should be open-minded in one’s view, and take
the model as a suggestive tool that makes qualitative and quantitative speculation
possible about things that are far-reaching and still largely beyond our current un-
derstanding. Also, the questions arising from the MG models can inspire new
experiments on human beings or animal societies that may further contribute to
our understanding of their behaviour, and maybe allow more precise mathematical
modelling of these systems one day.



Chapter 3

Spatial games and cooper ation

In the previous chapter we have seen that agents following simple rules in an MG
can give rise to phenomena that are reminiscent of those observed in animal and hu-
man societies, which are composed of considerably more complex actors than the
MG agents. In particular, agents in an MG were found to coordinate their actions
such that they make good use of the resources that are available to their society.
In this chapter we shall continue with agent-based models, now focusing on the
problem of persistence of cooperative behaviour in animal and human societies.
Our treatment of the current subject will be more limited than our treatment of the
MG.

The outline of this chapter is as follows. In section 3.1 we introduce the prob-
lems related to the existence of cooperative behaviour in animal and human so-
cieties, and discuss theoretical frameworks that have been utilized for modelling
this problem. We will give a brief description of evolutionary game theory and its
key concepts. We will ponder whether time scales associated with evolutionary
games are appropriate for explaining behaviour of adaptive individuals who can
act on much shorter time scales than those that are typical in genetic evolution.
Our primary focus will be on spatially structured populations that are composed of
individuals who can repeatedly interact with each other. In section 3.2 we describe
a spatially structured snowdrift game, and apply a simple adaptive mechanism to
determine the players’ decisions on time scales that are shorter than time scales
associated with ‘genetic’ evolution of the players. In section 3.3 we give a short
summary of the results of our model. Finally, in section 3.4 we draw conclusions,
and compare our results with the results of Hauert et al. who studied the same
model using the so-called replicator dynamics [37].

51
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3.1 Background

Understanding the emergence and persistence of cooperation is one of the central
problems in evolutionary biology and socioeconomics [32, 120, 121, 122, 123].
The difficulty of explaining the existence of cooperative behaviour arises from the
fact that selfish individuals can reap the benefits of cooperation without bearing
the costs of cooperating themselves. For instance, in a bring-a-dish party, cooper-
ative individuals contribute to the common epicurean offering and bear the costs,
whereas non-cooperative individuals only take benefit without costs. Thus, one
could think that non-cooperative individuals would have a fitness advantage over
cooperative individuals, and natural selection would lead to the extinction of coop-
erators in the long-term.

In investigating this problem, the standard framework utilized is evolutionary
game theory [15, 34, 51]. In evolutionary game theory one usually considers a
population of individuals, henceforth called agents, associated with fitness values
that depict the reproductive capabilities of the agents. Typically, the population
consists of different types of agents with different characteristics, or patterns of
strategic behaviour; for example, some agents may be cooperative whilst others
are defective. In a evolutionary game, attention is often focused on the abundance
of different types of agents in consecutive generations. The way of modelling
strategic behaviour with evolutionary game theory is advantageous compared to
the way of modelling strategic behaviour with traditional game theory [22, 33],
where each agent is assumed to behave rationally by calculating the best response
to the current state of the game at all times. In contrary, in evolutionary games
one usually introduces a evolutionary mechanism that is responsible for prevent-
ing the reproduction of some agents and favouring the reproduction of some other
agents. Typically, agents with low fitness reproduce poorly, whereas agents with
high fitness reproduce successfully. Finally, in the long-term, the population of
agents may equilibrate into a state in which only a certain type of agent remains.
Furthermore, these remaining agents who passed the evolutionary sieve may act
strategically similarly to the highly rational agents of traditional game theory [15].

