
TKK Dissertations 10
Espoo 2005

MODULAR PRODUCT PLATFORM DESIGN
Doctoral Dissertation

Helsinki University of Technology
Department of Mechanical Engineering
Machine Design

Katja Hölttä-Otto

TKK Dissertations 10
Espoo 2005

MODULAR PRODUCT PLATFORM DESIGN
Doctoral Dissertation

Katja Hölttä-Otto

Dissertation for the degree of Doctor of Science in Technology to be presented with due permission
of the Department of Mechanical Engineering for public examination and debate in Auditorium K at
Helsinki University of Technology (Espoo, Finland) on the 12th of August, 2005, at 12 noon.

Helsinki University of Technology
Department of Mechanical Engineering
Machine Design

Teknillinen korkeakoulu
Konetekniikan osasto
Koneensuunnittelu

Distribution:
Helsinki University of Technology
Department of Mechanical Engineering
Machine Design
P.O. Box 4100 (Otakaari 4)
FI - 02015 TKK
FINLAND
Tel. +358-9-451 3551
fax +358-9-451 3549
URL: http://www.machina.hut.fi/
E-mail: katja.holtta-otto@tkk.fi

© 2005 Katja Hölttä-Otto

ISBN 951-22-7766-2
ISBN 951-22-7767-0 (PDF)
ISSN 1795-2239
ISSN 1795-4584 (PDF)
URL: http://lib.tkk.fi/Diss/2005/isbn9512277670/

TKK-DISS-2027

Otamedia Oy
Espoo 2005

HELSINKI UNIVERSITY OF TECHNOLOGY
P.O. BOX 1000, FI-02015 TKK

http://www.tkk.fi

ABSTRACT OF DOCTORAL DISSERTATION

Author

Name of the dissertation

Date of manuscript Date of the dissertation

 Monograph Article dissertation (summary + original articles)

Department

Laboratory

Field of research

Opponent(s)

Supervisor

(Instructor)

Abstract

Keywords

Number of pages ISBN (printed)

ISBN (pdf) ISBN (others)

ISSN (printed) ISSN (pdf)

Publisher

Print distribution

 The dissertation can be read at http://lib.tkk.fi/Diss/

5

ABSTRACT
Modular product platforms, sets of common modules that are shared among a

product family, can bring cost savings and enable introduction of multiple product
variants quicker than without platforms. In this thesis I show how to define common
platform modules with interfaces that require as little redesign effort as possible as well
as how to choose a platform alternative that is well aligned with the company strategy.
The focus of the thesis is on electro-mechanical products of medium complexity.

This thesis describes the current state of modular platform design and identifies gaps
in the current state. The gaps were identified through application of three existing
methods and by testing their usability and reliability on engineers and engineering
students. Existing platform or modular design methods either are meant for (a) single
products, (b) identify only module “cores” leaving the final module boundary definition
to the designer, and (c) use only a limited set of evaluation criteria.

I introduce a tool for common module identification in a product family that can be
used in conjunction with other methods to take into account the entire product family and
not just single products. I introduce a clustering algorithm for common module
identification that takes into account possible degrees of commonality. In addition this
new algorithm can be applied both at physical and functional domains and at any, and
even mixed, levels of hierarchy. Furthermore, the algorithm is not limited to a single
measure for commonality analysis.

The tool alone identifies alternative common modules. To select these, a key
discriminator is how difficult the interfaces become. I also developed an interface
complexity metric based on minimizing redesign in case of a design change. The metric
is based on multiple expert interviews during two case studies. This metric aids in the
interface definition. The new approach was to look at the interface complexity as
described by the material, energy, and information flows flowing through the interface.

Finally, I introduce a multi criteria platform scorecard for improved evaluation of
modular platforms. It helps a company focus on their strategy and benchmark one’s own
platform to the competitors’. It also serves as a communication tool for upper
management as well as between different stakeholders.

These tools add to the modular platform development process by filling in the gaps
identified. The tools are described in the context of the entire platform design process,
and the validity of the methods and applicability to platform design is shown through
industrial case studies and examples.

6

PREFACE
This research started in April 2001 as a part of the research project FineMed1 at

Helsinki University of Technology (TKK). FineMed was a TEKES (a Finnish National
Technology Agency2) funded project on product development and concepting in fine
mechanics. The original thesis topic was to “develop tools to improve cooperative R&D
in small and medium sized companies”. The idea was to use modularity tools in
collaborative product development since modules, according to the literature, enable
independent development due to well defined interfaces. It was, however, quickly
discovered that modularity was not a mature enough area to be used as such, but more
research was needed. This lead to re-scoping of the research area into improving
modularity and product architecture in general.

I would like to thank both TKK Laboratory of Machine Design and Massachusetts
Institute of Technology (MIT) Center for Innovation in Product Development (CIPD) for
supporting me during my studies. In addition, I would like to give my gratitude to
TEKES, Graduate School for Concurrent Mechanical Engineering (GSCME), Tekniikan
edistämissäätiö (TES), and Emil Aaltosen Säätiö for their financial support.

During my research I was lucky to work with three professors: Kalevi Ekman at
TKK, who has always believed in me and given me all the support and opportunities
needed; Thomas Roemer, who was my first host at MIT and taught me how to do
scientific work; and Chris Magee, my second MIT host who taught me scientific rigor in
data analysis.

I would also like to thank Professors Mogens Myrup Andreassen from Denmark
University of Technology and Kristin Wood from the University of Texas at Austin for
reviewing and commenting on this thesis in such thoughtful and detailed manner.

I would like to thank the companies and helpful experts that I worked with during
my thesis work. The close contact to companies has helped make the tools easier to adapt
in industry.

I am writing this preface a little over 4 years after starting this work. These four
years would not have been as productive, interesting, inspiring, and fun, if there weren’t
for my friends and colleagues both at TKK and MIT. Thank you all!

I must also thank my mom, dad, sisters and brother as well as all the friends outside
work who listened me stress about the work and who wonderfully kept me in touch with
other things in life.

And finally, I would like to thank Kevin. The word everything does not begin to
cover what I mean by Everything. Kiitos.

Katja Hölttä-Otto Watertown, June 6, 2005

1 http://www.machina.hut.fi/finemed/
2 http://www.tekes.fi/eng/

7

CONTENTS
Abstract ... 5
Preface... 6
Contents .. 7
List of Publications ... 8
Author’s Contribution... 8
Nomenclature.. 9
List of Figures ... 10
List of Tables .. 10
1 Introduction... 11

1.1 Background... 11
1.2 Objectives ... 13
1.3 Theoretical Approach.. 14
1.4 Scope of the Thesis ... 15
1.5 Outline of the Thesis... 15
1.6 Original Features... 16

2 Product Architecture ... 18
2.1 Definitions... 18
2.2 Representation... 19

2.2.1 Six Architectural Models .. 19
2.2.2 Comparison of the Six Architectural Models ... 21

3 Modularity... 26
3.1 Module Definitions ... 26
3.2 Modularity Measures .. 27
3.3 Modular Architectures .. 28
3.4 Advantages and Disadvantages of Modularity ... 29

4 Product Platforms.. 32
4.1 Definitions... 32
4.2 Benefits ... 32
4.3 Methods... 33

4.3.1 Scale Based Platform Methods ... 33
4.3.2 Module Based Platform Methods ... 34

5 Designing an Architecture .. 36
5.1 Modularity Methods.. 36

5.1.1 Function Structure Heuristics ... 36
5.1.2 Modular Function Deployment... 37
5.1.3 Design Structure Matrix.. 38
5.1.4 Comparative Analysis of the Methods.. 39

5.2 Flexible Interface Design.. 41
5.3 Identifying Common Modules.. 46

5.3.1 Commonality in the Functional Domain... 46
5.3.2 Commonality in the Physical Domain .. 49

6 Evaluating Platform Architectures.. 52
7 Conclusions... 56
References... 59

8

LIST OF PUBLICATIONS
I Hölttä, K., Suh, E. S., & de Weck, Olivier. Trade-off between modularity and

performance for engineered systems and products. In Proc of International
Conference on Engineering Design. Melbourne. August 15-18, 2005. (to appear)

II Holtta K. & Salonen M. Comparing three modularity methods. In Proc of ASME

Design Engineering Technical Conferences. Chicago, IL. September 2-6, 2003.

III Holtta, K., Tang V., & Seering W. Modularizing product architectures using

dendrograms. In Proc of International Conference on Engineering Design.
Stockholm. August 19-21, 2003. (a continuation submitted to RED Jan/Feb 04)

IV Holtta, K. & Otto K. Incorporating design complexity measures in architectural

assessment. In Proc of ASME Design Engineering Technical Conferences. Chicago,
IL. September 2-6, 2003.

V Holtta, K. & Otto, K. Incorporating design effort complexity measures in product

architectural design and assessment. Design Studies. (to appear)

VI Otto, K. & Holtta, K. A multi-criteria framework for screening preliminary product
platform concepts. In Proc of ASME Design Engineering Technical Conferences.
Salt Lake City, UT. September 28 - October 2, 2004. (also to appear in Journal for
Intelligent Manufacturing)

Additional publications not included in the thesis:

Hölttä K. Comparative analysis of product modularization methods. NordDesign. August
18-20, 2004. Tampere, Finland.

Holtta, K. & Magee C. Estimating factors affecting project task size in product
development – an empirical study. IEEE Transactions on Engineering Management
(conditionally accepted)

AUTHOR’S CONTRIBUTION
Publication I: Performance tradeoff. This work is done together with Professor de Weck,
Eun Suk Suh and with the help of 2 undergraduate students. Research concept, literature
search and the data analysis as well as most of the writing are done by the author.

Publication II: Modularity method comparison. The experiment design and the data
gathering and analysis are done solely by the author. Mikko Salonen helped with the
experiments and co-wrote the article.

Publication III: Module commonality, dendrograms. This work, including the idea
development, data gathering, analysis, writing, etc., is done almost entirely by the author,
but the original idea and its development was a joint brainstorming effort of Victor Tang
and the author. Professor Seering and Dr. Otto advised in the writing.

9

Publications IV and V: Interface complexity. Publication IV introduces the metric, but
the metric is modified and improved with a second case study in Publication V. Both are
done primarily by the author with advice from Dr. Otto. The second case study in
Publication V is done together with Hannu Valo, a master’s student.

Publication IV: Platform assessment scorecard. This work is done together with Dr. Otto.
The author was responsible for the literature review of existing metrics, transformation of
single product metrics into platform metrics, and the case example. The author also was
responsible for the most of the writing.

NOMENCLATURE
D Distance between two modules
DSM Design structure matrix
DSP decision support problem
mk index of the last component in the kth module
Mm total number of modules in the product
M number of output types in a product family
MFD Modular function deployment
MIM Module indication matrix
nk index of the first component in kth module
Nc number of components in the product
N number of input types in a product family
OPM Object-process methodology
PC personal computer
PD product development
PPCEM product platform concept exploration method
QFD Quality function deployment
Rij value of the ith row and jth column element in the modularity matrix.
R&D research and development
UML Unified modeling language
xk

i size of input type k for module i in product I
xk

j
 size of input type k for module j in product J

yk
i size of output type k for module i in product I

yk
i size of output type k for module j in product J

INkW weight of the input type k

OUTkW weight of the output type k

10

LIST OF FIGURES
Figure 1 Single products are rare.
Figure 2 Three platform processes and five derivative product development processes
overlaid with a traditional process.
Figure 3 A typical product development process [adapted from 117].
Figure 4 The focus of the thesis is on the beginning phases of a development project.
Figure 5 Case study method picture adapted from [125].
Figure 6 Outline of the thesis.
Figure 7 A hierarchical tree structure.
Figure 8 A single function block of a function structure with basic flow types.
Figure 9 Basic structural unit of an IDEF0-diagram.
Figure 10 A design structure matrix.
Figure 11 Object-process diagram.
Figure 12 UML diagram.
Figure 13 A water bottle modeled using six different architectural representations.
Figure 14 Five alternative water containers with functions: hold water, direct water to
mouth, and seal container if needed.
Figure 15 Examples of modular products.
Figure 16 Examples of integral products.
Figure 17 Modular and integral truss.
Figure 18 Function structure heuristics.
Figure 19 Main steps of modular function deployment.
Figure 20 An exemplary DSM.
Figure 21 The general behavior of redesign effort vs. the change percentage.
Figure 22 Partial function structure of a gas sensor used in the second case study. DSM
defined modules shown in dashed lines. (Fig 5. in Publication III)
Figure 23 A dendrogram of modules for products A and B clustered according to their
distance from one another.
Figure 24 A dendrogram of drive components clustered according to their distance from
one another.
Figure 25 Case study family of drills and their family function structure, with modules
shown.
Figure 26 The steps of a modular platform architecture design process. This thesis’s
contribution in blue and bold boxes.

LIST OF TABLES
Table 1 Comparison of architectural representation methods.
Table 2 The repeatability of modularity methods.
Table 3 Interface complexity values (per 1% change in the original flow value) for
different flow types at two different companies. Values are not expected to be general
across companies. (* is an average of sub-category metric values)
Table 4 Steps for measuring module commonality in the functional domain.
Table 5 Inputs for miniature drive commonality analysis.
Table 6 Summarized scores for the three alternative platforms.

11

1 INTRODUCTION

1.1 Background
In the product development (PD) literature, tools and methods are often described as

if PD is a unique process from a clean sheet to a new one-of-the-kind product. They are
also described as if development can be done for a single standalone product. These clean
sheet designs, however, are not as common place as derivative product development. A
typical project is more likely a derivative i.e. modification project of an older product.
For example at General Electric 85% of development projects are modification projects
[122]. These modifications form product generations over time. In addition, companies
often add new parallel products to their product line to form a product family. The
multiple lines of Nokia cell phones or Volkswagen vehicles, including the Skoda and
Audi brands, are good examples. Further, these products are rarely started with a clean
sheet but are based on something that exists already, something based on the company’s
core competence. Henderson and Clark [46] dub these derivative products as incremental
or modular innovations. Figure 1 schematically illustrates the idea of the multi-product
world.

product family

single product

product family
generations

product generations

time

ex
pa

ns
io

n

Figure 1 Single products are rare.

Moreover, instead of a single product PD process and organization, I will argue that
there should also be a multi-project, platform process and organization for platform
projects. Platform projects develop the base from which the multiple products can be
derived later in single product PD processes. The platform projects should go hand-in-
hand with the strategic planning of the company. These are different from derivative
projects, where the multiple variants are developed, which can be run in the product
development organization with tighter time-to-market demands. Wheelwright and Clark
[121] also support the separation of platform and derivative projects in order to remain
competitive.

Tatikonda [113] surveyed 108 platform and derivative projects in 51 companies and
found that the platform and derivative projects are and should be significantly different.
For example, platform projects involve more technology development and generally
aimed at newer markets than derivative products. He found, interestingly, that companies

12

employ the same management strategies regardless of the project type. This may be due
to the fact that many product development models describe the PD process as a single
process, where the platform planning happens in the planning or concept development
phase of the product development. I will claim that a platform processes should be
considered different from derivative product development processes. There may be, in
fact, multiple platform projects for different technologies, for example. The platform
projects should be part of strategic planning and technology development, and the
platform projects should not happen in the tight schedule of a PD project due to the
different properties of a platform project. The platform projects will provide the basis, a
set of technology platforms, etc., for the actual product development processes (Figure 2).

In principal the process steps for platform and derivative product development are
similar, but the inputs and outputs are different. The platform process may start with a
clean sheet, or an existing product family, whereas the derivative product development
process starts with a platform, the outcome of the platform process. The output of a
platform project is a platform, not a product, whereas the output of a derivative project is
a product to be launched in to the market, based on the platform.

Nokia, for example, has separate platform and product development processes3. The
Nokia platforms represent technologies (e.g. Bluetooth) as well as design rules for the
mechanical design. The platforms then form a basis for the product ideas that can be
developed based on one or multiple platforms.

Product Development OrganizationPlatform Organization

Initiation Planning LaunchDesignInitiation Planning LaunchDesign

Figure 2 Three platform processes and five derivative product development processes overlaid with a
traditional process.

A typical PD project consists of phases. I have adapted a PD process model from
Ulrich and Eppinger [117] for this thesis (Figure 3). I will apply this modified model for
the platform development process. The last phases of the process here do not mean that
the platform is launched as a product to the customer, but that the platform organization
delivers the platform to the product development organization. Similarly the ‘after sales’

3 Based on several personal conversations and personal observations of the products

13

refers to the phase where the product development organization may give modification
suggestions to the platform core modules.

Portfolio
planning

Platform
concept

dev.

