
Publication IV

Holtta, K. & Otto K. Incorporating design complexity measures in architectural
assessment. In Proc of ASME Design Engineering Technical Conferences. Chicago,
IL. September 2-6, 2003.

© 2003 ASME

Reprinted with permission.

 1 Copyright © 2003 by ASME

Proceedings of DETC’03
 ASME 2003 Design Engineering Technical Conferences and
 Computers and Information in Engineering Conference

 Chicago, Illinois USA, September 2-6, 2003

DETC2003/DTM-48648

INCORPORATING DESIGN COMPLEXITY MEASURES IN ARCHITECTURAL ASSESSMENT

Katja M. M. Holtta
Helsinki University of Technology
Department of Machine Design

P.O. Box 4100
02015 HUT

Finland
Tel +358 9 451 5072
Fax +358 9 451 3549

Email: Katja.Holtta@hut.fi
and

MIT Center for Innovation in Product Development

Kevin N. Otto
Product Genesis, Inc.

245 Bent St
Cambridge, Massachusetts 02141

USA
Tel +1 617 234 0070
Fax +1 617 354 8304

Email: Kevin_Otto@ProductGenesis.com

ABSTRACT

A feature of good modularity is the ease of changing a
module within a product. Existing modularity methods use
subjective or qualitative attributes to evaluate architectures.
We develop a method to relatively compare proposed product
architectures according to design complexity. Our metric
represents the difficulty that different module boundary
interactions, represented by flows in and out of a function,
would have in terms of redesign effort. We decomposed
medical injector head systems and conducted interviews in two
companies to find out a relative redesign effort for various
interaction types, e.g. electrical and mechanical connection,
signal flows, etc. We found that to change a flow by 1%, 1-4%
more design effort is required, depending on the interaction
type. We also found that decreasing a flow value causes, in
general, less rework than increasing a flow. Our metric proved
to be a valuable tool in estimating the redesign difficulty of an
architecture.

KEYWORDS: product architecture, modularity, complexity,
redesign

INTRODUCTION

A module, as defined in this paper, is a structurally
independent building block of a larger system with well-
defined interfaces. It is fairly loosely connected to the rest of
the system allowing an independent development of the module
as long as the interconnections at the interfaces are well thought
of. [1, 2]. The collection of modules and their interconnectivity
define the product architecture for a product. One advantage of
modularity is the reduced effort required to redesign aspects of
a design for such purposes as technology upgrades or styling

changes. In this paper we develop a method to define module
boundaries and relatively compare proposed product
architectures on design complexity, as measured by design
difficulty to change the interfacing flows between modules.
This metric is not intended to be a sole determining factor to
modularize a product, but rather, is one of several metrics a
design engineer would use to consider alternative
modularizations. We provide here a well defined quantitative
exploration of the design effort complexity metric.

This work falls within the efforts to improve understanding
of developing modular products. The advantages of modularity
are well known as the possible economies of scale and scope
such as in parts sourcing [2, 3]. Modularity provides flexibility
that enables product variations and technology development
without changes to the overall design [1]. The same flexibility
also allows for independent development of modules, which is
useful in concurrent or overlapped product development
activities [4], collaborative projects, or when buying the
module from a supplier [5]. Modularity eases the management
of complex product architectures [1] and therefore also their
development. Modularity can also be used to create product
families [6]. This saves design and testing costs and can allow
for greater breadth of design options, though one must be aware
of possible excess functionality costs if a low cost and low
functionality product is instantiated with a high cost module in
order to use the same module in several products [7, 8].

One feature of good product modula rity is the ease with
which modules can be changed within a product, their degree of
isolation. Yet, there are few methods to quantify modularity
and to thereby choose module boundaries. Stone et al.
developed a heuristic method to identify modules by finding the
dominant flow, branching flows, or conversion-transmission

 2 Copyright © 2003 by ASME

function pairs within a function structure [9]. Ericsson, on the
other hand, developed modular function deployment that
groups functions (or components) according to strategic aspects
such as technology evolution, planned changes, or styling [1].