In order to specify what type of an agent would likely survive in a evolutionary
game, it is customary to utilize the concept of evolutionary stable strategy (ESS)
introduced by Maynard Smith and Price [32]. This concept can be illustrated as
follows: assume that we can divide the agent population into two groups, the A type
agents and the B type agents, both of which behave according to different patterns,
A and B. Furthermore, assume that types A and B are in some sort of relationship,
such that the expected payoff to an individual of type A from an interaction with
an individual of type B is Eg(A), and the expected payoff to B is E4(B). Then A
isan ESS if E4(A) > E4(B), with the additional requirement that if E4(A) =
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E4(B), then Eg(A) > Ep(B). In other words, agents of type A playing against
other agents of type A get at least as good payoff as any other type playing against
A. Then type A is stable against ‘invasion’ by any type B, and in the case of a
tie (Fa(A) = E4(B)) A can defeat B on ‘its own ground’, i. e. , A gets better
payoff from playing against B than B does from playing against itself. Thus, under
selective pressure the population tends to become occupied by those agents who
play according to the ESS.

The standard metaphor for the problem of cooperation is the prisoner’s dilemma
(PD) game [121, 124, 125, 126, 127, 128]. The PD is a two-player game that il-
lustrates well the paradox of the evolution of cooperation. Each agent in the PD
game can behave either cooperatively (C) or defectively (D) in an interaction with
another agent. If both players choose C, both get a payoff of magnitude R; if one
defects while the other cooperates, D gets the biggest payoff of the game, T, while
C gets the smallest payoff, S. If both defect, both get P. The payoffs to the agents
are illustrated in Table 3.1, where the first number in each entry indicates the payoff
to the row agent and the second number indicates the payoff to the column agent.
With

T>R>P>S (3.1)
the paradox is evident: the strategy D is unbeatable, because independent of the
choice of the other agent, playing D is the ‘safe choice’ that always yields a higher
payoff than playing C (P > S, T > R). However, if both players play C, they get
higher payoff than if both would play D.

The PD game can be illustrated with a situation in which two players decide
whether or not to award the other player a price of worth ¢ > 0. If a player
awards the price to the other player, the donor will suffer a loss of ¢, whereas the
recipient will benefit b > ¢ due to a third party who has increased the awarded
amount for a token of altruistic behaviour. Mutual cooperation thus pays a net
benefit of R = b — ¢, whereas mutual defection results in payoff P = 0. With
unilateral cooperation, defection yields the highest payoff, T = b, at the expense
of the cooperator bearing the cost S = —e. In fully mixed populations, i. e.
in populations where each agent can interact with any other agent, the only ESS
outcome is to defect [34].

Another game that has been widely used in studies of cooperative behaviour
is the snowdrift (SD) game, which is also known as the hawk-dove or the chicken
game [32, 37, 129, 130]. The SD game is similar to the PD game, except for the
order of payoffs in Table 3.1. In the SD game

T>R>S>P (3.2)

The SD game can be illustrated with a situation in which two cars are caught in a
blizzard and there is a snowdrift blocking their way. The cars are equipped with
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Table 3.1: Payoffs to the agents in a two-player game. Agent 1 chooses an action
from the rows and agent 2 from the columns. By convention, the payoff to the row
agent is the first payoff given, followed by the payoff of the column agent.

shovels, and the drivers have two choices: either start shoveling the road open (C)
or remain in the car (D). If the road is cleared, both drivers gain the benefit b of
getting home. On the other hand, clearing the road requires some work, and a cost
c can be assigned to it (b > ¢ > 0). If both drivers are cooperative and willing to
shovel, this workload is shared between them, and both of them gain total benefit
of R = ¢ — b/2. If both choose to defect, i.e. remain in their cars, neither one gets
home and thus both obtain zero benefit P = 0. If only one of the drivers shovels,
both get home, but the defector avoids the cost and gains the benefit ' = b, whereas
the cooperator’s benefit is reduced by the workload, i.e. S = b—c¢. The best action
depends on the action of the co-player: defect if the other player cooperates and
cooperate if the other defects. A simple analysis shows that the game does not have
an ESS [15], if the agents use only pure strategies.® This leads to stable existence
of cooperators and defectors in well-mixed populations [37].