System
level

design

Detail core
module
design

Testing
Delivery

to
PD org.

After
‘sales’

Detail core
module
design

Testing
Delivery

to
PD org.

After
‘sales’

Figure 3 A typical product development process [adapted from 117].

This thesis focuses mainly on the beginning phases (Figure 4) of the process since
these are the phases when portfolio, platform, and architectural decisions are made.

Detail core
module
design

Testing
Delivery

to
PD org.

After
‘sales’

System
level

design

Platform
concept

dev.

Portfolio
planning

Figure 4 The focus of the thesis is on the beginning phases of a development project.

The beginning is a crucial part of the PD process. After the system level design, up
to 80% of the product’s cost is determined [20]. By the end of this phase a company has
committed to certain solutions involving specific technologies and configuration of the
product. This commitment ties up the investment and makes it increasingly more difficult
to make changes to the product’s design. [9] Also Kaplan et al. [60] show how error
prevention in the early phase can cost as little as 6% of the cost of error correcting toward
the end of the product process. Therefore, it is important to have good systematic
methods that produce good results at the system level design phase.

There are many strategies for proper product architecture design and platform
development. This thesis describes one especially for modular product platforms.

1.2 Objectives
In this thesis I will show how to define common platform modules with easy to

redesign interfaces as well as how to choose a platform alternative that is well aligned
with the company strategy.

The key idea is to develop a methodology that is well founded and yet easy to use in
practice. I will identify the gaps in the methods and develop new methods to make the
modular platform development process more complete. The research addresses the
following four questions:

1. What are the biggest gaps in the modular platform development methods to date?
2. How can module interface complexity be described quantitatively?
3. How can the identification of common module candidates for modular platform

design be improved?
4. How to evaluate the “goodness” of a modular platform and its fit to the over all

company strategy?

14

The result of this thesis will be a better understanding of the modular platform
development process as a whole, as well as improved methods for platform development
and evaluation.

1.3 Theoretical Approach
In a larger context this thesis is part of design science. Hubka and Eder [54] define

design science as “a system of logically related knowledge, which should contain and
organize the complete knowledge about and for designing”. This research is in full
accordance with this definition in that this thesis presents a framework of new and
improved methods for design, specifically architectural design.

Hubka and Eder [54] further state that the goal of design science is to improve the
situation in the design area and eliminate existing problems. This second criterion of
design science describes the approach in this thesis. I start by analyzing existing methods,
identify their strengths and weaknesses, and then build the new methods on that.

Design research, according to Blessing et al. [10] includes three stages: (1)
Descriptive study I, where the goal is to identify factors that lead or prevent success; (2)
Prescriptive study, where a method or theory is developed based on the results of the first
stage; and (3) Descriptive study II, where the methods are applied, and the contribution to
success is analyzed. Typically, a research project focuses on one to two stages. This
research starts in stage 1 and ends at stage 2. The primary research method in these stages
is case study research. All the analysis of past and newly developed methods is done with
case study products from real companies. Yin describes case study research as an
iterative three step process shown in Figure 5. This process is used in this thesis.

To ensure the validity of the developed methods, the four tests of validity are applied
as defined by Yin [125]: construct, internal and external validity, and reliability. The
construct validity of research can be assured by using multiple sources of information.
Internal validity is the most difficult to prove in case study research according to Yin.
The internal validation approach used here is explanation building and pattern matching.
Both tactics are analytical tactics of making sure that the conclusions drawn from the case
studies follow logically from the data gathered. The external validity has to do with the
generalizabilty of the results. In case of case study research the results are often
generalized analytically as opposed to statistically as in other types of research. Also the
statistical generalization is used in this work when possible. The analytical
generalizability is similar to the repeatability of the results. The repeatability can be
tested using the same approach for more than one case study and checking whether
results are the same. This approach is used in this work. The fourth type of validity,
reliability, is similar to the external validity in that both can be measured as the
repeatability of the research. Reliability, however, is about the repeatability of a single
case. A case study should produce similar results independent of the person doing it. This
is difficult in practice, since an industrial case study can rarely be fully replicated, but the
aim here is to minimize the biases e.g. repeating the case study procedure with multiple
people from each case study company.

15

develop
theory

write
individual

case report

write
individual

case report

write
individual

case report

conduct
nth case

study

conduct
1st case

study

conduct
2nd case

studydesign data
collection
protocol

select
cases

develop
conclusions

write cross-
case report

develop policy
implications

modify theory

Define & design Analyze & concludePrepare, collect, analyze

Figure 5 Case study method picture adapted from [125].

1.4 Scope of the Thesis
The focus of this thesis is on a modular approach to product platform design.

Modular design cuts through product architecture, product platforms, etc., but those
issues are dealt with in this thesis only in where they relate to modular platform design.

This thesis deals with modular product platforms. There are also other types of valid
platforms, but they are not the primary topic in this thesis. Further, product platforms
affect and are affected by multiple facets of the business process. This thesis focuses on
the engineering side of modular product platforms – how to design and develop modular
platforms. Company strategy is considered, mainly in the platform evaluation phase,
since it is closely linked with product platforms, but the business strategy issues are not
the foci in this research.

The theoretical part of this thesis is general to any product, but since the case studies
used to test and validate the methods are electro-mechanical products of medium
complexity, I cannot claim proven applicability of this work beyond these product types.

1.5 Outline of the Thesis
This thesis consists of three main parts. The first part is the theoretical foundation of

the research area. This establishes the fundamental underpinning of the research. The
second part is the literature, of which the thesis can be viewed as a continuation. The
third part is the actual contribution of the thesis – a methodology consisting of three
separate tools to design and evaluate product platforms. The figure below illustrates the
outline of the thesis (Figure 6).

16

Paper 3.

Interface complexity

Paper 2.
Analyzing module
commonality using

dendrograms

Analyzing module
commonality using

dendrograms

Paper 1.
Modularity method

comparison
Modularity method

comparison

Paper 6.

Performance tradeoff and
modularity

Performance tradeoff and
modularity

Papers 4.-5.
Platform assessment

Systematic
tools for effective

product platform design
Modular product
platform design

Chapter 1
Theoretical foundation

Chapter 1
Theoretical foundation

Chapter 2
Product architecture

Chapter 3
Modularity

III

II

I

Th
es

is

Product platforms
Chapter 4

Figure 6 Outline of the thesis.

Chapter 1, Introduction, forms the theoretical basis for this research. It describes the
theoretical approach used as well as the scope of the thesis. Chapters 2 through 4
introduce the state-of-the-art of research in platform architecture and other relevant
topics. The first publication is summarized in Chapter 3. This thesis is a continuation of
this platform architecture research. Chapter 5 summarizes 4 of the articles that form the
main contribution of this thesis. These articles describe platform development methods.
Chapter 6 summarizes the 6th article on evaluating platform architectures. And finally,
Chapter 7 concludes the major findings of this research.

1.6 Original Features
This thesis includes methods for improved product platform development. The

following features are believed to be original:

1. Literature review of platform development, modularity, and product architecture,

with concentration on how to develop and evaluate platforms, modularity, and
architecture and identifying gaps in the current methods. The main contributions are:

a. Evaluation of 6 different architectural representations.
b. Comparison of modularity methods based on actually using the methods

on 6 products including a repeatability analysis with 40 participants
c. Performance tradeoff analysis between modular and integral architectures

using quantitative examples. The earlier work in this area is only
qualitative.

2. A new metric to analyze and describe interface complexity quantitatively based on

the interface type. The complexity is based on the ease of redesigning adjacent

17

modules if an interface changes. The new approach here is to look at the interface
complexity as described by the material, energy, and information flows flowing
through the interface. The metric is evaluated by using it on two case studies.

3. A new quantitative method to evaluate module commonality. Unlike most measures

before, this method sees platform and component commonality analysis not as a
binary, common/not common choice, but as a more complex decision of degree of
commonality at the functional level. The method is also flexible in that it can
compare functional commonality within and across products at the same time.
Further, the method is not restricted to comparing functional commonality at a single
level on the function hierarchy, but it can compare commonality across the
hierarchies. In addition, the method can handle functions described by multiple and
different units of measurement. The method is shown to work through real examples.

4. A platform evaluation scorecard that includes a comprehensive set of metrics. This is

a new compilation of existing as well as new metrics to evaluate platform
“goodness”. The existing metrics were modified to fit for platform design and not
only single product design. The usability of the tool is shown via an example.

18

2 PRODUCT ARCHITECTURE
In this chapter I will first define the term architecture for the purpose of this thesis

and then discuss the multiple ways of representing a product or system architecture.

2.1 Definitions
Merriam-Webster on-line dictionary [120] has one potentially relevant definition of

architecture:

The manner in which the components of a computer or computer system are
organized and integrated

Ulrich [118] defines architecture as:

The scheme by which the functions of a product are allocated to physical components

This definition recognizes that a product can be realized through alternative

architectures. The US Department of Defense, on the other hand, use more life cycle
thinking in their definition of architecture:

The structure of components, their relationships and the principles and guidelines
governing their design and evolution over time. (CJCSI 3170.01D)

Maier and Rechtin [69] have a systems approach and include the process in their

definition:

The structure (in terms of components, connections, and constraints) of a product,
process, or element.

Crawley et al. [19] give a similar definition for system architecture, but instead of

physical components they refer to entities that could be functions, physical or non-
physical “components”, etc.:

System architecture is an abstract description of the entities of a system and the
relationships between those entities.

The definitions deal either with the physical structure of a product, the abstract

representation of the system components, or the mapping between the two. The common
theme in all these definitions is the arrangement of elements of a product. The last
definition is the most abstract and therefore also less restrictive than the other definitions.
I will use a definition adapted from the last definition by Crawley et al. in this thesis
while still recognizing the existence of alternative architectures of a product as in
Ulrich’s definition:

19

System architecture is an abstract description of the entities of a system and the
relationships between those entities and the scheme by which these entities are
mapped to larger physical or non-physical sub-systems of a system.

2.2 Representation
There are multiple ways of representing a product, or system, architecture. I will

shortly present here a few models commonly found in architecture literature and argue
why a specific representation is chosen for this thesis. All the representations concentrate
on the physical (components or sub-systems) or functional (product functions)
decomposition [62].

2.2.1 Six Architectural Models
The simplest way of representing an architecture is probably a hierarchical tree

structure. In a hierarchical tree, a system is decomposed to sub-systems and the system
architecture can be looked at different levels of abstraction. Figure 7 shows how a system
and its sub-systems can be represented as a tree structure.

system

sub-
system n

sub-
system 2

sub-
system 1

Figure 7 A hierarchical tree structure.

Hubka and Eder describe an organ structure, especially developed to represent a
(technical) system, which principally means a machine that does work. An organ,
according to them, is “a system that realizes a given internal function” [53]. They do not,
however, present a specific symbolic way of representing an organ structure. An organ is
similar to what others call simply a function, something that the product does. Pahl and
Beitz represent architectures as functional decomposition block diagrams of all the
product’s functions. Alternatively the functional decomposition could be replaced by a
physical decomposition into components (and sub-systems). These function structures
include all the material, energy, and information flows as arrows between the functional
blocks (Figure 8). [89] The division of the flows makes the function structures suitable
mainly for electromechanical products.

material
energy

info

material
energy
info

function

Figure 8 A single function block of a function structure with basic flow types.

IDEF0 [57] is another way of modeling a system. It was originally developed to
model processes. This is similar to the function structures in that in IDEF0 the functions
are also presented as blocks, and there are inputs and outputs to and from the functions
(Figure 9). Alternatively the function could be replaced by a component (or a sub-
system). These inputs and outputs are, however, not decomposed into different types, but
instead two more input arrows are added in addition to the basic function input. These are

20

a control arrow to represent a controlling element and a mechanism arrow to represent the
tool or resource performing the function.

input output

co
nt

ro
l

m
ec

ha
ni

sm

function

Figure 9 Basic structural unit of an IDEF0-diagram.

Another popular way of representing architecture is a design structure matrix (DSM)
[117]. It was originally developed for modeling organizations. The DSM is analogous to
the function structure, but here, the functions are presented as row and column headers of
the matrix instead of the function boxes and the connections between the functions are
shown in the matrix (Figure 10). The connection mark (“1” in Figure 10) indicates that
the function on the row depends on the function on the column. For example, in the
figure below, functions 2 and 3 depend on function 1 and function 1 depends on function
3. The marks can, as shown by Pimmler and Eppinger [94], also be divided into spatial
(S), material (M), information (I), and energy (E) interactions, as shown on the right in
Figure 10. In addition to functions the rows and columns could represent components,
tasks, team members, etc.

Figure 10 A design structure matrix.

So far, the architectural models have described either the functions or components
(or sub-systems) of a product or system and their interconnections. Object-process
methodology (OPM) [25] was developed to include both aspects into the model at once.
Sub-systems can be presented as objects (parts, and other elements involved in the
system) and functions as processes (Figure 11). The objects are represented with
rectangles and processes with ellipses. In addition, the links between the objects and
processes can be represented with multiple symbols. To indicate that an object performs a
process, the object is connected to the process with a connector that has a black circle at
the process end. A white circle indicates that the object is part of the process but not the
agent performing it. In addition states (), effects (→), and aggregations (•) can be
represented in the OPM diagram.

21

processing
3

processing
1

sub-system 1

system

processing
2

sub-system 3
state 2state 1

object

sub-system 2

Figure 11 Object-process diagram.

The OPM is a close cousin of unified modeling language (UML), the last approach
to modeling an architecture described here. This language was originally developed for
software design, but it can be used to model also non-software systems. Below is an
exemplary structural UML diagram of a product (Figure 12). In addition there are other
views to describe an architecture. These other views make the UML the most general
model, but some views, e.g. states, are modeled also by the OPM diagram. Here, the
classes represent the basic concepts of a system (similar to components of a product) and
each class can have a set of attributes and operations to describe their properties and the
alternative functions each class can do. The relation can be any verb that describes the
respective roles of the two classes. The relations between the classes can describe e.g.
how one class controls, consists of, or reads the other class.

class 1 class 2

operation 1
attribute

relation

class 4

re
la

tio
n

relationclass 3
operation 3

Figure 12 UML diagram.

2.2.2 Comparison of the Six Architectural Models
It is not agreed which of these architectural representations is the best or most

suitable for a specific case. The different architecture representations are best suited for
different purposes. The focus of this thesis is on products and their functions and
structure, and not for example on a process or use case of a product, in which case the
choice of method would be different.

I will analyze the models here from nine different aspects:

1. Whether both functions and actual elements of a product can be represented. The

element here refers to a component of a physical system or e.g. a block of code in a
software system.

2. Whether the user of the product can be included in the model.
3. Whether the surroundings of the product can be included in the model.

22

4. Whether the model can differentiate between different interface types or
complexities.

5. Whether the model is static or dynamic i.e. whether the model can show different
views or states of the system (dynamic) or just a single state and view (static).

6. Whether the model is suitable for modeling service and software architectures in
addition to electromechanical architectures.

7. Whether the model can be used in the early phases of the development process.
8. What aspects of the product are visualized with the model.
9. Whether the model is compatible to other models i.e. if one representation is

transferable to another without any additional information.

To better illustrate the differences between the models, I will use each method to
model the same product: a water bottle. To keep the models simple, I will only model
three functions of a water bottle: holding water, directing water to mouth, and sealing
container if needed. In addition, of course, the water bottle includes functions such as
show contents, show how much left, enable holding, etc. Figure 13 illustrates the three
functions of a water bottle using the six architectural representations introduced.

sealing

water

contained
water

co
nt

ai
ne

r

hold
water

direct
water to
mouth

til
t a

ng
le

bo
ttl

e
m

ou
th

water

seal
container
if needed

us
er

us
er

w
at

er

no
water

hold water
without
spilling

seal
container
if needed

direct
water to
mouth

hold
water

holding

container

bottle

directing

cap
sealedopen

water

bottle mouth

container

bottle mouth

cap

hold water
size

seal

direct water
water

ho
ld

direct

1

65

43

2

water waterwater

m
ou

th

m
ou

th

direct
water to
mouth

water

us
er

us
er

us
er

us
erha

nd
hold

water

water

seal
container
if needed

S M

M

Mhold water

seal

direct water

ho
ld

 w
at

er

se
al

di
re

ct
 w

at
er

Figure 13 A water bottle modeled using six different architectural representations.

23

Looking at the hierarchical tree structure of the water bottle, we see that it only
shows the functions of the product but does not reveal any details about their relations.
Alternatively the tree structure could contain the elements of the bottle, but still leaving
out the relations between them.

