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ABSTRACT 

A feature of good modularity is the ease of changing a 
module within a product.  Existing modularity methods use 
subjective or qualitative attributes to evaluate architectures.  
We develop a method to relatively compare proposed product 
architectures according to design complexity.  Our metric 
represents the difficulty that different module boundary 
interactions, represented by flows in and out of a function, 
would have in terms of redesign effort.  We decomposed 
medical injector head systems and conducted interviews in two 
companies to find out a relative redesign effort for various 
interaction types, e.g. electrical and mechanical connection, 
signal flows, etc.  We found that to change a flow by 1%, 1-4% 
more design effort is required, depending on the interaction 
type.  We also found that decreasing a flow value causes, in 
general, less rework than increasing a flow.  Our metric proved 
to be a valuable tool in estimating the redesign difficulty of an 
architecture. 
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INTRODUCTION 

A module, as defined in this paper, is a structurally 
independent building block of a larger system with well-
defined interfaces.  It is fairly loosely connected to the rest of 
the system allowing an independent development of the module 
as long as the interconnections at the interfaces are well thought 
of. [1, 2].  The collection of modules and their interconnectivity 
define the product architecture for a product.  One advantage of 
modularity is the reduced effort required to redesign aspects of 
a design for such purposes as technology upgrades or styling 

changes.  In this paper we develop a method to define module 
boundaries and relatively compare proposed product 
architectures on design complexity, as measured by design 
difficulty to change the interfacing flows between modules.  
This metric is not intended to be a sole determining factor to 
modularize a product, but rather, is one of several metrics a 
design engineer would use to consider alternative 
modularizations.  We provide here a well defined quantitative 
exploration of the design effort complexity metric. 

This work falls within the efforts to improve understanding 
of developing modular products.  The advantages of modularity 
are well known as the possible economies of scale and scope 
such as in parts sourcing [2, 3].  Modularity provides flexibility 
that enables product variations and technology development 
without changes to the overall design [1].  The same flexibility 
also allows for independent development of modules, which is 
useful in concurrent or overlapped product development 
activities [4], collaborative projects, or when buying the 
module from a supplier [5].  Modularity eases the management 
of complex product architectures [1] and therefore also their 
development.  Modularity can also be used to create product 
families [6].  This saves design and testing costs and can allow 
for greater breadth of design options, though one must be aware 
of possible excess functionality costs if a low cost and low 
functionality product is instantiated with a high cost module in 
order to use the same module in several products [7, 8]. 

One feature of good product modula rity is the ease with 
which modules can be changed within a product, their degree of 
isolation.  Yet, there are few methods to quantify modularity 
and to thereby choose module boundaries.  Stone et al. 
developed a heuristic method to identify modules by finding the 
dominant flow, branching flows, or conversion-transmission 



 2 Copyright © 2003 by ASME 

function pairs within a function structure [9]. Ericsson, on the 
other hand, developed modular function deployment that 
groups functions (or components) according to strategic aspects 
such as technology evolution, planned changes, or styling [1].   

Blackenfelt combines Ericsson’s method with the design 
structure matrix (DSM) to cluster technical solutions into 
modules based on their interaction strengths [10], where the 
ratings are estimates.  Further, Kota et al. present a benchmark 
method to compare one’s own platform to a competitor’s 
platform.  The method considers manufacturing, component’s 
size, and ma terial but it is not a platforming tool. [11]   

Current modularization methods help identify module 
”cores” i.e. functions around which a module is built.  The 
exact module boundary definitions, however, are left up to the 
designer, particularly with respect to considering where to place 
the boundaries and the impacts of such decisions.  Engineers 
need decision support with such preliminary design activity, 
particularly here in grouping functionality into modules [12].  
Ericsson, in his modular function deployment [1] recognizes 
the importance of a step for interface design, but his discussion 
does not present a specific tool.  We find that without proper 
decision support, engineers look at the interfaces from a 
distance through the lens of their specific experience, which 
may not be sufficiently general, disregarding the interaction 
types as instantiated by various flows though different possible 
interface boundaries.  This might lead to unnecessarily complex 
module boundaries that are inflexible for future changes. 

In summary, existing methods use subjective assessments 
or qualitative attributes to identify modules and to evaluate 
different architectures.  Many decisions depend on the designer.  
This affects the repeatability of the methods.   