Other models that have been applied for modelling cooperative behaviour in-
clude the ultimatum game [131] and the public goods game [132]. In the ultima-
tum game, two players are offered a gift, provided they manage to share it. One of
the players—the proposer—suggests how to split the offer, the other player—the
responder—can either agree or reject the deal. In each case the decision is final. A
rational player should accept the smallest positive offer, because the alternative is
getting nothing, and correspondingly a rational proposer who believes that his/her
opponent is rational should claim almost the whole sum. On the other hand, if the
responder rejects, both players get nothing. In the public goods game, N play-
ers can either contribute or refuse to contribute to the common collection, by say
one unit of money. Then these individual contributions are multiplied by a factor
1 < r < N, and divided between all the players independent of their contribution.
Thus, every individual player is better off defecting than cooperating, no matter
what the other players will do. If N = 2, the public goods game reduces to the PD

LIf an agent plays a pure strategy he/she can choose either to cooperate or to defect with proba-
bility one, but he/she is not allowed to use a strategy which mixes either of these actions with some
probability ¢ € (0,1). See section 2.3.
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game.

A common feature of all these models of cooperative behaviour is that for a
rational agent it pays off to be defective rather than cooperative. By contrast, ex-
periments on human players, for example, have proved that in real social situations
people show cooperative behaviour [24, 122]. Thus, the theoretical models as such
fail to describe the reality appropriately. However, if one adds some features to
these theoretical models, they can more successfully account for the existence of
cooperative behaviour. For instance, if the PD game is iterated such that the same
agents have opportunities for repeated interactions, an agent who cooperates only
with those agents who reciprocate cooperatively will be favoured by natural selec-
tion [121, 133]. The reciprocity can also be indirect, in which case cooperative
strategies directed towards recipients that have helped others in the past are re-
warded [134, 133]. The deficiency of these models of reciprocal interaction is that
they assume that individuals can adopt more or less complex strategies that take
into account the past history of their interactions with other individuals, or that the
individuals are capable of recognizing other individuals in some depth to recognize
their characteristics.

Another approach for modifying these theoretical models is to introduce some
structure for the agent population. Several studies have revealed that especially a
spatial structure in agent population usually helps sustain cooperative bevaviour.
Typically, a spatially structured population consists of agents that are set on a two
dimensional lattice. Then, the agents on the lattice interact with their nearest neigh-
bours, and gain payoff from each pairwise interaction according to the payoffs of
Table 3.1. Nowak et al. pointed out that if the payoffs correspond to the PD game,
Eq. (3.1), spatial structure can sustain cooperation at considerable levels depending
on the entries of the payoff matrix of Table 3.1 [36, 124]. The spatial structure has
also proven to sustain cooperation in the ultimatum game [135] and in the pub-
lic goods game [136, 137]. Even in studies where non-spatial factors have been
believed of being responsible for the persistence of cooperative behaviour, it has
turned out that without spatial structure, cooperation can not be maintained. For
instance, one could think that if the players in a PD game contributed by a non-
fixed amount, starting from a small contribution, and if the amount of investment
could evolve in time, increased levels of cooperation would emerge. This fea-
ture was investigated by Doebeli and Knowlton in [138], and by Killingback et
al. in Refs. [125, 126]. Results from these studies suggested that with variable
investments, increased levels of cooperation can be obtained. However, Scheur-
ing recently pointed out that the maintenance of cooperation in variable investment
models is connected to the spatial structure of the agents in these models, and that
in unstructured populations cooperative behaviour disappears [128]. In relation to
the SD game, Hauert et al. lately found that spatial structure tends to inhibit coop-
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erative behaviour instead of boosting it [37]. This result was surprising, as inter-
mediate levels of cooperation persist in unstructured SD games, and the common
tendency has appeared to be that spatial structure is usually beneficial for sustained
levels of cooperation.