Function structure can also have either the functions (as shown above) or the
elements of a product. In addition to the tree structure, we now have connections and
connection types between the functions to represent how the functions relate to one
another. Water flows from the hold water function to the outside of the system through
direct water functions. In addition, one can see that water can also enter the seal function,
but the flow of water stops there and returns to the hold water function. Further, the
function structure includes also connections to the outside of the system. In the water
bottle example, a user is seen as a hand and force holding the bottle, mouth touching the
direct water part of the product, and user sealing the bottle with the cap.

The IDEF0 includes the functions or elements of the product as well and their
relations. It does not, however, detail the interaction types, or flows (water), in the
architecture like function structures. IDEF0 representation can include the user and
possible other connections to the outside of the product it self. This is presented as
control and mechanism arrows. For example, the user is both the mechanism that seals
the bottle and controls that the sealing is done.

The DSM is very similar to the function structure model. The main difference to the
function structures, in addition to the spatial interaction, is that connections to the outside
of the system are not shown in the DSM. In addition, the matrix format of the DSM
enables easy reorganization of the architecture using matrix manipulation. Most
algorithms, however, are for the binary DSM, where the interactions are not separated
into the four categories.

OPM, as discussed above, enables simultaneous modeling of functions and elements
of a system, unlike the function structure and DSM methods, for example. In addition, the
surroundings and the user of the system can easily be included in the diagram. In the
water bottle example the object the system (bottle) operates on is water. Water is not part
of the system itself but can be included in the model. Further, dynamic aspects such as
states of the system can be included in OPM. The bottle cap can be sealed or not, for
example. This modeling method provides a more complete description than the others so
far.

The structural UML model of the water bottle also includes the functions and the
elements of the system. The elements are presented as classes and the functions and their
operations. Note that now the operations and relations are very similar. Each relation
could be replaced by “acts upon” to avoid use of same verb as in operations, but the
above notation is chosen for clarity. If a class had more operations, i.e. an element had
more functions, these operations would be divided to different relation lines to different
classes. In addition, relation lines could describe e.g. aggregations such as in the OPM
diagram. Further, one could include attributes for each class, e.g. the water container
could have size as an attribute. If one were to draw different diagrams for the other views,
many more features of the system could be described, but not in a single diagram.

All six architectural representations have benefits and drawbacks and a choice on
which to use depends on the situation what in the most suitable for a specific purpose.
Most of these methods were used at some point of this research. During the research I

24

identified certain key features that an architectural representation must have for platform
development purposes. Similar to customer needs in a KANO chart, the need for an
architectural representation can be divided into both basic needs that are “must” and
special features that make the method better than expected. The basic needs include the
ability to illustrate functions/elements of the product and their relations. A special feature
that was also important in this research was the capability to show the interfaces in detail
between the functions/elements in the structure. This stemmed from the need for
improved understanding and design of interfaces and linking the customer requirements
into the functions for commonality analysis. This will be discussed later in the thesis.

Further, since the focus of the thesis is in the early phases of development, it is
important to have an architectural model that can be created when only customer
requirements are known, not the components of the system. In addition, it is sometimes
important to be able to represent an architecture of an existing system with an abstract
model in order to not tie the thinking to the existing solutions. This opens possibilities for
fundamental [31] redesign of the product architecture. For example, if a company making
a water bottle was in fact in the business of providing water containers that one could
easily drink from and seal if necessary, then the same functions could be realized by
multiple product types (Figure 14) or combinations of different attributes of the different
product types. In order to keep these possibilities open and enable platform commonality
across different product types, an abstract model with no components is needed.

Figure 14 Five alternative water containers with functions: hold water, direct water to mouth, and
seal container if needed.

Additional good features of an architectural representation are its abilities to
visualize the product design problem as well as to provide clues about the product context
(e.g. user and surroundings).

In summary, during the course of platform design, different methods may be needed,
or a combination of them to benefit from the power of the methods. For this to be easy
and effective, it is desirable that a method is compatible or easily transferable to another
method. As an example the function structure is maybe easier to read than a DSM, but a
DSM is quick to manipulate. Table 1 summarizes the main features of the six models
giving clues to a designer which method to use in a specific situation.

25

Table 1 Comparison of architectural representation methods.

 Hierarchical
tree

Function
structure IDEF0 DSM OPM UML

Functions / elements F or E F or E F or E F or E F & E F & E
user - + + - + +
surroundings - + + - + +
Interface types - + - + - +
static/dynamic static static static static dynamic dynamic
Suitable also for service
and sw architectures (+) - - (+) + +

Can be used at early
phases (+) + + + (+) (+)

Visualization levels of
hierarchy

functional
layout, interf.

types

functional
layout

interface
connectivity

objects
involved

objects
involved

Compatible w/ methods - DSM
(IDEF0) (DSM) Function str.

(IDEF0) (UML) (OPM)

In this thesis I will analyze product architectures and develop systematic methods for

architectural design. I will choose function structures as the primary architecture
representation method since it has the most features needed but not a lot of additional
information to clutter the presentation in my work and since it is transferable to other
representations with minimum effort. The key issues that lead to the selection of the
function structure as the main method were (1) the function structure can be drawn at the
early phases. The minimum information needed are customer requirements; (2) The
function structure is an abstract demonstration that enables comparison of different
product types (e.g. in a product family); (3) The function structure includes a separation
of interface types and includes units of measurement related to the customer
requirements; (4) Representing dynamics aspects, i.e. the states of the system or different
view points, were not found to add significant value. Also DSM would have been a good
choice for (1), (2), and (4), but the function structure is more visual and has the most
information needed for the interface definition. Also OPM could be used as well as the
DSM, but similarly the interface type separation is not as suitable for this research as in
the function structure model.

Further, Kurfman et al. have shown function structures to be reasonably repeatable
[66]. They also show that function structures result in quasi-unique product
representations and that the functional basis vocabulary improves the functional modeling
by making it more repeatable and by determining a level of decomposition. They also
show that the method works for both redesign and an original product, but benefits are
clearer with redesign projects [67].

26

3 MODULARITY
Modularity has become very popular in academia in recent years even though it has

existed for at least 30 years [31] and the idea of hierarchical systems consisting of semi-
independent sub-systems was brought up by Simon [101] already in 1962. Several
companies have adopted modular thinking in various industries such as Boeing, Chrysler,
Ford, Motorola, Swatch, Microsoft, Conti Tires, etc. [85]. In this chapter I will first
define how the term module is used in this thesis, and then discuss different measures for
measuring the degree of modularity of a product. I will end with tying modularity to
product architecture and discussing the advantages and disadvantages of modularity.

3.1 Module Definitions
Gershenson et al. [36] note in their literature review that there is no agreement on the

definition of modularity. There is some agreement that a “more modular product is one
with more modules that are closer to the ideal module”. But the definition of an ideal
module is not agreed upon. This is largely due to the definition of a module being related
to the benefits sought from modularity.

O’Grady [85] defines “hard” and “soft” modules. “Hard” modules are physical
assemblable modules and “soft” modules have limited physical presence e.g. software,
service, financial products, insurance, etc. In this thesis I do not make a separation
between the two, both are considered equally modules. This choice is since a single
product can consist of both types of modules, and therefore the architectural analysis is
complete only if both types of modules are considered.

Mattson and Magleby divide modularity into three categories: design,
manufacturing, and customer modularity [71]. Also Gershenson categorizes modules into
the design and manufacturing, as well as the end-of-life modularities.

Independent of the life cycle phase or purpose of modularity, Merriam Webster [120]
has two relevant definitions for a module:

1. a : any in a series of standardized units for use together: as (1) : a unit of

furniture or architecture (2) : an educational unit which covers a single subject or
topic
b : a usually packaged functional assembly of electronic components for use with
other such assemblies

2. an independently-operable unit that is a part of the total structure of a space
vehicle

Hubka and Eder [53] define a modular design as “connecting the constructional

elements into suitable groups from which many variants of technical systems can be
assembled”. Salhieh and Kamrani [98] define module as “building block that can be
grouped with other building blocks to form a variety of products”. They also add that
modules perform discrete functions, and modular design emphasizes minimization of
interactions between components. Also Camuffo [15], Dahmus et al. [21], Pahl [90], as
well as Ulrich and Eppinger [117] have a similar definition. They all define a module as a
chunk of a product with an identifiable function.

27

The above definitions are mainly based on the functionality of a module. Another
common way of defining a module is a more abstract definition such as that of Otto and
Wood [87]: “product modules are defined as integral physical product substructures that
have a one-to-one correspondence with a subset of a product’s functional model”. Also
Stone et al. [109] use a very similar definition derived from Ulrich’s definition of
architecture.

Ericsson and Erixon [27] add that in addition to the similarity between the physical
and functional architecture of a product, a module should have minimal interaction with
other modules or the rest of the system. This strong connectivity within a sub-system and
loose connectivity between sub-systems was discussed by Simon [101] quite early.
Baldwin and Clark [5] define a module as “a unit whose structural elements are
powerfully connected among themselves and relatively weakly connected to elements in
other units”. Also Suh [111] considers the connectivity of the module to the rest of the
system in his definition where a module is a row in his design matrix.

The module definition used in this thesis is adapted from the above sources:

A module is an independent building block of a larger system with a specific
function and well-defined interfaces.

In addition, a module has fairly loose connections to the rest of the system allowing
an independent development, outsourcing, manufacturing, recycling, etc. of the module
as long as the interconnections at the interfaces are carefully considered. This definition
is general to different product types and gives a definition that helps identify modules to
benefit from the facts listed in Section 3.4, Advantages and Disadvantages of Modularity.

3.2 Modularity Measures
When talking about modularity, a question arises: how modular is a product

platform? In order to quantify modularity, many measures have been developed, but the
answer is not trivial as pointed out by Gershenson et al. [35]. They conducted a study
where groups of independent students, engineers, product development managers, and
researchers had to evaluate the degree of modularity of 10 consumer products.
Interestingly, there was no statistical significance to the answers i.e. there was no
agreement on what was more modular than another.

There are many attempts in the modularity literature to measure the degree of
modularity [e.g. 2, 37, 55, 70, 71, 84, and 106]. Guo and Gershenson [44] developed a
new metric by first studying eight existing metrics [43], including their own, and then
validating their improved metric through experiments. This metric is in line with the
module definition used in this thesis. It measures the intra- (first term) and inter-module
(second term) connectivity in a modularity matrix, such as a DSM:

m

M

k kkckk

m

ni

n

j

N

mj
ijijM

k kk

m

ni

m

nj
ij

M
nmNnm

RR

nm

R

Modularity

m

k

k

k c

k
m

k

k

k

k ∑
∑ ∑ ∑

∑
∑∑

=

=

−

= +=

=

= =

−+−+−

+

−
+−

= 1

1

1 1

1
2)1)(1(

)(

)1(, where

28

nk = index of the first component in kth module
mk = index of the last component in the kth module
Mm = total number of modules in the product
Nc = total number of components in the product
Rij = the value of the ith row and jth column element in the modularity matrix.

As found also by Guo and Gershenson [43], modularity measures are very different
and give different results on the degree of modularity. Most measures deal with physical
components, but a few can be extended to the abstract design phase by replacing the
components with functions. About half of the metrics are designed for a specific
application, such as recycling or supply chain management, and the other half are metrics
to calculate the degree of modularity in general or in terms of connectivity. If the purpose
of modularizing is to separate outsourced components into modules, a supply chain
specific metric (e.g. [55]) is the most suitable, and when the goal is to develop
independent modules, a metric based on the connectivity (e.g. [44]) of the module is
more appropriate. The metric by Guo and Gershenson is used in this thesis since it is in
line with the modularity definition in this paper (Publication I).

3.3 Modular Architectures
There are many ways of categorizing architectures. One common way is to divide

architectures into modular and integral architectures. In reality a fully modular or fully
integral architectures are rare and almost all architectures are somewhere in between.

Modular architecture has functionally de-coupled interfaces between components
[118]. In practice this often also leads to an architecture is one where the functional
elements in the function structure are mapped one-to-one to the components (or elements
to be more general) of the product. This is because in order for a component to be an
independent module, it needs to interact as little as possible with the other components,
and this is achievable, for example, when each component has only one function, or at
least no functions are shared between components. Typical examples architectures that
have close to one-to-one mapping between functions and components and that are at the
modular end of the modular-integral scale include a mechanical pencil, a personal desk
top computer (PC), and the Swiss army knife (Figure 15).

Figure 15 Examples of modular products.

An integral architecture is the opposite of a modular architecture. An integral
architecture has coupled interfaces between components [118]. An integral architecture
tends to have more complex (non one-to-one) mapping from functional elements in the
function structure to the components (or elements) of the product. Typical examples of
architectures at the integral end of the modular-integral scale, where it is hard to identify

29

what part of a product performs which function, include an old fashioned pencil, a laptop
PC, and a hunting knife (Figure 16).

Figure 16 Examples of integral products.

3.4 Advantages and Disadvantages of Modularity
Modularity brings both advantages and disadvantages. Modularity often means using

the same module in multiple products enabling a large variety of products while using
less different component types than if the different products did not share common
modules. This multiple-systems modularity [79] brings scale and scope advantages such
as reduced capital requirements, and economies in parts sourcing [5, 85, 118]. On the
downside, modularity may lead to excess costs due to over design [42, 64], inefficient
performance [26, 124], and too many common modules may result in loss of brand
identity [61, 118].

Modules are also helpful in design re-use [79, 104] since already designed modules
with well defined interfaces can be used again in other designs. This applies to software
products as well as hardware [6]. Design re-use can lead to reduced cycle time, which in
turn results in e.g. increased revenue due to increased market penetration as a result of
being first to market, success in time sensitive markets, and shorter time to market
increases accuracy of meeting customer needs [74].

A well designed product architecture can help the management of product change
and upgrades, product variety, and components standardization [85, 118]. Product
change, upgrade, and variety can be achieved by replacing a module in a system without
other changes to the overall product, or product platform [27, 117]. In addition, from a
single-system [79] point of view, a well defined module, in terms of simple interfaces,
can ease project management due to decoupling of tasks and providing design freedom
within a module [85, 118]. Modularity also makes a complex product architecture appear
simpler and therefore easier to manage [27].

The above advantages are useful in the design phase of a product. Fixson [30, 32]
and Miller [79] outline how modularity has impact at the different phases of a product’s
development lifecycle. Fixson says modularity can also have different effects depending
on the stakeholder; e.g. a supplier’s cost might actually rise when the manufacturer
applies a certain module regime to reduce its costs. Also Pahl and Beitz [89] discuss the
advantages and limitations from different stakeholders’ points of view (manufacturer and
user). Coulter et al. [18] also found similar results. They introduce a limiting factor i.e. “a
characteristic of an existing product for which a change in value of the characteristic (or a
change of the characteristic itself) to another value in the feasible design space would
result in increased achievement of product goal targets”. In their case it can be e.g. one
part in a module that makes the entire module non-recyclable. In addition, Newcomb [84]
as well as Allen and Carlson-Skalak [2] view modularity at the end of a products

30

lifecycle - as a tool to ease the disassembly and recycling of the product. Also Riitahuhta
and Andreasen [96] and Dahmus and Otto [22] discuss the life cycle benefits of
modularity. These tradeoffs between different stakeholders and lifecycle phases must be
considered when designing modular products.

Another trade-off in modularity is the trade-off between performance (e.g. high
efficiency, low weight) and the business oriented benefits (e.g. high product variety,
flexibility) that can be achieved with modular designs [1, 20, 26, 124]. This is discussed
in detail in Publication I. Whitney [124] points out, that especially high power
mechanical products, as opposed to low power signal processor type products, would
benefit from more integral design if technical performance is high priority. A more
modular product is likely, but not necessarily, to be larger, heavier and less energy
efficient than a product with integral architecture [119, 124]. Also side effects are harder
to control. Whitney compares complex electro-mechanical-optical products to VSLI that
can be considered fully modular, and in line with Suh’s [111] design axioms. Mechanical
parts have a “multi-function character” partly due to basic physics (material contains also
energy, rotating axle transmits shear loads and rotational energy) and partly due to
“design economy”. Also Gonzalez-Zugasti and Otto [38] show that some performance is
sacrificed to obtain goals of the individual products that are created for a platform.

I show here an illustrative example of the technical performance trade-off using a
simple truss example. There are two different architectures for a simple one triangle truss.
The first consists of three identical beams of same length, cross section profile, and
material, i.e. is a modular structure, and the second is an integral one piece structure
(Figure 17). Both triangles have a vertical load of 50N. This causes a compressive force
of approximately 29 N to the two angular beams and a tension force of approximately 14
N to the horizontal beam. For the first structure, where all beams are identical, they are
chosen according to the most critical requirement, i.e. the two angular beams. The
horizontal beam is therefore over designed (larger diameter than needed) and the
structure is heavier than if the structure was more optimized such as the second integral
one piece truss where the lower section is thinner than the upper parts of the structure.
Clearly, modularity makes a product heavier.

