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Conditions for waveguide decoupling in square-lattice photonic crystals
T. Koponen
Department of Physics, Nanoscience Center, University of Jyväskylä, PB 35 (YFL), FIN-40014 Jyväskylä,
Finland

A. Huttunen
Laboratory of Computational Engineering, Helsinki University of Technology, P.O. Box 9203,
Helsinki FIN-02015, Finland

P. Törmä
Department of Physics, Nanoscience Center, University of Jyväskylä, PB 35 (YFL), FIN-40014 Jyväskylä,
Finland

(Received 21 May 2004; accepted 29 July 2004)

We study coupling and decoupling of parallel waveguides in two-dimensional square-lattice
photonic crystals. We show that the waveguide coupling is prohibited at some wavelengths when
there is an odd number of rows between the waveguides. In contrast, decoupling does not
take place when there is an even number of rows between the waveguides. Decoupling can be
used to avoid cross talk between adjacent waveguides. ©2004 American Institute of Physics.
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I. INTRODUCTION

Two-dimensional photonic crystals are promising ca
dates for implementing integrated optical components.1 Op-
tical waveguiding in two-dimensional photonic crystals
achieved by introducing line defects in the structure th
otherwise periodic in two dimensions.2 Two paralle
waveguides can be used as a directional waveg
coupler.3–7 On the other hand, it might be desirable to
couple the two waveguides to minimize cross talk betw
them, for instance, when envisioning closely packed ph
nic wires in integrated optical circuits.8

We study the coupling between two parallel wavegu
in a square-lattice photonic crystal and find that the de
pling of the waveguides depends on the number of rod
tween the waveguides. If there is an odd number of
between the waveguides, they are decoupled at a de
wavelength. In case of an even number of rods,
waveguides are coupled at all wavelengths. Previous st
such as Ref. 5 have considered an even number of rod
therefore not demonstrated the decoupling behavior.

II. GEOMETRY

The studied geometry is a two-dimensional photo
crystal of cylindrical dielectric rods in a square lattice in
The dielectric constant of the rods is taken to bee=8.9e0,
their radiusr =0.2a, and the lattice constanta=512 nm. The
photonic crystal has a large TE(electric field aligned with
the cylinders) band gap aroundv=0.8pc/a, wherea is the
lattice constant of the crystal. Witha=512 nm, this gap is i
the wavelength range from 1100 nm to 1600 nm. Two
allel waveguides are formed in the structure by remo
two parallel rows of rods. The number of rods between
two waveguides is varied. In Fig. 1(a) and 1(c) we show two
examples of the geometries, i.e., one and two rows of
between the waveguides. We have considered one to

rows of rods between the waveguides.
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The guided eigenmodes supported by this geometry
two possible parities with respect to the symmetry axis
tween the waveguides. These modes can be classified
parity of thez component of the electric fieldEz. Following
directly from Maxwell’s equations, the parity ofHx is always
opposite to the parity ofEz, and the parity ofHy is always the
same as that ofEz. According to the parity ofEz, the two
eigenmodes can be labeled “even” and “odd.” Herez is the

FIG. 1. Geometries and band structures for one[(a) and (b)] and two[(c)
and (d)] rows of dielectric rods between two parallel waveguides. Tz
direction points out of the plane. Enlarged parts of the band structur
shown in the insets of(b) and(d) to illustrate that the bands cross in(a) but

do not cross in(b).
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direction of the cylinders(out of plane), x is along the
waveguides, andy is orthogonal to the cylinders and t
waveguides.