Blackenfelt combines Ericsson’s method with the design
structure matrix (DSM) to cluster technical solutions into
modules based on their interaction strengths [10], where the
ratings are estimates. Further, Kota et al. present a benchmark
method to compare one’s own platform to a competitor’s
platform. The method considers manufacturing, component’s
size, and ma terial but it is not a platforming tool. [11]

Current modularization methods help identify module
”cores” i.e. functions around which a module is built. The
exact module boundary definitions, however, are left up to the
designer, particularly with respect to considering where to place
the boundaries and the impacts of such decisions. Engineers
need decision support with such preliminary design activity,
particularly here in grouping functionality into modules [12].
Ericsson, in his modular function deployment [1] recognizes
the importance of a step for interface design, but his discussion
does not present a specific tool. We find that without proper
decision support, engineers look at the interfaces from a
distance through the lens of their specific experience, which
may not be sufficiently general, disregarding the interaction
types as instantiated by various flows though different possible
interface boundaries. This might lead to unnecessarily complex
module boundaries that are inflexible for future changes.

In summary, existing methods use subjective assessments
or qualitative attributes to identify modules and to evaluate
different architectures. Many decisions depend on the designer.
This affects the repeatability of the methods.

To this end, modularity assessment must include many
factors, such as ease of upgrades, ease of supporting variants,
design ease, supplier capability [13], and manufacturing
support, for example. Among these, one important factor is
design complexity, the ease with which a module design can be
redesigned without impacting its interface and the rest of the
product. In some industries such as aerospace, electronics, and
the high tech medical industries, design effort can become a
dominant design criterion in architectural assessment.

Literature on design complexity primarily considers design
process modeling and design process complexity. For example,
Braha and Maimon [14] discuss artifact complexity, where they
argue that the best artifact design in terms of complexity is one
that has the minimum information content and is most likely to
meet its required specifications. Suh [15] defines complexity
as the probability of achieving the requirements. His work also
requires design process modeling to be able to define his
complexity measure in a meaningful way. Further, he does not
specifically address the problem of defining modules . El-Haik
and Yang [16] discuss further mathematical representations of
Suh’s axioms and calculate complexity of an engineering
design. All these design complexity measures discuss the
overall complexity of a design. They are not suitable for our
purposes for two reasons: (1) We define module boundaries,
the ideal interfaces (in terms of design effort) between modules;
the main goal is not a uniform number to represent all criteria
upon which to evaluate the complexity of a design, but rather

we focus on design effort complexity. (2) These methods
evaluate designs at the later stages of the design process where
the design process structure is understood, whereas we aim to
ease the fuzzier front end before any project planning has been
undertaken. We seek a tool to draw module boundaries and
evaluate architecture concepts using a representation of the
design only, and with minimal estimates of the design process
activity.

Blackenfelt [10] describes complexity in context of
modularity with the number and type of relations and elements
in a product, not design difficulty. Also Maier and Rechtin [17]
describe architecture complexity by the amount of connections,
or communic ation in case of software, between modules. In a
given architecture, the number and type of elements is given,
but the number and type of relations can be affected.
Blackenfelt’s complexity metric, similar to others, treats all of
these relations as having the same difficulty, which is not
generally the case. There is no means in existing literature to
compare component interaction types to properly evaluate
module boundaries. Looking at the number of interactions at
each interface is not enough. A rotating axle must cause more
design problems if there is a change than a stationary
mechanical connection, such as a bolt. For example, which is
more difficult to compensate, a 30% increase in signal
bandwidth or a 30% increase in operating voltage? As we will
demonstrate, some interaction types are more difficult to
modify than others. In this paper we develop a method to
define module boundaries and relatively compare proposed
product architectures on design complexity, as measured by
design difficulty to change the interfacing flows between
modules.

One should notice that our metric alone is not meant for
deciding the number or size of the modules. Our metric along
with others, such as assemblability, cost, supplies, etc. are all
important criteria to use in such a multi-criterion decision. We
provide a structured means to represent one metric – design
effort complexity – in such a decision. There are other
approaches to estimate the number of modules one should use
in a design. For example, Ericsson [1] simply develops the
ideal number of modules as approximately the square root of
the number of parts to be assembled. To determine the size of a
module one could also refer to Braha [18] who suggests using
the connection of product development teams and tasks to
product modules. He partitions tasks to teams and limits their
sizes by minimizing the time needed for communication
between teams and considering how many design attributes a
team can handle. The same partitioning could drive the module
size as well.