On the other hand, if the load or the load direction were to change, the modular truss
structure is quicker to adapt to the new requirements. Modularity makes a product more
flexible toward change.

31

Figure 17 Modular and integral truss.

In addition we investigated the degree of modularity compared to the performance
level, mainly in terms of power consumption and weight limit, of an architecture using
two product pairs as an example: a cellular phone and a desk phone, and a laptop and a
desktop computer. We found that the more performance constraint products (cellular
phone and laptop computer) are more integral than the non-performance critical
counterparts (desk phone and desk top computer). Other examples of products where the
modular product is (or would be) heavier are a car and an electronic calculator [20]. The
cellular phone example is discussed also in [7]. More details and the modularity
calculations are in Publication I.

Gershenson concludes in his literature review that even though there is agreement on
the benefits of modularity, there’s no large scale validation of it. He adds that there is no
research on how long modularity brings benefits and when it causes diminishing returns.
[36] Kusiak [68], on the other hand, argues that the full potential of modularity is not
realized, and the research should continue in the area.

 Transmit
force

Counteract
force Fu

nc
tio

ns

~vertical
beam

x
x

Modular truss

horizontal
beam

60°

Components

Components

F

F

60°

Transmit
force

Counteract
force Fu

nc
tio

ns

x

Integrated triangle structure

x

triangle

32

4 PRODUCT PLATFORMS
So far I have discussed product architecture and modular architectures. These form

the basis for an effective platform design. This chapter will define the concept of
platform and how it is used in this thesis, discuss the benefits of modular platforms, and
introduce the state-of-the-art of platform method research to date.

4.1 Definitions
Meyer and Lehnerd [78] define a platform as a “set of common components,

modules, or parts from which a stream of derivative products can be efficiently created
and launched”. Muffato [81] defines platform similarly as: “a relatively large set of
product components that are physically connected as a stable sub-assembly and are
common to different final models”. Also Ulrich and Eppinger [117] share a similar
definition.

McGrath [75] and Otto and Wood [87] have a more general definition, where
platform is a collection of common elements (not just physical components), especially
the underlying technology, that are implemented across a range of products. Simpson et
al. [102] have an even more general platform definition: “the set of parameters (common
parameters), features and/or components that remain constant from product to product,
within a given product family”.

The more general definitions enable platforming in design, manufacturing and
assembly, and product phases. The last definition by Simpson et al. takes into account
that platforms can be either module or scale based [87, 103]. Since this thesis focuses on
module based platforms, the platform definition used here is one that is suitable for
module based platforms. The definition used in this thesis is derived from the above
sources:

Platform is the common set of physical or non-physical modules from which
multiple products can be derived

This definition is in line with the literature and industry practice. In addition there are

many valid platform definitions regarding the interface between the product and the
manufacturing system e.g. the assembly coordinates or welding points of a product. But
these are outside the scope of this thesis. This definition also supports the product
development process framework in section 1.1, Background .

4.2 Benefits
The benefits of platforms are similar to the benefits of modularity since modules are

often used to create either modular platforms or product variants by adding a module to a
platform. A classic example of a successful use of platforms is the Sony Walkman story
[99]. They were able to create more variants and faster than any competitor. Also
Volkswagen has outperformed its competitors in terms of selling the most vehicles based
on their platforms [95]. Platform projects also enable later derivative projects that are
much shorter in duration than the platform projects [52]. Derivative products are more
likely to succeed than totally new products as shown by the Association of National

33

Advertisers, who found that 27 % of product line extensions fail; whereas 31 % of new
products introduced into existing categories fail; and a very high 46 % of new products
introduced in new categories fail [4]. Good platform can enable a set of successful
product variants. Meltzer [76] claims that product families and platforms can be used as a
tool to accelerate new product development since developing a derivative product based
on a platform is faster than developing a completely new product. However, Roemer and
Fixson point out the limits of this strategy and warn of potential lead time increases under
commonality [97]. The faster development time applies also in the context software
development [6, 112]. Muffato [81] discusses the benefits of automotive companies
adopting platform strategies and claims that even though there has already been success
in shortened lead times, among other benefits, there is room for improvement. Also other
success stories can be found in literature [21, 27, 78, 87, 126].

Meyer and Lehnerd [78] discuss the benefits of product platforms: scale advantages
etc. They also introduce a list of metrics to measure platform performance (in dollars).
The metrics are based on the “business” performance (to use Whitney’s [124] term) of a
platform and the costs of developing it. However, Krishnan and Gupta point out that the
platform development costs are, in general, a very small percentage of the total life cycle
costs. They suggest that the cost of using an over designed part in order to have an
identical module instead of two (or more) variations will end up costing much more than
the original platform investments. Also Moore et al. stress the importance of considering
both the fixed and variable costs of platforms [80].

4.3 Methods
There are several methods for designing a platform. Simpson et al. find that there are

two types of platform design methods: (1) top-down and (2) bottom up. [102] Another
way to characterize the two approaches is that the top-down approach is more business
and the bottom up approach more technically oriented. Yet a third way of categorizing
platform design methods is to distinguish between module based and scale based
platforming [87, 103]. Scale based platforms are platforms where products share the
functionality but are all at different performance levels. Examples include: Pratt &
Whitney jet engines [87] and Black & Decker universal motors [78]. Module based
platforms, on the other hand, are products that share common modules but may have
different functionality. Examples of this include Sony Walkman [99] and Black &
Decker tools [110]. I will use this last categorization in this chapter since the methods are
often suitable for either scale or module based platforms.

4.3.1 Scale Based Platform Methods
Several researchers [e.g. 47, 77, 82, and 102] are developing optimization based

methods for designing a platform. Simpson et al. [102] introduce a method called Product
Platform Concept Exploration Method (PPCEM). They use decision support problem
(DSP) to try to design a platform by minimizing performance loss and maximizing
commonality. Their method starts with market segment grid from Meyer and Lehnerd
[78]. Messac et al. [77] also start with the market segment grid. They show a method to
provide decision support in designing product families. Messac et al. start with the
assumption that the common platform components are known and then identify
parameters that designer can effect as well as noise. They include a step for robustness,

34

but do not show it, then they use physical programming to formulate and solve the
problem. [77] Similarly, Hernandez et al. [47] show a compromise DSP approach for
designing robust product families. They too start with a presumption that common
components are known. Hernandez et al. focus on production costs of the platforms.
Nayak tries to define platforms based on minimizing the variations of corresponding
design variables in different products of a product family. Also he uses DSP to optimize
the platform. [82]

Conner Seepersad et al. show a quantitative method to decide on a number of
product platforms, or number of common components, for a family of absorption chillers.
They also use compromise DSP. [16] In later work Conner Seepersad et al. add a utility
based method that takes into account the evolving markets [17]. The changing market is
added as an expected utility of predetermined possible scenarios (each scenario is given a
certain probability of occurrence).

These methods concentrate on scalable common functionality. This is important, but
outside the scope of modular product platforms, the thesis topic.

4.3.2 Module Based Platform Methods
This thesis focuses on module based platforms. Researchers approach module based

platform design from many viewpoints. Moore et al. [80], for example, use conjoint
analysis to determine a product platform. Siddique and Rosen [100], on the other hand,
describe a method to design platform from an existing set of products by looking at the
commonalities in the assembly process. Gonzalez-Zugasti et al. [40] introduce an
iterative method for optimizing platform design based on minimizing cost. In another
work, Gonzalez-Zugasti et al. [39] developed a method to assess the value of a platform.
They use a real options approach to determine a path to choose when developing an
initial platform and possible variants/derivatives in the future. Also Steuer and Whitcomb
[108] use real options to assess the value of a platform. Steuer and Whitcomb focus on
market uncertainty instead of technical uncertainty. Most of these methods concentrate on
evaluating a platform, once the platform modules have been chosen.

A few authors have developed matrix based methods for platform design. Fujita et
al. [33] introduce a way of using Quality Function Deployment QFD [45] for product
families. They assign a zero weight to a customer requirement that does not exist in a
specific model but exists in at least one member of a product family to be able to use the
same matrix for multiple products in a family. Also Martin and Ishii [70] developed a
QFD based method for developing platforms. They aim to minimize the connectivity and
future redesign of the architecture with a help of modularity metric introduced earlier.
Dahmus et al. [21] also use matrix approach. They focus on defining platform modules
based on common functionality. Sudjianto and Otto [110] introduce a similar method as
Dahmus et al. to design multi-brand product platforms based on shape and color schemes
rather than on technical attributes. These methods address the choice of common modules
for platforms, but the methods presume the modules are predefined.

There are multiple ways of determining the degree of commonality in a platform.
Fellini et al. [28] introduce a method to choose common components for a platform while
trying to optimize both the commonality and the performance. In previous work, Fellini
[28] introduced a pareto optimizing method to decide how many design variables to share
among two products of a family with a given acceptable performance loss. Nelson et al.

35

[83], on the other hand, use pareto fronts to decide on the degree of commonality
between products in a product family. They optimize the performance of a single product
and the degree of commonality.

In addition to the actual design methods above, De Weck et al. [24] have developed
a method for deciding the number of platforms based on sales volumes and performance
at market segments. And Georgiopoulos et al. [34] show how to determine how much to
produce each of the product variants in a platform.

All of the methods presume that the modules and common elements to be shared for
the platform are decided or provide only weak guidance as to how to do that. These
methods are useful in optimizing the platform or deciding the number of platforms, but
they lack detailed advice for the design engineer who is designing the platform – making
decisions about the interfaces, common elements, etc. The following chapters will look
more into specific tool for architecture design.

36

5 DESIGNING AN ARCHITECTURE
This chapter is the main part of this thesis and contains the main research

contribution. In this chapter I will introduce an approach for designing a “good” product
architecture using a modular design approach. The goodness can be assessed in terms of
ilities [19]: properties such as upgradability, serviceability, flexibility, etc. This will be
covered in Chapter 6, Evaluating Platform Architectures. The idea is to develop product
family architectures that enable product variety by designing an architecture consisting of
independent modules that are defined in accordance with the company’s modular
strategy. In this section, I first introduce three modularity methods, present results of the
comparison of them, and then move on to discussing the improvements I have developed
to overcome the weaknesses of the current methods.

5.1 Modularity Methods
Modularity definitions and methods depend on the purpose of modularity. For

example at what point do we want benefits of modularity – during the design phase
(design reuse etc.) or at the end of life of a product (recycling etc.)? Fixson [31] and
Gershenson [36] also support this. I focus on the architecture and design phase but try not
to ignore other aspects. The methods introduced here were chosen since they are well
established in academia and used in industry.

5.1.1 Function Structure Heuristics
Stone et al. developed a function structure heuristic method, based on Pahl and

Beitz’s function structures [89] introduced in Section 2.2. Stone et al. separate modules
from a single product’s function structure by finding the dominant flow, branching flows,
or conversion-transmission function pairs (Figure 18) [109]. Zamirowski and Otto [126]
present three additional heuristics to find modules across products in a product family.
They find similar and repetitive functions within a single product, common functions
across products, and unique functions that are found only in one product within the
product family and separate them as modules. These three product family heuristics are
similar to the component standardization strategies by Perera et al. [93]. In addition to
these, McAdams et al. [72] separate causally linked function pairs as modules, but since
all modularity methods are used in their original form, this is left out of this study. A
good tutorial of the method is given by Otto and Wood [87].

transmit
rotation

convert
electricity
to rotation

transmit
rotation

convert
electricity
to rotation

Dominant flow Conversion –
transmission pair

Branching flow

Figure 18 Function structure heuristics.

To apply the function structure heuristics method, one starts with a function
structure, and then considers the many possible alternative modules that can be defined

37

by grouping functions according to the heuristics. The heuristics define possible modules;
it is up to the designer to choose the “sensible” modules. Further, the heuristics are
maximal heuristics. They state only that one should not define modules larger than
indicated. Any module defined by a dominant flow as a serial chain of functions, for
example, can be subdivided in any way and still be consistent with the heuristics. As
such, the approach provides modularity suggestions only; it is not a deterministic
algorithm. Therefore, designer insight and good judgment can enter the process; this is
either a benefit or a problem, depending upon one’s perspective.

These heuristics apply to single products and the three family heuristics to product
families of similar products. The method can be applied for both module based and scale
based platforms, but the most common use is with module based platforms. The main
modularization criteria considered in the function structure heuristic method are
functionality and module interfaces. Other criteria such as business or strategy related
factors are not represented in the function structure heuristic method but, instead, enter
through designer judgment in where the rules get applied. Otto [86] presents a method
based on the functions structure heuristics that includes also steps for customer
segmentation and profit estimation.

5.1.2 Modular Function Deployment
Modular function deployment (MFD) [27] is also based on functional decomposition,

such as functions structure heuristic method, but in this method, modularity drivers other
than functionality are considered. MFD is designed to modularize a single product at a
time. There are twelve modularity drivers in MFD (Figure 19). One or a few modularity
drivers are chosen according to the firm’s strategy. Ericsson and Erixon [27] offer a good
tutorial on the method.

33
131

99
9

1

3

1
3

9133
33

939
199

31
933
939

13

33
131

99
9

1

3

1
3

9133
33

939
199

31
933
939

13

Function 9
Function 8
Function 7
Function 6
Function 5
Function 4
Function 3
Function 2
Function 1

Function 9
Function 8
Function 7
Function 6
Function 5
Function 4
Function 3
Function 2
Function 1

recycling
upgrading
service and maintenance
supplier availability

technology evolution
planned changes
different specification
styling
common unit
process and/or organization
separate testing

carry over

recycling
upgrading
service and maintenance
supplier availability

technology evolution
planned changes
different specification
styling
common unit
process and/or organization
separate testing

carry over

6
5

18
9

24
16
4

22
21
7

16

4

6
5

18
9

24
16
4

22
21
7

16

4

21219122113191719 21219122113191719

33
131

99
9

1

3

1
3

9133
33

939
199

31
933
939

13

33
131

99
9

1

3

1
3

9133
33

939
199

31
933
939

13

recycling
upgrading
service and maintenance
supplier availability

technology evolution
planned changes
different specification
styling
common unit
process and/or organization
separate testing

carry over

recycling
upgrading
service and maintenance
supplier availability

technology evolution
planned changes
different specification
styling
common unit
process and/or organization
separate testing

carry over

Function 9
Function 8
Function 7
Function 6
Function 5
Function 4
Function 3
Function 2
Function 1

Function 9
Function 8
Function 7
Function 6
Function 5
Function 4
Function 3
Function 2
Function 1

6
5

18
9

24
16
4

22
21
7

16

4

6
5

18
9

24
16
4

22
21
7

16

4

21219122113191719 21219122113191719

33
131

99
9

1

3

1
3

9133
33

939
199

31
933
939

13

33
131

99
9

1

3

1
3

9133
33

939
199

31
933
939

13

Function 9
Function 8
Function 7
Function 6
Function 5
Function 4
Function 3
Function 2
Function 1

Function 9
Function 8
Function 7
Function 6
Function 5
Function 4
Function 3
Function 2
Function 1

M1 M1M2 M2M3 M3 M4

Module indication matrix ModulesMain drivers (rows) and
dominating functions (column)

Figure 19 Main steps of modular function deployment.

MFD is similar to QFD, but here modularity drivers are mapped against functions
instead of customer requirements in a matrix (Figure 19). The grouping into modules is
started by the functions receiving the highest summed scores (dominating functions, see
Figure 19); and the functions dominated by the same modularity drivers are good
candidates for a module according to this method. The number of modules according to

38

MFD is approximately the square root of the number of parts or assembly operations. The
estimate is based on optimizing the assembly lead time of the whole product. [27]

Stake [107] and Blackenfelt [8] show how MFD and DSM can be integrated in the
grouping phase. Blackenfelt builds a strategic DSM using simplified modularity drivers
from the MFD. He suggests using also a functional DSM in conjunction with the strategic
MFD [8] to systematize the grouping phase in the MFD. In addition, MFD has a step for
interface design that considers form, fixation principles, number of contact surfaces and
attachments, as well as the number of energy connection points, material flow, and
signals. It relies more on the intuition of engineers than presentation of a systematic
method to locate and choose cut-off points for modules, which again is either a benefit or
a problem, depending upon one’s perspective.