To this end, modularity assessment must include many 
factors, such as ease of upgrades, ease of supporting variants, 
design ease, supplier capability [13], and manufacturing 
support, for example.  Among these, one important factor is 
design complexity, the ease with which a module design can be 
redesigned without impacting its interface and the rest of the 
product.  In some industries such as aerospace, electronics, and 
the high tech medical industries, design effort can become a 
dominant design criterion in architectural assessment.   

Literature on design complexity primarily considers design 
process modeling and design process complexity.  For example, 
Braha and Maimon [14] discuss artifact complexity, where they 
argue that the best artifact design in terms of complexity is one 
that has the minimum information content and is most likely to 
meet its required specifications.  Suh [15] defines complexity 
as the probability of achieving the requirements.  His work also 
requires design process modeling to be able to define his 
complexity measure in a meaningful way.  Further, he does not 
specifically address the problem of defining modules .  El-Haik 
and Yang [16] discuss further mathematical representations of 
Suh’s axioms and calculate complexity of an engineering 
design.  All these design complexity measures discuss the 
overall complexity of a design.  They are not suitable for our 
purposes for two reasons:  (1) We define module boundaries, 
the ideal interfaces (in terms of design effort) between modules; 
the main goal is not a uniform number to represent all criteria 
upon which to evaluate the complexity of a design, but rather 

we focus on design effort complexity.  (2) These methods 
evaluate designs at the later stages of the design process where 
the design process structure is understood, whereas we aim to 
ease the fuzzier front end before any project planning has been 
undertaken.  We seek a tool to draw module boundaries and 
evaluate architecture concepts using a representation of the 
design only, and with minimal estimates of the design process 
activity.  

Blackenfelt [10] describes complexity in context of 
modularity with the number and type of relations and elements 
in a product, not design difficulty.  Also Maier and Rechtin [17] 
describe architecture complexity by the amount of connections, 
or communic ation in case of software, between modules.  In a 
given architecture, the number and type of elements is given, 
but the number and type of relations can be affected.  
Blackenfelt’s complexity metric, similar to others, treats all of 
these relations as having the same difficulty, which is not 
generally the case.  There is no means in existing literature to 
compare component interaction types to properly evaluate 
module boundaries.  Looking at the number of interactions at 
each interface is not enough.  A rotating axle must cause more 
design problems if there is a change than a stationary 
mechanical connection, such as a bolt.  For example, which is 
more difficult to compensate, a 30% increase in signal 
bandwidth or a 30% increase in operating voltage?  As we will 
demonstrate, some interaction types are more difficult to 
modify than others.  In this paper we develop a method to 
define module boundaries and relatively compare proposed 
product architectures on design complexity, as measured by 
design difficulty to change the interfacing flows between 
modules.  

One should notice that our metric alone is not meant for 
deciding the number or size of the modules.  Our metric along 
with others, such as assemblability, cost, supplies, etc. are all 
important criteria to use in such a multi-criterion decision.  We 
provide a structured means to represent one metric – design 
effort complexity – in such a decision.  There are other 
approaches to estimate the number of modules one should use 
in a design.  For example, Ericsson  [1] simply develops the 
ideal number of modules as approximately the square root of 
the number of parts to be assembled.  To determine the size of a 
module one could also refer to Braha [18] who suggests using 
the connection of product development teams and tasks to 
product modules.  He partitions tasks to teams and limits their 
sizes by minimizing the time needed for communication 
between teams and considering how many design attributes a 
team can handle.  The same partitioning could drive the module 
size as well.   

The remainder of the paper is structures as follows.  We 
develop the general step-by-step approach that a user would use 
in the following section.  We then explain the research 
methodology we used and specific quantitative results.   The 
subsequent section then presents specific interesting results of 
our study.  The Use section then shows how to use our design 
complexity metric via an example.  We end the paper with 
conclusions. 
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APPROACH 
Our approach consists of a six steps procedure to 

modularize a product and for choosing and evaluating module 
boundaries.  We do this by constructing a measure of the design 
complexity of the module boundaries in terms of design effort 
to change the boundaries.  We start by identifying the customer 
needs, use them to build a function structure, and then move on 
to modularize the product.  We will then calculate a design 
complexity metric for each interface within each module and at 
their boundaries.  The next step is to identify the most critical 
interfaces and reorganize the module boundaries.  Figure 1 
shows the basic structure of the procedure.  

