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Band structures for nonlinear photonic crystals
A. Huttunena) and P. Törmä
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We present a method for calculating band structures for one-dimensional Kerr nonlinear photonic
crystals, which exhibit an optical switching function. The band structure shows the allowed modes
for the nonlinear photonic crystal as a function of the magnitude of the nonlinearity. The dielectric
band is found to be most suited for the control beam as it is least effected by the nonlinearity. The
third band is more sensitive to the nonlinearity and thus suited for the probe beam. Also the
wavelength dependence of the switching function can be estimated using our method. The applied
Fourier method is found to be robust in describing the effect of the nonlinearity. ©2002 American
Institute of Physics.@DOI: 10.1063/1.1450054#
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I. INTRODUCTION

Photonic crystals are periodic structures of dielectric m
terials with alternating regions of large and small dielect
constants.1 Scattering of light from the periodic structure an
interference causes a band structure for light to appear,
light with only certain frequencies and corresponding wa
vectors can propagate in the structure. In this article we c
sider photonic crystals in which one of the materials is n
linear, and which is expected to exhibit a band structure
changes dynamically when light travels through. The non
earity is taken to be of the Kerr type, that is, the refract
index depends linearly on the local intensity of light insi
the material. This can be readily used as an all-optical on–
switch, because the frequency/wave vector modes that
allowed for the probe beam can be controlled with a hig
intensity control beam.

We calculate the complete band structure~or dispersion
relation! for a nonlinear photonic crystal. Previous work
this field has concentrated on studying the propagation
pulses in nonlinear photonic crystals, which provides kno
edge about switching function for certain modes of light.2–9

Our work gives complementary information about which e
ergy bands or band gaps and which modes are most affe
by the nonlinearity. The approach to this problem is a
reflected in the choice of the simulation method, which i
Fourier method in the frequency/wave vector space. T
nonlinearity is implemented iteratively. The method is simp
and robust and can be extended into 2–3 dimensions.
change in the band structure is simulated for plane wa
but can be obtained for pulses by constructing the pulse
of suitable frequency components.

A Fourier method for infinite nonlinear photonic crysta
has been presented.10 Our method is different in the way w
choose the mode ansatzes and eigenvalue equations. Th
tensity distributions and modes inherently include the effe
of interfaces or boundaries, whose influence on the b
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structure cannot be neglected in the design of applicatio
We present a systematic study of the effect of the n

linearity to different bands. This allows us to conclude whi
bands are best suited for control and probe beams.

II. FOURIER METHOD

Parameters that define a one-dimensional photonic c
tal are dielectric constants of the alternating layers«1 and
«2 , relative thickness of one of the dielectric layersl, the
height of the crystalh, and the type of the material surround
ing the photonic crystal~see Fig. 1!. Lengths are expresse
as fractions of the periodP. The periodicity is in they direc-
tion. The structure is assumed to be infinite in thex direction,
but limited in thez direction. One of the dielectric materials
say, the material with«2 , is taken to be nonlinear and o
thickness l. Kerr nonlinearity of the dielectric materia
changes its properties depending on the intensity of li
I (y,z). Thus the dielectric constant of the nonlinear photo
crystal is

«NL~y,z!5H «1 , 2P/2,y,2 l /2,

l /2,y,P/2

«21x~3!I ~y,z!, 2 l /2<y< l /2

, ~1!

wherex (3) is the Kerr coefficient.
The simulation method for linear photonic crystals

outlined in Ref. 11. Here the method is extended for non
ear materials. Maxwell’s equations in cgs units for tim
harmonic electric and magnetic fields with frequencyv as-
suming transverse electric polarization with respect to thx
axis are

2
iv«NL~y!

c
Ey~y,z!5]zHx~y,z!, ~2!

2
iv

c
Hx~y,z!1

c

iv
]yS 1

«NL~y!
]yHx~y,z! D5]zEy~y,z!,

~3!

Ez~y,z!5
c

iv«NL~y!
]yHx~y,z!. ~4!il:
8 © 2002 American Institute of Physics
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Equations~2! and ~3! fully determine the solution while the
Ez(y,z) component can be derived from Eq.~4!. Fourier
type ansatzes for periodic field distributions a
used: Hx(y,z)5(nHn(k,v)elzeikny and Ey(y,z)
5(nEn(k,v)elzeikny, where k is the wave vector andkn

5k12pn/P. The nonlinear dielectric constant and its i
verse are expanded as Fourier series

«NL~y!5(
n

«nei2pny/P, ~5!

1

«NL~y!
5(

n
F1

«G
n

ei2pny/P. ~6!

Using Eq. ~1! and the Fourier series representation for
intensity distribution

I ~y!5(
n

I neikny ~7!

the coefficients«n including the nonlinearity are found to b

«n5~«22«1!
l

P
sincS np

l

PD
1«1d0,n1

1

P (
m

x~3!I m sincFk1~m2n!p
l

PG . ~8!