Hauert et al. obtained their result by applying the usual dynamical rule of evo-
lutionary game theory, the so-called replicator dynamics [15], in a slightly var-
ied form to the agent population. This mechanism can be viewed as depicting
Darwinian evolution, where the fittest have the largest chance of survival and re-
production, the success being the better, the better an individual agent’s fitness is
compared to the average fitness of the whole population of agents:

1 dF; ul
ﬁd—t’ =Ui(F) - Y FU(F), i=1,...,N. (3.3)
v =1

Eqg. (3.3) describes time evolution of the population densities of N types of agents,
when F; is the proportion of agents of type 4, Zﬁil F; = 1, and Uy(F) is the
expected fitness of agents of type i, when the composition of the population is
F = (Fy,...,Fy).

The use of replicator dynamics is justified if one considers time scales that
are much longer than the lifetime of an individual agent. However, living organ-
isms act on time scales that are shorter than their own lifetime. In relation to this,
one can ask whether cooperative behaviour could arise as a consequence of the
adaptive behaviour of the individual agents when they try to succeed in their en-
vironment. Existence of cooperative behaviour could then be a manifestation of
self-organization in a complex adaptive system, possibly realized through some
sort of learning, rather than a consequence of natural selection that has favoured
‘cooperative genes’.

In order to investigate whether the adaptive responses of agents on relatively
short time scales can give rise to cooperative behaviour—and if yes, to what extent—
we studied a spatial snowdrift game in (Publication VI). We chose to consider the
spatial SD, because the results of Hauert et al. in [37] provided a ready basis for
comparative study. Our approach for modelling the effect of spatial structure to
the SD was similar to that of Hauert et al. , except that we replaced replicator
dynamics with an adaptive rule which models short-term responses to the environ-
ment. Our adaptive rule governs the decisions of the agents at consecutive time
steps, instead of the reproductive success of different strategy genotypes in consec-
utive agent generations. One can think that the adaptive agents in our model are
endowed with primitive intelligence—they consider the state of their environment
fixed, and decide what their strategy should be to get the most payoff. The adaptive
rule that we have applied to the spatial SD is similar to the rule that was applied to
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the MG by Reents et al. [104] (see last paragraph of section 2.8.1). Our numerical
results and analytic inference indicate that application of such adaptive rule results
in cooperation levels which differ to a large extent from those obtained using the
replicator dynamics. Next, we present our version of spatially structured snowdrift
game and summarize results obtained from its analysis.

3.2 Spatial snowdrift game with myopic agents

In order to study the effect of spatial structure on the SD game, we set the agents
on a regular two-dimensional square lattice consisting of m cells. We identify
each cell by an index ¢ = 1,...,m which also refers to its spatial position. Each
cell, representing an agent, is characterized by its strategy s;, which can be either
to cooperate (s; = 1) or to defect (s; = 0). The spatio-temporal distribution
of the agents is then described by S(t) = (s1(t),..., sm(t)). Then each agent
interacts with his/her n nearest neighbours. We use either a Moore neighbourhood,
in which case each agent has n = 8 neighbours, or a von Neumann neighbourhood
in which case each agent has n = 4 neighbours. We require that an agent plays
simultaneously with all his/her n neighbours, and define the payoffs for this (n +
1)-player game such that an agent ¢ who interacts with n cooperators and n,
defectors, n’, + n!; = n gains a benefit of

u;(s; =0) niT + ni,P (3.4)
ui(s;i=1) = n'R+nhS (3.5)

from defecting or cooperating, respectively. The letters in Egs. (3.4) and (3.5) refer
to the payoffs in Table 3.1 with the ordering of Eq. (3.2).

