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Band structures for nonlinear photonic crystals
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We present a method for calculating band structures for one-dimensional Kerr nonlinear photonic
crystals, which exhibit an optical switching function. The band structure shows the allowed modes
for the nonlinear photonic crystal as a function of the magnitude of the nonlinearity. The dielectric
band is found to be most suited for the control beam as it is least effected by the nonlinearity. The
third band is more sensitive to the nonlinearity and thus suited for the probe beam. Also the
wavelength dependence of the switching function can be estimated using our method. The applied
Fourier method is found to be robust in describing the effect of the nonlinearity20@2 American
Institute of Physics.[DOI: 10.1063/1.1450054

I. INTRODUCTION structure cannot be neglected in the design of applications.
We present a systematic study of the effect of the non-
Photonic crystals are periodic structures of dielectric maiinearity to different bands. This allows us to conclude which
terials with alternating regions of large and small dielectrichands are best suited for control and probe beams.
constantg. Scattering of light from the periodic structure and
interference causes a band structure for light to appear, i.64, FOURIER METHOD
light with only certain frequencies and corresponding wave ] . . .
vectors can propagate in the structure. In this article we con- Parameters that define a one-dimensional photonic crys-
sider photonic crystals in which one of the materials is non{@l are dielectric constants of the alternating layegsand
linear, and which is expected to exhibit a band structure thatz: 'elative thickness of one of the dielectric layérshe
changes dynamically when light travels through. The nonlin€ight of the crystah, and the type of the material surround-
earity is taken to be of the Kerr type, that is, the refractivel"d the photonic crystalsee Fig. 1. Lengths are expressed
index depends linearly on the local intensity of light inside &S fractions of the perioB. The periodicity is in they direc-
the material. This can be readily used as an all-optical on—oﬁ’on',The structure IS as;umed to be |nf|n!te n xljcerectlop,
switch, because the frequency/wave vector modes that a@t limited in thez direction. One of the dielectric materials,

allowed for the probe beam can be controlled with a high-Safy’ the material W'th??' |s_taken to be .nonlln.ear and.of
intensity control beam. thickness|. Kerr nonlinearity of the dielectric material

We calculate the complete band struct(oe dispersion changes its propgrties .depending on the in'Fensity of Iig'ht
relation) for a nonlinear photonic crystal. Previous work in I(y,z). Thus the dielectric constant of the nonlinear photonic

this field has concentrated on studying the propagation O(frystal IS
pulses in nonlinear photonic crystals, which provides knowl- €1, —PR2<y<—1/2,
edge about switching function for certain modes of ligfit. enu(y.2)= o<y<Pl2 (1

Our work gives complementary information about which en- 3)
ergy bands or band gaps and which modes are most affected eatxVI(y2),  —l2sy<li2

by the nonlinearity. The approach to this problem is alsowhere y(® is the Kerr coefficient.

reflected in the choice of the simulation method, which is a  The simulation method for linear photonic crystals is
Fourier method in the frequency/wave vector space. Theutlined in Ref. 11. Here the method is extended for nonlin-
nonlinearity is implemented iteratively. The method is simpleear materials. Maxwell’s equations in cgs units for time-
and robust and can be extended into 2—3 dimensions. Thearmonic electric and magnetic fields with frequeneyas-
change in the band structure is simulated for plane wavesuming transverse electric polarization with respect toxthe
but can be obtained for pulses by constructing the pulse ouixis are

of suitable frequency components.

A Fourier method for infinite nonlinear photonic crystals — M Ey(y,2)=d,Hx(y,2), 2)
has been presenté8Our method is different in the way we ¢
choose the mode ansatzes and eigenvalue equations. The in- ;| c 1
tensity distributions and modes inherently include the effects — —H,(y,2) + —dy| ———= dyH(Y,2) | = d,E\(Y,2),
. . . Cc lw SNL(y)
of interfaces or boundaries, whose influence on the band 3
. . c
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z where K, n=— 8m_n— Kmkn[ /& ]m_n with scaled variables
kn=knc/(iw) andX=\c/(iw). Solution is the sum of the
eigenvectors, which are denoted Yy

2(N+1)

H
= ngl C v eMnZ, (10)

E

The unknown coefficients are denoted ®y, which consti-
tute a vectorC. They are determined from the boundary
conditions by constituting a matrix equation for equating the
field components on both sides of the interfaces

& ——————p

LoP M, M, 0] &
FIG. 1. Geometry of a one-dimensional photonic crystal with pefod 0 M M Ci | =0, (11
Thickness of the nonlinear layerliend the height of the crystal is denoted I i Cu

by h. The crystal is infinite in the andy directions and limited in the . .
di{ecﬁon. Y Y where the subscripts denote the different areas by |, I, and

