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ABSTRACT 
Modular product platforms, sets of common modules that are shared among a 

product family, can bring cost savings and enable introduction of multiple product 
variants quicker than without platforms. In this thesis I show how to define common 
platform modules with interfaces that require as little redesign effort as possible as well 
as how to choose a platform alternative that is well aligned with the company strategy. 
The focus of the thesis is on electro-mechanical products of medium complexity. 

This thesis describes the current state of modular platform design and identifies gaps 
in the current state. The gaps were identified through application of three existing 
methods and by testing their usability and reliability on engineers and engineering 
students. Existing platform or modular design methods either are meant for (a) single 
products, (b) identify only module “cores” leaving the final module boundary definition 
to the designer, and (c) use only a limited set of evaluation criteria.  

I introduce a tool for common module identification in a product family that can be 
used in conjunction with other methods to take into account the entire product family and 
not just single products.  I introduce a clustering algorithm for common module 
identification that takes into account possible degrees of commonality. In addition this 
new algorithm can be applied both at physical and functional domains and at any, and 
even mixed, levels of hierarchy. Furthermore, the algorithm is not limited to a single 
measure for commonality analysis.  

The tool alone identifies alternative common modules. To select these, a key 
discriminator is how difficult the interfaces become. I also developed an interface 
complexity metric based on minimizing redesign in case of a design change. The metric 
is based on multiple expert interviews during two case studies. This metric aids in the 
interface definition. The new approach was to look at the interface complexity as 
described by the material, energy, and information flows flowing through the interface.  

Finally, I introduce a multi criteria platform scorecard for improved evaluation of 
modular platforms. It helps a company focus on their strategy and benchmark one’s own 
platform to the competitors’. It also serves as a communication tool for upper 
management as well as between different stakeholders. 

These tools add to the modular platform development process by filling in the gaps 
identified. The tools are described in the context of the entire platform design process, 
and the validity of the methods and applicability to platform design is shown through 
industrial case studies and examples.  
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1 INTRODUCTION 

1.1 Background  
In the product development (PD) literature, tools and methods are often described as 

if PD is a unique process from a clean sheet to a new one-of-the-kind product. They are 
also described as if development can be done for a single standalone product. These clean 
sheet designs, however, are not as common place as derivative product development. A 
typical project is more likely a derivative i.e. modification project of an older product. 
For example at General Electric 85% of development projects are modification projects 
[ 122]. These modifications form product generations over time. In addition, companies 
often add new parallel products to their product line to form a product family. The 
multiple lines of Nokia cell phones or Volkswagen vehicles, including the Skoda and 
Audi brands, are good examples. Further, these products are rarely started with a clean 
sheet but are based on something that exists already, something based on the company’s 
core competence. Henderson and Clark [ 46] dub these derivative products as incremental 
or modular innovations. Figure 1 schematically illustrates the idea of the multi-product 
world. 

product family

single product

product family
generations

product generations

time

ex
pa

ns
io

n

 
Figure 1 Single products are rare. 

Moreover, instead of a single product PD process and organization, I will argue that 
there should also be a multi-project, platform process and organization for platform 
projects.  Platform projects develop the base from which the multiple products can be 
derived later in single product PD processes. The platform projects should go hand-in-
hand with the strategic planning of the company.  These are different from derivative 
projects, where the multiple variants are developed, which can be run in the product 
development organization with tighter time-to-market demands. Wheelwright and Clark 
[ 121] also support the separation of platform and derivative projects in order to remain 
competitive. 

Tatikonda [ 113] surveyed 108 platform and derivative projects in 51 companies and 
found that the platform and derivative projects are and should be significantly different. 
For example, platform projects involve more technology development and generally 
aimed at newer markets than derivative products. He found, interestingly, that companies 
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employ the same management strategies regardless of the project type. This may be due 
to the fact that many product development models describe the PD process as a single 
process, where the platform planning happens in the planning or concept development 
phase of the product development. I will claim that a platform processes should be 
considered different from derivative product development processes. There may be, in 
fact, multiple platform projects for different technologies, for example. The platform 
projects should be part of strategic planning and technology development, and the 
platform projects should not happen in the tight schedule of a PD project due to the 
different properties of a platform project. The platform projects will provide the basis, a 
set of technology platforms, etc., for the actual product development processes (Figure 2).  

In principal the process steps for platform and derivative product development are 
similar, but the inputs and outputs are different. The platform process may start with a 
clean sheet, or an existing product family, whereas the derivative product development 
process starts with a platform, the outcome of the platform process. The output of a 
platform project is a platform, not a product, whereas the output of a derivative project is 
a product to be launched in to the market, based on the platform.  

Nokia, for example, has separate platform and product development processes3. The 
Nokia platforms represent technologies (e.g. Bluetooth) as well as design rules for the 
mechanical design. The platforms then form a basis for the product ideas that can be 
developed based on one or multiple platforms.  

Product Development OrganizationPlatform Organization

Initiation Planning LaunchDesignInitiation Planning LaunchDesign

 

Figure 2 Three platform processes and five derivative product development processes overlaid with a 
traditional process. 

A typical PD project consists of phases. I have adapted a PD process model from 
Ulrich and Eppinger [ 117] for this thesis (Figure 3). I will apply this modified model for 
the platform development process. The last phases of the process here do not mean that 
the platform is launched as a product to the customer, but that the platform organization 
delivers the platform to the product development organization. Similarly the ‘after sales’ 
                                                 
3 Based on several personal conversations and personal observations of the products 
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refers to the phase where the product development organization may give modification 
suggestions to the platform core modules. 
 

Portfolio 
planning

Platform 
concept 

dev.

System 
level 

design

Detail core 
module 
design

Testing
Delivery

to 
PD org.

After 
‘sales’

Detail core 
module 
design

Testing
Delivery

to 
PD org.

After 
‘sales’

 
Figure 3 A typical product development process [adapted from  117]. 

This thesis focuses mainly on the beginning phases (Figure 4) of the process since 
these are the phases when portfolio, platform, and architectural decisions are made.  

Detail core 
module 
design

Testing
Delivery

to 
PD org.

After 
‘sales’

System 
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design

Platform 
concept

dev.

Portfolio 
planning

 
Figure 4 The focus of the thesis is on the beginning phases of a development project. 

The beginning is a crucial part of the PD process. After the system level design, up 
to 80% of the product’s cost is determined [ 20]. By the end of this phase a company has 
committed to certain solutions involving specific technologies and configuration of the 
product. This commitment ties up the investment and makes it increasingly more difficult 
to make changes to the product’s design. [ 9] Also Kaplan et al. [ 60] show how error 
prevention in the early phase can cost as little as 6% of the cost of error correcting toward 
the end of the product process. Therefore, it is important to have good systematic 
methods that produce good results at the system level design phase.  

There are many strategies for proper product architecture design and platform 
development. This thesis describes one especially for modular product platforms. 

1.2 Objectives 
In this thesis I will show how to define common platform modules with easy to 

redesign interfaces as well as how to choose a platform alternative that is well aligned 
with the company strategy. 

The key idea is to develop a methodology that is well founded and yet easy to use in 
practice. I will identify the gaps in the methods and develop new methods to make the 
modular platform development process more complete. The research addresses the 
following four questions: 
 
1. What are the biggest gaps in the modular platform development methods to date? 
2. How can module interface complexity be described quantitatively? 
3. How can the identification of common module candidates for modular platform 

design be improved? 
4. How to evaluate the “goodness” of a modular platform and its fit to the over all 

company strategy? 
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The result of this thesis will be a better understanding of the modular platform 
development process as a whole, as well as improved methods for platform development 
and evaluation. 

1.3 Theoretical Approach  
In a larger context this thesis is part of design science. Hubka and Eder [ 54] define 

design science as “a system of logically related knowledge, which should contain and 
organize the complete knowledge about and for designing”. This research is in full 
accordance with this definition in that this thesis presents a framework of new and 
improved methods for design, specifically architectural design.  

Hubka and Eder [ 54] further state that the goal of design science is to improve the 
situation in the design area and eliminate existing problems. This second criterion of 
design science describes the approach in this thesis. I start by analyzing existing methods, 
identify their strengths and weaknesses, and then build the new methods on that.  

Design research, according to Blessing et al. [ 10] includes three stages: (1) 
Descriptive study I, where the goal is to identify factors that lead or prevent success; (2) 
Prescriptive study, where a method or theory is developed based on the results of the first 
stage; and (3) Descriptive study II, where the methods are applied, and the contribution to 
success is analyzed. Typically, a research project focuses on one to two stages. This 
research starts in stage 1 and ends at stage 2. The primary research method in these stages 
is case study research. All the analysis of past and newly developed methods is done with 
case study products from real companies. Yin describes case study research as an 
iterative three step process shown in Figure 5. This process is used in this thesis. 

To ensure the validity of the developed methods, the four tests of validity are applied 
as defined by Yin [ 125]: construct, internal and external validity, and reliability. The 
construct validity of research can be assured by using multiple sources of information. 
Internal validity is the most difficult to prove in case study research according to Yin. 
The internal validation approach used here is explanation building and pattern matching. 
Both tactics are analytical tactics of making sure that the conclusions drawn from the case 
studies follow logically from the data gathered. The external validity has to do with the 
generalizabilty of the results. In case of case study research the results are often 
generalized analytically as opposed to statistically as in other types of research. Also the 
statistical generalization is used in this work when possible. The analytical 
generalizability is similar to the repeatability of the results. The repeatability can be 
tested using the same approach for more than one case study and checking whether 
results are the same. This approach is used in this work. The fourth type of validity, 
reliability, is similar to the external validity in that both can be measured as the 
repeatability of the research. Reliability, however, is about the repeatability of a single 
case. A case study should produce similar results independent of the person doing it. This 
is difficult in practice, since an industrial case study can rarely be fully replicated, but the 
aim here is to minimize the biases e.g. repeating the case study procedure with multiple 
people from each case study company. 
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Figure 5 Case study method picture adapted from [ 125]. 

1.4 Scope of the Thesis 
The focus of this thesis is on a modular approach to product platform design. 

Modular design cuts through product architecture, product platforms, etc., but those 
issues are dealt with in this thesis only in where they relate to modular platform design. 

This thesis deals with modular product platforms. There are also other types of valid 
platforms, but they are not the primary topic in this thesis. Further, product platforms 
affect and are affected by multiple facets of the business process. This thesis focuses on 
the engineering side of modular product platforms – how to design and develop modular 
platforms. Company strategy is considered, mainly in the platform evaluation phase, 
since it is closely linked with product platforms, but the business strategy issues are not 
the foci in this research. 

The theoretical part of this thesis is general to any product, but since the case studies 
used to test and validate the methods are electro-mechanical products of medium 
complexity, I cannot claim proven applicability of this work beyond these product types. 

1.5 Outline of the Thesis 
This thesis consists of three main parts. The first part is the theoretical foundation of 

the research area. This establishes the fundamental underpinning of the research. The 
second part is the literature, of which the thesis can be viewed as a continuation. The 
third part is the actual contribution of the thesis – a methodology consisting of three 
separate tools to design and evaluate product platforms. The figure below illustrates the 
outline of the thesis (Figure 6). 
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Figure 6 Outline of the thesis. 

Chapter 1, Introduction, forms the theoretical basis for this research. It describes the 
theoretical approach used as well as the scope of the thesis. Chapters 2 through 4 
introduce the state-of-the-art of research in platform architecture and other relevant 
topics. The first publication is summarized in Chapter 3. This thesis is a continuation of 
this platform architecture research. Chapter 5 summarizes 4 of the articles that form the 
main contribution of this thesis. These articles describe platform development methods. 
Chapter 6 summarizes the 6th article on evaluating platform architectures. And finally, 
Chapter 7 concludes the major findings of this research. 

1.6 Original Features 
This thesis includes methods for improved product platform development. The 

following features are believed to be original: 
 
1. Literature review of platform development, modularity, and product architecture, 

with concentration on how to develop and evaluate platforms, modularity, and 
architecture and identifying gaps in the current methods. The main contributions are: 

a. Evaluation of 6 different architectural representations. 
b. Comparison of modularity methods based on actually using the methods 

on 6 products including a repeatability analysis with 40 participants  
c. Performance tradeoff analysis between modular and integral architectures 

using quantitative examples. The earlier work in this area is only 
qualitative. 