5.1.3 Design Structure Matrix
A DSM [117] is typically used to organize product development tasks or teams to

minimize unnecessary design iterations and thus help manage and speed up the
development process. The DSM can also be used to define modules within a single
product’s architecture. In the component or function based DSM, also called architecture
DSM, components or functions are placed on the row and column headers of the matrix.
Components or functions are then mapped against each other and their interactions are
marked in the matrix. One can also present spatial, energy, information, and material
interactions of components or functions in a DSM as shown by Pimmler and Eppinger in
[94] and also by Blackenfelt in [8]. The interactions can be represented with coupling
coefficients -2, -1, 0, 1, or 2 depending on the strength of the relation and whether the
relation is beneficial or undesired.

Once functions or components and their interactions are placed in the DSM, a
clustering algorithm can be applied to group the functions or components so that the
interactions within clusters are maximized and between the clusters minimized. The
formed clusters are possible module candidates (Figure 20). There are many algorithms
and one can develop one’s own to suit the needs of a specific case. The basic idea of a
clustering algorithm is to reorder the rows and columns so that all marks are as close to
the diagonal as possible or form a tight cluster with other marks. The algorithm used in
this study is developed by Thebeau [114]. This was chosen because it is a well defined
computerized algorithm. The algorithm can result in overlapping modules or it may leave
a function out of the final clustering, in which case it is up to the designer to decide how
to handle them. The overlapping section could be for example duplicated and placed in
both modules or forced to be only in one of the modules where the algorithm suggested it
could be. For more about the component based DSM method, refer to [14].

Un-clustered DSM

Clustered DSM with modules

in red boxes
Figure 20 An exemplary DSM.

39

The DSM is designed especially for quick rearranging of the architecture based on
the interface interactions. The method concentrates on the interfaces of the modules to
simplify the design process and the apparent complexity of the product architecture. The
component based DSM could be combined with the task and team DSMs to include the
modularization in the rest of the design process planning. The method leaves more
business oriented factors and product functionality up to the designer’s judgment after
first simplifying the architecture.

5.1.4 Comparative Analysis of the Methods
The goal of the comparison of the three methods introduced above is to get a user’s

perspective on how easy the methods are to use, how well they work for specific cases,
and how repeatable they are. In addition, weaknesses were identified as basis for future
work. The comparison and the results in this section are described in more detail in
Publication II and [50].

The starting assumption was that the methods would give similar results for the
modular architecture or at least identify a few key modules in the same way. This,
however, ended up not being the case. Surprisingly the methods, tested on a total of 6
products in two case studies, gave practically no common solutions as to how to divide a
structure into modules.

Further, the methods were applied on two families of two products, but since the
methods are designed for single products, they did not identify common modules across
the products in a family, thus sub-optimizing the family in order to optimize a single
product [Publication II, 50]. This is interesting since one of the key goals of modularity is
to gain scale and scope advantages by sharing components and thereby creating variety
with less components in a product family. The common module heuristic helped the
function structure heuristics to perform best in terms of finding the most commonalities
between products.

All methods identify certain groups of functions, that should be combined into a
module, in some particular way, but they do not agree on how many other functions these
so-called module cores should have. The electro-mechanical products in the case studies
all had a drive unit. One observation is that all methods identify the drive unit as a
module (module core). The drive unit is typically a central part of a product and all
methods suggest it should be bundled up as a module. However, the methods do not
agree on the size of the module, i.e. what functions should be included in the drive unit
module.

The different results are mainly due to the different assumptions of each method and
the most suitable should be chosen according to the goal of the company. The function
structure heuristics aim for simple interfaces (branching flow) and grouping sets of key
functions into modules (dominant flow, conversion-transmission pair); The MFD, on the
other hand, does not look at the interfaces between the functions but concentrates on the
strategic aspects, possible benefits, of modularity such as ease of maintenance and reuse,
which in turn are ignored by the other methods. The DSM is more similar to the function
structure heuristics in that both aim for simple interfaces. The DSM, however, is run by a
computer and it cannot identify the key functions of a product. In fact, the DSM can
suggest overlapping or functionally infeasible solutions. This brings us to the subjectivity
of the methods.

40

The repeatability of the three methods was analyzed by having 2 groups of 20
graduate students and engineers perform the methods in two separate case studies. The
experiment set up is described in detail in Publication II and [50]. The goal was to
analyze the subjectivity and objectivity of the methods. The more subjective a method,
the less repeatable it is. The repeatability in the percentage of functions grouped in the
same way. The DSM was left out of the repeatability study since it is a computer run
algorithm. However, it is also not 100% objective since the algorithm [114] depends on
the original order of rows in the matrix. The results are summarized in Table 2.

Table 2 The repeatability of modularity methods.

 Case 1 Case 2
Function Structure Heuristics

 Conversion transmission 90% 90%
 Branching 80% 75%
 Dominant 75% 60%

Function Structure Heuristics (family)
 Repetitive 81% 84%
 Common 70% 63%
 Unique 86% 83%

Modular Function Deployment
 68% 85%

We see that the repeatability of each method is reasonable, but there is a

disappointing lack of objectivity so great care must be taken if any are to be used.
Conversion-transmission pair of the function structure heuristics has the highest
repeatability. This is due to the clear definition of the rule. The unique function heuristic
scored high on repeatability for the same reason. On the other side of the spectrum, the
dominant flow heuristic received a low repeatability percentage due to its vague hard-to-
understand definition, according to the research participants. The difference between the
repetitive and common function structure heuristics is that the former is applied within a
single product and the latter across different products. The results show how the choice of
modules becomes more difficult when the choices must be made for a product family
instead of just a single product.

The difference in the repeatability of the MFD in the two case studies is explained by
the fact that in case study 1 the participants were not familiar with the product and in case
study 2 the participants did not only know the product better but also had a chance to take
it apart prior to the modularization [50]. The results suggest that the MFD may lead
toward the existing solution if the engineer is familiar with it.

There is a correlation between the repeatability of the methods and the types of
modules suggested. The more subjective a method the more feasible modules it suggests.
This is due to the engineer’s strong influence in the process. This can either be good or
bad. One downside is that an engineer may be biased toward a solution e.g. the existing
one. On the other hand, a more objective method can give more novel solutions, but they
may not always be feasible such as a module with an axle and circuit board parts.

The ease of use is subjective. The heuristics require studying of the definitions, but
the execution requires only a pen and paper, or a simple commonly used software such as
some of the MS Office programs. The MFD requires interviewing several stakeholders in
a company and is therefore more laborious to perform than the other two. The DSM

41

requires a clustering algorithm and some software, but once the un-clustered DSM is fed
into the algorithm the clustering of even a larger matrix is immediate. The ease of use is a
secondary goal of these methods and no more analysis is done in regard to it.

The difficulty of use and the weaknesses in repeatability are due to two main
reasons:

1. The methods have insufficient rules on how to decide where an interface (module

boundary) should be located.
2. The methods are designed mainly for single products.

The first weakness of the modularity methods needs improving. The definition of
modularity almost always includes simple interfaces and isolated units, but the methods,
except the DSM, do not address this rigorously enough. And even the DSM algorithm
treats every interface connection as equivalent, which in unlikely the case. The function
structure heuristics aim for simple interfaces, but since the heuristics are maximal
heuristics and the rules fairly broad, many alternative modules are possible without
violating the heuristics. The MFD has a step for interface design, but it is not detailed and
does not address how to actually decide how to cluster some of the functions into
modules if the module driver profiles are only weakly similar and to more than one
module. Clearly, a better method for interface design is needed. Section 5.2, Flexible
Interface Design, will introduce a method for this.

The second weakness is a problem only in designing multiple products. I will argue,
however, that a company should be developing multiple products – product platforms and
variants. The existing methods, for most part, optimize each product of the family and not
the family (or platform). The main deficiency is in identifying the common parts of the
family. DSM does not have a step for this at all. MFD has one driver out of many to
identify common units across products, but this driver presumes that the commonality is
predetermined. The function structure heuristics include three heuristics designed
specifically for product family design, but as shown in Table 2, the repeatability is the
poorest when trying to identify the commonalities across products. Thevenot and
Simpson [115] also call for more specific definitions of commonality in their analysis of
commonality metrics for platform design. A better method is needed for identifying
common modules across products in a product family for platform design. Section 5.3,
Identifying Common Modules, will introduce a new method for this.

5.2 Flexible Interface Design
Redesign is unavoidable. A product will need to be redesigned during the design

iterations and later as new versions of the product are designed. Thomke [116] suggests
modularity as one tool for improved flexibility, but modularity alone is not enough if the
interfaces are not properly designed. Also Tatikonda [113] supports separating
dependencies between module interfaces. As discussed earlier, a weakness of the
modularity methods to date is the lack of interface design. Some simple heuristics exist,
such as calculating the number of connection between modules [8, 12], but as Fixson [30]
points out, different interactions have different intensities.

I developed a metric to assess the degree of complexity of different interface types.
The metric is used in addition to a modularization method to determine module

42

boundaries. The metric is based on minimizing the redesign effort, if an adjacent module
were to change. This robustness of a module to change makes the architecture more
flexible in terms of design upgrades and other changes. The idea is similar as in [49],
where an interface workload is mapped in a DSM based on the owner of the interface,
except that in my approach we look at the flows at the interface, regardless of the owner.

The redesign effort metric introduced here is not meant for deciding the number or
size of the modules alone. Our metric along with others, such as assembly-ability [11,
 41], suppliers [56], team size [13], etc., are all important criteria to use in such a multi-
criterion decision. In addition, emergent properties such as cost, weight, and performance
type criteria must be considered [39, 42, 64, 119, 123]. The purpose of this metric is to
help choose module boundaries so that future changes are as effortless as possible.

The metric is based on the interaction types at the interfaces. The interactions are the
flow types such as solid material, gas, electrical energy (Table 3).

Table 3 Interface complexity values (per 1% change in the original flow value) for different flow
types at two different companies. Values are not expected to be general across companies. (* is an
average of sub-category metric values)

Flow category Sub-category Company 1
Injectors

Company 2
Sensors

Solid 1.2 -
Material

Gas - 0.3
Acoustic 3.1 -
Electrical 1.2 0.5
Mechanical
General*
Rot torque
Translation

1.0
1.0
1.0

-

Pneumatic 1.3 -

Energy

Thermal 1.8 0.3
General* 0.8 1.0
Content 1.2 1.7 Info
Bandwidth 0.4 0.2

The metric was developed and tested in two industrial case studies. The first case

study involved two companies jointly developing medical injectors and the second a
single company developing industrial process sensors. We interviewed multiple design
engineers and system experts at the two companies. We asked them to evaluate the
redesign effort needed if a flow at an interface were to change by a certain percentage.
E.g. How much redesign compared to the original effort is needed in this module if this
input voltage (electrical energy) flow is increased by 20%? We calculated the metric
following the model in Figure 21. The metric is used on the linear portion of the model.
The linear portion is an approximation of smaller discrete changes. Details about the
methods and case studies can be found in Publications IV and V.

43

Figure 21 The general behavior of redesign effort vs. the change percentage.

We obtained a redesign effort metric for all the flow categories (Table 3). A number,
e.g. 1.2, signifies that if the flow were to change by 1% the amount of effort needed to
accommodate for the change is 1.2% of the original effort to design the particular
component. As we can see, the values are different for each flow type as well as for each
company. This was expected as we hypothesized that different interactions have different
effects in terms of redesign effort. The values also depend on the company and product in
question. For example, the second case study involves more software intensive products
and therefore an information flow, especially information content, change is more
difficult. The differences depend also on how the company sees themselves. The second
case study company seems to feel more confident about their abilities to adapt to change
than companies in case study 1. A closer look at the table, however, reveals that even
though the values are different across the two cases, some generalizations can be made.
For example, changing information flow bandwidth is considerably easier than changing
information content. Also, electrical energy (typically voltage) is harder to change than
information bandwidth. We believe this is due to the larger buffers typically used for
bandwidth than for voltage. On the other hand, information content requires more design
effort to change than an electrical flow.

The redesign effort metric values are used to determine module boundaries together
with other criteria such as cost or supply chain requirements. In order to do this, the
product is modularized using a modularization method. The method can be picked
according to the company goals. The methods, as mentioned above, tend to give
suggestions, not definitive answers as to where to draw the module boundaries. The
metric is good for identifying critical interfaces in a product architecture. The larger the
design effort complexity metric on a specific interface, the better it is to keep the
interface within a module. And similarly, the smaller the design effort complexity metric
at an interface, the better candidate the interface is to be at a module boundary. These are
analogous to the tactics in software to aim to keep the high-bandwidth communication
within a module and place low-bandwidth links between modules [6]. This eases the
development of the modules since a team developing a module is more likely to handle
the complex interfaces than if the interface was to be design by two separate teams
developing separate modules. This is also supported by Sosa et al. [104].

44

The redesign effort metric can improve the flexibility, in terms of change readiness
[91], of an architecture. Figure 22 shows a partial function structure of a gas sensor from
the second case study with its modules defined using DSM. In addition, the inter-module
redesign effort metric values are shown underlined and the intra-module redesign effort
metric values in italics. It appears that this architecture could be improved by moving the
module boundaries so that the most difficult interfaces are inside a module and simpler
interfaces can be put to the module boundary instead. Looking at the gas sensor function
structure one interface can be clearly seen as a difficult interface: the interface between
the Timing-module and the Processor-module. This interface consist of five information
flows (each 1.0) between the functions in each module has therefore a design effort
complexity score of 5.0. If anything should change in one of these modules, it would
cause major design also in the other module. From the redesign ease point of view, these
two modules should be kept together as a single module. In addition we can combine the
power supply with the control heating function and thereby simplifying the interfaces
further. These two changes improve the total redesign effort metric sum of the
architecture from 19.3 to 14.8 without making the product overly integral or violating
modularization rules used and while keeping the architecture feasible. As mentioned
above, this metric should be used together with other design criteria. It is worth noting
that the redesign effort metric for an interface can be improved by very small changes
that can still be in line with the other criteria. More examples of the benefits and use are
in Publications IV and V.

45

Figure 22 Partial function structure of a gas sensor used in the second case study. DSM defined
modules shown in dashed lines. (Fig 5. in Publication III)

46

The results here were shown to be statistically from moderately to highly significant
depending on the flow type. The significance can hardly be improved since the metrics
are based on subjective estimates of design experts. The subjectivity adds noise to the
results, but an attempt was made to overcome this deficiency by interviewing multiple
experts with different backgrounds and asking several dozens of estimations per product.

5.3 Identifying Common Modules
In this section I describe a new quantitative method to evaluate module

commonality. This, as all methods described in this thesis, is to be used together with
other modularity and architecting methods. The methods, results, and analysis are
described in more detail in Publication III and [51].

The method is based on measuring the “distance” between functions’ inputs and
outputs and clustering the functions into a dendrogram to visualize the possible common
module candidates. Johnson et al. use also a Euclidian distance based dendrogram but for
clustering materials based on their technical properties and aesthetics. [59] Also Pedersen
[92] uses dendrograms to create product families, but his method is based on components
in existing products and not applicable in the product architecture phase. Stake [107] uses
a dendrogram approach to identify modules, but he identifies modules within a single
product. My method identifies common modules both within and, more importantly,
across products. Moreover, the method can be used at the early phases of development
when only the requirements are known.

Further, this method is not restricted to comparing commonality at a single level of
system hierarchy, but it can compare commonality across the hierarchies, including
physical sub-system level and basic function level. We look at the similarity at different
levels of hierarchy at the same time. This is different from Fellini’s [29] approach, where
each level is treated separately. Treating the hierarchies all at once is useful since it is
often difficult to define the levels of decomposition.

Unlike many previous commonality measures [58, 115], this method sees platform
and component commonality analysis not as a binary, common/not common choice, but
as a more complex decision of degree of commonality. This makes the method not
subject to the choice of what is common enough (Same function, but different power
requirements? Same component but different color?) [115].

The following sub-sections will describe the use of the method first in the functional
domain and then in the physical domain.

5.3.1 Commonality in the Functional Domain
The analysis in most existing methods is often done at a component or feature level.

McAdams and Wood [73] go further to the functional level of a product in their
quantitative similarity metric. They base their similarity on the similarity in the
vocabulary [48] used to describe the functions of various products. My method also uses
the same standard vocabulary but in addition, my method measures the distance between
the function inputs and outputs, using ratio scales, making the method more rigorous than
the previous methods.

The distance measure is an n-dimensional Euclidian distance based on the input and
output flow values of the functions. The basic steps include characterizing the input and
output flows of each function and function groups with units e.g. 12W and 3W, or 1200

47

baud and 2400 baud, normalizing them to be between 0 and 1 by dividing by the
maximum of each flow type, and comparing the functions and groups of functions pair
wise to obtain the “distance” between them. The input and output values can be based
either on the technical specifications derived from the customer requirements or actual
flow values, if the project is a redesign of an existing product.