Note that the same procedure can be used independent of 
whether the product exists already or not.  For a new product 
concept one can follow the method developed by Otto and 
Wood [6] using function structures for steps 1 and 2.  They start 
similar to our procedure by identifying customer needs and 
transforming them into function chains that are weighted with 
the importance to the customer.  The most important functions 
are drawn first, they are combined into parallel function chains, 
and then the additional functions are added to form a complete 
function structure of the product.  In case of an existing 
product, we find that one can start by decomposing the product 
into functions, each function representing a sub-system of the 
product, and building up a function structure according to the 
assembly decomposition.  When completed, one should identify 
the function chains that satisfy the most important customer 
needs, to ensure that all customer-critical flows are well 
identified. 

In the third step, modularize the product, one can choose 
from many methods introduced before.  A function structure is 
a useful systems engineering diagram upon which modularity 
questions can be graphically posed and be well understood by a 
practicing design team.  The function structure can be used with 

any of the modularity methods even though they are all not 
based directly on the function structure.  We choose here to use 
the modularity heuristics developed by Stone et al [9]. 

For the fourth step, calculate interface complexities, we 
have developed an approach to evaluate the design complexity 
of an interface.  We use the function structure flows to 
represent interactions between functions.  Fixson suggests that 
interactions have different intensities [19].  He also points out 
that d ifferent connections have different degrees of reversibility 
and this should affect the complexity of the interactions of the 
module to the rest of the system.  We quantify this by deriving 
a metric that represents the difficulty that different module 
boundaries would have in terms of redesign engineering effort, 
measured using estimates of required hours.  The interface 
complexity metric can be calculated for various flow types, as 
will be shown in the results section.  

The calculations can be used to identify critical interfaces 
in a product architecture for the fifth step.  The larger the 
design complexity metric on a specific interface, the better it is 
to keep the interface within a module.  And similarly, the 
smaller the design complexity metric at an interface, the better 
candidate the interface is to be at a module boundary.  

The sixth and final step is to define the module boundaries.  
Existing modularity methods generally do not give definite 
choices for module boundaries, but suggestions for module 
“cores”.  Our design complexity metric is one measure to be 
factored in with the many other metrics one must consider 
when establishing boundaries.  These include supplier 
capability of module complexity, assembly costs, serviceability 
and maintenance, and many others.  Our design complexity 
metric can help choose the best alternative from various 
modularization schemes in terms of minimizing the design 
effort at an interface. 
  
METHODOLOGY 

Our approach to constructing design effort indices for any 
flow is  to examine many modules and ask experienced 
practicing design engineers how long it would take them to 
both redesign this module at larger or smaller capacity and 
incorporate that as a redesign into the original product.  We did 
this with several engineers at two different firms and dozens of 
modules.  The posed questions themselves, however, were not 
so straightforward to extract useful data from.  Many factors 
can impact design time, notably experience level, familiarity, 
and overhead of any particular corporate culture.   

We accounted for these sources of error in two ways.  
First, we only worked with highly experienced system 
engineers that did design work on different design variants of 
the injectors in question.  All had many design experiences with 
each of the module types we posed questions on.  Second, we 
selected engineers with all mechanical, electrical, and software 
backgrounds to eliminate the biases toward own paradigms.  
Third, we normalized our redesign results against the hours to 
complete the original baseline design.  Relative estimates 
proved more repeatable than absolute hour estimates.  Further, 
for our purposes, relative comparisons of design effort 
complexity is sufficient for comparing design concepts, actual 
hours estimates have unnecessary resolution for preliminary 
architectural alternative assessments.   