The remainder of the paper is structures as follows. We
develop the general step-by-step approach that a user would use
in the following section. We then explain the research
methodology we used and specific quantitative results. The
subsequent section then presents specific interesting results of
our study. The Use section then shows how to use our design
complexity metric via an example. We end the paper with
conclusions.

 3 Copyright © 2003 by ASME

APPROACH
Our approach consists of a six steps procedure to

modularize a product and for choosing and evaluating module
boundaries. We do this by constructing a measure of the design
complexity of the module boundaries in terms of design effort
to change the boundaries. We start by identifying the customer
needs, use them to build a function structure, and then move on
to modularize the product. We will then calculate a design
complexity metric for each interface within each module and at
their boundaries. The next step is to identify the most critical
interfaces and reorganize the module boundaries. Figure 1
shows the basic structure of the procedure.

Note that the same procedure can be used independent of
whether the product exists already or not. For a new product
concept one can follow the method developed by Otto and
Wood [6] using function structures for steps 1 and 2. They start
similar to our procedure by identifying customer needs and
transforming them into function chains that are weighted with
the importance to the customer. The most important functions
are drawn first, they are combined into parallel function chains,
and then the additional functions are added to form a complete
function structure of the product. In case of an existing
product, we find that one can start by decomposing the product
into functions, each function representing a sub-system of the
product, and building up a function structure according to the
assembly decomposition. When completed, one should identify
the function chains that satisfy the most important customer
needs, to ensure that all customer-critical flows are well
identified.

In the third step, modularize the product, one can choose
from many methods introduced before. A function structure is
a useful systems engineering diagram upon which modularity
questions can be graphically posed and be well understood by a
practicing design team. The function structure can be used with

any of the modularity methods even though they are all not
based directly on the function structure. We choose here to use
the modularity heuristics developed by Stone et al [9].

For the fourth step, calculate interface complexities, we
have developed an approach to evaluate the design complexity
of an interface. We use the function structure flows to
represent interactions between functions. Fixson suggests that
interactions have different intensities [19]. He also points out
that d ifferent connections have different degrees of reversibility
and this should affect the complexity of the interactions of the
module to the rest of the system. We quantify this by deriving
a metric that represents the difficulty that different module
boundaries would have in terms of redesign engineering effort,
measured using estimates of required hours. The interface
complexity metric can be calculated for various flow types, as
will be shown in the results section.

The calculations can be used to identify critical interfaces
in a product architecture for the fifth step. The larger the
design complexity metric on a specific interface, the better it is
to keep the interface within a module. And similarly, the
smaller the design complexity metric at an interface, the better
candidate the interface is to be at a module boundary.

The sixth and final step is to define the module boundaries.
Existing modularity methods generally do not give definite
choices for module boundaries, but suggestions for module
“cores”. Our design complexity metric is one measure to be
factored in with the many other metrics one must consider
when establishing boundaries. These include supplier
capability of module complexity, assembly costs, serviceability
and maintenance, and many others. Our design complexity
metric can help choose the best alternative from various
modularization schemes in terms of minimizing the design
effort at an interface.

METHODOLOGY

Our approach to constructing design effort indices for any
flow is to examine many modules and ask experienced
practicing design engineers how long it would take them to
both redesign this module at larger or smaller capacity and
incorporate that as a redesign into the original product. We did
this with several engineers at two different firms and dozens of
modules. The posed questions themselves, however, were not
so straightforward to extract useful data from. Many factors
can impact design time, notably experience level, familiarity,
and overhead of any particular corporate culture.

We accounted for these sources of error in two ways.
First, we only worked with highly experienced system
engineers that did design work on different design variants of
the injectors in question. All had many design experiences with
each of the module types we posed questions on. Second, we
selected engineers with all mechanical, electrical, and software
backgrounds to eliminate the biases toward own paradigms.
Third, we normalized our redesign results against the hours to
complete the original baseline design. Relative estimates
proved more repeatable than absolute hour estimates. Further,
for our purposes, relative comparisons of design effort
complexity is sufficient for comparing design concepts, actual
hours estimates have unnecessary resolution for preliminary
architectural alternative assessments.

The product domain we explored was electro-mechanical
medical devices. We chose this since they are highly

1. Identify customer needs

6. Define module boundaries

5. Identify critical interfaces

4. Calculate interface complexities

3. Modularize the product

2. Build function structure

Figure 1 The procedure.

