
Efficient Model Checking of Safety Properties

Timo Latvala �

Laboratory for Theoretical Computer Science
Helsinki University of Technology

P.O. Box 9205
FIN-02015 HUT

Finland
Timo.Latvala@hut.fi

Abstract. We consider the problems of identifying LTL safety proper-
ties and translating them to finite automata. We present an algorithm
for constructing finite automata recognising informative prefixes of LTL
formulas based on [1]. The implementation also includes a procedure for
deciding if a formula is pathologic. Experimental results indicate that
the translation is competitive when compared to model checking with
tools translating full LTL to Büchi automata.

1 Introduction

Informally, safety properties are properties of systems where every violation of
a property occurs after a finite execution of the system. Safety properties are
relevant in many areas of formal methods. Testing methods based on executing
a finite input and observing the output can only detect safety property viola-
tions. Monitoring executions of programs is also an area where safety properties
are relevant as monitoring also only can detect failures of safety properties. Nat-
urally, formal specifications are also verified to make sure that a given safety
property holds.

All of the above mentioned uses of safety properties can be accomplished by
specifying the properties as finite automata. While automata are useful in many
cases, a more declarative approach, such as using a temporal logic, is usually
preferred. Many model checking tools, such as Spin [2], support linear temporal
logic (LTL).

In the automata theoretic approach to verification [3, 4, 5], LTL formulas
are verified by translating their negation to Büchi automata, which are then
synchronised with the system. If the synchronised system has an accepting exe-
cution, the property does not hold. One could benefit from using finite automata
instead of Büchi automata if the given LTL property is a safety property. Reason-
ing about finite automata is simpler than reasoning about Büchi automata. For
� The financial support of Helsinki Graduate School in Computer Science and Engi-
neering, the Academy of Finland (Project 47754), the Wihuri foundation and Tekni-
ikan Edistämissäätiö (Foundation for Technology) is gratefully acknowledged.

T. Ball and S.K. Rajamani (Eds.): SPIN2003, LNCS 2648, pp. 74–88, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



Efficient Model Checking of Safety Properties 75

explicit state model checkers, reasoning about Büchi automata requires slightly
more complicated algorithms. In the symbolic context, emptiness checking with
BDDs is in practice significantly slower than simple reachability [6]. For model
checkers based on net unfoldings, such as [7], handling safety is much easier than
full LTL [8].

Unfortunately, there are some complexity related challenges in translating
LTL formulas to finite automata. A finite automaton specifying every finite
violation of a LTL safety property can be doubly exponential in the size of the
formula [1]. Formulas, for which every failing computation has an informative
bad prefix, or alternatively called the non-pathological formulas, have singly
exponential finite automata recognising their finite violations [1]. Deciding if an
LTL formula is pathologic is a PSPACE-complete problem [1]. Pathological LTL
formulas are not needed for expressiveness, as a pathological formula always can
be expressed with an equivalent non-pathological one [1].

We present an efficient translation algorithm from LTL safety properties to
finite automata based on [1]. The resulting finite automata can be used by ex-
plicit state model checkers and they can be fairly easily adapted to partial order
semantics methods too [8]. The translation has been implemented in a tool and
is experimentally evaluated. Experiments show that our approach is competitive
and can result in significant gains when used. We have also implemented a de-
cision procedure to decide if an LTL formula is pathologic. To our knowledge,
this is the first time an implementation for checking if a formula is pathologic
has been evaluated.

Other authors have also considered the problem of model checking of LTL
safety properties. Kupferman and Vardi [1] present many complexity theoretical
results and an algorithm on which the algorithm presented in this paper is based
on. Some of the results are generalisations of results by Sistla [9]. Geilen [10]
presents a tableau algorithm which essentially is a forward direction version of
the algorithm of Kupferman and Vardi, which is described in the backward direc-
tion. Model checking safety properties expressed using past temporal operators
has been considered at least by [11, 12].

The rest of this paper is structured as follows. Section 2 introduces the nec-
essary theory. In Sect. 3 we present our translation from LTL to finite automata.
We also discuss the relevant complexity issues. Section 4 covers issues related to
implementation and the experiments are presented in Sect. 5. Finally, in Sect. 6
we discuss some implications of the results and consider avenues for further
research.

2 Preliminaries

This section introduces the necessary theory and some notations presented in [1].
Let w = σ0σ1σ2 . . . ∈ Σω be an infinite word over the finite alphabet Σ. We

denote the i:th position of the word by w(i) = σi and the suffix σiσi+1 . . . is
denoted by wi. A Büchi automaton is a tuple A = 〈Σ,Q, δ,Q0, F 〉, where Σ is
the alphabet, Q is a finite set of states, δ ⊆ Q×Σ ×Q is the transition relation,



76 Timo Latvala

Q0 ⊆ Q the set of initial states, and F ⊆ Q is a set of final states. A run of the
automaton A on a word w ∈ Σω is a mapping ρ : N → Q such that ρ(0) ∈ Q0

and (ρ(i), σi, ρ(i+1)) ∈ δ for all i ≥ 0. We use inf (ρ) to denote the set of states
occurring infinitely often in the run. A word w is accepted if it has a run ρ
such that inf (ρ) ∩ F 
= ∅. Finite automata differ from Büchi automata only in
the acceptance condition. An automaton on finite words accepts a finite word
w = σ0σ1 . . . σn ∈ Σ∗ if it has a run ρ on w such that ρ(n+ 1) ∈ F . The set of
words accepted by an automaton A, its language, is denoted L(A). Deciding if
L(A) = ∅ is referred to as doing an emptiness check.