The product domain we explored was electro-mechanical 
medical devices.  We chose this since they are highly 

1.  Identify customer needs 

6.  Define module boundaries 

5.  Identify critical interfaces 

4.  Calculate interface complexities 

3.  Modularize the product 

2.  Build function structure 

Figure 1 The procedure. 
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engineered, amenable to a function structure systems 
representation, and design experts were available.  We 
decomposed two slightly different injector heads used to inject 
contrast into a patient’s bloodstream during imaging 
procedures.  We first built function structures for the product 
architectures.  We decomposed the product to the assembly 
level of the manufacturer.  We also assigned each component or 
sub-system a function e.g. a motor was also named “convert 
electricity into rotation”.  We then represented all the 
connections between the components or sub-systems with 
material, energy, and information flows.  For example the 
motor torque going to the transmission was represented with an 
(mechanical) energy flow of torque/rotation.  As discussed 
elsewhere [6], one should not forget supporting functions and 
flows such as vibration and damping or support of weight when 
completing the function structure.  The law of energy 
conservation should apply in a complete function structure. 

Once the function structure was complete, we took each of 
the functions / sub-systems represented by each block in the 
diagram, and analyzed the relative redesign effort for each flow 
entering and exiting the sub-system.  Each function in our 
structure is one-to-one with an identifiable physical subset of 
the product.  

One could use our approach at different abstraction levels 
of the architecture but our scope is the assembly level of a 
product manufacturer.  Similarly we leave the hierarchical 
aspects of flows at different abstraction levels outside this 
study.  

The flows into- and out-of- a function (sub-system) make 
for an effective representation of the interaction and primary 
interface physics.  The flows were classified according to 
functional basis similar to Hirtz et al. [20] (see Table 1).  We 
used energy flows of electrical, mechanical, and pneumatic, 
information flows, and material flows.  One should note that 
this classification conveys the primary intention of the flow.  
That is, an information flow can be both an electrical flow and 
an information flow and vice versa.  All material flows contain 
energy.  We chose to represent power connections as electrical 
flows and connections with control information as information 
flows.  If a signal is a simple on/off electrical connection, we 
represent it with only an electrical flow.  Material flows also 
represent the energy they contain, until an extraction function 
extracts it, for example.  As an example, one could look at the 
two 24 V electrical flows going to the functions emit light 1 and 
emit light 2.  In a sense these are information flows telling the 
lamps which one should be lit according to the current status of 
the injector.  In practice, however, it is a simple on/off 
connection and the intelligence, or the information content, is in 
the preceding function.  Thus the two flows are represented as 
electrical flows.  

 

Table 1 A modified list of functional basis. 

Flow category Sub-category 

Human 
Gas 
Liquid 

Material 

Solid 
Human 
Acoustic 
Electr voltage 
Electromagnetic 
Hydraulic 
Magnetic 
Mechanical 
  Rot torque 
  Transl speed 
  Vibration 

Energy 

Pneumatic 
Content 

Signal 
Bandwidth 

 
 
Our hypothesis is that this classification serves as an 

indicator of interface difficulty.  Each flow type is 
parameterized with a small number of descriptors, e.g., an 
information flow of 48 connectors at high bandwidth is more 
difficult to alter than an information flow of 2 wires, on/off.  
This is similar to Boothroyd and Dewhurst’s classifications of 
electrical connections according to their complexity (in terms 
of assembly) [21 p.153].  A rotary energy flow from a rotary-
to-linear drive at 175 W is more difficult to alter than a hand 
powered linear translation energy flow. 

We analyzed flow difficulty through consultation with five 
system engineers, involved in the design and expert in the 
domains relevant to the injector head.  We asked engineers for 
relative difficulty of different types of changes.  We asked 
questions about increasing and decreasing various flows by 
different percentages to find out if there is a difference in 
increasing or decreasing a flow value.  We also asked for the 
effect of each change on the existing processes to make sure 
that the change is in fact possible.  Following is a table (Table 
2) presenting an example from the interview form used.  We 
mainly asked questions in the change range where the effect 
can be presumed somewhat linear i.e. above where the change 
is not already designed in as over capacity of the original 
component and no change is needed and below where only 
modification is needed and not total redesign.  We did ask a 
few questions also in the far ends of the range to see how the 
results were different there, but closer examination of the far 
ends is left for future studies. 
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Making changes to a function in a function structure will 
often force changes to the functions surrounding it.  Dealing 
with this chaining impact of a design change is what a design 
engineer must do before using our method, and estimate the 
extent of change of each function.  The effort to change any 
function, though, is an independent estimate of our 
interviewees.  Estimating design effort to change each function 
independent of the others is appropriate for three reasons: (1) 
Incorporating the system changes would make it seem that no 
matter which component in the system is changed, the redesign 
effort is always the same, since every component in the system 
changes.  (2) Our goal is to be able to define modules that are 
easy to redesign in case there is a change somewhere in the 
system.  For example, if the system changes outside a module, 
we ask the design effort to accommodate that change while 
maintaining the remainder of the system unchanged.  (3) In 
some cases, it is impossible to change a function without 
changing some of its neighbors. For example, changing a motor 
in power will require changing its controller.  We left it to the 
designers (the interviewees) to back-propagate the changes as 
far as they felt was necessary.  We only want to represent the 
redesign for each change by effort numbers, not the logic 
behind the back-chaining.    