 4 Copyright © 2003 by ASME

engineered, amenable to a function structure systems
representation, and design experts were available. We
decomposed two slightly different injector heads used to inject
contrast into a patient’s bloodstream during imaging
procedures. We first built function structures for the product
architectures. We decomposed the product to the assembly
level of the manufacturer. We also assigned each component or
sub-system a function e.g. a motor was also named “convert
electricity into rotation”. We then represented all the
connections between the components or sub-systems with
material, energy, and information flows. For example the
motor torque going to the transmission was represented with an
(mechanical) energy flow of torque/rotation. As discussed
elsewhere [6], one should not forget supporting functions and
flows such as vibration and damping or support of weight when
completing the function structure. The law of energy
conservation should apply in a complete function structure.

Once the function structure was complete, we took each of
the functions / sub-systems represented by each block in the
diagram, and analyzed the relative redesign effort for each flow
entering and exiting the sub-system. Each function in our
structure is one-to-one with an identifiable physical subset of
the product.

One could use our approach at different abstraction levels
of the architecture but our scope is the assembly level of a
product manufacturer. Similarly we leave the hierarchical
aspects of flows at different abstraction levels outside this
study.

The flows into- and out-of- a function (sub-system) make
for an effective representation of the interaction and primary
interface physics. The flows were classified according to
functional basis similar to Hirtz et al. [20] (see Table 1). We
used energy flows of electrical, mechanical, and pneumatic,
information flows, and material flows. One should note that
this classification conveys the primary intention of the flow.
That is, an information flow can be both an electrical flow and
an information flow and vice versa. All material flows contain
energy. We chose to represent power connections as electrical
flows and connections with control information as information
flows. If a signal is a simple on/off electrical connection, we
represent it with only an electrical flow. Material flows also
represent the energy they contain, until an extraction function
extracts it, for example. As an example, one could look at the
two 24 V electrical flows going to the functions emit light 1 and
emit light 2. In a sense these are information flows telling the
lamps which one should be lit according to the current status of
the injector. In practice, however, it is a simple on/off
connection and the intelligence, or the information content, is in
the preceding function. Thus the two flows are represented as
electrical flows.

Table 1 A modified list of functional basis.

Flow category Sub-category

Human
Gas
Liquid

Material

Solid
Human
Acoustic
Electr voltage
Electromagnetic
Hydraulic
Magnetic
Mechanical
 Rot torque
 Transl speed
 Vibration

Energy

Pneumatic
Content

Signal
Bandwidth

Our hypothesis is that this classification serves as an

indicator of interface difficulty. Each flow type is
parameterized with a small number of descriptors, e.g., an
information flow of 48 connectors at high bandwidth is more
difficult to alter than an information flow of 2 wires, on/off.
This is similar to Boothroyd and Dewhurst’s classifications of
electrical connections according to their complexity (in terms
of assembly) [21 p.153]. A rotary energy flow from a rotary-
to-linear drive at 175 W is more difficult to alter than a hand
powered linear translation energy flow.

We analyzed flow difficulty through consultation with five
system engineers, involved in the design and expert in the
domains relevant to the injector head. We asked engineers for
relative difficulty of different types of changes. We asked
questions about increasing and decreasing various flows by
different percentages to find out if there is a difference in
increasing or decreasing a flow value. We also asked for the
effect of each change on the existing processes to make sure
that the change is in fact possible. Following is a table (Table
2) presenting an example from the interview form used. We
mainly asked questions in the change range where the effect
can be presumed somewhat linear i.e. above where the change
is not already designed in as over capacity of the original
component and no change is needed and below where only
modification is needed and not total redesign. We did ask a
few questions also in the far ends of the range to see how the
results were different there, but closer examination of the far
ends is left for future studies.