 
2. A new metric to analyze and describe interface complexity quantitatively based on 

the interface type. The complexity is based on the ease of redesigning adjacent 
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modules if an interface changes. The new approach here is to look at the interface 
complexity as described by the material, energy, and information flows flowing 
through the interface. The metric is evaluated by using it on two case studies.  

 
3. A new quantitative method to evaluate module commonality. Unlike most measures 

before, this method sees platform and component commonality analysis not as a 
binary, common/not common choice, but as a more complex decision of degree of 
commonality at the functional level. The method is also flexible in that it can 
compare functional commonality within and across products at the same time. 
Further, the method is not restricted to comparing functional commonality at a single 
level on the function hierarchy, but it can compare commonality across the 
hierarchies. In addition, the method can handle functions described by multiple and 
different units of measurement. The method is shown to work through real examples.  

 
4. A platform evaluation scorecard that includes a comprehensive set of metrics. This is 

a new compilation of existing as well as new metrics to evaluate platform 
“goodness”. The existing metrics were modified to fit for platform design and not 
only single product design. The usability of the tool is shown via an example.  
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2 PRODUCT ARCHITECTURE 
In this chapter I will first define the term architecture for the purpose of this thesis 

and then discuss the multiple ways of representing a product or system architecture. 

2.1 Definitions 
Merriam-Webster on-line dictionary [ 120] has one potentially relevant definition of 

architecture: 
 

The manner in which the components of a computer or computer system are 
organized and integrated 

 
Ulrich [ 118] defines architecture as: 

 
The scheme by which the functions of a product are allocated to physical components  

 
This definition recognizes that a product can be realized through alternative 

architectures. The US Department of Defense, on the other hand, use more life cycle 
thinking in their definition of architecture: 
 

The structure of components, their relationships and the principles and guidelines 
governing their design and evolution over time. (CJCSI 3170.01D)  

 
Maier and Rechtin [ 69] have a systems approach and include the process in their 

definition:  
 
The structure (in terms of components, connections, and constraints) of a product, 
process, or element.  

 
Crawley et al. [ 19] give a similar definition for system architecture, but instead of 

physical components they refer to entities that could be functions, physical or non-
physical “components”, etc.: 
 

System architecture is an abstract description of the entities of a system and the 
relationships between those entities. 

 
The definitions deal either with the physical structure of a product, the abstract 

representation of the system components, or the mapping between the two. The common 
theme in all these definitions is the arrangement of elements of a product. The last 
definition is the most abstract and therefore also less restrictive than the other definitions. 
I will use a definition adapted from the last definition by Crawley et al. in this thesis 
while still recognizing the existence of alternative architectures of a product as in 
Ulrich’s definition: 
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System architecture is an abstract description of the entities of a system and the 
relationships between those entities and the scheme by which these entities are 
mapped to larger physical or non-physical sub-systems of a system. 

2.2 Representation 
There are multiple ways of representing a product, or system, architecture. I will 

shortly present here a few models commonly found in architecture literature and argue 
why a specific representation is chosen for this thesis. All the representations concentrate 
on the physical (components or sub-systems) or functional (product functions) 
decomposition [ 62]. 

2.2.1 Six Architectural Models 
The simplest way of representing an architecture is probably a hierarchical tree 

structure. In a hierarchical tree, a system is decomposed to sub-systems and the system 
architecture can be looked at different levels of abstraction. Figure 7 shows how a system 
and its sub-systems can be represented as a tree structure. 

system

sub-
system n

sub-
system 2

sub-
system 1

 
Figure 7 A hierarchical tree structure. 

Hubka and Eder describe an organ structure, especially developed to represent a 
(technical) system, which principally means a machine that does work. An organ, 
according to them, is “a system that realizes a given internal function” [ 53]. They do not, 
however, present a specific symbolic way of representing an organ structure. An organ is 
similar to what others call simply a function, something that the product does. Pahl and 
Beitz represent architectures as functional decomposition block diagrams of all the 
product’s functions. Alternatively the functional decomposition could be replaced by a 
physical decomposition into components (and sub-systems). These function structures 
include all the material, energy, and information flows as arrows between the functional 
blocks (Figure 8). [ 89] The division of the flows makes the function structures suitable 
mainly for electromechanical products. 

material
energy

info

material
energy
info

function

 
Figure 8 A single function block of a function structure with basic flow types. 

IDEF0 [ 57] is another way of modeling a system. It was originally developed to 
model processes. This is similar to the function structures in that in IDEF0 the functions 
are also presented as blocks, and there are inputs and outputs to and from the functions 
(Figure 9). Alternatively the function could be replaced by a component (or a sub-
system). These inputs and outputs are, however, not decomposed into different types, but 
instead two more input arrows are added in addition to the basic function input. These are 
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a control arrow to represent a controlling element and a mechanism arrow to represent the 
tool or resource performing the function. 

input output
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function

 
Figure 9 Basic structural unit of an IDEF0-diagram. 

Another popular way of representing architecture is a design structure matrix (DSM) 
[ 117]. It was originally developed for modeling organizations. The DSM is analogous to 
the function structure, but here, the functions are presented as row and column headers of 
the matrix instead of the function boxes and the connections between the functions are 
shown in the matrix (Figure 10). The connection mark (“1” in Figure 10) indicates that 
the function on the row depends on the function on the column. For example, in the 
figure below, functions 2 and 3 depend on function 1 and function 1 depends on function 
3. The marks can, as shown by Pimmler and Eppinger [ 94], also be divided into spatial 
(S), material (M), information (I), and energy (E) interactions, as shown on the right in 
Figure 10. In addition to functions the rows and columns could represent components, 
tasks, team members, etc. 

 
Figure 10 A design structure matrix. 

So far, the architectural models have described either the functions or components 
(or sub-systems) of a product or system and their interconnections. Object-process 
methodology (OPM) [ 25] was developed to include both aspects into the model at once. 
Sub-systems can be presented as objects (parts, and other elements involved in the 
system) and functions as processes (Figure 11). The objects are represented with 
rectangles and processes with ellipses. In addition, the links between the objects and 
processes can be represented with multiple symbols. To indicate that an object performs a 
process, the object is connected to the process with a connector that has a black circle at 
the process end. A white circle indicates that the object is part of the process but not the 
agent performing it. In addition states ( ), effects (→), and aggregations (•) can be 
represented in the OPM diagram. 
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Figure 11 Object-process diagram. 

The OPM is a close cousin of unified modeling language (UML), the last approach 
to modeling an architecture described here. This language was originally developed for 
software design, but it can be used to model also non-software systems. Below is an 
exemplary structural UML diagram of a product (Figure 12). In addition there are other 
views to describe an architecture. These other views make the UML the most general 
model, but some views, e.g. states, are modeled also by the OPM diagram. Here, the 
classes represent the basic concepts of a system (similar to components of a product) and 
each class can have a set of attributes and operations to describe their properties and the 
alternative functions each class can do. The relation can be any verb that describes the 
respective roles of the two classes. The relations between the classes can describe e.g. 
how one class controls, consists of, or reads the other class.  

class 1 class 2

operation 1
attribute

relation

class 4

re
la

tio
n

relationclass 3
operation 3  

Figure 12 UML diagram. 

2.2.2 Comparison of the Six Architectural Models 
It is not agreed which of these architectural representations is the best or most 

suitable for a specific case. The different architecture representations are best suited for 
different purposes. The focus of this thesis is on products and their functions and 
structure, and not for example on a process or use case of a product, in which case the 
choice of method would be different. 

 
I will analyze the models here from nine different aspects: 
 
1. Whether both functions and actual elements of a product can be represented. The 

element here refers to a component of a physical system or e.g. a block of code in a 
software system. 

2. Whether the user of the product can be included in the model. 
3. Whether the surroundings of the product can be included in the model. 
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4. Whether the model can differentiate between different interface types or 
complexities. 

5. Whether the model is static or dynamic i.e. whether the model can show different 
views or states of the system (dynamic) or just a single state and view (static). 

6. Whether the model is suitable for modeling service and software architectures in 
addition to electromechanical architectures. 

7. Whether the model can be used in the early phases of the development process. 
8. What aspects of the product are visualized with the model. 
9. Whether the model is compatible to other models i.e. if one representation is 

transferable to another without any additional information. 
 

To better illustrate the differences between the models, I will use each method to 
model the same product: a water bottle. To keep the models simple, I will only model 
three functions of a water bottle: holding water, directing water to mouth, and sealing 
container if needed. In addition, of course, the water bottle includes functions such as 
show contents, show how much left, enable holding, etc. Figure 13 illustrates the three 
functions of a water bottle using the six architectural representations introduced. 
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Figure 13 A water bottle modeled using six different architectural representations. 
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Looking at the hierarchical tree structure of the water bottle, we see that it only 
shows the functions of the product but does not reveal any details about their relations. 
Alternatively the tree structure could contain the elements of the bottle, but still leaving 
out the relations between them.  

Function structure can also have either the functions (as shown above) or the 
elements of a product. In addition to the tree structure, we now have connections and 
connection types between the functions to represent how the functions relate to one 
another. Water flows from the hold water function to the outside of the system through 
direct water functions. In addition, one can see that water can also enter the seal function, 
but the flow of water stops there and returns to the hold water function. Further, the 
function structure includes also connections to the outside of the system. In the water 
bottle example, a user is seen as a hand and force holding the bottle, mouth touching the 
direct water part of the product, and user sealing the bottle with the cap. 

The IDEF0 includes the functions or elements of the product as well and their 
relations. It does not, however, detail the interaction types, or flows (water), in the 
architecture like function structures. IDEF0 representation can include the user and 
possible other connections to the outside of the product it self. This is presented as 
control and mechanism arrows. For example, the user is both the mechanism that seals 
the bottle and controls that the sealing is done. 

The DSM is very similar to the function structure model. The main difference to the 
function structures, in addition to the spatial interaction, is that connections to the outside 
of the system are not shown in the DSM. In addition, the matrix format of the DSM 
enables easy reorganization of the architecture using matrix manipulation. Most 
algorithms, however, are for the binary DSM, where the interactions are not separated 
into the four categories. 

OPM, as discussed above, enables simultaneous modeling of functions and elements 
of a system, unlike the function structure and DSM methods, for example. In addition, the 
surroundings and the user of the system can easily be included in the diagram. In the 
water bottle example the object the system (bottle) operates on is water. Water is not part 
of the system itself but can be included in the model. Further, dynamic aspects such as 
states of the system can be included in OPM. The bottle cap can be sealed or not, for 
example. This modeling method provides a more complete description than the others so 
far. 

The structural UML model of the water bottle also includes the functions and the 
elements of the system. The elements are presented as classes and the functions and their 
operations. Note that now the operations and relations are very similar. Each relation 
could be replaced by “acts upon” to avoid use of same verb as in operations, but the 
above notation is chosen for clarity. If a class had more operations, i.e. an element had 
more functions, these operations would be divided to different relation lines to different 
classes. In addition, relation lines could describe e.g. aggregations such as in the OPM 
diagram. Further, one could include attributes for each class, e.g. the water container 
could have size as an attribute. If one were to draw different diagrams for the other views, 
many more features of the system could be described, but not in a single diagram. 

All six architectural representations have benefits and drawbacks and a choice on 
which to use depends on the situation what in the most suitable for a specific purpose. 
Most of these methods were used at some point of this research. During the research I 
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identified certain key features that an architectural representation must have for platform 
development purposes. Similar to customer needs in a KANO chart, the need for an 
architectural representation can be divided into both basic needs that are “must” and 
special features that make the method better than expected. The basic needs include the 
ability to illustrate functions/elements of the product and their relations. A special feature 
that was also important in this research was the capability to show the interfaces in detail 
between the functions/elements in the structure. This stemmed from the need for 
improved understanding and design of interfaces and linking the customer requirements 
into the functions for commonality analysis. This will be discussed later in the thesis.  