For determining their strategies, the agents are endowed with primitive decision-
making capabilities. The agents retain no memory of the past, and are not able
to predict how the strategies of the neighboring agents will change. Every agent
simply assumes that strategies of other agents within his/her neighborhood remain
fixed, and chooses an action that maximizes his own payoff. In this sense the agents
are myopic. The payoff is maximized, if an agent (a) defects when u;(0) > wu;(1),
and (b) cooperates when u;(1) > u;(0). If (¢) u;(0) = u;(1) the situation is indif-
ferent. Using Egs. (3.4) and (3.5) we can connect the preferable choice of an agent
and the payoffs of the game. Let us denote

1 S—-P
—=14_—. .
; +T—R (3.6)
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Then, if
%i > 1 — r defecting is profitable, or if (3.7
%i < 1 —r cooperating is profitable, or if 38)
%i = 1 — r choices are indifferent. (3.9)

Thus, for each individual agent, the ratio » determines the following decision
boundary:
0 =n(1-r), (3.10)

which depends on the neighbourhood size n and the “temptation” parameter r.
Because r is determined only by the differences T'— R and S — P, we can fix two
of the payoff values, say R = 1 and P = 0. Based on the above, we define the
following rules for the agents:

1. If an agent 3 plays at time ¢ a strategy s;(¢) € {0,1} for which u;(s;) >
u;(1 — s;), then at time ¢ + 1 the agent plays s;(t + 1) = s;(t).

2. If an agent 7 plays at time ¢ a strategy s;(t) € {0,1} for which u;(s;) <
u;(1 — s;), then at time ¢ 4 1 the agent plays s;(t + 1) = 1 — s;(t) with
probability p, and s;(¢t + 1) = s;(t) with probability 1 — p.

Hence, the strategy evolution of an individual agent is determined by the current
strategies of the other agents within his/her neighborhood, with the parameter p
acting as a “regulator” which moderates the rate of changes.

3.3 Summary of results

In (Publication VI) we have studied the above described spatial snowdrift model.
We have specifically analyzed the behavior of the cooperator density F., and equi-
librium lattice configurations both by analytic reasoning and by numerical simula-
tions.

We have shown analytically that

1-r <F < 1 .
2—r r+1
This result holds for any lattice or network that has a fixed number of nearest
neighbours per lattice site or node. Moreover, by studying local equilibrium con-

figurations of elementary blocks, like those in Fig. (3.1), on an infinite lattice, we
obtained the stricter limits of Table 3.2 for F.

(3.11)
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i Ty Nc\d 2 Nc|c < Fc,L Fc,U
1 0 1/8 8 7 3/4  8/9
2 1/8 2/8 7 6 2/3 4/5
3 2/8 3/8 6 5 1/2 2/3
4 3/8 4/8 5 4 1/2 2/3
5 4/8 5/8 4 3 4/9 1/2
6 5/8 6/8 3 2 1/3  1/2
7 6/8 7/8 2 1 2/9 1/3
8 7/8 8/8 1 0 1/9 1/4

Table 3.2: Limits for the equilibrium fraction of cooperators based on repeating
elementary configuration blocks. When r; < r < ry, the number of cooperators
in each defector’s neighborhood N4 must be at least 9 — 7 and the number of
cooperators in each cooperator’s neighborhood N at most 8 — i. Considering
possible repeating configuration blocks which fulfill these conditions, we obtain
lower limits F¢ 7, and upper limits F iy for the density of cooperators.
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Figure 3.1: Examples of elementary configuration blocks which can be repeated
without overlap to fill an infinite lattice, for various values of ». The numbering
refers to 4 in Table 3.2. A black cell denotes a defector while an empty cell denotes
a cooperator. For a particular number the lower limit of density is obtained by
filling the lattice with the blocks on the left, and the upper by using the blocks on
the right.
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In numerical simulations, we have used random sequential updating so that
each simulation round, the strategies of all agents are updated in random order.
Each strategy is updated using the above rules, which assume that the strategies in
the neigbourhood of an agent remain fixed. One simulation round consists of going
through all the agents in this fashion. In the following, the time scale is defined in
terms of these simulation rounds.