 5 Copyright © 2003 by ASME

Making changes to a function in a function structure will
often force changes to the functions surrounding it. Dealing
with this chaining impact of a design change is what a design
engineer must do before using our method, and estimate the
extent of change of each function. The effort to change any
function, though, is an independent estimate of our
interviewees. Estimating design effort to change each function
independent of the others is appropriate for three reasons: (1)
Incorporating the system changes would make it seem that no
matter which component in the system is changed, the redesign
effort is always the same, since every component in the system
changes. (2) Our goal is to be able to define modules that are
easy to redesign in case there is a change somewhere in the
system. For example, if the system changes outside a module,
we ask the design effort to accommodate that change while
maintaining the remainder of the system unchanged. (3) In
some cases, it is impossible to change a function without
changing some of its neighbors. For example, changing a motor
in power will require changing its controller. We left it to the
designers (the interviewees) to back-propagate the changes as
far as they felt was necessary. We only want to represent the
redesign for each change by effort numbers, not the logic
behind the back-chaining.

From our interviews, we obtained the estimated man hours
required for each change. We then normalized these results
into relative hours compared to the original effort. For
example, if the answer was 30%, it meant that to redesign the
component to accommodate the specific change requires an
additional 30% of the original design work. We also
normalized the answers so that all interviewees had the same
global average across all modules, to eliminate questionnaire
biases between different interviewees. We calculated relative
rework needed compared to the original effort for each one
percent change in a flow by averaging all answers for each type
of change and dividing it by the percent change in the
questionnaire (Eq. 1). We also calculated standard deviations.

 100

changepercent
average

Rework change %1 ∗= (1)

We then grouped the answers across all of the modules
examined into electrical, mechanical, and pneumatic energy,
informa tion, and material flows according to the functional
basis. That is, for each of these categories we found the
average relative rework percentage across all modules
examined. Similar to the way we posed the original questions,
we calculated both the rework for increasing or decreasing a
flow value as well as rework needed to change a flow
regardless of the direction.

RESULTS

To change a flow by one percent, our results indicate what
percentage additional design work is required. In general, we
find that a 1% change in any product flow requires about 1-2%
of the original design effort. Table 3 shows the additional
design work, or the difficulty of change, for various types of the
functional basis flow categories.

The intended use of the table is twofold. First, it can help
in assessing design changes to a product – if a module is
increased or decreased in size, power, output speed, etc., how
much design effort is required? This can help scope a project.
Second, it can help in preliminary conceptual architecture
activities, to decide where to place module boundaries – better
to place boundaries on flows with less difficulty.

Note that the numbers in Table 3 must not be used directly
for these comparisons, but must be multiplied by the original
design effort. Large number in Table 3 may be favorable if the
flow in the product is small. An illustrative example of this is
the emit acoustic vibration function, a speaker, and the acoustic
energy flow in the injector head. The design effort complexity
metric value for acoustic energy is high (3.8%) but in this
product, a change in the acoustic energy means changing to a
different speaker - selecting a new component from a
catalogue. The original effort is mainly to decide which
speaker to choose from a selection of speakers, so the redesign
effort is close to that of the original. However, the total
selection and new documentation is a small effort in total, about
20 hours as estimated by one of the engineers, compared to the
total design effort of the whole product. Similarly a small

Table 2 Part of the interview form used.

No of
attachm.
surfaces Description Black Box
Part
attach
es to

Attach
ed to
the
part

Change
(everything else stays
the same)

Man hrs
req f each
change

Effect on
existing
processes
none / low / med /
high / impossible

input torque
increase 30%

Transmission.
Input: Rotation from
the motor axle
Output: Rotation to
the ball screw

input torque
decrease 30%

Input torque
increase 30%

Transl speed
change 20%

Ball screw.
Inputs: torque from
transmission, human
control knob
Outputs: linear
movement to move
the plunger

Transl stroke
increase 20%

transmis
sionrot

rot

torque to support structure

rot

torque ball
screw transl

 6 Copyright © 2003 by ASME

design effort complexity metric value (1.2%) for an electrical
energy does not necessarily mean a trivial change in the
product. For example, an engineer estimated the original
design of the control injector head, main control card, to be
about 16 man weeks and about 2 man weeks for the emit light
functions, injector arm status indicator lamps. A 1.2% redesign
effort is obviously much less for the lamps than for the control
card.