Each flow type is treated separately and combined at the final distance calculation
phase. This approach presumes all flow types are comparable in a dimensionless space.
This distance defines the commonality, or lack of it, to aid in common module selection
for platforms. Table 4 illustrates the steps for measuring the distance D between
functions. A family of two process sensors is used as an example. The detailed equations
can be found in [51].

Table 4 Steps for measuring module commonality in the functional domain.

Build a function structure for product A.

Remove
water

Sense Ctransmit C
value

convert εr to
C

Absorb /
release vapor

E(e) = 18V

E(T)
C=

180pF
C=

180pF

HC

HC

H2O

H2O

HC

H2O

εr

E(e) = 4V E(e) = 4V E(e) = 4V

”C”

Sense Rtransmit R
value

Convert T to
R

E(T)
R=

100Ω
R=

100Ω

E(e) = 700mA E(e) = 700mA
E(e) = 4V

”R”

E(T)

E(T) E(T)
Remove HC

E(e) = 18V

E(T)

E(T)

Build a function structure for product B.

Remove gas

Sense Ctransmit C
value

convert εrNH3
to C

Absorb /
release vapor

E(e) = 19V

E(T)
C=

38pF
C=

38pF

NH3

NH3

H2O

H2O

NH3 H2O

εr

E(e) = 2.5V E(e) = 2.5V E(e) = 5V

”C”

timing

Sense Rtransmit R
value

Convert T to
R

E(T)RR

E(e) = 1.8mA E(e) = 1,8mA
E(e) = 5V

”R”

timing

E(T) =
150oC

E(T)

E(T)

Choose modules for product A.

Sense C
E(T)

C=
180pF

HC

H
C

E(e) = 4V E(e) = 4V

”C”

Sense R
E(T)

R=
100Ω

E(e) = 700mA E(e) = 4V

”R”
E(T)

Remove HC

E(e) = 18V

E(T)

convert εr to
C+transmit
C+Sense C

Abs/rel vapor
+rem water+
remove HC

E(e) =
18V

E(T)

HC
HC

H2O
H2O

εr

E(e) = 4V

”C”

Convert T to
R+transmit
R+Sense R

E(T)

E(e) = 4V

”R”

E(T)

E(T)

E(e) =
18V

Remove
water

E(e) = 18V

H2O

H2O E(T)

E(T)

Absorb /
release vaporHC

H2O

H2O E(T)

H
C E(T)

εr

convert εr to
C

εr

C=
180pF

E(e) = 4V

transmit C
value

C=
180pF

E(e) = 4V

C=
180pF

E(e) = 4V

Convert T to
R

E(T)

E(T)

E(T)

R=
100Ω

E(e) = 700mA

transmit R
value

R=
100Ω

R=
100Ω

E(e) = 700mAE(e) = 700mA

E(T)

εr
E(T)

Remove water+Absorb /release vapor+Remove HC+convert εr to C+transmit C
value+Sense C+Convert T to R + tranmit R vale + Sense R

E(e) = 18V

E(T)

HC
HC

H2O
H2O

E(e) = 4V

”C”
E(T)

E(e) = 4V
”R”

E(
T)

E(
e)

 =
18

V

Abs/release
vapor+conve

rt εr to C

C= 180pF

HC

H2O

HC

H2O
E(e) = 4V

E(T)

E(T)

m1 m2

m14

m13m12

m11m10

m9m8m7

m6m5m4

m3

Choose modules for product B.

Sense C
E(T)

C=
38pF

E(e) = 2.5V
E(e) = 5V

”C”

timing

Sense R
E(T)

R=270Ω

E(e) = 1,8mA
E(e) = 5V

”R”

timing

Remove gas+Absorb /release vapor+convert εrNH3 to C+transmit C
value+Sense C+Convert T to R+transmit R value+Sense R

E(e) = 19V

E(T)NH3

NH3

H2O
H2O

E(e) = 5V

”C”

timing

E(T)

E(e) = 5V

”R”

timing

E(
T)

=
15

0o C

Remove gas

E(e) = 19V

NH3

H2O

NH3 H2O
E(T) =
150oC

Absorb /
release vapor

NH3

H2O

NH3 H2O
E(T) =
150oC

εr

E(T)

convert εrNH3
to C

εr
C= 38pF

E(e) = 2.5V

transmit C
value

C=
38pF

E(e) = 2.5V

C= 38pF

E(e) = 2.5V

Convert T to
R

E(T)

E(T)

R=270Ω

E(e) = 1.8mA

transmit R
value

R=270Ω

E(e) = 1.8mA

R=270Ω

E(e) = 1,8mA

Remove gas
+absorb /

release vapor

E(e) = 19V

NH3

NH3

H2O
H2O

εr

E(T)

Convert T to
R+transmit R

+ sense R

E(T)

E(e) = 5V

”R”

timing

E(T)

E(T) convert εrNH3
to C+trans-

mit C + sense
C

E(T)

E(e) = 5V

”C”

timing

εr

convert εrNH3
to C+trans-
mit C value

C=
38pF

E(e) = 2.5V

εrConvert T to
R+transmit R

value

R=270Ω

E(e) = 1.8mA

E(T)

E(T) Abs/release
vapor+conve
rt εrNH3 to C C= 38pF

NH3

H2O

NH3 H2O
E(e) = 2.5V

E(T) =
150oC

E(T)

n1

n12 n13

n11n10n9

n8n7

n6n5n4

n3n2

n15

n14

48

Characterize the inputs (xi) and outputs (yi) for
product A.

m1 1
1
mx = 18V

m1 1
1
my = 0V

m1 1
2
mx = 100%

m1 1
2
my = 100%

(repeat for all modules and inputs)

Characterize the inputs (xi) and outputs (yi) for
product B.

n1 1
1
nx = 19V

n1 1
1
ny = 0V

n1 1
2
nx = 100%

n1 1
2
ny = 100%

(repeat for all modules and inputs)

Calculate the distance
T

xWxjiD ∆⋅⋅∆=),(, where

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

−

−

−

−

−

−

−

−

=∆

j
M

i
M

ji

ji

ji

j
N

i
N

ji

ji

ji

yy

yy

yy

yy

xx

xx

xx

xx

x

M

M

33

22

11

33

22

11

 and

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

=

OUT

OUT

OUT

OUT

IN

IN

IN

IN

M

N

W

W
W

W
W

W
W

W

W

O

O

3

2

1

3

2

1

0

0

, and where

INkW is the weight of the input type k,
OUTkW is the weight of the output type k, N is the number of input

types, and M is the number of output types. The weights include normalization terms.

We developed a total of four versions of the distance algorithm; one in Publication
III and three in a continuation effort [51]. We concluded that the most effective algorithm
is one where we included preference functions [3] (included in the weight in the above
equations) for the flow types to handle the non-additive nature of flow difference as the
value of the flow grows. E.g. the difference of 3V is far more significant between 1 and 4
Volts than between 1001 and 1004 Volts. In addition we added a weight to each flow
type since some flows are more challenging than others as demonstrated in Section 5.2,
Flexible Interface Design. The preference functions and weights must be defined
carefully. This is where engineering judgment enters the process. So far, in this research I
have found that in practice, product functions and components are either very similar or
very different, and thus the method is not sensitive to the weight and preference function,
at least when the preference function is a power function as described here. The results
here apply for at least transformation functions f(x)=x1/2, f(x)=x1/3, and f(x)=x1/4.

Once the distances between all module pairs are calculated, the modules are
clustered into a dendrogram. Figure 23 shows the dendrogram for the above example.
More detailed discussion of the results can be found in Publication III as well as in [51].

It is now up to the designer to decide where to set the cut-off line (yellow dashed line
in Figure 23) for module commonality. The choice depends on e.g. the acceptable
performance losses and the cost of over design. The purpose of the dendrogram is to ease
the designer’s choice on common functions by clustering similar functions together. This
method is useful in the platform development prior to e.g. platform optimization methods
that require predefined common modules.

49

Figure 23 A dendrogram of modules for products A and B clustered according to their distance from
one another.

5.3.2 Commonality in the Physical Domain
The algorithm described above can also be used in the physical domain with small

modifications. In the physical domain approach the products need to be decomposed to
assembly level, not to the abstract function level. The function inputs and outputs above
are replaced by component, or sub-assembly, input and output requirements and other
attributes such as weight or volume, when appropriate.

For example, a set of miniature drive units and their components both alone and in
combinations with other components (motors, gears, and linear actuators) for a product
family can be compared by using e.g. the voltage and torque specifications as well as the
maximum volume of the drives (Table 5). Notice that the table includes both individual
components and multiple combinations of components. This represents an example
where a company has multiple products that use miniature drives and that have been
designed independently and where the company has decided to reengineer the products
and save costs by commonalizing some of the drives.

50

Table 5 Inputs for miniature drive commonality analysis.

Component or
component
combination

Voltage (V) Speed
(rpm)

Current
(mA)

 Torque
(mNm)

Volume
(mm3)

Lin. force
(N)

DC Motor A1 12 12950 13 0.2 2084.6 0
Gear a1 0 0 0 4.9 1442.3 0
Gear a2 0 0 0 12.1 1442.3 0
MotorGearA1a1 12 0 13 4.9 3526.9 0
MotorGearA1a2 12 0 13 12.1 3526.9 0
DC Motor A2 12 10500 30 0.2 2253.6 0
MotorGearA2a1 12 0 30 4.9 3695.9 0
MotorGearA2a2 12 0 30 12.1 3695.9 0
DC Motor B1 12 6000 6 0.4 2566.6 0
DC Motor B2 6 10000 8 0.1 2117.5 0
Gear b1 0 7000 0 20.1 4809.9 0
Gear b2 0 7000 0 20.1 4809.9 0
MotorGearB1b1 12 0 6 20.1 7915.5 0
MotorGearB1b2 12 0 6 20.1 7915.5 0
Gear b3 0 7000 0 20.1 4263.9 0
MotorGearB2b3 6 0 8 20.1 6757.1 0
LinMotor D1 12 0 67 0 5651.6 7.0
LinMotor D2 12 0 240 0 33934.2 220.0
LinMotor D3 12 0 113 0 13151.3 12.0
DC Motor C1 12 10000 13.6 3.3 3729.2 0
Screw E1 0 0 0 0 4401.6 0
ComboA1a1E1 12 0 13 0 9912.3 30.8
ComboA1a2E1 12 0 13 0 9912.3 75.8
ComboA2a1E1 12 0 30 0 10176.4 30.8
ComboA2a2E1 12 0 30 0 10176.4 75.8
ComboB1b1E1 12 0 6 0 17383.7 126.3
ComboB1b2E1 12 0 6 0 17383.7 126.3
ComboB2b3E1 6 0 8 0 19477.7 126.3
Screw E2 0 0 0 0 9390.0 0
ComboA1a1E2 12 0 13 0 19186.9 15.4
ComboA1a2E2 12 0 13 0 19186.9 37.9
ComboA2a1E2 12 0 30 0 19656.4 15.4
ComboA2a2E2 12 0 30 0 19656.4 37.9
ComboB1b1E2 12 0 6 0 19277.4 63.1
ComboB1b2E2 12 0 6 0 19277.4 63.1
ComboB2b3E2 6 0 8 0 22021.8 63.1

I apply the algorithm using equal weight (1) for all inputs and a cubic root
transformation of all values. Figure 24 shows how the clustering algorithm separates the
different component types into logical clusters. For example, the different Motor-gear-
screw combinations are separate from the Motor-gear combinations or the single
components. Further, two of the linear actuators with similar specifications to the Motor-
gear-screw combinations are clustered close by indicating that the algorithm can be used

51

to identify similar components or sets of components. The dendrogram aids in deciding
which transmissions can be replaced by new common modules. This eases the product
family redesign and can be used to create a few alternative architectures to be compared
against other criteria as shown in Section 6 Evaluating Platform Architectures.

Figure 24 A dendrogram of drive components clustered according to their distance from one
another.

The dendrogram clusters similar functions in a logical way in the examples here as
well as in Publication III and [51], and thus seems to work as desired, but the
applicability for all possible applications is yet to be tested in real PD projects.

52

6 EVALUATING PLATFORM ARCHITECTURES
Platform architecture evaluation is a more challenging task than evaluating a single

product architecture since a platform must effectively support multiple product variants
over a prolonged period of time. The platform methods introduced in section 4.3,
Methods, typically define a platform based on a few criteria such as cost, commonality,
and performance. In addition, there is work in platform architecture evaluation. De Weck
and Chang [23] use a Pareto frontier to aid in architecture concept selection. Their
method optimizes performance in respect to lifecycle costs. Kota et al. [63], on the other
hand, present a benchmark method to compare own platform to competitors platform.
Their method evaluates a platform based on how well the non value adding components
are shared in a platform. Also these methods deal with only a limited set of criteria, but a
platform can not be properly evaluated outside the company and business context.

Kristjansson and Hildre [65] introduce a platform assessment tool for evaluation of
the strategic fit of a platform. They include multiple criteria, but the tool lacks the
technical detail needed in the actual platform development.

There has also been excellent work in developing product concept evaluation
methods, such as Pugh’s selection process, concept screening and scoring, or trade-
studies [87, 117]. However, these methods are for evaluating a single product concept. A
platform concept has different requirements due to its longer lifetime and that it must
enable several derivative products.

Crawley et al. [19] discuss how an architecture should be evaluated based on
multiple ilities. A “good” architecture is flexible, scalable, maintainable, recyclable, etc. I
will present here a method that helps assess a modular platform in a larger context based
on multiple criteria including commonality, performance in terms of meeting customer
requirements as well as many other ilities.

The platform architecture assessment tool that makes use of the work of many others
in the field of modularity, platforming, and general product development. The evaluation
metrics are from three sources: six executive-level system engineers with an average of
17 years experience, the co-author’s [Publication VI] personal experiences of platform
development over the last 10 years with over two-dozen platforms and the personal
mistakes learned from inadequate preparation (e.g., inadequate preliminary assessment),
and the literature for platform metrics used by others, such as by Ericsson and Erixon
[27], Blackenfelt [8].

The tool is focused on the early platform architecture phase, before proof-of-concept
prototyping. However, it can also be used subsequently for platform refinement when
more data becomes available. The tool is meant to aid in modular platform architecture
development, evaluation, and as a communication tool to upper management as well as
between different stakeholders. Due to the approximate nature of the summed scores, the
tool works as a guide and not an absolute measure of platform “goodness”.

The tool consists of 19 criteria [Publication VI] that are grouped into six categories:
customer satisfaction, variety, after-sale, organization, flexibility, and complexity. Each
metric is evaluated using a merit scale of {0, 3, 5, 7, 10}, where 0 is the worst and 10 the
best. This is analogous to an A-F grading scale. The scores are absolute scores, where the
10 is a theoretical maximum and may not always be achievable. A competitor benchmark
will help establish what level to aim for.

53

Hand

Force into
opposite hand

Battery

Drill Bit

Finger

Finger

Noise

Object

Hot filings

Hot drilled object

Hand Force

Hand

Noise, Heat

Transmit
Power

Transform
(τ,ω)

Convert
Elec. To
Motion

Switch
Power Input

Signal

Un-Register
Battery

Force into
opposite hand

Battery

Hand force

7.2V DC

Force into
opposite hand Drill bit

Register
Battery

Heat in bit

Drill
Hole

Un-lock
Drill Bit
Un-lock
Drill Bit

Noise

Secure
Drill Bit

Bit secured

Finger
force

Force in to
finger

casing

switch

slip clutch drilling

trigger

chuck

speed changer

motor

transmission

function
Function only in the
Heavy-duty and the
Professional models

function
Function only in the
Heavy-duty and the
Professional models

Heavy-duty /
Professional
module

Heavy-duty /
Professional
module

2 integrated modules
for platform
alternative B

2 integrated modules
for platform
alternative B

Integrated module
for platform
alternative A

Integrated module
for platform
alternative A

Current
drill modules
Current
drill modules

Rotary Torque

Release
Drill Bit

Register
Drill Bit

Transmit
Electricitycontact

Permit
Drill Bit

Positioning

Input
speed

selection

Transmit
selection

Figure 25 Case study family of drills and their family function structure, with modules shown.

We use a family of five different cordless drills: professional, heavy-duty, value
brand, home-use, and a low price model to demonstrate our method (Figure 25). Table 6
shows the current cordless drill platform– in detail as an example. The individual metric
calculations for the drill are in Publication VI. In addition, we will show results for
platform alternatives A and B, also shown in Figure 25. We intend, that this assessment
tool will be used to evaluate multiple alternative modular platforms

54

Table 6 Summarized scores for the three alternative platforms.