Further, since the focus of the thesis is in the early phases of development, it is 
important to have an architectural model that can be created when only customer 
requirements are known, not the components of the system. In addition, it is sometimes 
important to be able to represent an architecture of an existing system with an abstract 
model in order to not tie the thinking to the existing solutions. This opens possibilities for 
fundamental [ 31] redesign of the product architecture. For example, if a company making 
a water bottle was in fact in the business of providing water containers that one could 
easily drink from and seal if necessary, then the same functions could be realized by 
multiple product types (Figure 14) or combinations of different attributes of the different 
product types. In order to keep these possibilities open and enable platform commonality 
across different product types, an abstract model with no components is needed. 

 
Figure 14 Five alternative water containers with functions: hold water, direct water to mouth, and 
seal container if needed. 

Additional good features of an architectural representation are its abilities to 
visualize the product design problem as well as to provide clues about the product context 
(e.g. user and surroundings).  

In summary, during the course of platform design, different methods may be needed, 
or a combination of them to benefit from the power of the methods. For this to be easy 
and effective, it is desirable that a method is compatible or easily transferable to another 
method. As an example the function structure is maybe easier to read than a DSM, but a 
DSM is quick to manipulate. Table 1 summarizes the main features of the six models 
giving clues to a designer which method to use in a specific situation. 
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Table 1 Comparison of architectural representation methods.  

 Hierarchical 
tree 

Function 
structure IDEF0 DSM OPM UML 

Functions / elements F or E F or E F or E F or E F & E F & E 
user - + + - + + 
surroundings - + + - + + 
Interface types - + - + - + 
static/dynamic static static static static dynamic dynamic 
Suitable also for service 
and sw architectures (+) - - (+) + + 

Can be used at early 
phases (+) + + + (+) (+) 

Visualization levels of 
hierarchy 

functional 
layout, interf. 

types 

functional 
layout 

interface 
connectivity

objects 
involved 

objects 
involved 

Compatible w/ methods - DSM 
(IDEF0) (DSM) Function str. 

(IDEF0) (UML) (OPM) 

 
In this thesis I will analyze product architectures and develop systematic methods for 

architectural design. I will choose function structures as the primary architecture 
representation method since it has the most features needed but not a lot of additional 
information to clutter the presentation in my work and since it is transferable to other 
representations with minimum effort. The key issues that lead to the selection of the 
function structure as the main method were (1) the function structure can be drawn at the 
early phases. The minimum information needed are customer requirements; (2) The 
function structure is an abstract demonstration that enables comparison of different 
product types (e.g. in a product family); (3) The function structure includes a separation 
of interface types and includes units of measurement related to the customer 
requirements; (4) Representing dynamics aspects, i.e. the states of the system or different 
view points, were not found to add significant value. Also DSM would have been a good 
choice for (1), (2), and (4), but the function structure is more visual and has the most 
information needed for the interface definition. Also OPM could be used as well as the 
DSM, but similarly the interface type separation is not as suitable for this research as in 
the function structure model. 

Further, Kurfman et al. have shown function structures to be reasonably repeatable 
[ 66]. They also show that function structures result in quasi-unique product 
representations and that the functional basis vocabulary improves the functional modeling 
by making it more repeatable and by determining a level of decomposition. They also 
show that the method works for both redesign and an original product, but benefits are 
clearer with redesign projects [ 67].  
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3 MODULARITY 
Modularity has become very popular in academia in recent years even though it has 

existed for at least 30 years [ 31] and the idea of hierarchical systems consisting of semi-
independent sub-systems was brought up by Simon [ 101] already in 1962. Several 
companies have adopted modular thinking in various industries such as Boeing, Chrysler, 
Ford, Motorola, Swatch, Microsoft, Conti Tires, etc. [ 85]. In this chapter I will first 
define how the term module is used in this thesis, and then discuss different measures for 
measuring the degree of modularity of a product. I will end with tying modularity to 
product architecture and discussing the advantages and disadvantages of modularity. 

3.1 Module Definitions 
Gershenson et al. [ 36] note in their literature review that there is no agreement on the 

definition of modularity. There is some agreement that a “more modular product is one 
with more modules that are closer to the ideal module”. But the definition of an ideal 
module is not agreed upon. This is largely due to the definition of a module being related 
to the benefits sought from modularity. 

O’Grady [ 85] defines “hard” and “soft” modules. “Hard” modules are physical 
assemblable modules and “soft” modules have limited physical presence e.g. software, 
service, financial products, insurance, etc. In this thesis I do not make a separation 
between the two, both are considered equally modules. This choice is since a single 
product can consist of both types of modules, and therefore the architectural analysis is 
complete only if both types of modules are considered. 

Mattson and Magleby divide modularity into three categories: design, 
manufacturing, and customer modularity [ 71]. Also Gershenson categorizes modules into 
the design and manufacturing, as well as the end-of-life modularities.  

Independent of the life cycle phase or purpose of modularity, Merriam Webster [ 120] 
has two relevant definitions for a module: 

 
1. a : any in a series of standardized units for use together: as (1) : a unit of 

furniture or architecture (2) : an educational unit which covers a single subject or 
topic  
b : a usually packaged functional assembly of electronic components for use with 
other such assemblies 

2. an independently-operable unit that is a part of the total structure of a space 
vehicle 

 
Hubka and Eder [ 53] define a modular design as “connecting the constructional 

elements into suitable groups from which many variants of technical systems can be 
assembled”. Salhieh and Kamrani [ 98] define module as “building block that can be 
grouped with other building blocks to form a variety of products”. They also add that 
modules perform discrete functions, and modular design emphasizes minimization of 
interactions between components. Also Camuffo [ 15], Dahmus et al. [ 21], Pahl [ 90], as 
well as Ulrich and Eppinger [ 117] have a similar definition. They all define a module as a 
chunk of a product with an identifiable function.  
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The above definitions are mainly based on the functionality of a module. Another 
common way of defining a module is a more abstract definition such as that of Otto and 
Wood [ 87]: “product modules are defined as integral physical product substructures that 
have a one-to-one correspondence with a subset of a product’s functional model”. Also 
Stone et al. [ 109] use a very similar definition derived from Ulrich’s definition of 
architecture.  

Ericsson and Erixon [ 27] add that in addition to the similarity between the physical 
and functional architecture of a product, a module should have minimal interaction with 
other modules or the rest of the system. This strong connectivity within a sub-system and 
loose connectivity between sub-systems was discussed by Simon [ 101] quite early. 
Baldwin and Clark [ 5] define a module as “a unit whose structural elements are 
powerfully connected among themselves and relatively weakly connected to elements in 
other units”. Also Suh [ 111] considers the connectivity of the module to the rest of the 
system in his definition where a module is a row in his design matrix. 

 
The module definition used in this thesis is adapted from the above sources:  

 
A module is an independent building block of a larger system with a specific 
function and well-defined interfaces.  
 

In addition, a module has fairly loose connections to the rest of the system allowing 
an independent development, outsourcing, manufacturing, recycling, etc. of the module 
as long as the interconnections at the interfaces are carefully considered. This definition 
is general to different product types and gives a definition that helps identify modules to 
benefit from the facts listed in Section  3.4, Advantages and Disadvantages of Modularity. 

3.2 Modularity Measures 
When talking about modularity, a question arises: how modular is a product 

platform? In order to quantify modularity, many measures have been developed, but the 
answer is not trivial as pointed out by Gershenson et al. [ 35]. They conducted a study 
where groups of independent students, engineers, product development managers, and 
researchers had to evaluate the degree of modularity of 10 consumer products. 
Interestingly, there was no statistical significance to the answers i.e. there was no 
agreement on what was more modular than another.  

There are many attempts in the modularity literature to measure the degree of 
modularity [e.g.  2,  37,  55,  70,  71,  84, and  106]. Guo and Gershenson [ 44] developed a 
new metric by first studying eight existing metrics [ 43], including their own, and then 
validating their improved metric through experiments. This metric is in line with the 
module definition used in this thesis. It measures the intra- (first term) and inter-module 
(second term) connectivity in a modularity matrix, such as a DSM: 
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nk = index of the first component in kth module 
mk = index of the last component in the kth module 
Mm = total number of modules in the product 
Nc = total number of components in the product 
Rij = the value of the ith row and jth column element in the modularity matrix. 
 

As found also by Guo and Gershenson [ 43], modularity measures are very different 
and give different results on the degree of modularity. Most measures deal with physical 
components, but a few can be extended to the abstract design phase by replacing the 
components with functions. About half of the metrics are designed for a specific 
application, such as recycling or supply chain management, and the other half are metrics 
to calculate the degree of modularity in general or in terms of connectivity. If the purpose 
of modularizing is to separate outsourced components into modules, a supply chain 
specific metric (e.g. [ 55]) is the most suitable, and when the goal is to develop 
independent modules, a metric based on the connectivity (e.g. [ 44]) of the module is 
more appropriate. The metric by Guo and Gershenson is used in this thesis since it is in 
line with the modularity definition in this paper (Publication I).  

3.3 Modular Architectures 
There are many ways of categorizing architectures. One common way is to divide 

architectures into modular and integral architectures. In reality a fully modular or fully 
integral architectures are rare and almost all architectures are somewhere in between.  

Modular architecture has functionally de-coupled interfaces between components 
[ 118]. In practice this often also leads to an architecture is one where the functional 
elements in the function structure are mapped one-to-one to the components (or elements 
to be more general) of the product. This is because in order for a component to be an 
independent module, it needs to interact as little as possible with the other components, 
and this is achievable, for example, when each component has only one function, or at 
least no functions are shared between components. Typical examples architectures that 
have close to one-to-one mapping between functions and components and that are at the 
modular end of the modular-integral scale include a mechanical pencil, a personal desk 
top computer (PC), and the Swiss army knife (Figure 15).  

 

Figure 15 Examples of modular products. 

An integral architecture is the opposite of a modular architecture. An integral 
architecture has coupled interfaces between components [ 118]. An integral architecture 
tends to have more complex (non one-to-one) mapping from functional elements in the 
function structure to the components (or elements) of the product. Typical examples of 
architectures at the integral end of the modular-integral scale, where it is hard to identify 



 

 

29

what part of a product performs which function, include an old fashioned pencil, a laptop 
PC, and a hunting knife (Figure 16). 

 
Figure 16 Examples of integral products. 

3.4 Advantages and Disadvantages of Modularity 
Modularity brings both advantages and disadvantages. Modularity often means using 

the same module in multiple products enabling a large variety of products while using 
less different component types than if the different products did not share common 
modules. This multiple-systems modularity [ 79] brings scale and scope advantages such 
as reduced capital requirements, and economies in parts sourcing [ 5,  85,  118]. On the 
downside, modularity may lead to excess costs due to over design [ 42,  64], inefficient 
performance [ 26,  124], and too many common modules may result in loss of brand 
identity [ 61,  118].   

Modules are also helpful in design re-use [ 79,  104] since already designed modules 
with well defined interfaces can be used again in other designs. This applies to software 
products as well as hardware [ 6]. Design re-use can lead to reduced cycle time, which in 
turn results in e.g. increased revenue due to increased market penetration as a result of 
being first to market, success in time sensitive markets, and shorter time to market 
increases accuracy of meeting customer needs [ 74].  

A well designed product architecture can help the management of product change 
and upgrades, product variety, and components standardization [ 85,  118]. Product 
change, upgrade, and variety can be achieved by replacing a module in a system without 
other changes to the overall product, or product platform [ 27,  117].  In addition, from a 
single-system [ 79] point of view, a well defined module, in terms of simple interfaces, 
can ease project management due to decoupling of tasks and providing design freedom 
within a module [ 85,  118]. Modularity also makes a complex product architecture appear 
simpler and therefore easier to manage [ 27].  