Table 3 Relative rework needed as percentage of the
original effort for different types of flows. (with standard

deviations)

Flow category Sub-category Difficulty of change
Material Solid 1.1% (±1.3%)

Acoustic 3.8% (±5.2%)
Electr voltage 1.2% (±0.5%)
Mechanical
 General
 Rot torque
 Transl speed

1.7% (±1.3%)
1.7% (±1.4%)
1.0% (±0.4%)

Pneumatic 3.2% (±1.5%)

Energy

Thermal 2.2% (±1.7%)
 General 1.3% (±0.6%)
Content 1.4% (±0.3%)

Signal

Bandwidth 1.3% (±0.9%)
Spatial Transl stroke 1.5% (±0.2%)

Beyond this direct application, there are some interesting

insights to be gained from the results. For example, contrary to
many beliefs (including at the participating companies) a signal
flow (software) change is not necessarily easier than a
mechanical change nor is mechanical change necessarily any
easier than a software change.

There are similar insights within each flow type. In
general it is always easier to decrease flow levels than increase
them, as one might expect (see Table 4). For example, with
mechanical rotational energy flows, a torque x speed increase
by 1% requires 1.8% more work, whereas torque x speed
decrease needs only 0.9% more work, a factor of 2 difference.
In other words, changing torque from 15 Nm to 20 Nm requires
approximately 54% of additional work relative to the original
design hours where as changing torque from 15 Nm to 10 Nm
requires only approximately 27% of rework. More
pronounced, a pressure increase of 1% requires 4.2% more
work, whereas a pressure decrease requires 2.2% more work.
In other words, a 10% change in pressure causes 42%
additional design work if the pressure is increased whereas
decreasing pressure by the same 10% causes only 22% more
work. Some energy flow types are more difficult to
accommodate than others.

Also of note, energy flows are interesting in their units of
power – energy and speed. Often, the change in one of these
factors is important, and the design difficulty is different for

two components. For example, consider changing torque or
speed compared to changing power = torque x speed. Each of
theses scenarios has different design change difficulties, as
shown in Table 4.

Table 4 Added design difficulty to increase and decrease

the interface for various flow changes by 1% in
descending order.

Difficulty Flow interface
Increase Decrease

Pressure (Const flow) 4.2% 2.2%
Torque x Speed 1.8% 0.9%

Torque (Const speed) 2.9% 1.0%
Bandwidth 1.4% 0.6%

Voltage (Const I) 1.2% 1.3%
Speed (Const torque) 1.9% 0.6%

USE

To demonstrate and validate our approach, we applied the
procedure introduced above with the design complexity metrics
to a product, again an injector head, keeping the design domain
within the family of injector heads. We started by
decomposing the product into smaller sub-systems down to the
company assembly level. We then assigned each component a
function using the functional basis [19] vocabulary. We
developed the function interactions with material, energy, and
information flows in between the function boxes. The final
function structure of the injector head is in Fig. 2.

We chose to modularize the injector head using the
function structure heuristic approach [9]. We found the
function chain convert electricity to rotation – transmit torque
– decrease speed – convert rotation into translation as the
dominant flow. Convert human force to rotation, sense
syringe , the two syringe size sensors, emit acoustic vibration,
indicate data, import user data, the two emit light functions,
and connect syringe form modules candidates according to the
branching flow heuristic. Functions convert human force to
rotation and convert rotation into translation as well as
function pair convert electricity to rotation – transmit torque
are identified by the conversion-transmission pair heuristic.

As is inherent to the function structure heuristic methods,
the module choices overlap and are not definite by the
heuristics themselves. The chosen function chains could easily
be a function shorter or longer without breaking the heuristic
rules. For example the dominant flow could as well include
functions change syringe volume and store contrast or not. The
heuristic method simply provides suggestions, and it is up to
the designer to choose among these suggestions based upon
judgment. Here we provide quantification of one metric,
design complexity in terms of redesign effort.

The function structure includes electrical and mechanical
energy, information, and material types of flow interfaces. The
design complexity diffic ulties are assigned for each flow and
summed at each interface. Figure 2 shows the summed
interface complexities at each interface.

 7 Copyright © 2003 by ASME

It is now easy to identify the most critical interfaces. The
most complex interfaces are ones with acoustic vibration by the
function emit acoustic vibration and volume flow from function
change syringe volume to function store contrast. These
interfaces should be paid extra attention to. For example the
volume flow interface should not be a module interface but
inside a module. Thus we decide to lengthen the dominant
flow module to convert electricity to rotation – transmit torque
– decrease speed – convert rotation into translation - change
syringe volume – store contrast. Another choice would be to
use the short dominant flow and combine the two functions
around the critical volume flow interface into a separate
module. This calculated result proved well within agreement of
our system design engineering experts.