From our interviews, we obtained the estimated man hours 
required for each change.  We then normalized these results 
into relative hours compared to the original effort.  For 
example, if the answer was 30%, it meant that to redesign the 
component to accommodate the specific change requires an 
additional 30% of the original design work.  We also 
normalized the answers so that all interviewees had the same 
global average across all modules, to eliminate questionnaire 
biases between different interviewees.  We calculated relative 
rework needed compared to the original effort for each one 
percent change in a flow by averaging all answers for each type 
of change and dividing it by the percent change in the 
questionnaire (Eq. 1).  We also calculated standard deviations.  

 
 100

changepercent
average

Rework change %1 ∗=  (1) 

We then grouped the answers across all of the modules 
examined into electrical, mechanical, and pneumatic energy, 
informa tion, and material flows according to the functional 
basis.  That is, for each of these categories we found the 
average relative rework percentage across all modules 
examined.  Similar to the way we posed the original questions, 
we calculated both the rework for increasing or decreasing a 
flow value as well as rework needed to change a flow 
regardless of the direction.  

 
RESULTS 

To change a flow by one percent, our results indicate what 
percentage additional design work is required.  In general, we 
find that a 1% change in any product flow requires about 1-2% 
of the original design effort.  Table 3 shows the additional 
design work, or the difficulty of change, for various types of the 
functional basis flow categories.  

The intended use of the table is twofold.  First, it can help 
in assessing design changes to a product – if a module is 
increased or decreased in size, power, output speed, etc., how 
much design effort is required?  This can help scope a project.  
Second, it can help in preliminary conceptual architecture 
activities, to decide where to place module boundaries – better 
to place boundaries on flows with less difficulty.   

Note that the numbers in Table 3 must not be used directly 
for these comparisons, but must be multiplied by the original 
design effort.  Large number in Table 3 may be favorable if the 
flow in the product is small.  An illustrative example of this is 
the emit acoustic vibration  function, a speaker, and the acoustic 
energy flow in the injector head.  The design effort complexity 
metric value for acoustic energy is high (3.8%) but in this 
product, a change in the acoustic energy means changing to a 
different speaker - selecting a new component from a 
catalogue.  The original effort is mainly to decide which 
speaker to choose from a selection of speakers, so the redesign 
effort is close to that of the original.  However, the total 
selection and new documentation is a small effort in total, about 
20 hours as estimated by one of the engineers, compared to the 
total design effort of the whole product.  Similarly a small 

Table 2 Part of the interview form used.  

No of 
attachm. 
surfaces Description Black Box 
Part 
attach
es to 

Attach
ed to 
the 
part 

Change  
(everything else stays 
the same)  

Man hrs 
req f each 
change 

Effect on 
existing 
processes 
none / low / med / 
high / impossible 

input torque 
increase 30%   

Transmission.   
Input: Rotation from 
the motor axle 
Output: Rotation to 
the ball screw 

 

  
input torque 
decrease 30%   

Input torque 
increase 30%   

Transl speed 
change 20% 

  

Ball screw.  
Inputs: torque from 
transmission, human 
control knob 
Outputs: linear 
movement to move 
the plunger 

   

Transl stroke 
increase 20% 

  

 

transmis
sionrot

rot

torque to support structure

rot

torque ball
screw transl
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design effort complexity metric value (1.2%) for an electrical 
energy does not necessarily mean a trivial change in the 
product.  For example, an engineer estimated the original 
design of the control injector head, main control card, to be 
about 16 man weeks and about 2 man weeks for the emit light 
functions, injector arm status indicator lamps.  A 1.2% redesign 
effort is obviously much less for the lamps than for the control 
card.   
 