The above advantages are useful in the design phase of a product. Fixson [ 30,  32] 
and Miller [ 79] outline how modularity has impact at the different phases of a product’s 
development lifecycle. Fixson says modularity can also have different effects depending 
on the stakeholder; e.g. a supplier’s cost might actually rise when the manufacturer 
applies a certain module regime to reduce its costs. Also Pahl and Beitz [ 89] discuss the 
advantages and limitations from different stakeholders’ points of view (manufacturer and 
user). Coulter et al. [ 18] also found similar results. They introduce a limiting factor i.e. “a 
characteristic of an existing product for which a change in value of the characteristic (or a 
change of the characteristic itself) to another value in the feasible design space would 
result in increased achievement of product goal targets”. In their case it can be e.g. one 
part in a module that makes the entire module non-recyclable. In addition, Newcomb [ 84] 
as well as Allen and Carlson-Skalak [ 2] view modularity at the end of a products 
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lifecycle - as a tool to ease the disassembly and recycling of the product. Also Riitahuhta 
and Andreasen [ 96] and Dahmus and Otto [ 22] discuss the life cycle benefits of 
modularity. These tradeoffs between different stakeholders and lifecycle phases must be 
considered when designing modular products. 

Another trade-off in modularity is the trade-off between performance (e.g. high 
efficiency, low weight) and the business oriented benefits (e.g. high product variety, 
flexibility) that can be achieved with modular designs [1,  20,  26,  124]. This is discussed 
in detail in Publication I. Whitney [ 124] points out, that especially high power 
mechanical products, as opposed to low power signal processor type products, would 
benefit from more integral design if technical performance is high priority. A more 
modular product is likely, but not necessarily, to be larger, heavier and less energy 
efficient than a product with integral architecture [ 119,  124]. Also side effects are harder 
to control. Whitney compares complex electro-mechanical-optical products to VSLI that 
can be considered fully modular, and in line with Suh’s [ 111] design axioms. Mechanical 
parts have a “multi-function character” partly due to basic physics (material contains also 
energy, rotating axle transmits shear loads and rotational energy) and partly due to 
“design economy”. Also Gonzalez-Zugasti and Otto [ 38] show that some performance is 
sacrificed to obtain goals of the individual products that are created for a platform.  

I show here an illustrative example of the technical performance trade-off using a 
simple truss example. There are two different architectures for a simple one triangle truss. 
The first consists of three identical beams of same length, cross section profile, and 
material, i.e. is a modular structure, and the second is an integral one piece structure 
(Figure 17). Both triangles have a vertical load of 50N. This causes a compressive force 
of approximately 29 N to the two angular beams and a tension force of approximately 14 
N to the horizontal beam. For the first structure, where all beams are identical, they are 
chosen according to the most critical requirement, i.e. the two angular beams. The 
horizontal beam is therefore over designed (larger diameter than needed) and the 
structure is heavier than if the structure was more optimized such as the second integral 
one piece truss where the lower section is thinner than the upper parts of the structure. 
Clearly, modularity makes a product heavier.  

On the other hand, if the load or the load direction were to change, the modular truss 
structure is quicker to adapt to the new requirements. Modularity makes a product more 
flexible toward change. 
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Figure 17 Modular and integral truss. 

In addition we investigated the degree of modularity compared to the performance 
level, mainly in terms of power consumption and weight limit, of an architecture using 
two product pairs as an example: a cellular phone and a desk phone, and a laptop and a 
desktop computer. We found that the more performance constraint products (cellular 
phone and laptop computer) are more integral than the non-performance critical 
counterparts (desk phone and desk top computer). Other examples of products where the 
modular product is (or would be) heavier are a car and an electronic calculator [ 20]. The 
cellular phone example is discussed also in [ 7]. More details and the modularity 
calculations are in Publication I. 

Gershenson concludes in his literature review that even though there is agreement on 
the benefits of modularity, there’s no large scale validation of it. He adds that there is no 
research on how long modularity brings benefits and when it causes diminishing returns. 
[ 36] Kusiak [ 68], on the other hand, argues that the full potential of modularity is not 
realized, and the research should continue in the area. 
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4 PRODUCT PLATFORMS 
So far I have discussed product architecture and modular architectures. These form 

the basis for an effective platform design. This chapter will define the concept of 
platform and how it is used in this thesis, discuss the benefits of modular platforms, and 
introduce the state-of-the-art of platform method research to date. 

4.1 Definitions  
Meyer and Lehnerd [ 78] define a platform as a “set of common components, 

modules, or parts from which a stream of derivative products can be efficiently created 
and launched”. Muffato [ 81] defines platform similarly as: “a relatively large set of 
product components that are physically connected as a stable sub-assembly and are 
common to different final models”. Also Ulrich and Eppinger [ 117] share a similar 
definition.  

McGrath [ 75] and Otto and Wood [ 87] have a more general definition, where 
platform is a collection of common elements (not just physical components), especially 
the underlying technology, that are implemented across a range of products. Simpson et 
al. [ 102] have an even more general platform definition: “the set of parameters (common 
parameters), features and/or components that remain constant from product to product, 
within a given product family”.  

The more general definitions enable platforming in design, manufacturing and 
assembly, and product phases.  The last definition by Simpson et al. takes into account 
that platforms can be either module or scale based [ 87,  103]. Since this thesis focuses on 
module based platforms, the platform definition used here is one that is suitable for 
module based platforms. The definition used in this thesis is derived from the above 
sources: 
 

Platform is the common set of physical or non-physical modules from which 
multiple products can be derived 

 
This definition is in line with the literature and industry practice. In addition there are 

many valid platform definitions regarding the interface between the product and the 
manufacturing system e.g. the assembly coordinates or welding points of a product. But 
these are outside the scope of this thesis. This definition also supports the product 
development process framework in section  1.1, Background . 

4.2 Benefits 
The benefits of platforms are similar to the benefits of modularity since modules are 

often used to create either modular platforms or product variants by adding a module to a 
platform. A classic example of a successful use of platforms is the Sony Walkman story 
[ 99]. They were able to create more variants and faster than any competitor. Also 
Volkswagen has outperformed its competitors in terms of selling the most vehicles based 
on their platforms [ 95]. Platform projects also enable later derivative projects that are 
much shorter in duration than the platform projects [ 52]. Derivative products are more 
likely to succeed than totally new products as shown by the Association of National 
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Advertisers, who found that 27 % of product line extensions fail; whereas 31 % of new 
products introduced into existing categories fail; and a very high 46 % of new products 
introduced in new categories fail [ 4]. Good platform can enable a set of successful 
product variants. Meltzer [ 76] claims that product families and platforms can be used as a 
tool to accelerate new product development since developing a derivative product based 
on a platform is faster than developing a completely new product. However, Roemer and 
Fixson point out the limits of this strategy and warn of potential lead time increases under 
commonality [ 97]. The faster development time applies also in the context software 
development [ 6,  112]. Muffato [ 81] discusses the benefits of automotive companies 
adopting platform strategies and claims that even though there has already been success 
in shortened lead times, among other benefits, there is room for improvement. Also other 
success stories can be found in literature [ 21,  27,  78,  87,  126]. 

Meyer and Lehnerd [ 78] discuss the benefits of product platforms: scale advantages 
etc. They also introduce a list of metrics to measure platform performance (in dollars). 
The metrics are based on the “business” performance (to use Whitney’s [ 124] term) of a 
platform and the costs of developing it. However, Krishnan and Gupta point out that the 
platform development costs are, in general, a very small percentage of the total life cycle 
costs. They suggest that the cost of using an over designed part in order to have an 
identical module instead of two (or more) variations will end up costing much more than 
the original platform investments. Also Moore et al. stress the importance of considering 
both the fixed and variable costs of platforms [ 80]. 

4.3 Methods 
There are several methods for designing a platform. Simpson et al. find that there are 

two types of platform design methods: (1) top-down and (2) bottom up. [ 102] Another 
way to characterize the two approaches is that the top-down approach is more business 
and the bottom up approach more technically oriented. Yet a third way of categorizing 
platform design methods is to distinguish between module based and scale based 
platforming [ 87,  103]. Scale based platforms are platforms where products share the 
functionality but are all at different performance levels. Examples include: Pratt & 
Whitney jet engines [ 87] and Black & Decker universal motors [ 78]. Module based 
platforms, on the other hand, are products that share common modules but may have 
different functionality. Examples of this include Sony Walkman [ 99] and Black & 
Decker tools [ 110]. I will use this last categorization in this chapter since the methods are 
often suitable for either scale or module based platforms. 

4.3.1 Scale Based Platform Methods 
Several researchers [e.g.  47,  77,  82, and  102] are developing optimization based 

methods for designing a platform. Simpson et al. [ 102] introduce a method called Product 
Platform Concept Exploration Method (PPCEM). They use decision support problem 
(DSP) to try to design a platform by minimizing performance loss and maximizing 
commonality. Their method starts with market segment grid from Meyer and Lehnerd 
[ 78]. Messac et al. [ 77] also start with the market segment grid. They show a method to 
provide decision support in designing product families. Messac et al. start with the 
assumption that the common platform components are known and then identify 
parameters that designer can effect as well as noise. They include a step for robustness, 
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but do not show it, then they use physical programming to formulate and solve the 
problem. [ 77] Similarly, Hernandez et al. [ 47] show a compromise DSP approach for 
designing robust product families. They too start with a presumption that common 
components are known. Hernandez et al. focus on production costs of the platforms. 
Nayak tries to define platforms based on minimizing the variations of corresponding 
design variables in different products of a product family. Also he uses DSP to optimize 
the platform. [ 82] 

Conner Seepersad et al. show a quantitative method to decide on a number of 
product platforms, or number of common components, for a family of absorption chillers. 
They also use compromise DSP. [ 16] In later work Conner Seepersad et al. add a utility 
based method that takes into account the evolving markets [ 17]. The changing market is 
added as an expected utility of predetermined possible scenarios (each scenario is given a 
certain probability of occurrence). 

These methods concentrate on scalable common functionality. This is important, but 
outside the scope of modular product platforms, the thesis topic. 

4.3.2 Module Based Platform Methods 
This thesis focuses on module based platforms. Researchers approach module based 

platform design from many viewpoints. Moore et al. [ 80], for example, use conjoint 
analysis to determine a product platform. Siddique and Rosen [ 100], on the other hand, 
describe a method to design platform from an existing set of products by looking at the 
commonalities in the assembly process. Gonzalez-Zugasti et al. [ 40] introduce an 
iterative method for optimizing platform design based on minimizing cost. In another 
work, Gonzalez-Zugasti et al. [ 39] developed a method to assess the value of a platform. 
They use a real options approach to determine a path to choose when developing an 
initial platform and possible variants/derivatives in the future. Also Steuer and Whitcomb 
[ 108] use real options to assess the value of a platform. Steuer and Whitcomb focus on 
market uncertainty instead of technical uncertainty. Most of these methods concentrate on 
evaluating a platform, once the platform modules have been chosen. 

A few authors have developed matrix based methods for platform design. Fujita et 
al. [ 33] introduce a way of using Quality Function Deployment QFD [ 45] for product 
families. They assign a zero weight to a customer requirement that does not exist in a 
specific model but exists in at least one member of a product family to be able to use the 
same matrix for multiple products in a family. Also Martin and Ishii [ 70] developed a 
QFD based method for developing platforms. They aim to minimize the connectivity and 
future redesign of the architecture with a help of modularity metric introduced earlier. 
Dahmus et al. [ 21] also use matrix approach. They focus on defining platform modules 
based on common functionality. Sudjianto and Otto [ 110] introduce a similar method as 
Dahmus et al. to design multi-brand product platforms based on shape and color schemes 
rather than on technical attributes. These methods address the choice of common modules 
for platforms, but the methods presume the modules are predefined. 

There are multiple ways of determining the degree of commonality in a platform. 
Fellini et al. [ 28] introduce a method to choose common components for a platform while 
trying to optimize both the commonality and the performance. In previous work, Fellini 
[ 28] introduced a pareto optimizing method to decide how many design variables to share 
among two products of a family with a given acceptable performance loss.  Nelson et al. 



 

 

35

[ 83], on the other hand, use pareto fronts to decide on the degree of commonality 
between products in a product family. They optimize the performance of a single product 
and the degree of commonality. 

In addition to the actual design methods above, De Weck et al. [ 24] have developed 
a method for deciding the number of platforms based on sales volumes and performance 
at market segments. And Georgiopoulos et al. [ 34] show how to determine how much to 
produce each of the product variants in a platform.  