Another example of the use of the design complexity
metric is to decide how to group the modules not identified by
any of the module heuristics. Say we want to decide whether to
include the position sensing (potentiometers) into a module
with either the control injector head function (main control
board in the injector head) or with the drive system i.e. the
dominant flow function chain. The percent change at the
interface to the control injector head is 1.3% and at the
interface to the drive 1.7%. This suggests that in order to
minimize the needed rework, it is better to include the position
sensing function to the drive to avoid the more complex
interface and thus more potential redesign work. Again, this
calculated result proved in agreement with our design engineer
experts.

We group the rest of the functions using the same principal
of minimizing the design complexity value at the module

boundaries. We can now calculate the total design effort
complexity of the architecture. We do this by summing up all
the design complexity values at the module interfaces. The
idea is that we can now explore alternative architectures and
then choose the best one in terms of several factors, minimizing
design complexity being one. Further, for any selected
architecture, the ease of design upgrades is well understood at
the outset, and areas where one is uncertain or understands
there will be future changes can be accommodated.

Beyond architecting, the redesign percentages can also be
used to roughly estimate the redesign needed if a specific
change is made. This can be done for the whole architecture by
multiplying the actual percent change of each flow by its
relative redesign percentage at each interface and summing
them all together.

The results shown here held true across two vastly
different corporate cultures and different modules. However,
the scope of the analysis remained electro-mechanical medical
devices, indeed specifically injector heads. It is not clear how
large a domain this can be expanded to while maintaining
meaningful consistency of responses . There are several factors
influencing the rework effort such as design process,
representation of the design, tools used, etc. We did not
consider variations in these but used the ones that the
companies in this study deal with. Thus we cannot claim
applicability of the metric values to all other domains but we
believe the same approach could be used elsewhere. It is not
clear and extremely doubtful that a general single number
coefficient that applies globally for all industries and product
types can be derived. Each company or at least type of industry

control
injector

head

increase
tem-

perature

sense
position

B

sense
position

A

convert
electr to
rotation

2wire

2wire

24V

2wire

 2wire

change
syringe
volume

4wire

connect
to control

unit

24V

on/off
signal store

contrast

convert
h.force to

rot

rot

vol flowdecrease
speed

convert
rotation
to transl

rot
rot trans

heat

on/off signal

hu m
an

force

24V

contrast

secure
drive
assy

secure
motor

torque

torque

torque

structure

connect
syringe

syringe

w
eight

warm
contrast

transmit
torque

rot

indicate
motor

direction A

indicate
motor

direction B

1.3

1.1

1.7

1.71.7
1.0

1.7

1.7

1.7

1.7

1.3

1.3

1.1

2.5

2.5

1.7

1.7

1.3

1.3

1.7

1.7

3.2

2.5

1.7

import
user data

5pin
5pin 5pin

indicate
data

hum
an

force

acustic
vibr

light

pic

2.5

1.3

1.31.32.5

emit light
2

emit light
1

24V

24V heat

light

heat

light

1.2

1.2

sense
syringe
size 1

sense
syringe
size 2

sense
syringe

1.71.7

emit
acoustic
vibration

1.1

1.7

3.8

1.3

2.2

Figure 2 An injector head function structure with interface complexities.

 8 Copyright © 2003 by ASME

should determine the metric coefficient values of their own.
However, the results do provide consistency and are effective
for any company to construct and then use. That was our
intention.

CONCLUSIONS

We introduced a method to relatively compare proposed
product architectures based on design complexity in terms of
redesign effort. Our method is an effort to help the final
defining of module boundaries after the module “cores” have
been identified with a modularization method. We used the
function structure heuristics approach as an example. The
metric developed also aids in evaluating modularized
architectures. Our metric represents the difficulty that various
module boundary interactions would have in terms of redesign
effort. The interactions are represented by flows, mechanical
and electrical energy, signal flows, etc., in and out of a
function. We found that to change a flow by 1%,
approximately 1-4% more design effort is required to
accommodate the change, depending on the interaction type.
We also found that decreasing a flow value causes, in general,
less rework than increasing a value.