Table 3 Relative rework needed as percentage of the 
original effort for different types of flows. (with standard 

deviations) 

Flow category Sub-category Difficulty of change 
Material Solid 1.1% (±1.3%) 

Acoustic 3.8% (±5.2%) 
Electr voltage 1.2% (±0.5%) 
Mechanical 
  General 
  Rot torque 
  Transl speed 

 
1.7% (±1.3%) 
1.7% (±1.4%) 
1.0% (±0.4%) 

Pneumatic 3.2% (±1.5%) 

Energy 

Thermal 2.2% (±1.7%) 
 General 1.3% (±0.6%) 
Content 1.4% (±0.3%) 

Signal 
 

Bandwidth 1.3% (±0.9%) 
Spatial Transl stroke 1.5% (±0.2%) 

 
Beyond this direct application, there are some interesting 

insights to be gained from the results.  For example, contrary to 
many beliefs (including at the participating companies) a signal 
flow (software) change is not necessarily easier than a 
mechanical change nor is mechanical change necessarily any 
easier than a software change.   

There are similar insights within each flow type.  In 
general it is always easier to decrease flow levels than increase 
them, as one might expect (see Table 4).  For example, with 
mechanical rotational energy flows, a torque x speed increase 
by 1% requires 1.8% more work, whereas torque x speed 
decrease needs only 0.9% more work, a factor of 2 difference.  
In other words, changing torque from 15 Nm to 20 Nm requires 
approximately 54% of additional work relative to the original 
design hours where as changing torque from 15 Nm to 10 Nm 
requires only approximately 27% of rework.  More 
pronounced, a pressure increase of 1% requires 4.2% more 
work, whereas a pressure decrease requires 2.2% more work.  
In other words, a 10% change in pressure causes 42% 
additional design work if the pressure is increased whereas 
decreasing pressure by the same 10% causes only 22% more 
work.  Some energy flow types are more difficult to 
accommodate than others.  

Also of note, energy flows are interesting in their units of 
power – energy and speed.  Often, the change in one of these 
factors is important, and the design difficulty is different for 

two components.  For example, consider changing torque or 
speed compared to changing power = torque x speed.  Each of 
theses scenarios has different design change difficulties, as 
shown in Table 4. 

 
Table 4 Added design difficulty to increase and decrease 

the interface for various flow changes by 1% in 
descending order. 

Difficulty Flow interface 
Increase Decrease 

Pressure (Const flow) 4.2% 2.2% 
Torque x Speed 1.8% 0.9% 

Torque (Const speed) 2.9% 1.0% 
Bandwidth 1.4% 0.6% 

Voltage (Const I) 1.2% 1.3% 
Speed (Const torque) 1.9% 0.6% 

 
USE 

To demonstrate and validate our approach, we applied the 
procedure introduced above with the design complexity metrics 
to a product, again an injector head, keeping the design domain 
within the family of injector heads.  We started by 
decomposing the product into smaller sub-systems down to the 
company assembly level.  We then assigned each component a 
function using the functional basis [19] vocabulary.  We 
developed the function interactions with material, energy, and 
information flows in between the function boxes.  The final 
function structure of the injector head is in Fig. 2.  

We chose to modularize the injector head using the 
function structure heuristic approach [9].  We found the 
function chain convert electricity to rotation – transmit torque 
– decrease speed – convert rotation into translation as the 
dominant flow.  Convert human force to rotation, sense 
syringe , the two  syringe size sensors, emit acoustic vibration, 
indicate data, import user data, the two emit light functions, 
and connect syringe form modules candidates according to the 
branching flow heuristic.  Functions convert human force to 
rotation  and convert rotation into translation as well as 
function pair convert electricity to rotation – transmit torque 
are identified by the conversion-transmission pair heuristic.  

As is inherent to the function structure heuristic methods, 
the module choices overlap and are not definite by the 
heuristics themselves.  The chosen function chains could easily 
be a function shorter or longer without breaking the heuristic 
rules.  For example the dominant flow could as well include 
functions change syringe volume  and store contrast or not.  The 
heuristic method simply provides suggestions, and it is up to 
the designer to choose among these suggestions based upon 
judgment.  Here we provide quantification of one metric, 
design complexity in terms of redesign effort.   