All of the methods presume that the modules and common elements to be shared for 
the platform are decided or provide only weak guidance as to how to do that. These 
methods are useful in optimizing the platform or deciding the number of platforms, but 
they lack detailed advice for the design engineer who is designing the platform – making 
decisions about the interfaces, common elements, etc. The following chapters will look 
more into specific tool for architecture design. 
 
 



 

 

36

5 DESIGNING AN ARCHITECTURE 
This chapter is the main part of this thesis and contains the main research 

contribution. In this chapter I will introduce an approach for designing a “good” product 
architecture using a modular design approach. The goodness can be assessed in terms of 
ilities [ 19]: properties such as upgradability, serviceability, flexibility, etc. This will be 
covered in Chapter  6, Evaluating Platform Architectures. The idea is to develop product 
family architectures that enable product variety by designing an architecture consisting of 
independent modules that are defined in accordance with the company’s modular 
strategy. In this section, I first introduce three modularity methods, present results of the 
comparison of them, and then move on to discussing the improvements I have developed 
to overcome the weaknesses of the current methods.  

5.1 Modularity Methods 
Modularity definitions and methods depend on the purpose of modularity. For 

example at what point do we want benefits of modularity – during the design phase 
(design reuse etc.) or at the end of life of a product (recycling etc.)? Fixson [ 31] and 
Gershenson [ 36] also support this. I focus on the architecture and design phase but try not 
to ignore other aspects. The methods introduced here were chosen since they are well 
established in academia and used in industry. 

5.1.1 Function Structure Heuristics 
Stone et al. developed a function structure heuristic method, based on Pahl and 

Beitz’s function structures [ 89] introduced in Section  2.2. Stone et al. separate modules 
from a single product’s function structure by finding the dominant flow, branching flows, 
or conversion-transmission function pairs (Figure 18) [ 109]. Zamirowski and Otto [ 126] 
present three additional heuristics to find modules across products in a product family. 
They find similar and repetitive functions within a single product, common functions 
across products, and unique functions that are found only in one product within the 
product family and separate them as modules. These three product family heuristics are 
similar to the component standardization strategies by Perera et al. [ 93]. In addition to 
these, McAdams et al. [ 72] separate causally linked function pairs as modules, but since 
all modularity methods are used in their original form, this is left out of this study. A 
good tutorial of the method is given by Otto and Wood [ 87].   
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Figure 18 Function structure heuristics. 

To apply the function structure heuristics method, one starts with a function 
structure, and then considers the many possible alternative modules that can be defined 
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by grouping functions according to the heuristics. The heuristics define possible modules; 
it is up to the designer to choose the “sensible” modules. Further, the heuristics are 
maximal heuristics. They state only that one should not define modules larger than 
indicated. Any module defined by a dominant flow as a serial chain of functions, for 
example, can be subdivided in any way and still be consistent with the heuristics. As 
such, the approach provides modularity suggestions only; it is not a deterministic 
algorithm. Therefore, designer insight and good judgment can enter the process; this is 
either a benefit or a problem, depending upon one’s perspective.   

These heuristics apply to single products and the three family heuristics to product 
families of similar products. The method can be applied for both module based and scale 
based platforms, but the most common use is with module based platforms. The main 
modularization criteria considered in the function structure heuristic method are 
functionality and module interfaces. Other criteria such as business or strategy related 
factors are not represented in the function structure heuristic method but, instead, enter 
through designer judgment in where the rules get applied. Otto [ 86] presents a method 
based on the functions structure heuristics that includes also steps for customer 
segmentation and profit estimation.  

5.1.2 Modular Function Deployment 
Modular function deployment (MFD) [ 27] is also based on functional decomposition, 

such as functions structure heuristic method, but in this method, modularity drivers other 
than functionality are considered. MFD is designed to modularize a single product at a 
time. There are twelve modularity drivers in MFD (Figure 19). One or a few modularity 
drivers are chosen according to the firm’s strategy. Ericsson and Erixon [ 27] offer a good 
tutorial on the method. 
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Figure 19 Main steps of modular function deployment. 

MFD is similar to QFD, but here modularity drivers are mapped against functions 
instead of customer requirements in a matrix (Figure 19). The grouping into modules is 
started by the functions receiving the highest summed scores (dominating functions, see 
Figure 19); and the functions dominated by the same modularity drivers are good 
candidates for a module according to this method. The number of modules according to 
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MFD is approximately the square root of the number of parts or assembly operations. The 
estimate is based on optimizing the assembly lead time of the whole product. [ 27] 

Stake [ 107] and Blackenfelt [ 8] show how MFD and DSM can be integrated in the 
grouping phase. Blackenfelt builds a strategic DSM using simplified modularity drivers 
from the MFD. He suggests using also a functional DSM in conjunction with the strategic 
MFD [ 8] to systematize the grouping phase in the MFD. In addition, MFD has a step for 
interface design that considers form, fixation principles, number of contact surfaces and 
attachments, as well as the number of energy connection points, material flow, and 
signals. It relies more on the intuition of engineers than presentation of a systematic 
method to locate and choose cut-off points for modules, which again is either a benefit or 
a problem, depending upon one’s perspective. 

5.1.3 Design Structure Matrix 
A DSM [ 117] is typically used to organize product development tasks or teams to 

minimize unnecessary design iterations and thus help manage and speed up the 
development process. The DSM can also be used to define modules within a single 
product’s architecture. In the component or function based DSM, also called architecture 
DSM, components or functions are placed on the row and column headers of the matrix. 
Components or functions are then mapped against each other and their interactions are 
marked in the matrix. One can also present spatial, energy, information, and material 
interactions of components or functions in a DSM as shown by Pimmler and Eppinger in 
[ 94] and also by Blackenfelt in [ 8]. The interactions can be represented with coupling 
coefficients -2, -1, 0, 1, or 2 depending on the strength of the relation and whether the 
relation is beneficial or undesired.  

Once functions or components and their interactions are placed in the DSM, a 
clustering algorithm can be applied to group the functions or components so that the 
interactions within clusters are maximized and between the clusters minimized. The 
formed clusters are possible module candidates (Figure 20). There are many algorithms 
and one can develop one’s own to suit the needs of a specific case. The basic idea of a 
clustering algorithm is to reorder the rows and columns so that all marks are as close to 
the diagonal as possible or form a tight cluster with other marks. The algorithm used in 
this study is developed by Thebeau [ 114]. This was chosen because it is a well defined 
computerized algorithm. The algorithm can result in overlapping modules or it may leave 
a function out of the final clustering, in which case it is up to the designer to decide how 
to handle them. The overlapping section could be for example duplicated and placed in 
both modules or forced to be only in one of the modules where the algorithm suggested it 
could be.  For more about the component based DSM method, refer to [ 14].  

 

 
Un-clustered DSM 

 
Clustered DSM with modules  

in red boxes 
Figure 20 An exemplary DSM. 
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The DSM is designed especially for quick rearranging of the architecture based on 
the interface interactions. The method concentrates on the interfaces of the modules to 
simplify the design process and the apparent complexity of the product architecture. The 
component based DSM could be combined with the task and team DSMs to include the 
modularization in the rest of the design process planning. The method leaves more 
business oriented factors and product functionality up to the designer’s judgment after 
first simplifying the architecture. 

5.1.4 Comparative Analysis of the Methods 
The goal of the comparison of the three methods introduced above is to get a user’s 

perspective on how easy the methods are to use, how well they work for specific cases, 
and how repeatable they are. In addition, weaknesses were identified as basis for future 
work. The comparison and the results in this section are described in more detail in 
Publication II and [ 50]. 

The starting assumption was that the methods would give similar results for the 
modular architecture or at least identify a few key modules in the same way. This, 
however, ended up not being the case. Surprisingly the methods, tested on a total of 6 
products in two case studies, gave practically no common solutions as to how to divide a 
structure into modules.  

Further, the methods were applied on two families of two products, but since the 
methods are designed for single products, they did not identify common modules across 
the products in a family, thus sub-optimizing the family in order to optimize a single 
product [Publication II,  50]. This is interesting since one of the key goals of modularity is 
to gain scale and scope advantages by sharing components and thereby creating variety 
with less components in a product family. The common module heuristic helped the 
function structure heuristics to perform best in terms of finding the most commonalities 
between products. 

All methods identify certain groups of functions, that should be combined into a 
module, in some particular way, but they do not agree on how many other functions these 
so-called module cores should have. The electro-mechanical products in the case studies 
all had a drive unit. One observation is that all methods identify the drive unit as a 
module (module core). The drive unit is typically a central part of a product and all 
methods suggest it should be bundled up as a module. However, the methods do not 
agree on the size of the module, i.e. what functions should be included in the drive unit 
module. 

The different results are mainly due to the different assumptions of each method and 
the most suitable should be chosen according to the goal of the company. The function 
structure heuristics aim for simple interfaces (branching flow) and grouping sets of key 
functions into modules (dominant flow, conversion-transmission pair); The MFD, on the 
other hand, does not look at the interfaces between the functions but concentrates on the 
strategic aspects, possible benefits, of modularity such as ease of maintenance and reuse, 
which in turn are ignored by the other methods. The DSM is more similar to the function 
structure heuristics in that both aim for simple interfaces. The DSM, however, is run by a 
computer and it cannot identify the key functions of a product. In fact, the DSM can 
suggest overlapping or functionally infeasible solutions. This brings us to the subjectivity 
of the methods. 
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The repeatability of the three methods was analyzed by having 2 groups of 20 
graduate students and engineers perform the methods in two separate case studies. The 
experiment set up is described in detail in Publication II and [ 50]. The goal was to 
analyze the subjectivity and objectivity of the methods. The more subjective a method, 
the less repeatable it is. The repeatability in the percentage of functions grouped in the 
same way. The DSM was left out of the repeatability study since it is a computer run 
algorithm. However, it is also not 100% objective since the algorithm [ 114] depends on 
the original order of rows in the matrix. The results are summarized in Table 2. 

 

Table 2 The repeatability of modularity methods. 

 Case 1 Case 2 
Function Structure Heuristics 

   Conversion transmission  90% 90% 
   Branching 80% 75% 
   Dominant 75% 60% 

Function Structure Heuristics (family) 
   Repetitive 81% 84% 
   Common 70% 63% 
   Unique 86% 83% 

Modular Function Deployment 
 68% 85% 

 
We see that the repeatability of each method is reasonable, but there is a 

disappointing lack of objectivity so great care must be taken if any are to be used. 
Conversion-transmission pair of the function structure heuristics has the highest 
repeatability. This is due to the clear definition of the rule. The unique function heuristic 
scored high on repeatability for the same reason. On the other side of the spectrum, the 
dominant flow heuristic received a low repeatability percentage due to its vague hard-to-
understand definition, according to the research participants. The difference between the 
repetitive and common function structure heuristics is that the former is applied within a 
single product and the latter across different products. The results show how the choice of 
modules becomes more difficult when the choices must be made for a product family 
instead of just a single product. 

The difference in the repeatability of the MFD in the two case studies is explained by 
the fact that in case study 1 the participants were not familiar with the product and in case 
study 2 the participants did not only know the product better but also had a chance to take 
it apart prior to the modularization [ 50]. The results suggest that the MFD may lead 
toward the existing solution if the engineer is familiar with it. 

There is a correlation between the repeatability of the methods and the types of 
modules suggested. The more subjective a method the more feasible modules it suggests. 
This is due to the engineer’s strong influence in the process. This can either be good or 
bad. One downside is that an engineer may be biased toward a solution e.g. the existing 
one. On the other hand, a more objective method can give more novel solutions, but they 
may not always be feasible such as a module with an axle and circuit board parts. 

The ease of use is subjective. The heuristics require studying of the definitions, but 
the execution requires only a pen and paper, or a simple commonly used software such as 
some of the MS Office programs. The MFD requires interviewing several stakeholders in 
a company and is therefore more laborious to perform than the other two. The DSM 
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requires a clustering algorithm and some software, but once the un-clustered DSM is fed 
into the algorithm the clustering of even a larger matrix is immediate. The ease of use is a 
secondary goal of these methods and no more analysis is done in regard to it. 