Table 6 summarizes the platform assessment of all three alternative platforms. The
individual metric scores can be summed (weighted sum, same approach as in [117] for
product concept selection) to obtain first the sub-category scores and then the overall
platform scores. The weight is based on the metric’s contribution to the company profit.
The current cordless drill family platform receives a score of 8.0 indicating that the
platform is fairly well designed. It is better than the two other alternatives A and B that

55

received total platform scores 7.9 and 7.5 respectively. The overall score, however, is a
rough estimate and the difference between 8.0 for the current platform and 7.9 for the
alternative A is probably not significant. The true value of the analysis is in the sub-
category scores.

The current platform received the highest score in flexibility. This is primarily due to
the fact that the drill market is mature and no significant changes are expected. The
maturity of the market is taken into account by using a low weight in the related metrics.
The current platform received the lowest score in the category organization alignment.
The assembly score is low. This is typical, but the score could be easily improved by
adding better aligning features and eliminating a few screws.

The alternative A performed similarly to the current platform. The rank order of
category scores for platform alternative A is the same as for the current platform, but the
scores are inferior. The difference in scores, however, is an important indicator that our
tool has enough resolution to separate two very similar architectures. The current and
alternative A architecture differ by only one module.

The more integral alternative B received different scores. It performed significantly
worse in flexibility and variety. This was expected, since the more integral design has
larger modules that are more difficult to change if needed. The alternative B received a
higher score than the other two platform alternatives in sub-category customer
satisfaction. This is because many customer requirements such as weight and
performance are easier to optimize with an integral design. More details are found in
Publication VI.

The tool introduced above is meant for evaluating alternative modular platforms on
multiple criteria (ilities). The criteria should be aligned with the company strategy. A
company may choose to weigh ease of service, for example, over other criteria such as
variety. The tool helps on focusing on strategic goals of the platform. Moreover, the tool
can be used to benchmark one’s own platform to a competitor’s by reverse engineering
the competitor’s products to investigate the limits of the competitor’s platform as well as
the possibilities of one’s own. The tool is also useful in differentiating from the
competition. Finally, the scorecard serves as a communication tool between the different
stakeholders and to upper management in pointing out the strengths and weaknesses of
the platform.

56

7 CONCLUSIONS
I have introduced the multiple aspects of platform architecture design from the

theory of product architecture and product architecture representation to the advantages
and disadvantages of modular product architectures and to practical tools for platform
design. In summary, this thesis has shown how to define common platform modules with
easy to redesign interfaces as well as how to choose a platform alternative that is well
aligned with the company strategy. In this section I will tie the tools to the platform
architecture development process. Figure 26 shows the basic steps of a platform design
process supplemented with the new methods developed here. This process follows the
company portfolio strategy development, and the resulting modular product architecture
is delivered for detail core module design (Figure 4).

Choose best platform alternative

Modularize a product (family)

Design flexible interfaces

Use common parts

Identify common modules

Optimize the platform parameters

Choose best platform alternative

Modularize a product (family)

Design flexible interfaces

Use common parts

Identify common modules

Optimize the platform parameters

Figure 26 The steps of a modular platform architecture design process. This thesis’s contribution in
blue and bold boxes.

One of the research questions was to identify the biggest gaps in the modular
platform development methods to date. I observed through investigation of existing
methods that the platform or modular design methods are meant for single products and
do not therefore properly enable product variety through a product family. Further, the
current methods identify module “cores” only leaving the final module boundary
definition to the designer, and use only a limited set of evaluation criteria. From these, I
identified two major gaps in the current state of research: (1) lack of tools for interface
design and (2) lack of design rules for how to choose the common platform components,
and developed methods to fill these gaps. In addition, I recognized the need for platform
architecture evaluation in the larger company context and developed a tool for that. These
missing steps are added to the general modular platform architecture development
process (Figure 26).

Another goal of this research was to develop a way to describe a module interface
complexity quantitatively in order to fill in the first gap identified. I developed a metric to
aid in designing flexible interfaces. The new approach was to look at the interface
complexity as described by the material, energy, and information flows flowing through
the interface. The flexibility is defined as ease of module redesign if an adjacent module

57

were to change. I showed how the metric has different values for different flow types at
the interfaces. For example, information bandwidth is easier to change than electrical
energy, which in turn is easier than information content change. I showed how the metric,
used together with a modularization method, where drivers such as strategic modularity
and other design criteria can be considered, can render a more flexible architecture
without violating other design rules. The metric is evaluated by using it on two case
studies. The research results were in agreement with the system design experts
interviewed. The metric was shown to apply within a company but not across companies
due to the different industries the two case study companies operate in. To date, there was
no tool for estimating interface design effort complexity, and now the new metric will aid
in designing products and modular platforms that are quicker to adapt to future changes
than without the tool.

Once individual products are decomposed into modules according to criteria most
suitable for the company, and the interfaces are properly defined, the next step in modular
platform design is to identify possible commonalities in the product family in order to use
common modules in more than one product and thereby saving design and manufacturing
costs. The product component and function commonality analysis thus far involved
simple binary decisions of common/not common, but I introduced an algorithm that takes
into account possible degrees of commonality. This is an answer to the research question
related to improving the common module identification and an attempt to fill the second
gap in the existing methods. This new algorithm can be applied both in the physical and
the functional domain and at any, and even mixed, levels of hierarchy. Furthermore, the
algorithm is multidimensional and thus not limited to a single measure for commonality
analysis. The algorithm is shown to provide design support through real examples in both
the functional and physical domain.

As the common module candidates are identified, the interface flexibility metric can
be applied again, if desired. After this, the common modules are chosen from the possible
candidates by (a) calculating the estimated cost of over design and the savings from
commonality, if a low functionality module is over designed in order to make it common
with another module; or (b) estimating the acceptable performance loss, if a high
functionality module is replaced by the low functionality module in order to make it
common with another modules.

Once the common modules have been chosen, one can apply one of the optimization
or other pre-existing methods described in Section 4.3.2, Module Based Platform
Methods. The methods involve one or a set of platform parameters that are optimized on
one or a few criteria. However, in this thesis the goal was to evaluate the “goodness” of a
modular platform and its fit to the overall company strategy and not just the goodness
related to a few criteria. Modularity and modular platform architectures must be
evaluated in relation to the rest of the company operations and strategy. Just as with
single concept selection, platform selection must also be done carefully by using multiple
criteria. I showed a tool for platform architecture evaluation. The tool consists of 19
criteria and the usage of it as well as its resolution to differentiate between similar
architectures was shown via an example. The tool helps in developing and evaluating a
modular platform architecture. It helps a company focus on their strategy and benchmark
one’s own platform to the competitors’. It also serves as a communication tool for upper
management as well as between different stakeholders.

58

The modular platform development process is improved in this thesis, but future
work is still required. The next step is to continue applying the developed methods in an
industrial context and in multiple companies. Now each method was shown to apply in a
few companies, but further validation of usability and effectiveness is needed to advance
to the third and last stage of Blessing et al.’s [10] design research methodology.

A few interesting questions arose during this research but were left outside the scope
of this thesis. One of them was, how much of the interface complexity metric can be
generalized over companies within the same industry and across industries? This requires
multiple case studies but could possible be accomplished over the course of several years.
Further, the module commonality calculation algorithm is designed to have discrete
numbers as inputs, but does not allow for input and output ranges such as 100-120A or
max 200°C. The algorithm is already useful as such but would benefit if the inputs could
be expressed in more ways. Other interesting questions are related to the platform
architecture evaluation. Are there other metrics that should be considered? What is the
best way to weigh the metrics? The former question was partially answered since we tried
to be as exhaustive as possible and approached the issue from three directions: company
expert interviews, platform design experience, and literature review. However, since
industries, companies, market situations, etc. are different, it is only logical that the set of
metrics and their weights are also different for specific cases. The main point, however,
remains – multiple criteria involving multiple stakeholders must be used. All in all this
thesis provides a suggestion for a modular product platform development process that is
more advanced in ways listed above than methods so far, but the area of modular product
platform design can be further explored and improved.

This thesis has shown how to define common platform modules with easy to
redesign interfaces as well as how to choose a platform alternative that is well aligned
with the company strategy. This modular platform process, and the set of tools developed
here, will hopefully be used to make product development more effective in industrial
companies. An effective platform can bring many benefits from cost savings due to
module commonality to reducing time to market, but a company can only benefit from
these if the platform is appropriately designed.

59

REFERENCES
1. Aarnio, J. Modularization by Integration: Creating Modular Concepts for

Mechatronic Products. Doctoral Thesis. Tampere University of Technology. 2003.
2. Allen, K. R. & Carlson-Skalak, S. Defining product architecture during conceptual

design. In Proc of the ASME Design Engineering Technical Conferences. Atlanta,
GA. 1998.

3. Antonsson, E. K. & Otto, K. N. Imprecision in Engineering Design. ASME journal of
Mechanical Design. Vol 117(B). 1995.

4. Association of National Advertisers. Prescription for New Product Success. New
York. 1984.

5. Baldwin, C. Y. & Clark, K. B. Design Rules: The Power of Modularity Design. MIT
Press. pp.471. 2000. ISBN 0262024667.

6. Bass, L., Clements, P., & Kazman, R. Software architecture in practice. 2nd ed.
Addison-Wesley. 2003. ISBN 0-321-15495-9.

7. Benini, L. & de Micheli, G. System-level power optimization: Techniques and tools.
in Proc International Symposium on Low-Power Electronics Design, pp. 288–293.
San Diego, CA. 1999.

8. Blackenfelt, M. Managing complexity by product modularization. Doctoral Thesis.
Dept. of Machine Design. Royal Institute of Technology. Stockholm. 2001.

9. Blanchard, B. S. & Fabrycky, W. J. Systems Engineering and analysis. 3rd ed.
Prentice Hall, Upper Saddle River, NJ. 1998. ISBN 0-13-135047-1.

10. Blessing L.T.M., Chakrabarti A., & Wallace K.M., An overview of descriptive
studies in relation to a general design research methodology, in: Designers - the Key
to Successful Product Development, E. Frankenberger, et al (eds.) Springer Verlag,
1998, pp 42-56.

11. Boothroyd, G., Dewhurst, P., & Knight, W. Product Design for Manufacture and
Assembly, 2nd ed. Marcel Dekker Inc, New York. 2002.

12. Braha, D. & Maimon, O. The measurement of a design structural and functional
complexity. IEEE Transactions on systems, man, and cybernetics. Part A. Vol 28. No
4. pp.527-535. July 1998.

13. Braha, D. Partitioning tasks to product development teams. In Proc of ASME Design
Engineering Technical Conferences. Montreal, Canada. 2002.

14. Browning, T. R. Applying the Design Structure Matrix to System Decomposition and
Integration Problems: A Review and New Directions. IEEE Transactions on
Engineering Management. Vol 48. No 3. pp. 292-306. 2001.

15. Camuffo, A. Rolling Out a “World Car”: Globalization, Outsourcing and Modularity
in the Auto Industry. Working Paper. International Motor Vehicle Program,
Massachusetts Institute of Technology. 2001.

16. Conner Seepersad, C., Hernandez G., & Allen J. K. A quantitative approach to
determining product platform extent. In Proc of ASME Design Engineering Technical
Conferences. Baltimore, MD. 2000.

17. Conner Seepersad, C., Mistree F., & Allen, J. K. A quantitative approach for
designing multiple product platforms for an evolution portfolio of products. In Proc
of ASME Design Engineering Technical Conferences. pp 593-602. Montreal, Canada.
2002.

60

18. Coulter, S. L., McIntosh, M. W., Bras, B., & Rosen, D. W. Identification of limiting
factors for improving design modularity. In Proc of ASME Design Engineering
Technical Conferences. Atlanta, GA. 1998.

19. Crawley, E., de Weck, O., Eppinger, S., Magee, C., Moses, J., Seering, W., Schindall,
J., Wallace, D., & Whitney, D. The influence of architecture in engineering systems.
Paper presented at the MIT Engineering Systems Symposium. Cambridge, MA. March
29-31, 2004. http://esd.mit.edu/symposium/monograph.

20. Cutherell D. Product architecture. In: The PDMA handbook of new product
development. Rosenau M., Griffin A., Castellion G., and Anschuetz N. (eds). John
Wiley & sons.1996.

21. Dahmus J. B., Gonzales-Zugasti J. P., & Otto K. N. Modular Product Architecture. In
Proc of ASME Design Engineering Technical Conferences. Baltimore, MD. 2000.

22. Dahmus J. & Otto, K. Incorporating Lifecycle costs into Product Architecture
Decisions. In Proc of ASME Design Engineering Technical Conferences. Pittsburgh,
PA. 2001.

23. De Weck, O. L. & Chang, D. Architecture trade methodology for LEO personal
communication systems. In Proc AIAA 20th International Comm Satellite Systems
Conference. Montreal, Canada. 2002.

24. De Weck, O. L., Suh, E.S., & Chang, D. Product family and platform portfolio
optimization. In Proc of ASME Design Engineering Technical Conferences. Chicago,
IL. 2003.

25. Dori, D. Object-Process Methodology. Springer. 1998. ISBN 3-540-65471-2
26. Ethiraj, S. K. & Levinthal, D. Modularity and innovation in complex systems.

Management science. Vol 50. No 2. pp 159-173. February 2004.
27. Ericsson, A. & Erixon, G. Controlling design variants: Modular product platforms.

ASME press, New York, NY. pp145. 1999. ISBN 0-87263-514-7.
28. Fellini, R. Kokkolaras, M., Papalambros, P., & Perez-Duarte A. Platform selection

under performance loss constraints in optimal design of product families. In Proc of
ASME Design Engineering Technical Conferences. pp 593-602. Montreal, Canada.
2002.

29. Fellini, R. Kokkolaras, M., & Papalambros, P. Y. A rigorous framework for making
commonality and modularity decisions in optimal design of product families. In Proc
of International Conference on Engineering Design. Stockholm. 2003.

30. Fixson, S. Methodology Development: Analyzing Product Architecture Implications
on Supply Chain Cost Dynamics. Presented at the 5th Conference on Technology,
Policy, and Innovation “Critical Infrastructures”. Delft, The Netherlands. 2001.

31. Fixson, S. K. The multiple faces of modularity – a literature analysis of product
concept for assembled hardware products. Technical report. 03-05 Industrial &
Operations engineering. University of Michigan, Ann Arbor, MI. 2003.

32. Fixson S. K. & Clark J. P. On the link between modularity and cost – a methodology
to assess cost implications of product architecture differences. IEEE International
Engineering Management Conference. pp. 131-136. St John’s College, Cambridge,
UK. 2002.

33. Fujita, K., Takagi, H., & Nakayama, T. Assesment method of value distribution for
product family deployment. In Proc of International Conference on Engineering
Design. Stockholm. 2003.

61

34. Georgiopoulos P., Fellini R., Sasena M., & Papalambros P. Y. Optimal design
decisions in product portfolio valuation. In Proc of ASME Design Engineering
Technical Conferences. pp 593-602. Montreal, Canada. 2002.

35. Gershenson, J. K., Prasad, G. J., & Zhang, Y. Product modularity: measures and
design methods. Journal of Engineering Design. Vol 15. No1. pp. 33-51. Feb 2004.

36. Gershenson, J. K., Prasad, G. J., & Zhang, Y. Product modularity: definitions and
benefits. Journal of Engineering Design. Vol 14. No3. pp. 295-313. Sep 2003.

37. Gershenson, J. K., Prasad, G. J., & Allamneni S. Modular Product Design: a life-
cycle view. Transactions of the SDPS. Vol 3. No 4. pp. 13-26. Dec 1999.

38. Gonzalez-Zugasti, J. P. & Otto, K. N. Platform-based spacecraft design: A
formulation and implementation procedure. IEEE Aerospace Conference
Proceedings. Vol 1. pp. 455-463. 2000.

39. Gonzalez -Zugasti, J. P., Otto, K. N., & Baker, J. D. Assessing value in platformed
product value design. Research in engineering design. 13. pp. 30-41. 2001.

40. Gonzalez -Zugasti, J. P., Otto, K. N., & Baker, J. D. A method for architecting
product platforms. Research in engineering design. 12. pp. 61-72. 2000.

41. Greer, J. L., Wood, K. L., & Jensen, D. D. Effort flow analysis: a methodology for
directed product evolution. Design Studies. 25. pp. 193-214. 2004.

42. Gupta, S. & Krishnan, V. Integrated Component and Supplier Selection for a Product
Family. Production and Operations Management, Vol. 8. No. 2. pp. 163-181. 1999.