The function structure includes electrical and mechanical 
energy, information, and material types of flow interfaces.  The 
design complexity diffic ulties are assigned for each flow and 
summed at each interface.  Figure 2 shows the summed 
interface complexities at each interface.  
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It is now easy to identify the most critical interfaces.  The 
most complex interfaces are ones with acoustic vibration by the 
function emit acoustic vibration and volume flow  from function 
change syringe volume  to function store contrast.  These 
interfaces should be paid extra attention to.  For example the 
volume flow interface should not be a module interface but 
inside a module.  Thus we decide to lengthen the dominant 
flow module to convert electricity to rotation – transmit torque 
– decrease speed – convert rotation into translation - change 
syringe volume  – store contrast.  Another choice would be to 
use the short dominant flow and combine the two functions 
around the critical volume flow interface into a separate 
module.  This calculated result proved well within agreement of 
our system design engineering experts.   

Another example of the use of the design complexity 
metric is to decide how to group the modules not identified by 
any of the module heuristics.  Say we want to decide whether to 
include the position sensing (potentiometers) into a module 
with either the control injector head function (main control 
board in the injector head) or with the drive system i.e. the 
dominant flow function chain.  The percent change at the 
interface to the control injector head is 1.3% and at the 
interface to the drive 1.7%.  This suggests that in order to 
minimize the needed rework, it is better to include the position 
sensing function to the drive to avoid the more complex 
interface and thus more potential redesign work.  Again, this 
calculated result proved in agreement with our design engineer 
experts.   

We group the rest of the functions using the same principal 
of minimizing the design complexity value at the module 

boundaries.  We can now calculate the total design effort 
complexity of the architecture.  We do this by summing up all 
the design complexity values at the module interfaces.  The 
idea is that we can now explore alternative architectures and 
then choose the best one in terms of several factors, minimizing 
design complexity being one.  Further, for any selected 
architecture, the ease of design upgrades is well understood at 
the outset, and areas where one is uncertain or understands 
there will be future changes can be accommodated.   

Beyond architecting, the redesign percentages can also be 
used to roughly estimate the redesign needed if a specific 
change is made.  This can be done for the whole architecture by 
multiplying the actual percent change of each flow by its 
relative redesign percentage at each interface and summing 
them all together.   

The results shown here held true across two vastly 
different corporate cultures and different modules.  However, 
the scope of the analysis remained electro-mechanical medical 
devices, indeed specifically injector heads.  It is not clear how 
large a domain this can be expanded to while maintaining 
meaningful consistency of responses .  There are several factors 
influencing the rework effort such as design process, 
representation of the design, tools used, etc.  We did not 
consider variations in these but used the ones that the 
companies in this study deal with.  Thus we cannot claim 
applicability of the metric values to all other domains but we 
believe the same approach could be used elsewhere.  It is not 
clear and extremely doubtful that a general single number 
coefficient that applies globally for all industries and product 
types can be derived.  Each company or at least type of industry 
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Figure 2 An injector head function structure with interface complexities. 
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should determine the metric coefficient values of their own.  
However, the results do provide consistency and are effective 
for any company to construct and then use.  That was our 
intention.   

 
CONCLUSIONS 

We introduced a method to relatively compare proposed 
product architectures based on design complexity in terms of 
redesign effort.  Our method is an effort to help the final 
defining of module boundaries after the module “cores” have 
been identified with a modularization method.  We used the 
function structure heuristics approach as an example.  The 
metric developed also aids in evaluating modularized 
architectures.  Our metric represents the difficulty that various 
module boundary interactions would have in terms of redesign 
effort.  The interactions are represented by flows, mechanical 
and electrical energy, signal flows, etc., in and out of a 
function.  We found that to change a flow by 1%, 
approximately 1-4% more design effort is required to 
accommodate the change, depending on the interaction type.  
We also found that decreasing a flow value causes, in general, 
less rework than increasing a value.  

The results on design difficulty to change a flow are 
interesting in and of themselves for understanding how hard it 
is to change the interfaces for various types of flows.  We find 
their use in modularity makes for much improved system 
architecting.  For any proposed module within a product 
architecture, the interconnection with the rest of the product  can 
be easily assessed for design change difficulty. 
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