Fig. (3.2) shows results from numerical simulations with m = 100 x 100-
lattice with periodic boundary conditions for a Moore neighborhood (n = 8). In
the middle panel we show F, as a function of r of Eq. (3.6). The dotted lines
in the middle panel indicate the upper and lower limits of Eq. (3.11), the solid
lines indicate the upper and lower limits of Table 3.2, and the dashed diagonal line
is F, = 1 — r, corresponding to the fraction of cooperators in the fully mixed
case [25, 37, 15]. The fraction of cooperators (F.) is seen to follow a stepped
curve, with steps corresponding to » = i/n, where ¢ = 0,...,n. This is a natural
consequence of Egs. (3.7)-(3.8), where the decision boundary 6 = n(1 — r) can
take only discrete values.

The peripheral panels of Fig. (3.2) depict the central part of the 100 x 100-
lattice after 1000 simulation rounds using the Moore neighborhood and p = 0.1,
with white pixels corresponding to cooperators and black pixels to defectors. The
values of r have been selected so that the equilibrium situation corresponds to
each plateau of F illustrated in the central panel. The observed configurations are
rather polymorphic, and repeating elementary patterns like those in Fig. (3.1) are
not seen. This reflects the fact that the local equilibrium conditions can be satisfied
by various configurations; the random initial configuration and the asynchronous
update then lead to irregular-looking equilibrium patterns, which vary between
simulation runs. The patterns seem to be most irregular when r is around 0.5; this
is because then the equilibrium numbers of cooperators and defectors are close to
each other, and the ways to assign strategies within local neighborhoods are the
most numerous. To be more exact, there are (f) ways to distribute ¢ cooperators
in the 8-neighborhood, and if e.g. 3/8 < r < 4/8, i is at least 4 and at most 5,
maximizing the value of the binomial coefficient. Hence, the ways of filling the
lattice with these neighborhoods in such a way that the equilibrium conditions are
satisfied everywhere are most numerous as well.

Results obtained with a von Neumann neighbourhood (n = 4) are qualitatively
similar to those we have reported for a Moore neighbourhood (n = 8). Further
discussion can be found in (Publication VI).
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Figure 3.2: Example equilibrium configurations of defectors and cooperators on a
m = 100 x 100 lattice for various values of » when a Moore neighborhood is used.
The configurations were recorded after 77 = 1000 simulation rounds. Only the
central part of the lattice is shown for the sake of clarity. The middle panel depicts
the average fraction of cooperators F. in the whole population as a function of
the temptation r (squares), together with the upper and lower limits of Eq. (3.11)
(dotted lines) and the limits of Table 3.2 (solid lines). The values of F. are averages
over the last 500 simulation rounds and the dashed diagonal line is F, = 1 — r,
corresponding to the fraction of cooperators in the fully mixed case.
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3.4 Conclusions

The equilibrium densities of cooperators that we have observed differ largely from
those resulting from applying the replicator dynamics [37]. With our strategy evo-
lution rules, cooperation persists through the whole temptation parameter range as
can be seen from Fig. (3.2). By contrast, with the replicator dynamics based ap-
proach the fraction of cooperators in spatially structured populations is below the
fraction of cooperators in fully mixed populations for a wide range of temptation
parameter values. Furthermore, with replicator dynamics cooperators totally van-
ish from spatially structured populations when r is larger than a critical r. [37].
Hence, we argue that no conclusions on the effect of spatiality on the snowdrift
game can be drawn without taking into consideration the strategy evolution mech-
anism; local decision-making in a restricted neighborhood yields results which
are different from those resulting from the evolutionary replicator dynamics. This
should, in principle, apply for other spatial games as well. Care should especially
be taken when interpreting the results of investigations on such games: the utilized
strategy evolution mechanism should reflect the system under study. We argue that
especially when modeling social or economic systems, there is no a priori reason
to assume that generalized conclusions can be drawn based on results using the
evolution inspired replicator dynamics approach, where high-payoff strategies get
copied and “breed” in proportion to their fitness. As we have shown here, local
decision-making with limited information (neighbor strategies are known payoffs
are not) can result in different outcome.
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