The results on design difficulty to change a flow are
interesting in and of themselves for understanding how hard it
is to change the interfaces for various types of flows. We find
their use in modularity makes for much improved system
architecting. For any proposed module within a product
architecture, the interconnection with the rest of the product can
be easily assessed for design change difficulty.

ACKNOWLEDGMENTS
The authors would like to than the MIT Center for

Innovation in Product Development and Helsinki University of
Technology Department of Machine Design for funding this
research. We would also like to give or appreciation to Thomas
Roemer and Victor Tang for valuable insights. We finally thank
the interviewees at both companies and Product Genesis, Inc.

REFERENCES
1. Ericsson, A. and Erixon, G., 1999, Controlling design

variants: Modular product platforms, ASME press, New
York, NY.

2. Baldwin, C.Y. and Clark, K.B., 2000, Design rules.
Volume 1. the power of modularity, The MIT Press,
Cambridge, MA.

3. Stake, R. B. and Blackenfelt, M., 1998, “Modularity in use
– experiences from five companies”, 4th WDK Workshop
on Product Structuring, Delft, The Netherlands.

4. Roemer, T.A., Ahmadi, R., and Wang, R.H., 2000, “Time-
cost trade-offs in overlapped product development”,
Operations Research, 48 (6), pp.858-865.

5. Camuffo, A., 2001, “Rolling out a “World Car”:
globalization, outsourcing and modularity in the auto
industry”, Working Paper, International Motor Vehicle
Program, Massachusetts Institute of Technology.

6. Otto, K. and Wood, K., 2001, Product design: techniques
in reverse engineering and new product development,
Prentice Hall, Upper Saddle River, NJ.

7. Gupta, S. and Krishnan, V., 1999, “Integrated component
and supplier selection for a product family”, Production
and Operations Management, 8 (2), pp.163-181.

8. Krishnan, V. and Gupta, S., 2001, “Appropriateness and
impact of platform-based product development”,
Management Science, 47 (1), pp.52-68.

9. Stone, R. B., Wood, K. L. and Crawford, R. H., 2000, “A
heuristic method for Identifying Modules for Product
Architecture”, Design Studies, 21, Issue 1, pp. 5-31.

10. Blackenfelt, M., 2001, Managing complexity by product
modularization , Ph.D. thesis, Dept. of Machine Design,
Royal Institute of Technology, Stockholm.

11. Kota, S., Sethuraman, K., and Miller, R., 2000, “A Metric
for Evaluating Design Commonality in Product”, Journal
of Mechanical Design, 122, pp. 403 – 410.

12. Smith, J. S., Robb, M. D., Duffy, A. H. B., Thomson, A.
and Nisbet, C., 2001, “An experience of modularity
through design”, Proc., International Conference on
Engineering Design, Glasgow, pp. 467-474.

13. Mikkola, J., 2000, “Modularity, outsourcing, and inter-firm
learning”, DRUID Summer conference 2000, Rebild.
Denmark.

14. Braha, D. and Maimon, O., 1998, “The measurement of a
design structural and functional complexity”, IEEE
Transactions on systems, man, and cybernetics, Part A, 28,
No 4, pp 527-535.

15. Suh, N., 2001, Axiomatic Design: Advances and
Applications, Oxford University Press, New York, NY.

16. El-Haik, B., Yang, K., 1999, “The components of
complexity in engineering design”, IIE Transactions, 31,
pp. 925-934.

17. Maier, M. W. and Rechtin, E., 2000, The art of systems
architecting , 2nd ed., CRC Press.

18. Braha, D., 2002,“Partitioning tasks to product development
teams”, Proc. of ASME 2002 Design Engineering
Technical Conferences and Computers and Information in
Engineering Conference, Montreal, Canada.

19. Fixson, S., 2001, “Methodology Development: Analyzing
Product Architecture Implications on Supply Chain Cost
Dynamics”, Paper presented at the 5th Conference on
Technology, Policy, and Innovation “Critical
Infrastructures”, Delft, The Netherlands.

20. Hirtz, J., Stone, R. B., and McAdams, D. A., 2002, “A
functional basis for engineering design: Reconciling and
evolving previous efforts”, Research in Engineering
Design, 12, pp. 65-82.

21. Boothroyd, G., Dewhurst, P., and Knight, W., 2002,
Product Design for Manufacture and Assembly, 2nd ed,
Marcel Dekker, Inc., New York, NY.