The difficulty of use and the weaknesses in repeatability are due to two main 
reasons:  
 
1. The methods have insufficient rules on how to decide where an interface (module 

boundary) should be located. 
2. The methods are designed mainly for single products.  
 

The first weakness of the modularity methods needs improving. The definition of 
modularity almost always includes simple interfaces and isolated units, but the methods, 
except the DSM, do not address this rigorously enough. And even the DSM algorithm 
treats every interface connection as equivalent, which in unlikely the case. The function 
structure heuristics aim for simple interfaces, but since the heuristics are maximal 
heuristics and the rules fairly broad, many alternative modules are possible without 
violating the heuristics. The MFD has a step for interface design, but it is not detailed and 
does not address how to actually decide how to cluster some of the functions into 
modules if the module driver profiles are only weakly similar and to more than one 
module. Clearly, a better method for interface design is needed. Section  5.2, Flexible 
Interface Design, will introduce a method for this. 

The second weakness is a problem only in designing multiple products. I will argue, 
however, that a company should be developing multiple products – product platforms and 
variants. The existing methods, for most part, optimize each product of the family and not 
the family (or platform). The main deficiency is in identifying the common parts of the 
family. DSM does not have a step for this at all. MFD has one driver out of many to 
identify common units across products, but this driver presumes that the commonality is 
predetermined. The function structure heuristics include three heuristics designed 
specifically for product family design, but as shown in Table 2, the repeatability is the 
poorest when trying to identify the commonalities across products. Thevenot and 
Simpson [ 115] also call for more specific definitions of commonality in their analysis of 
commonality metrics for platform design. A better method is needed for identifying 
common modules across products in a product family for platform design. Section  5.3, 
Identifying Common Modules, will introduce a new method for this. 

5.2 Flexible Interface Design 
Redesign is unavoidable. A product will need to be redesigned during the design 

iterations and later as new versions of the product are designed. Thomke [ 116] suggests 
modularity as one tool for improved flexibility, but modularity alone is not enough if the 
interfaces are not properly designed.  Also Tatikonda [ 113] supports separating 
dependencies between module interfaces. As discussed earlier, a weakness of the 
modularity methods to date is the lack of interface design. Some simple heuristics exist, 
such as calculating the number of connection between modules [ 8,  12], but as Fixson [ 30] 
points out, different interactions have different intensities.  

I developed a metric to assess the degree of complexity of different interface types. 
The metric is used in addition to a modularization method to determine module 
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boundaries. The metric is based on minimizing the redesign effort, if an adjacent module 
were to change. This robustness of a module to change makes the architecture more 
flexible in terms of design upgrades and other changes. The idea is similar as in [ 49], 
where an interface workload is mapped in a DSM based on the owner of the interface, 
except that in my approach we look at the flows at the interface, regardless of the owner. 

The redesign effort metric introduced here is not meant for deciding the number or 
size of the modules alone. Our metric along with others, such as assembly-ability [ 11, 
 41], suppliers [ 56], team size [ 13], etc., are all important criteria to use in such a multi-
criterion decision. In addition, emergent properties such as cost, weight, and performance 
type criteria must be considered [ 39,  42,  64,  119,  123]. The purpose of this metric is to 
help choose module boundaries so that future changes are as effortless as possible.  

The metric is based on the interaction types at the interfaces. The interactions are the 
flow types such as solid material, gas, electrical energy (Table 3). 

 

Table 3 Interface complexity values (per 1% change in the original flow value) for different flow 
types at two different companies.  Values are not expected to be general across companies. (* is an 
average of sub-category metric values) 

Flow category Sub-category Company 1 
Injectors 

Company 2 
Sensors 

Solid 1.2 - 
Material 

Gas - 0.3 
Acoustic 3.1 - 
Electrical 1.2 0.5 
Mechanical 
General* 
Rot torque 
Translation 

 
1.0 
1.0 
1.0 

- 

Pneumatic 1.3 - 

Energy 

Thermal 1.8 0.3 
General* 0.8 1.0 
Content 1.2 1.7 Info 
Bandwidth 0.4 0.2 

 
The metric was developed and tested in two industrial case studies. The first case 

study involved two companies jointly developing medical injectors and the second a 
single company developing industrial process sensors. We interviewed multiple design 
engineers and system experts at the two companies. We asked them to evaluate the 
redesign effort needed if a flow at an interface were to change by a certain percentage. 
E.g. How much redesign compared to the original effort is needed in this module if this 
input voltage (electrical energy) flow is increased by 20%? We calculated the metric 
following the model in Figure 21. The metric is used on the linear portion of the model. 
The linear portion is an approximation of smaller discrete changes. Details about the 
methods and case studies can be found in Publications IV and V.  
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Figure 21 The general behavior of redesign effort vs. the change percentage.  

We obtained a redesign effort metric for all the flow categories (Table 3). A number, 
e.g. 1.2, signifies that if the flow were to change by 1% the amount of effort needed to 
accommodate for the change is 1.2% of the original effort to design the particular 
component. As we can see, the values are different for each flow type as well as for each 
company. This was expected as we hypothesized that different interactions have different 
effects in terms of redesign effort. The values also depend on the company and product in 
question. For example, the second case study involves more software intensive products 
and therefore an information flow, especially information content, change is more 
difficult. The differences depend also on how the company sees themselves. The second 
case study company seems to feel more confident about their abilities to adapt to change 
than companies in case study 1. A closer look at the table, however, reveals that even 
though the values are different across the two cases, some generalizations can be made. 
For example, changing information flow bandwidth is considerably easier than changing 
information content. Also, electrical energy (typically voltage) is harder to change than 
information bandwidth. We believe this is due to the larger buffers typically used for 
bandwidth than for voltage. On the other hand, information content requires more design 
effort to change than an electrical flow. 

The redesign effort metric values are used to determine module boundaries together 
with other criteria such as cost or supply chain requirements. In order to do this, the 
product is modularized using a modularization method. The method can be picked 
according to the company goals. The methods, as mentioned above, tend to give 
suggestions, not definitive answers as to where to draw the module boundaries. The 
metric is good for identifying critical interfaces in a product architecture. The larger the 
design effort complexity metric on a specific interface, the better it is to keep the 
interface within a module. And similarly, the smaller the design effort complexity metric 
at an interface, the better candidate the interface is to be at a module boundary. These are 
analogous to the tactics in software to aim to keep the high-bandwidth communication 
within a module and place low-bandwidth links between modules [ 6]. This eases the 
development of the modules since a team developing a module is more likely to handle 
the complex interfaces than if the interface was to be design by two separate teams 
developing separate modules. This is also supported by Sosa et al. [ 104].  
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The redesign effort metric can improve the flexibility, in terms of change readiness 
[ 91], of an architecture. Figure 22 shows a partial function structure of a gas sensor from 
the second case study with its modules defined using DSM. In addition, the inter-module 
redesign effort metric values are shown underlined and the intra-module redesign effort 
metric values in italics. It appears that this architecture could be improved by moving the 
module boundaries so that the most difficult interfaces are inside a module and simpler 
interfaces can be put to the module boundary instead. Looking at the gas sensor function 
structure one interface can be clearly seen as a difficult interface: the interface between 
the Timing-module and the Processor-module. This interface consist of five information 
flows (each 1.0) between the functions in each module has therefore a design effort 
complexity score of 5.0. If anything should change in one of these modules, it would 
cause major design also in the other module. From the redesign ease point of view, these 
two modules should be kept together as a single module. In addition we can combine the 
power supply with the control heating function and thereby simplifying the interfaces 
further. These two changes improve the total redesign effort metric sum of the 
architecture from 19.3 to 14.8 without making the product overly integral or violating 
modularization rules used and while keeping the architecture feasible. As mentioned 
above, this metric should be used together with other design criteria. It is worth noting 
that the redesign effort metric for an interface can be improved by very small changes 
that can still be in line with the other criteria. More examples of the benefits and use are 
in Publications IV and V.  
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Figure 22 Partial function structure of a gas sensor used in the second case study. DSM defined 
modules shown in dashed lines. (Fig 5. in Publication III) 
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The results here were shown to be statistically from moderately to highly significant 
depending on the flow type. The significance can hardly be improved since the metrics 
are based on subjective estimates of design experts. The subjectivity adds noise to the 
results, but an attempt was made to overcome this deficiency by interviewing multiple 
experts with different backgrounds and asking several dozens of estimations per product. 

5.3 Identifying Common Modules 
In this section I describe a new quantitative method to evaluate module 

commonality. This, as all methods described in this thesis, is to be used together with 
other modularity and architecting methods. The methods, results, and analysis are 
described in more detail in Publication III and [ 51]. 

The method is based on measuring the “distance” between functions’ inputs and 
outputs and clustering the functions into a dendrogram to visualize the possible common 
module candidates. Johnson et al. use also a Euclidian distance based dendrogram but for 
clustering materials based on their technical properties and aesthetics. [ 59] Also Pedersen 
[ 92] uses dendrograms to create product families, but his method is based on components 
in existing products and not applicable in the product architecture phase. Stake [ 107] uses 
a dendrogram approach to identify modules, but he identifies modules within a single 
product. My method identifies common modules both within and, more importantly, 
across products. Moreover, the method can be used at the early phases of development 
when only the requirements are known. 

Further, this method is not restricted to comparing commonality at a single level of 
system hierarchy, but it can compare commonality across the hierarchies, including 
physical sub-system level and basic function level. We look at the similarity at different 
levels of hierarchy at the same time. This is different from Fellini’s [ 29] approach, where 
each level is treated separately. Treating the hierarchies all at once is useful since it is 
often difficult to define the levels of decomposition. 

Unlike many previous commonality measures [ 58,  115], this method sees platform 
and component commonality analysis not as a binary, common/not common choice, but 
as a more complex decision of degree of commonality. This makes the method not 
subject to the choice of what is common enough (Same function, but different power 
requirements? Same component but different color?) [ 115].  

The following sub-sections will describe the use of the method first in the functional 
domain and then in the physical domain. 

5.3.1 Commonality in the Functional Domain 
The analysis in most existing methods is often done at a component or feature level. 

McAdams and Wood [ 73] go further to the functional level of a product in their 
quantitative similarity metric. They base their similarity on the similarity in the 
vocabulary [ 48] used to describe the functions of various products. My method also uses 
the same standard vocabulary but in addition, my method measures the distance between 
the function inputs and outputs, using ratio scales, making the method more rigorous than 
the previous methods.   

The distance measure is an n-dimensional Euclidian distance based on the input and 
output flow values of the functions. The basic steps include characterizing the input and 
output flows of each function and function groups with units e.g. 12W and 3W, or 1200 
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baud and 2400 baud, normalizing them to be between 0 and 1 by dividing by the 
maximum of each flow type, and comparing the functions and groups of functions pair 
wise to obtain the “distance” between them. The input and output values can be based 
either on the technical specifications derived from the customer requirements or actual 
flow values, if the project is a redesign of an existing product.  

Each flow type is treated separately and combined at the final distance calculation 
phase. This approach presumes all flow types are comparable in a dimensionless space. 
This distance defines the commonality, or lack of it, to aid in common module selection 
for platforms. Table 4 illustrates the steps for measuring the distance D between 
functions. A family of two process sensors is used as an example.  The detailed equations 
can be found in [ 51]. 

 

Table 4 Steps for measuring module commonality in the functional domain. 

Build a function structure for product A. 

Remove
water

Sense Ctransmit C
value

convert εr to
C

Absorb /
release vapor

E(e) = 18V

E(T)
C=

180pF
C=

180pF

HC

HC

H2O

H2O

HC

H2O

εr

E(e) = 4V E(e) = 4V E(e) = 4V

”C”

Sense Rtransmit R
value

Convert T to
R

E(T)
R=

100Ω
R=

100Ω

E(e) = 700mA E(e) = 700mA
E(e) = 4V

”R”

E(T)

E(T) E(T)
Remove HC

E(e) = 18V

E(T)

E(T)

Build a function structure for product B. 