Ill corresponding to the area above the crystal, photonic

crystal area, and the area below the crystal, respectively, and

M =[v,eM2. . vy, er2N+17],
Equations(2) and(3) fully determine the solution while the The band structure consists of thBwP/(27c),
E.(y,z) component can be derived from E#). Fourier  kp/(24)] points in which there exists a solution as defined
type ansatzes for periodic field distributions arepy Egs.(10) and (11). The band structure is determined by
used:  H(y,2) =3 Hy(kw)e’e Y and E,(y,2)  solving the eigenvalue problef&q. (9)] and composing the
=3,En(k,w)eMe*Y, wherek is the wave vector antt,  poundary value matrix [Eq. (11)] at each
=k+27n/P. The nonlinear dielectric constant and its in- [wP/(27c),kP/(24)] point. Zeros of the determinant of

verse are expanded as Fourier series the boundary value matrix correspond to the band structure
_ points.
ent(y)=2>, e,e/2™YP (5) In the nonlinear case the wave vector/frequency mode of
n

the control plane wave is defined. The fi¢H,E] is solved
for this mode, at first step assuming a linear material. Ehe
gl2mny/P. (6) component of the electric field is solved from Hd) and
n used to calculate the Fourier series representation for the
Using Eq.(1) and the Fourier series representation for them_tensny d|str|b_L|t|oq Eq(7). The EZ. component is perpen-
intensity distribution dicular t_o the direction of propaga_uon and thus EE;ecqm— .
ponent is several orders of magnitude smaller. The intensity
" distribution is normalized to have the same average energy at
|(Y):; Ine" (7)  each step. The coefficients, are substituted to Eq8) giv-
ing the coefficients ok (y) [Eg. (5)] for the next iteration
the coefficients, including the nonlinearity are found to be step. In the next iteration step the band structure has changed
and thus the new zero of the determinant having the same
snz(sz—sl)l—sinc{nwl—) frequen_cy but_ diﬁ_ere_nt wave vector is solved. The field
P P [H,E], intensity distribution, and:, (y) are recalculated.
1 The iteration is continued until the intensity distribution does
+e180p+ 52 s msin{kJr(m—n)WE}. (8 not change anymore. The iterative process gives the dielec-
m tric function Eq.(5) of the nonlinear material, which is then
used to calculate the band structure.

1 1
=25

enL(y) a

The coefficients of the inverse dielectric function Eg). are
achieved by inverting the series E¢p). Fourier ansatzes
H,(y,z) andE(y,z) are substituted in the Maxwell's equa-
tions (2) and (3), which are then multiplied by~ *m' and
integrated from—P/2 to P/2. The Fourier series are trun-  Band structures for linear and nonlinear photonic crys-
cated to—N...N components and the Fourier coefficients oftals are shown in Fig. 2. The parameter values defining the
the fields are represented as  vectorsH  geometry of the photonic crystal are dielectric constants
=[H_n....Ho,....HN]" and E=[E_y,...Eq,....En]". =1, £,=13, width of the nonlinear layet=0.2P, and
This leads to a matrix form which is a diagonal eigenvalueheight of the Crystah:0_4P_ These parameter values are
problem where the eigenvalues argthe coefficients of the chosen in order to maximize the lowest band gap of the

Ill. BAND STRUCTURES

exponentialz dependence of the fields linear photonic crystal in reasonable limits. The band gap
0 e H s 0 1in size widens with increasing difference betweenand ¢,
m=n [ 5| ™" } } (99  and/or difference in their thicknesses. The heightieter-
Kimnn 0 E 0  6mnllE mines which modes can exist in taelirection, i.e., having a
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kP/(2n) . 3. The change of the frequenaP/(2c) of the t ree owest energy
bands atkP/(27)=0.5 compared to the bands of the linear crystal as a
| e ———————————— ———— function of the control wave amplitud&. The lowest energy band, i.e., the
T dielectric band(dashed curveand second lowest energy band, i.e., the air
R band (dotted curve are affected less by the nonlinearity compared to the
0.8+ el e 1 third lowest energy bangsolid curve.

50.6( It can be seen from Fig. 2 that the energy bands appear at
§ decreasing frequencies as a function of the magnitude of the
%04_' nonlinearity, allowing the switching function to be per-

formed. The probe mode is taken to be at the edge of the

Brilliouin zone, i.e., having a wave vect&P/(27)=0.5

02p .. and the probe intensity is assumed to be so low that it does
not change the band structure. The first and third energy

bands block the probe when the control wave is inside the

85 0 0.5 crystal, while the second energy band can be used in the
kP/(2m) opposite way.
FIG. 2. Lowest energy bands and band gaps of lifdatted curvesand The change of the three lowest energy bands of the non-