The coefficients of the inverse dielectric function Eq.~6! are
achieved by inverting the series Eq.~5!. Fourier ansatzes
Hx(y,z) andEy(y,z) are substituted in the Maxwell’s equa
tions ~2! and ~3!, which are then multiplied bye2 ikmy and
integrated from2P/2 to P/2. The Fourier series are trun
cated to2N...N components and the Fourier coefficients
the fields are represented as vectorsH
5@H2N ,...,H0 ,...,HN#T and E5@E2N ,...,E0 ,...,EN#T.
This leads to a matrix form which is a diagonal eigenva
problem where the eigenvalues arel, the coefficients of the
exponentialz dependence of the fields

F 0 2«m2n

Km,n 0 G FHE G5l̃Fdm2n 0

0 dm2n
G FHE G , ~9!

FIG. 1. Geometry of a one-dimensional photonic crystal with periodP.
Thickness of the nonlinear layer isl and the height of the crystal is denote
by h. The crystal is infinite in thex and y directions and limited in thez
direction.
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whereKm,n52dm2n2 k̃mk̃n@1/«#m2n with scaled variables
k̃n5knc/( iv) and l̃5lc/( iv). Solution is the sum of the
eigenvectors, which are denoted byvn

FHE G5 (
n51

2~N11!

Cnvnelnz. ~10!

The unknown coefficients are denoted byCn , which consti-
tute a vectorC. They are determined from the bounda
conditions by constituting a matrix equation for equating t
field components on both sides of the interfaces

FM I M II 0

0 M II M III
GF CI

CII

CIII

G50, ~11!

where the subscripts denote the different areas by I, II,
III corresponding to the area above the crystal, photo
crystal area, and the area below the crystal, respectively,
M5@v1el1z...v2N11el2N11z#.

The band structure consists of the@vP/(2pc),
kP/(2p)# points in which there exists a solution as defin
by Eqs.~10! and ~11!. The band structure is determined b
solving the eigenvalue problem@Eq. ~9!# and composing the
boundary value matrix @Eq. ~11!# at each
@vP/(2pc),kP/(2p)# point. Zeros of the determinant o
the boundary value matrix correspond to the band struc
points.

In the nonlinear case the wave vector/frequency mode
the control plane wave is defined. The field@H,E# is solved
for this mode, at first step assuming a linear material. TheEz

component of the electric field is solved from Eq.~4! and
used to calculate the Fourier series representation for
intensity distribution Eq.~7!. The Ez component is perpen
dicular to the direction of propagation and thus theEy com-
ponent is several orders of magnitude smaller. The inten
distribution is normalized to have the same average energ
each step. The coefficientsI m are substituted to Eq.~8! giv-
ing the coefficients of«NL(y) @Eq. ~5!# for the next iteration
step. In the next iteration step the band structure has chan
and thus the new zero of the determinant having the sa
frequency but different wave vector is solved. The fie
@H,E#, intensity distribution, and«NL(y) are recalculated.
The iteration is continued until the intensity distribution do
not change anymore. The iterative process gives the die
tric function Eq.~5! of the nonlinear material, which is the
used to calculate the band structure.

III. BAND STRUCTURES

Band structures for linear and nonlinear photonic cr
tals are shown in Fig. 2. The parameter values defining
geometry of the photonic crystal are dielectric constants«1

51, «2513, width of the nonlinear layerl 50.2P, and
height of the crystalh50.4P. These parameter values a
chosen in order to maximize the lowest band gap of
linear photonic crystal in reasonable limits. The band g
size widens with increasing difference between«1 and «2

and/or difference in their thicknesses. The heighth deter-
mines which modes can exist in thez direction, i.e., having a
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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wave vectorkz . The straight bands in Fig. 2 correspond
the kz modes. A smallh value is chosen in order to have n
kz modes in the region of the lowest bands.

Metallic boundaries are used, because metallization
flects light with infrared wavelength and thus prevents le
age in thez direction. The number of Fourier components
chosen to beN5100. The optimal value ofN increases as a
function of complexity of the dielectric function«NL(y). The
Kerr coefficient is taken to bex (3)50.01. This is not a lim-
iting factor since if the numerical value ofx (3) is changed
the same results are achieved by multiplying the control fi
amplitude correspondingly. Control plane wave with norm
ized frequencyvP/(2pc)50.1 is considered.

The simulation method is found to be stable for nonl
ear change in«2 up to«NL52.53«2 for this particular crys-
tal geometry and number of Fourier coefficientsN. The
method is robust in describing the nonlinearity and in pr
ciple no restrictions for the magnitude of the nonlinearity a
found. Larger nonlinearities can be simulated by increas
N. However, in practice limitations are set by computatio
time and also the higher order terms in powers ofE have to
be included.