Remove gas

Sense Ctransmit C
value

convert εrNH3
to C

Absorb /
release vapor

E(e) = 19V

E(T)
C=

38pF
C=

38pF

NH3

NH3

H2O

H2O

NH3 H2O

εr

E(e) = 2.5V E(e) = 2.5V E(e) = 5V

”C”

timing

Sense Rtransmit R
value

Convert T to
R

E(T)RR

E(e) = 1.8mA E(e) = 1,8mA
E(e) = 5V

”R”

timing

E(T) =
150oC

E(T)

E(T)

 
Choose modules for product A. 

Sense C
E(T)

C=
180pF

HC

H
C

E(e) = 4V E(e) = 4V

”C”

Sense R
E(T)

R=
100Ω

E(e) = 700mA E(e) = 4V

”R”
E(T)

Remove HC

E(e) = 18V

E(T)

convert εr to
C+transmit
C+Sense C

Abs/rel vapor
+rem water+
remove HC

E(e) =
18V

E(T)

HC
HC

H2O
H2O

εr

E(e) = 4V

”C”

Convert T to
R+transmit
R+Sense R

E(T)

E(e) = 4V

”R”

E(T)

E(T)

E(e) =
18V

Remove
water

E(e) = 18V

H2O

H2O E(T)

E(T)

Absorb /
release vaporHC

H2O

H2O E(T)

H
C E(T)

εr

convert εr to
C

εr

C=
180pF

E(e) = 4V

transmit C
value

C=
180pF

E(e) = 4V

C=
180pF

E(e) = 4V

Convert T to
R

E(T)

E(T)

E(T)

R=
100Ω

E(e) = 700mA

transmit R
value

R=
100Ω

R=
100Ω

E(e) = 700mAE(e) = 700mA

E(T)

εr
E(T)

Remove water+Absorb /release vapor+Remove HC+convert εr to C+transmit C
value+Sense C+Convert T to R + tranmit R vale + Sense R

E(e) = 18V

E(T)

HC
HC

H2O
H2O

E(e) = 4V

”C”
E(T)

E(e) = 4V
”R”

E(
T)

E(
e)

 =
18

V

Abs/release
vapor+conve

rt εr to C

C= 180pF

HC

H2O

HC

H2O
E(e) = 4V

E(T)

E(T)

m1 m2

m14

m13m12

m11m10

m9m8m7

m6m5m4

m3

 

Choose modules for product B. 

Sense C
E(T)

C=
38pF

E(e) = 2.5V
E(e) = 5V

”C”

timing

Sense R
E(T)

R=270Ω

E(e) = 1,8mA
E(e) = 5V

”R”

timing

Remove gas+Absorb /release vapor+convert εrNH3 to C+transmit C
value+Sense C+Convert T to R+transmit R value+Sense R

E(e) = 19V

E(T)NH3

NH3

H2O
H2O

E(e) = 5V

”C”

timing

E(T)

E(e) = 5V

”R”

timing

E(
T)

=
15

0o C

Remove gas

E(e) = 19V

NH3

H2O

NH3 H2O
E(T) =
150oC

Absorb /
release vapor

NH3

H2O

NH3 H2O
E(T) =
150oC

εr

E(T)

convert εrNH3
to C

εr
C= 38pF

E(e) = 2.5V

transmit C
value

C=
38pF

E(e) = 2.5V

C= 38pF

E(e) = 2.5V

Convert T to
R

E(T)

E(T)

R=270Ω

E(e) = 1.8mA

transmit R
value

R=270Ω

E(e) = 1.8mA

R=270Ω

E(e) = 1,8mA

Remove gas
+absorb /

release vapor

E(e) = 19V

NH3

NH3

H2O
H2O

εr

E(T)

Convert T to
R+transmit R

+ sense R

E(T)

E(e) = 5V

”R”

timing

E(T)

E(T) convert εrNH3
to C+trans-

mit C + sense
C

E(T)

E(e) = 5V

”C”

timing

εr

convert εrNH3
to C+trans-
mit C value

C=
38pF

E(e) = 2.5V

εrConvert T to
R+transmit R

value

R=270Ω

E(e) = 1.8mA

E(T)

E(T) Abs/release
vapor+conve
rt εrNH3 to C C= 38pF

NH3

H2O

NH3 H2O
E(e) = 2.5V

E(T) =
150oC

E(T)

n1

n12 n13

n11n10n9

n8n7

n6n5n4

n3n2

n15

n14
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Characterize the inputs (xi) and outputs (yi) for 
product A. 

m1  1
1
mx  = 18V 

m1  1
1
my  = 0V 

m1  1
2
mx  = 100% 

m1  1
2
my  = 100% 

(repeat for all modules and inputs) 

Characterize the inputs (xi) and outputs (yi) for 
product B. 

n1  1
1
nx  = 19V 

n1  1
1
ny  = 0V 

n1  1
2
nx  = 100% 

n1  1
2
ny  = 100% 

(repeat for all modules and inputs) 

Calculate the distance 
T
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, and where 

 

INkW  is the weight of the input type k, 
OUTkW  is the weight of the output type k, N is the number of input 

types, and M is the number of output types. The weights include normalization terms. 
 

We developed a total of four versions of the distance algorithm; one in Publication 
III and three in a continuation effort [ 51]. We concluded that the most effective algorithm 
is one where we included preference functions [ 3] (included in the weight in the above 
equations) for the flow types to handle the non-additive nature of flow difference as the 
value of the flow grows. E.g. the difference of 3V is far more significant between 1 and 4 
Volts than between 1001 and 1004 Volts. In addition we added a weight to each flow 
type since some flows are more challenging than others as demonstrated in Section  5.2, 
Flexible Interface Design. The preference functions and weights must be defined 
carefully. This is where engineering judgment enters the process. So far, in this research I 
have found that in practice, product functions and components are either very similar or 
very different, and thus the method is not sensitive to the weight and preference function, 
at least when the preference function is a power function as described here. The results 
here apply for at least transformation functions f(x)=x1/2, f(x)=x1/3, and f(x)=x1/4. 

Once the distances between all module pairs are calculated, the modules are 
clustered into a dendrogram. Figure 23 shows the dendrogram for the above example. 
More detailed discussion of the results can be found in Publication III as well as in [ 51]. 

It is now up to the designer to decide where to set the cut-off line (yellow dashed line 
in Figure 23) for module commonality. The choice depends on e.g. the acceptable 
performance losses and the cost of over design. The purpose of the dendrogram is to ease 
the designer’s choice on common functions by clustering similar functions together. This 
method is useful in the platform development prior to e.g. platform optimization methods 
that require predefined common modules. 
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Figure 23 A dendrogram of modules for products A and B clustered according to their distance from 
one another. 

5.3.2 Commonality in the Physical Domain 
The algorithm described above can also be used in the physical domain with small 

modifications. In the physical domain approach the products need to be decomposed to 
assembly level, not to the abstract function level. The function inputs and outputs above 
are replaced by component, or sub-assembly, input and output requirements and other 
attributes such as weight or volume, when appropriate. 

For example, a set of miniature drive units and their components both alone and in 
combinations with other components (motors, gears, and linear actuators) for a product 
family can be compared by using e.g. the voltage and torque specifications as well as the 
maximum volume of the drives (Table 5). Notice that the table includes both individual 
components and multiple combinations of components. This represents an example 
where a company has multiple products that use miniature drives and that have been 
designed independently and where the company has decided to reengineer the products 
and save costs by commonalizing some of the drives. 
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Table 5 Inputs for miniature drive commonality analysis. 

Component or 
component 
combination 

Voltage (V) Speed 
(rpm) 

Current 
(mA) 

 Torque 
(mNm) 

Volume 
(mm3) 

Lin. force 
(N) 

DC Motor A1 12 12950 13 0.2 2084.6 0 
Gear a1 0 0 0 4.9 1442.3 0 
Gear a2 0 0 0 12.1 1442.3 0 
MotorGearA1a1 12 0 13 4.9 3526.9 0 
MotorGearA1a2 12 0 13 12.1 3526.9 0 
DC Motor A2 12 10500 30 0.2 2253.6 0 
MotorGearA2a1 12 0 30 4.9 3695.9 0 
MotorGearA2a2 12 0 30 12.1 3695.9 0 
DC Motor B1 12 6000 6 0.4 2566.6 0 
DC Motor B2 6 10000 8 0.1 2117.5 0 
Gear b1 0 7000 0 20.1 4809.9 0 
Gear b2 0 7000 0 20.1 4809.9 0 
MotorGearB1b1 12 0 6 20.1 7915.5 0 
MotorGearB1b2 12 0 6 20.1 7915.5 0 
Gear b3 0 7000 0 20.1 4263.9 0 
MotorGearB2b3 6 0 8 20.1 6757.1 0 
LinMotor D1 12 0 67 0 5651.6 7.0 
LinMotor D2 12 0 240 0 33934.2 220.0 
LinMotor D3 12 0 113 0 13151.3 12.0 
DC Motor C1 12 10000 13.6 3.3 3729.2 0 
Screw E1 0 0 0 0 4401.6 0 
ComboA1a1E1 12 0 13 0 9912.3 30.8 
ComboA1a2E1 12 0 13 0 9912.3 75.8 
ComboA2a1E1 12 0 30 0 10176.4 30.8 
ComboA2a2E1 12 0 30 0 10176.4 75.8 
ComboB1b1E1 12 0 6 0 17383.7 126.3 
ComboB1b2E1 12 0 6 0 17383.7 126.3 
ComboB2b3E1 6 0 8 0 19477.7 126.3 
Screw E2 0 0 0 0 9390.0 0 
ComboA1a1E2 12 0 13 0 19186.9 15.4 
ComboA1a2E2 12 0 13 0 19186.9 37.9 
ComboA2a1E2 12 0 30 0 19656.4 15.4 
ComboA2a2E2 12 0 30 0 19656.4 37.9 
ComboB1b1E2 12 0 6 0 19277.4 63.1 
ComboB1b2E2 12 0 6 0 19277.4 63.1 
ComboB2b3E2 6 0 8 0 22021.8 63.1 

 

I apply the algorithm using equal weight (1) for all inputs and a cubic root 
transformation of all values. Figure 24 shows how the clustering algorithm separates the 
different component types into logical clusters. For example, the different Motor-gear-
screw combinations are separate from the Motor-gear combinations or the single 
components. Further, two of the linear actuators with similar specifications to the Motor-
gear-screw combinations are clustered close by indicating that the algorithm can be used 
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to identify similar components or sets of components. The dendrogram aids in deciding 
which transmissions can be replaced by new common modules. This eases the product 
family redesign and can be used to create a few alternative architectures to be compared 
against other criteria as shown in Section  6 Evaluating Platform Architectures. 
 

 

Figure 24 A dendrogram of drive components clustered according to their distance from one 
another. 

The dendrogram clusters similar functions in a logical way in the examples here as 
well as in Publication III and [ 51], and thus seems to work as desired, but the 
applicability for all possible applications is yet to be tested in real PD projects. 
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6 EVALUATING PLATFORM ARCHITECTURES 
Platform architecture evaluation is a more challenging task than evaluating a single 

product architecture since a platform must effectively support multiple product variants 
over a prolonged period of time. The platform methods introduced in section  4.3, 
Methods, typically define a platform based on a few criteria such as cost, commonality, 
and performance. In addition, there is work in platform architecture evaluation. De Weck 
and Chang [ 23] use a Pareto frontier to aid in architecture concept selection. Their 
method optimizes performance in respect to lifecycle costs. Kota et al. [ 63], on the other 
hand, present a benchmark method to compare own platform to competitors platform. 
Their method evaluates a platform based on how well the non value adding components 
are shared in a platform. Also these methods deal with only a limited set of criteria, but a 
platform can not be properly evaluated outside the company and business context. 

Kristjansson and Hildre [ 65] introduce a platform assessment tool for evaluation of 
the strategic fit of a platform. They include multiple criteria, but the tool lacks the 
technical detail needed in the actual platform development. 

There has also been excellent work in developing product concept evaluation 
methods, such as Pugh’s selection process, concept screening and scoring, or trade-
studies [ 87,  117]. However, these methods are for evaluating a single product concept. A 
platform concept has different requirements due to its longer lifetime and that it must 
enable several derivative products.  