nonlinear(solid curve$ photonic crystals. The Kerr coefficient of the non- linear crystal compared to the energy bands of the linear
linear material isy®=0.01 and the amplitudes of the control plane waves crystal at the band eddé&P/(2#)=0.5] are shown in Fig.
are: (@) A=20 and(b) A=40. The band structure is shown in scaled units: 3. It can be seen that the lowest and second lowest energy
wave vectorkP/(27) and frequencywP/(27c), wherec is the speed of bands. called the dielectric band and the air band. respec-
light in vacuum. g ’ " . ’ P
tively, are affected less by the nonlinearity compared to the
third lowest energy band. The dielectric band is ideal for the
control beam mode. First, the dielectric band does not
change much as a function of the magnitude of the nonlin-
k, modes in the region of the lowest bands. earity aIIowm.g the (.:ont'rol .bea.m tq travel through the crystal.
. . L Second, the intensity distribution is concentrated on the non-
Metallic boundaries are used, because metallization e . . . : :
. o inear material, thereby changing the dielectric constant in
flects light with infrared wavelength and thus prevents leak-

age in thez direction. The number of Fourier components ithe greatest possible amount. On the other hand the switch-

chosen to béN=100. The optimal value dfl increases as a g]r?e?f tg(;r?éo\t/)viigaIiﬁ;r?negit(r;gr?dluC:/an\?v?tthvgtlr:) \;[Vh:n:hllri(_j
function of complexity of the dielectric functiosy, (y). The ay ' 9 gl P

Kerr coefficient is taken to bg(®=0.01. This is not a lim- tude of the control wave.
iting factor since if the numerical value oft®) is changed
the same results are achieved by multiplying the control fiel
amplitude correspondingly. Control plane wave with normal- ~ The nonlinear photonic crystal can be used as an all-
ized frequencywP/(27c)=0.1 is considered. optical switch by applying a high-intensity control beam to
The simulation method is found to be stable for nonlin-dynamically change the band structure. Possible nonlinear
ear change i, up toey =2.5X ¢, for this particular crys- materials for applications are semiconductors due to their
tal geometry and number of Fourier coefficieits The  suitability for integration and existing fabrication techniques.
method is robust in describing the nonlinearity and in prin-Other possibilities include glasses, polymers, and organic
ciple no restrictions for the magnitude of the nonlinearity arematerials in which high Kerr coefficientg® have been ob-
found. Larger nonlinearities can be simulated by increasingerved.
N. However, in practice limitations are set by computational ~ We have used GaAs as an example of a feasible nonlin-
time and also the higher order terms in power&diave to  ear material. The band structures for GaAs are shown in Fig.
be included. 4 for two control beam amplitudes. The changes of the band

wave vectork,. The straight bands in Fig. 2 correspond to
the k, modes. A smalh value is chosen in order to have no

CJV' PARAMETERS FOR ALL-OPTICAL SWITCHING
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V. CONCLUSIONS

We have presented band structure simulations for one-
dimensional nonlinear photonic crystals. They are possible
candidates for all-optical switching applications due to the

506 dynamic change in the transmittance as a function of the
Q : . . . .

8 control beam intensity. We outlined a Fourier method which
% is found to be a robust and clear method for nonlinear band

structure calculations. The completk,) band structure
(dispersion relationshowing all allowed modes inside the
photonic crystal was calculated. This provides complemen-
tary information to the previous studies of pulse propagation
in nonlinear periodic structures. We found that the dielectric
band is most suitable for the control beam as it changes less
than the third band allowing the control beam to travel
through the crystal. The third energy band can be used to
perform the switching function for the probe beam.

Our method differs from the Fourier method already de-
veloped for nonlinear band structure calculatibhsén the

506 approach the “standard” Fourier ansatz is substituted into
§ the wave equation which gives an eigenvalue equation with
%04 eigenvalues §/c)? and eigenvectors consist of all magnetic

field components. Our ansatz has a nonperiodic dependence
on the third direction denoted tw The diagonalized eigen-
value equation has thedependence of the fields as the ei-
genvalue and the eigenvectors are the field components par-
0% - o allel to the interfaces. In this way we have included the effect
e kP/{2n) ' of the finite height of the one- or two-dimensional photonic
crystal in the calculations. The height of the photonic crystal

FIG. 4. Lowest energy bands and band gaps of a photonic crystal made ¢{35 5 considerable effect to the band structure influencing the
GaAs (solid curve$ and of a linear photonic crystdqtotted curvek for

comparison. In(a) and (b) the control intensities are 1 and 2 kW/&m deggn of the appllcatlons. NOte_that altho_ljgh this property

respectively. The Kerr coefficient of GaAs ig¥=—0.04. Otherwise the ~Might suggest that the method is only suited for one- and

parameter values are the same as in Fig. 2. two-dimensional calculations, in fact three-dimensional cal-
culations can be realized by stacking multiple layers.

structure shown here would require intensities on the order
of 1-2 kW/cnf. GaAs is a well known compound semicon- ACKNOWLEDGMENTS
ductor with existing fabrication methods for micrometer
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