III. COUPLING OF PARALLEL WAVEGUIDES

When the system only supports two guided modes,
signal Csx,y,td with a definite frequencyv propagating in
the system can be written as a superposition of these
eigenmodes

Csx,y,td = cEsx,y,tdexpsikExd + cOsx,y,tdexpsikOxd. s1d

Here,cE andcO stand for even and odd eigenmodes ankE

andkO for the corresponding values ofk. The spatial depen
dence ofcE andcO is lattice periodic. This kind of a supe
position gives rise to beating between the eigenmodes
plane wave terms in Eq.(1) are in the same phase whenx
=0 and in the opposite phase whenx=p / ukO−kEu. The beat
ing wavelength is therefore

k =
2p

ukO − kEu
. s2d

When the eigenmodes are in the same phase, their sup
sition has most of its energy in one of the waveguides
when in opposite phase, in the other. The propagating s
oscillates between the two waveguides with the characte
wavelengthk given above. This is the mechanism appl
e.g., in waveguide couplers. Note that coupling can be
ized also by defects between the waveguides9 or coupling
can be between a waveguide and a defect.10

The beating wavelengthk becomes infinite whenkE

=kO. This means that there is no energy transfer betwee
waveguides, i.e., the waveguides are decoupled. Fork
values to be identical, the bands of the even and odd e
modes have to cross. If they avoid crossing,k is always finite
and the two waveguides cannot be decoupled.

IV. CONDITIONS FOR DECOUPLING

We have calculated the band structures of two par
waveguides in a square-lattice photonic crystal with the
Photonic Bands11 program. The band structures for the c
of one and two rods between the waveguides are show
Fig. 1(b) and 1(d), respectively. It can be seen that the ba
for the even and odd eigenmodes cross in Fig. 1(b), but do
not cross in Fig. 1(d). We calculated the band structures
one to seven rows between the waveguides and found
for geometries with an odd number rods between
waveguides, the bands for odd and even eigenmodes
whereas they never cross when there is an even numb
rods between the waveguides.

We calculated the coupling wavelengthsk [Eq. (2)] from
the band structures(Fig. 1) and also with the finite-differenc
time-domain(FDTD) method.12 Results from both method
are shown in Fig. 2 for the same geometries as consider
Fig. 1. There is a singularity, corresponding to decouplin
case there is an odd number of rows between the waveg
[see Fig. 2(a)]. In Fig. 2(b) the value ofk is always finite. We
found such behavior for one to seven rows of rods betw

the waveguides. We performed the same calculations with
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FDTD for one to four rows between the waveguides.
calculations using the band structures and FDTD simula
are in excellent agreement.13

In order to explain the strong effect of the geometry
has to consider the field distributions of the eigenmodes
Ez andHy components of the odd eigenmode have a nod
the symmetry plane of the structure. The parity of theHx

component is the opposite of the parities of theEz and Hy

components. When there is an odd number of rods bet
the waveguides, the nodes of theEz and Hy components o
the odd eigenmode are in the center of a dielectric rod
the even eigenmode, theEz andHy components are nonze
at the symmetry plane. It is known that the more the fi
are inside the material of high dielectric constant, the sm
the energy. Thus at small values of the wave vector
energy of the even eigenmode is smaller than that of the
eigenmode. The bands cross at some value of the wave
tor. This is because the relative power of theHy componen
compared to the power of theHx component increases w
increasing values of the wave vector. ThenHy starts to de
termine the effective parity of the mode. Thus at large va
of the wave vector the effective parities of the eigenmo
change and thus the bands cross. When there is an
number of rods between the waveguides, the node of th

FIG. 2. The coupling distancek as a function of the wavelength of the lig
propagating in the waveguides, for the geometries with one(a) and two(b)
rows of rods between the waveguides. The solid curve is calculated
the MIT Photonic Bands program and the circles are calculated by FD
eigenmode is in air and the effective parity does not have
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such an effect on the energies of the eigenmodes. In this
the odd eigenmode has a lower energy at all values o
wave vector. This explanation corresponds to the behav
the eigenmodes in the particular geometry considered in
paper.

V. CONCLUSIONS

In general, our findings demonstrate that symmetry p
erties of a photonic crystal waveguide pair, especially p
effects, can be used to design the waveguide propertie
instance, to produce complete decoupling. In this sense
tonic crystal waveguides possess an additional degre
freedom compared to traditional dielectric waveguides.
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