43. Guo, F. & Gershenson, J. K. Comparison of modular measurement methods based on
consistency and sensitivity analysis. In Proc of ASME Design Engineering Technical
Conferences. Chicago, IL. 2003.

44. Guo, F. and Gershenson, J. K. A comparison of modular product design methods on
improvement and iteration. In Proc of ASME Design Engineering Technical
Conferences. Salt Lake City, UT. 2004.

45. Hauser, J.R. & Clausing, D. The House of Quality. Harvard Business Review. pp. 63-
73. 1988.

46. Henderson, R. M. & Clark, K. B. Architectural innovation: The reconfiguration of
existing product technologies and the failure of established firms. Administrative
Science Quarterly. 35. pp. 9-30. 1990.

47. Hernandez, G., Allen, J., Woodruff, G., Simpson, T., Bascaran, E., Avila, L., &
Salinas, F. Robust design of families of products with production modelling and
evaluation. ASME Journal of Mechanical Design. Vol. 123. pp. 183-190. June 2001.

48. Hirtz, J., Stone, R., & McAdams, D. A functional basis for engineering design:
Reconciling and evolving previous efforts. Research in Engineering Design. 12. pp.
65-82. 2002.

49. Hommes, Q. D. & Berry, P.W. Managing systems interface requirements –
reconciliation using design structure matrix method. INCOSE 2003. 13th Annual
international symposium proceedings.

50. Hölttä K. Comparative analysis of product modularization methods. NordDesign.
Tampere, Finland. 2004.

51. Holtta, K. & Otto, K. Analyzing Module Commonality for Platform Design Using
Dendrograms. (submitted)

52. Hölttä, K. & Magee C. Estimating Factors Effecting Project Task Size in Product
Development – An Empirical Study. (submitted)

62

53. Hubka, V. & Eder, E. W. Theory of technical systems. 2nd ed. Springer-Verlag. 1988.
ISBN 3-540-17451-6.

54. Hubka, V. & Eder, W. E. Design Science. Springer. 1996. ISBN 3-540-19997-7.
55. Hsuan Mikkola, J. Modularization assessment of product architecture. DRUID winter

conference 2000. Denmark. 2000.
56. Hsuan Mikkola, J. Modularity, outsourcing, and inter-firm learning. DRUID Summer

conference 2000. Rebild. Denmark. 2000.
57. http://www.idef.com/ (viewed 11/15/2004)
58. Jiao, J. & Tseng, M. M. Understanding product family for mass customization by

developing commonality indices. Journal of Engineering Design. Vol 11. No 3. pp.
225-243. 2000.

59. Johnson, K., Langdon, P., & Ashby, M. Grouping materials and processes for the
designer: an application of cluster analysis. Materials Design. 23. pp. 1-10. 2002.

60. Kaplan, C., Clark, R., & Tang, V. Secrets of software quality. McGraw-Hill, Inc.
1995. ISBN 0-07-911795-3.

61. Kim, K. & Chhajed, D. Commonality in product design: Cost saving, valuation
change and cannibalization. European Journal of Operations Research. 125. pp. 602-
621. 2002.

62. Koopman, P. J. A Taxonomy of decomposition strategies based on structures,
behaviours, and goals. In Proc of ASME Design Engineering Technical Conferences.
Boston. 1995.

63. Kota, S., Sethuraman, K., & Miller, R. A Metric for Evaluating Design Commonality
in Product Families. Journal of Mechanical Design. Vol. 122. pp. 403 – 410. 2000.

64. Krishnan, V. & Gupta, S. Appropriateness and Impact of Platform-Based Product
Development. Management Science. Vol. 47. No. 1. pp. 52-68. Jan 2001.

65. Kristjansson, A. H. & Hildre H-P. PAMatrix: A Method to Assess Platforms in
Product Developing Companies. NordDesign. Tampere, Finland. 2004.

66. Kurfman, M., Stone, R., Van Wie, M., Wood, K., Otto, K. Theoretical Underpinnings
of Functional Modeling: Preliminary Experimental Studies. In Proc of ASME Design
Engineering Technical Conferences. Baltimore, MD. 2000.

67. Kurfman, M., Stock, M. E., Stone, R., Rajan, J., & Wood, K., 2003, Experimental
studies assessing the repeatability of a functional modelling derivation method.
Journal of Mechanical Design. Vol 125. Dec 2003.

68. Kusiak, A. Integrated product and process design: a modularity perspective. Journal
of Engineering Design. Vol 13. No 3. pp. 223-231. 2002.

69. Maier, M. W. & Rechtin, E. The art of systems architecting. 2nd ed. CRC Press 2000.
ISBN 0-8493-0440-7.

70. Martin, M. V. & Ishii, K. Design for variety: developing standardized and
modularized product platform architectures. Research in Engineering Design. Vol 13.
No 4. pp 213 - 235. 2002.

71. Mattson, C. A. & Magleby, S. P. The influence of product modularity during concept
selection of consumer products. In Proc of ASME Design Engineering Technical
Conferences. Pittsburgh, PA. 2001.

72. McAdams D. A., Stone, R. B., & Wood, Kristin L. Functional interdependence and
product similarity based on customer needs. Research in Engineering Design. Vol 11.
Issue 1. pp. 1-19. 1999.

63

73. McAdams, D. A & Wood, K. L. A Quantitative Similarity Metric for Design-by-
Analogy. ASME Journal of Mechanical Design. Vol 124. pp 173-182. June 2002.

74. McGrath, M. E., Anthony, Michael T., & Shapiro, Amram R. Product development:
success through product and cycle time excellence. Butteworth-Heinemann. 1992.
ISBN 0-7506-9289-8.

75. McGrath M. E. Product Strategy for High-Technology Companies. New York: Irwin
Professional Publishing. 1995.

76. Meltzer, R. J. Accelerating new product development. In: The PDMA handbook of
new product development. Rosenau M., Griffin A., Castellion G., & Anschuetz N.
(eds). John Wiley & sons.1996.

77. Messac, A., Martinez, M.P., & Simpson, T. W. Effective product family design using
physical programming and the product platform concept exploration methods. In
Proc of ASME Design Engineering Technical Conferences. pp. 689-699. Baltimore,
MD. 2000.

78. Meyer, M. H. & Lehnerd, A. P. The power of product platforms. The Free Press.
2000. New York, NY. ISBN 0-648-82580-5.

79. Miller, T. D. Modular engineering. Doctoral Thesis. Department of Mechanical
Engineering, Section for Engineering and Product Development, Technical
Universtiy of Denmark. 2001.

80. Moore, W. L., Louvier, J. J., & Verma, R. Using conjoint analysis to help design
product platforms. Journal of product innovation management.16. pp. 27-39. 1999.

81. Muffato, M. Introducing a platform strategy in product development. International
Journal of Production Economics. 60-61. pp. 145-153. 1999.

82. Nayak, R. U., Chen, W., & Simpson, T. W. A variation-based methodology for
product family design. In Proc of ASME Design Engineering Technical Conferences.
pp. 701-710. Baltimore, MD. 2000.

83. Nelson, S. A. II, Parkinson, M. B., & Papalambros, P. Y. Multicriteria optimization in
product platform design. ASME Journal of Mechanical Design. Vol 123. pp. 199-204.
June 2002.

84. Newcomb, P. J., Bras, B., & Rosen, D. W. Implications of modularity on product
design for the life cycle. ASME Journal of Mechanical Design. Vol 120. pp 483-490.
Sep 1998.

85. O’Grady Peter. The age of modularity. Adams and Steele. 1999. ISBN 0-9670289-0-
6.

86. Otto, K. A process for modularizing product families. International Conference on
Engineering Design. Glasgow, Scotland. 2001.

87. Otto, K. & Wood K. Product Design: techniques in reverse engineering and new
product development. Prentice Hall. Upper Saddle River, NJ. 2001. ISBN 0-13-
021271-7.

88. Otto K. & Hölttä K. A multi-criteria framework for screening preliminary product
platform concepts. In Proc of ASME Design Engineering Technical Conferences. Salt
Lake City, UT. 2004.

89. Pahl G. & Beitz W. Engineering Design. 2nd ed. Springer-Verlag, London Ltd. 1999.
ISBN 3-540-19917-9.

90. Pahl G. Fundamentals of Engineering Design. In: Handbook of mechanical
engineering. Beitz W. & Kuettner K.-H. (eds). Chapter E. 1994.

64

91. Palani Rajan, P. K., Van Wie, M., Campbell, M., Otto, K. & Wood, K. Design for
flexibility – measures and guidelines. In Proc of International Conference on
Engineering Design. Stockholm. 2003.

92. Pedersen, K. Designing platform families: an evolutionary approach to developing
engineering systems. Doctoral Thesis. GWW School of Mechanical Engineering,
Georgia Institute of Technology. 1999.

93. Perera H. C. S. Nagarur N. & Tabucanon M. T. Component part standardization: A
way to reduce the life-cycle costs of products. International journal of production
economics. 60-61. pp. 109-116. 1999.

94. Pimmler, T. U. & Eppinger, S. D. Integration Analysis of Product Decompositions. In
Proc of ASME Design Engineering Technical Conferences. Minneapolis, MN. 1994.

95. Rendell, J. VW top, but others are catching up fast. Automotive world. pp. 26-34. Sep
2001.

96. Riitahuhta, A. & Andreasen, M. M. Modularisation support of life cycle management.
in Proc of the 1st international symposium on environmentally conscious design and
inverse manufacturing. Tokyo, Japan. 1999.

97. Roemer, T. and Fixson, S. Parts commonality and communication delays in product
development. Euroma 2004, Fontainebleau, France. June 2004.

98. Salhieh, S. M. & Kamrani, A. K. Macro level product development using design for
modularity. Robotics and Computer integrated manufacturing. 15. pp. 319-329. 1999.

99. Sanderson, S. & Uzumeri, M. Managing product families: the case of Sony Walkman.
Research Policy. 24. pp. 761-782. 1995.

100. Siddique, Z. & Rosen D. W. Product family configuration reasoning using
discrete design spaces. In Proc of ASME Design Engineering Technical Conferences.
Baltimore, MD. 2000.

101. Simon, H. A. The architecture of complexity. Proceedings of the American
Philosophical Society. 106. pp. 467-482, Dec 1962.

102. Simpson, T., Maier, J., & Mistree, F. Product platform design: method and
application. Research in Engineering Design. vol. 13. No. 1. pp. 2-22. 2001.

103. Simpson, T.W. Product platform design and customization: Status and promise.
AIESAM, Special issue: Platform product development for mass customization. Vol
10. No. 1. Jan 2004.

104. Smith, J. & Duffy, A. Modularity in support of design for re-use. International
Conference on Engineering Design. Glasgow, Scotland. 2001.

105. Sosa, M. E., Eppinger, S. D., & Rowles, G. M. Understanding the Effects of
Product Architecture on Technical Communication in Product Development
Organizations. MIT Sloan School of Management. Working paper # 4130. 2000.

106. Sosa, M. E, Eppinger, S. D, & Rowles C. M. Designing modular and integrative
systems. In Proc of ASME Design Engineering Technical Conferences. Baltimore,
MD. September 10-13, 2000.

107. Stake, R. B. On conceptual development of modular products, Doctoral Thesis.
Division of Assembly Systems, Dept. of Production Engineering, Royal Institute of
Technology. Stockholm. 2000.

108. Steuer, C. & Whitcomb C. Economical assessment of product platform concepts
under uncertainty – capturing the values of flexibility with real options. INCOSE 13th
Annual international symposium proceedings. 2003.

65

109. Stone, R. B., Wood, K. L. & Crawford, R. H. A heuristic method for identifying
modules for product architecture. Design Studies. Vol 21. No 1. pp. 5-31. 2000.

110. Sudjianto, A. & Otto, K. Modularization to support multiple brand platforms. In
Proc of ASME Design Engineering Technical Conferences. Pittsburgh, PA.September
9-12, 2001.

111. Suh, N. Axiomatic Design: Advances and Applications, Oxford University Press,
New York, NY. 2001.

112. Sääksjärvi, M. Software application platforms: from product architecture to
integrated application strategy. In Proc of the 26th annual international computer
software and application conference. IEEE Computer Society. 2002.

113. Tatikonda, M. V. An empirical study of platform and derivative product
development projects. Journal of Product innovation management.16. pp. 3-26. 1999.

114. Thebeau, R. E. Knowledge Management of System Interfaces and Interactions for
Product Development Processes. Masters Thesis. System Design & Management
Program, Massachusetts Institute of Technology. 2001.

115. Thevenot, H. J. & Simpson, T. W. A comparison of commonality indices for
product family design. In Proc of ASME Design Engineering Technical Conferences.
Salt Lake City, UT. September 28- October 2, 2004.

116. Thomke, S. H. The role of flexibility in the development of new products: an
empirical study. Research Policy. 26. pp. 105-119. 1997.

117. Ulrich, K. T. & Eppinger, S. D. Product Design and Development. McGraw-Hill.
3rd edition. 2004. ISBN 0-07-247146-8.

118. Ulrich K. & Tung K. Fundamentals of Product Modularity. In proc of ASME
Winter Annual Meeting Symposium on Design and Manufacturing Integration. pp.
73-79. Atlanta, GA. November 1991.

119. Ulrich, K. The role of product architecture in the manufacturing firm. Research
policy. Vol 24. pp. 419-440. 1995.

120. Webster (www.m-w.com)
121. Wheelwright S. C. & Clark, K. B. Creating project plans to focus product

development. Harvard Business review. 1992.
122. Whitney, D. E. Designing the Design Process. Research in Engineering Design.

Vol 2. No 3. pp. 3-13. 1990.
123. Whitney, D. E., Mechanical Assemblies: Their Design, Manufacture, and Role in

Product Development. Oxford University Press. 2004.
124. Whitney D. E. Physical limits to modularity. Massachusetts Institute of

Technology, Engineering Systems Division. Working paper. ESD-WP-2003-01.03-
ESD.

125. Yin, R. K. Case Study Research. 3rd ed. Sage publications. 2003. In the Applied
Social Research Methods Series Volume 5. ISBN 0-7619-2553-8.

126. Zamirowski, E. J. & Otto K. N. Identifying Product Family Architecture
Modularity Using Function and Variety Heuristics. In Proc of ASME Design
Engineering Technical Conferences. Las Vegas, NV. 1999.

ISBN 951-22-7766-2
ISBN 951-22-7767-0 (PDF)
ISSN 1795-2239
ISSN 1795-4584 (PDF)

	Author: Katja Hölttä-Otto
	Name: Modular Product Platform Design
	Manuscript: 7.6.2005
	Date: 12.8.2005
	Mono: Off
	Arti: Yes
	Dept: Mechanical Engineering
	Lab: Machine Design
	Research: Product Development
	Opponent: Prof. Asko Riitahuhta, Prof. Kristin Wood
	Supervisor: Prof. Kalevi Ekman
	Instructor: Prof. Thomas Roemer, Prof. Christopher Magee
	Abstract: Modular product platforms, sets of common modules that are shared among a product family, can bring cost savings and enable introduction of multiple product variants quicker than without platforms. This thesis describes the current state of modular platform design and identifies gaps in the current state. The gaps were identified through application of three existing methods and by testing their usability and reliability on engineers and engineering students. Existing platform or modular design methods either are meant for (a) single products, (b) identify only module “cores” leaving the final module boundary definition to the designer, and (c) use only a limited set of evaluation criteria.

I introduce a clustering algorithm for common module identification that takes into account possible degrees of commonality. This new algorithm can be applied both at physical and functional domains and at any, and even mixed, levels of hierarchy. Furthermore, the algorithm is not limited to a single measure for commonality analysis.

To select the candidate modules for the algorithm, a key discriminator is how difficult the interfaces become. I developed an interface complexity metric based on minimizing redesign in case of a design change. The metric is based on multiple expert interviews during two case studies. The new approach was to look at the interface complexity as described by the material, energy, and information flows flowing through the interface.

Finally, I introduce a multi criteria platform scorecard for improved evaluation of modular platforms. It helps a company focus on their strategy and benchmark one’s own platform to the competitors’.

These tools add to the modular platform development process by filling in the gaps identified. The tools are described in the context of the entire platform design process, and the validity of the methods and applicability to platform design is shown through industrial case studies and examples.

	keywords: Modularity, platform design, product architecture
	pages: 65
	isbn-p: 951-22-7766-2
	isbn-pdf: 951-22-7767-0
	isbn-others:
	issn-p: 1795-2239
	issn-e: 1795-4584
	publisher: Helsinki University of Technology, Laboratory of Machine Design
	distribution: Helsinki University of Technology, Laboratory of Machine Design
	url: 2005/isbn9512277670/
	url-e: Yes