Crawley et al. [ 19] discuss how an architecture should be evaluated based on 
multiple ilities. A “good” architecture is flexible, scalable, maintainable, recyclable, etc. I 
will present here a method that helps assess a modular platform in a larger context based 
on multiple criteria including commonality, performance in terms of meeting customer 
requirements as well as many other ilities.  

The platform architecture assessment tool that makes use of the work of many others 
in the field of modularity, platforming, and general product development. The evaluation 
metrics are from three sources: six executive-level system engineers with an average of 
17 years experience, the co-author’s [Publication VI] personal experiences of platform 
development over the last 10 years with over two-dozen platforms and the personal 
mistakes learned from inadequate preparation (e.g., inadequate preliminary assessment), 
and the literature for platform metrics used by others, such as by Ericsson and Erixon 
[ 27], Blackenfelt [ 8]. 

The tool is focused on the early platform architecture phase, before proof-of-concept 
prototyping. However, it can also be used subsequently for platform refinement when 
more data becomes available. The tool is meant to aid in modular platform architecture 
development, evaluation, and as a communication tool to upper management as well as 
between different stakeholders. Due to the approximate nature of the summed scores, the 
tool works as a guide and not an absolute measure of platform “goodness”. 

The tool consists of 19 criteria [Publication VI] that are grouped into six categories: 
customer satisfaction, variety, after-sale, organization, flexibility, and complexity. Each 
metric is evaluated using a merit scale of {0, 3, 5, 7, 10}, where 0 is the worst and 10 the 
best. This is analogous to an A-F grading scale. The scores are absolute scores, where the 
10 is a theoretical maximum and may not always be achievable. A competitor benchmark 
will help establish what level to aim for.  



 

 

53

Hand

Force into 
opposite hand

Battery

Drill Bit

Finger

Finger

Noise

Object

Hot filings

Hot drilled object

Hand Force

Hand

Noise, Heat

Transmit
Power

Transform
(τ,ω)

Convert
Elec. To
Motion

Switch 
Power Input

Signal

Un-Register
Battery

Force into 
opposite hand

Battery

Hand force

7.2V DC

Force into 
opposite hand Drill bit

Register
Battery

Heat in bit

Drill
Hole

Un-lock
Drill Bit
Un-lock
Drill Bit

Noise

Secure
Drill Bit

Bit secured

Finger 
force

Force in to 
finger

casing

switch

slip clutch drilling

trigger

chuck

speed changer

motor

transmission

function
Function only in the 
Heavy-duty and the 
Professional models

function
Function only in the 
Heavy-duty and the 
Professional models

Heavy-duty / 
Professional 
module

Heavy-duty / 
Professional 
module

2 integrated modules 
for platform 
alternative B

2 integrated modules 
for platform 
alternative B

Integrated module 
for platform 
alternative A

Integrated module 
for platform 
alternative A

Current 
drill modules
Current 
drill modules

Rotary Torque

Release
Drill Bit

Register
Drill Bit

Transmit
Electricitycontact

Permit
Drill Bit

Positioning

Input 
speed 

selection

Transmit 
selection

  
Figure 25 Case study family of drills and their family function structure, with modules shown. 

We use a family of five different cordless drills: professional, heavy-duty, value 
brand, home-use, and a low price model to demonstrate our method (Figure 25). Table 6 
shows the current cordless drill platform– in detail as an example. The individual metric 
calculations for the drill are in Publication VI. In addition, we will show results for 
platform alternatives A and B, also shown in Figure 25. We intend, that this assessment 
tool will be used to evaluate multiple alternative modular platforms 
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Table 6 Summarized scores for the three alternative platforms. 

 
 

Table 6 summarizes the platform assessment of all three alternative platforms. The 
individual metric scores can be summed (weighted sum, same approach as in [ 117] for 
product concept selection) to obtain first the sub-category scores and then the overall 
platform scores. The weight is based on the metric’s contribution to the company profit. 
The current cordless drill family platform receives a score of 8.0 indicating that the 
platform is fairly well designed. It is better than the two other alternatives A and B that 
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received total platform scores 7.9 and 7.5 respectively. The overall score, however, is a 
rough estimate and the difference between 8.0 for the current platform and 7.9 for the 
alternative A is probably not significant. The true value of the analysis is in the sub-
category scores. 

The current platform received the highest score in flexibility. This is primarily due to 
the fact that the drill market is mature and no significant changes are expected. The 
maturity of the market is taken into account by using a low weight in the related metrics. 
The current platform received the lowest score in the category organization alignment. 
The assembly score is low. This is typical, but the score could be easily improved by 
adding better aligning features and eliminating a few screws.  

The alternative A performed similarly to the current platform. The rank order of 
category scores for platform alternative A is the same as for the current platform, but the 
scores are inferior. The difference in scores, however, is an important indicator that our 
tool has enough resolution to separate two very similar architectures. The current and 
alternative A architecture differ by only one module. 

The more integral alternative B received different scores. It performed significantly 
worse in flexibility and variety. This was expected, since the more integral design has 
larger modules that are more difficult to change if needed. The alternative B received a 
higher score than the other two platform alternatives in sub-category customer 
satisfaction. This is because many customer requirements such as weight and 
performance are easier to optimize with an integral design. More details are found in 
Publication VI. 

The tool introduced above is meant for evaluating alternative modular platforms on 
multiple criteria (ilities). The criteria should be aligned with the company strategy. A 
company may choose to weigh ease of service, for example, over other criteria such as 
variety. The tool helps on focusing on strategic goals of the platform. Moreover, the tool 
can be used to benchmark one’s own platform to a competitor’s by reverse engineering 
the competitor’s products to investigate the limits of the competitor’s platform as well as 
the possibilities of one’s own. The tool is also useful in differentiating from the 
competition. Finally, the scorecard serves as a communication tool between the different 
stakeholders and to upper management in pointing out the strengths and weaknesses of 
the platform.  
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7 CONCLUSIONS 
I have introduced the multiple aspects of platform architecture design from the 

theory of product architecture and product architecture representation to the advantages 
and disadvantages of modular product architectures and to practical tools for platform 
design. In summary, this thesis has shown how to define common platform modules with 
easy to redesign interfaces as well as how to choose a platform alternative that is well 
aligned with the company strategy. In this section I will tie the tools to the platform 
architecture development process. Figure 26 shows the basic steps of a platform design 
process supplemented with the new methods developed here. This process follows the 
company portfolio strategy development, and the resulting modular product architecture 
is delivered for detail core module design (Figure 4). 
 

Choose best platform alternative

Modularize a product (family)

Design flexible interfaces

Use common parts

Identify common modules

Optimize the platform parameters

Choose best platform alternative

Modularize a product (family)

Design flexible interfaces

Use common parts

Identify common modules

Optimize the platform parameters

 
Figure 26 The steps of a modular platform architecture design process. This thesis’s contribution in 
blue and bold boxes. 

One of the research questions was to identify the biggest gaps in the modular 
platform development methods to date. I observed through investigation of existing 
methods that the platform or modular design methods are meant for single products and 
do not therefore properly enable product variety through a product family. Further, the 
current methods identify module “cores” only leaving the final module boundary 
definition to the designer, and use only a limited set of evaluation criteria. From these, I 
identified two major gaps in the current state of research: (1) lack of tools for interface 
design and (2) lack of design rules for how to choose the common platform components, 
and developed methods to fill these gaps. In addition, I recognized the need for platform 
architecture evaluation in the larger company context and developed a tool for that. These 
missing steps are added to the general modular platform architecture development 
process (Figure 26). 

Another goal of this research was to develop a way to describe a module interface 
complexity quantitatively in order to fill in the first gap identified. I developed a metric to 
aid in designing flexible interfaces. The new approach was to look at the interface 
complexity as described by the material, energy, and information flows flowing through 
the interface. The flexibility is defined as ease of module redesign if an adjacent module 
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were to change. I showed how the metric has different values for different flow types at 
the interfaces. For example, information bandwidth is easier to change than electrical 
energy, which in turn is easier than information content change. I showed how the metric, 
used together with a modularization method, where drivers such as strategic modularity 
and other design criteria can be considered, can render a more flexible architecture 
without violating other design rules. The metric is evaluated by using it on two case 
studies. The research results were in agreement with the system design experts 
interviewed. The metric was shown to apply within a company but not across companies 
due to the different industries the two case study companies operate in. To date, there was 
no tool for estimating interface design effort complexity, and now the new metric will aid 
in designing products and modular platforms that are quicker to adapt to future changes 
than without the tool. 

Once individual products are decomposed into modules according to criteria most 
suitable for the company, and the interfaces are properly defined, the next step in modular 
platform design is to identify possible commonalities in the product family in order to use 
common modules in more than one product and thereby saving design and manufacturing 
costs. The product component and function commonality analysis thus far involved 
simple binary decisions of common/not common, but I introduced an algorithm that takes 
into account possible degrees of commonality. This is an answer to the research question 
related to improving the common module identification and an attempt to fill the second 
gap in the existing methods. This new algorithm can be applied both in the physical and 
the functional domain and at any, and even mixed, levels of hierarchy. Furthermore, the 
algorithm is multidimensional and thus not limited to a single measure for commonality 
analysis. The algorithm is shown to provide design support through real examples in both 
the functional and physical domain.  

As the common module candidates are identified, the interface flexibility metric can 
be applied again, if desired. After this, the common modules are chosen from the possible 
candidates by (a) calculating the estimated cost of over design and the savings from 
commonality, if a low functionality module is over designed in order to make it common 
with another module; or (b) estimating the acceptable performance loss, if a high 
functionality module is replaced by the low functionality module in order to make it 
common with another modules. 

Once the common modules have been chosen, one can apply one of the optimization 
or other pre-existing methods described in Section  4.3.2, Module Based Platform 
Methods. The methods involve one or a set of platform parameters that are optimized on 
one or a few criteria. However, in this thesis the goal was to evaluate the “goodness” of a 
modular platform and its fit to the overall company strategy and not just the goodness 
related to a few criteria. Modularity and modular platform architectures must be 
evaluated in relation to the rest of the company operations and strategy. Just as with 
single concept selection, platform selection must also be done carefully by using multiple 
criteria. I showed a tool for platform architecture evaluation. The tool consists of 19 
criteria and the usage of it as well as its resolution to differentiate between similar 
architectures was shown via an example. The tool helps in developing and evaluating a 
modular platform architecture. It helps a company focus on their strategy and benchmark 
one’s own platform to the competitors’. It also serves as a communication tool for upper 
management as well as between different stakeholders. 
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The modular platform development process is improved in this thesis, but future 
work is still required. The next step is to continue applying the developed methods in an 
industrial context and in multiple companies. Now each method was shown to apply in a 
few companies, but further validation of usability and effectiveness is needed to advance 
to the third and last stage of Blessing et al.’s [ 10] design research methodology. 

A few interesting questions arose during this research but were left outside the scope 
of this thesis. One of them was, how much of the interface complexity metric can be 
generalized over companies within the same industry and across industries? This requires 
multiple case studies but could possible be accomplished over the course of several years. 
Further, the module commonality calculation algorithm is designed to have discrete 
numbers as inputs, but does not allow for input and output ranges such as 100-120A or 
max 200°C. The algorithm is already useful as such but would benefit if the inputs could 
be expressed in more ways. Other interesting questions are related to the platform 
architecture evaluation. Are there other metrics that should be considered? What is the 
best way to weigh the metrics? The former question was partially answered since we tried 
to be as exhaustive as possible and approached the issue from three directions: company 
expert interviews, platform design experience, and literature review. However, since 
industries, companies, market situations, etc. are different, it is only logical that the set of 
metrics and their weights are also different for specific cases. The main point, however, 
remains – multiple criteria involving multiple stakeholders must be used. All in all this 
thesis provides a suggestion for a modular product platform development process that is 
more advanced in ways listed above than methods so far, but the area of modular product 
platform design can be further explored and improved. 

This thesis has shown how to define common platform modules with easy to 
redesign interfaces as well as how to choose a platform alternative that is well aligned 
with the company strategy. This modular platform process, and the set of tools developed 
here, will hopefully be used to make product development more effective in industrial 
companies. An effective platform can bring many benefits from cost savings due to 
module commonality to reducing time to market, but a company can only benefit from 
these if the platform is appropriately designed. 
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