FIG. 2. Lowest energy bands and band gaps of linear~dotted curves! and
nonlinear~solid curves! photonic crystals. The Kerr coefficient of the non
linear material isx (3)50.01 and the amplitudes of the control plane wav
are: ~a! A520 and~b! A540. The band structure is shown in scaled uni
wave vectorkP/(2p) and frequencyvP/(2pc), wherec is the speed of
light in vacuum.
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It can be seen from Fig. 2 that the energy bands appe
decreasing frequencies as a function of the magnitude of
nonlinearity, allowing the switching function to be pe
formed. The probe mode is taken to be at the edge of
Brilliouin zone, i.e., having a wave vectorkP/(2p)50.5
and the probe intensity is assumed to be so low that it d
not change the band structure. The first and third ene
bands block the probe when the control wave is inside
crystal, while the second energy band can be used in
opposite way.

The change of the three lowest energy bands of the n
linear crystal compared to the energy bands of the lin
crystal at the band edge@kP/(2p)50.5# are shown in Fig.
3. It can be seen that the lowest and second lowest en
bands, called the dielectric band and the air band, res
tively, are affected less by the nonlinearity compared to
third lowest energy band. The dielectric band is ideal for
control beam mode. First, the dielectric band does
change much as a function of the magnitude of the non
earity allowing the control beam to travel through the cryst
Second, the intensity distribution is concentrated on the n
linear material, thereby changing the dielectric constant
the greatest possible amount. On the other hand the sw
ing of the probe pulse can be conducted best with the th
energy band, which changes strongly even with a low am
tude of the control wave.

IV. PARAMETERS FOR ALL-OPTICAL SWITCHING

The nonlinear photonic crystal can be used as an
optical switch by applying a high-intensity control beam
dynamically change the band structure. Possible nonlin
materials for applications are semiconductors due to th
suitability for integration and existing fabrication technique
Other possibilities include glasses, polymers, and orga
materials in which high Kerr coefficientsx (3) have been ob-
served.

We have used GaAs as an example of a feasible non
ear material. The band structures for GaAs are shown in
4 for two control beam amplitudes. The changes of the b

FIG. 3. The change of the frequencyvP/(2pc) of the three lowest energy
bands atkP/(2p)50.5 compared to the bands of the linear crystal as
function of the control wave amplitudeA. The lowest energy band, i.e., th
dielectric band~dashed curve! and second lowest energy band, i.e., the
band ~dotted curve! are affected less by the nonlinearity compared to t
third lowest energy band~solid curve!.
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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structure shown here would require intensities on the or
of 1–2 kW/cm2. GaAs is a well known compound semico
ductor with existing fabrication methods for micromet
structures. The Kerr coefficient and the dielectric const
for GaAs arex (3)520.04 ~for the wavelength 0.84mm!12

and«513, respectively. Thus the case is similar to the o
considered above but with a negative Kerr constant.

Having telecommunication applications in mind th
probe pulse is taken to have wavelengthl51.55mm. For
GaAs @see Fig. 4~a!# the change in the third lowest band
the control wave (A520) is applied isDvP/(2pc)50.92
20.8750.05. The probe pulse is taken to be of frequen
vP/2pc50.9, which is in the center of the switching rang
in order to avoid cutoff at low or high frequencies. The fr
quency defines the period to be on the order ofP50.9
31.55mm51.4mm. Minimum pulse duration of the prob
pulse can be calculated to be 3310214 s. On the other hand
if dense wavelength division multiplexing is considered, t
15 THz window around 1.55mm can be switched simulta
neously.

FIG. 4. Lowest energy bands and band gaps of a photonic crystal ma
GaAs ~solid curves! and of a linear photonic crystal~dotted curves! for
comparison. In~a! and ~b! the control intensities are 1 and 2 kW/cm2,
respectively. The Kerr coefficient of GaAs isx (3)520.04. Otherwise the
parameter values are the same as in Fig. 2.
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V. CONCLUSIONS

We have presented band structure simulations for o
dimensional nonlinear photonic crystals. They are poss
candidates for all-optical switching applications due to t
dynamic change in the transmittance as a function of
control beam intensity. We outlined a Fourier method wh
is found to be a robust and clear method for nonlinear b
structure calculations. The complete (k,v) band structure
~dispersion relation! showing all allowed modes inside th
photonic crystal was calculated. This provides complem
tary information to the previous studies of pulse propagat
in nonlinear periodic structures. We found that the dielec
band is most suitable for the control beam as it changes
than the third band allowing the control beam to trav
through the crystal. The third energy band can be used
perform the switching function for the probe beam.

Our method differs from the Fourier method already d
veloped for nonlinear band structure calculations.10 In the
approach the ‘‘standard’’ Fourier ansatz is substituted i
the wave equation which gives an eigenvalue equation w
eigenvalues (v/c)2 and eigenvectors consist of all magne
field components. Our ansatz has a nonperiodic depend
on the third direction denoted byz. The diagonalized eigen
value equation has thez dependence of the fields as the e
genvalue and the eigenvectors are the field components
allel to the interfaces. In this way we have included the eff
of the finite height of the one- or two-dimensional photon
crystal in the calculations. The height of the photonic crys
has a considerable effect to the band structure influencing
design of the applications. Note that although this prope
might suggest that the method is only suited for one- a
two-dimensional calculations, in fact three-dimensional c
culations can be realized by stacking multiple layers.
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