Let L ⊆ Σω be a language on infinite words over an alphabet Σ. We say that
a finite word x ∈ Σ∗ is a bad prefix for language L, if for every y ∈ Σω we have
that x · y 
∈ L. Given a language L, if all w ∈ Σω \L have a bad prefix we call L
a safety language. We denote the set of bad prefixes of a language L by pref (L).

2.1 LTL

The syntax of LTL consists of atomic propositions, the normal boolean connec-
tives, and temporal operators. Let AP be a set of atomic propositions. Well-
formed formulae of LTL are constructed in the following way:

– true, false and every p ∈ AP are well-formed formulae
– If ψ and ϕ are well-formed formulae, then so are ψ∧ϕ, ψ∨ϕ, ψ U ϕ, ψ V ϕ,

¬ϕ and Xϕ.

LTL is interpreted over infinite sequences of atomic propositions, i.e. infinite
words in (2AP )ω . A model (or word) π = σ0σ1σ2 . . ., where σi ⊆ AP , is a map-
ping π : N → 2AP . By πi we denote the suffix πi = σiσi+1σi+2 . . . and πi
denotes the prefix πi = σ0σ1 . . . σi. For an LTL formula ψ and a model π, we
write πi |= ψ, “the suffix πi is a model of ψ”. The semantics of the models
relation |= is defined inductively in the following way.
– For all πi we have that πi |= true and πi 
|= false.
– For atomic propositions p ∈ AP , πi |= p iff p ∈ σi
– πi |= ψ1 ∨ ψ2 iff πi |= ψ1 or πi |= ψ2.
– πi |= ψ1 ∧ ψ2 iff πi |= ψ1 and πi |= ψ2.
– πi |= Xψ iff πi+1 |= ψ.
– πi |= ¬ψ iff πi 
|= ψ.
– πi |= ψ1 U ψ2 iff there exists k ≥ i such that πk |= ψ2 and for all i ≤ j < k

πj |= ψ1.
– πi |= ψ1 V ψ2 iff for all k ≥ i, if πk 
|= ψ2, then there is i ≤ j < k such that

πj |= ψ1.

Usually we do not write π0 |= ψ but simply π |= ψ. LTL formulas which are in
positive normal form (PNF) only have negations in front of atomic propositions.
Any LTL formula can be rewritten into PNF using the duality between U and V .
We use cl(ψ) to denote the set of subformulas of ψ. The size of a formula, denoted
|ψ|, is defined as the cardinality of cl(ψ).

An LTL formula ψ specifies a language L(ψ) = {π ∈ (2AP )ω | π |= ψ}. We
say that an LTL formula is a safety formula if its language is a safety language.



Efficient Model Checking of Safety Properties 77

3 Model Checking LTL Safety Properties

In the automata theoretic approach to LTL model checking the negation of the
LTL specification is translated into a Büchi automaton A¬ψ. The system is then
viewed as an automaton and synchronised with the property automaton. If the
property holds, the language of the synchronised automaton is empty.

Our goal is to construct a finite automaton which detects the bad prefixes
for L(ψ). The resulting finite automata can be used e.g. for model checking,
real-time monitoring [12] or as a specification for testing [13]. In the context of
model checking treating safety as a special case has some benefits. One benefit
is that fairness need not be taken into account, if we know we are dealing with
a safety specification. Another benefit is that reasoning about finite automata is
simpler. For instance, dealing with finite automata is much simpler than dealing
with Büchi automata for model checkers based on net unfoldings [7]. For explicit
state model checkers the algorithm for checking emptiness of Büchi is slightly
more complicated than checking the emptiness for a finite automaton. When
model checking with finite automata, we do not need to proceed in a depth-first
order. Instead, we can e.g. apply a heuristic and do a best-first search to possibly
obtain shorter counterexamples.

There are two major obstacles to using finite automata for LTL safety for-
mulas. First of all, we must be able recognise safety formulas. This problem is
unfortunately PSPACE-complete in the size of the formula [9]. A partial solution
to this is that Sistla [9] has introduced a syntactic fragment of LTL which can
only express safety properties. The fragment includes all LTL formulas which in
PNF only contain the temporal operators V and X . The second problem is that
translating an LTL safety formula to a finite automaton is hard in the general
case. The worst case complexity of an automaton for pref (L(ψ)) is doubly expo-
nential in the size of ψ [1]. It turns out, however, that for well behaved formulas
a singly exponential automaton is possible [1]. The notion of a well behaved
formula is formalised through informativeness.

3.1 Informativeness

We consider LTL formulae in positive normal form. The notion of informativeness
tries to formalise when a bad prefix for the formula can demonstrate completely
why the formula failed. Let ψ be an LTL formula and π a finite computation π =
σ0σ1 . . . σn. The computation π is informative for ψ iff there exists a mapping
L : {0, . . . , n+ 1} → 2cl(¬ψ) such that the following conditions hold:

– ¬ψ ∈ L(0),
– L(n+ 1) is empty, and
– for all 0 ≤ i ≤ n and ϕ ∈ L(i), the following hold.

• If ϕ is a propositional assertion, it is satisfied by σi.
• If ϕ = ϕ1 ∨ ϕ2 then ϕ1 ∈ L(i) or ϕ2 ∈ L(i).
• If ϕ = ϕ1 ∧ ϕ2 then ϕ1 ∈ L(i) and ϕ2 ∈ L(i).
• If ϕ = Xϕ1, then ϕ1 ∈ L(i+ 1).



78 Timo Latvala

• If ϕ = ϕ1 U ϕ2 then ϕ2 ∈ L(i) or [ϕ1 ∈ L(i) and ϕ1 U ϕ2 ∈ L(i+ 1)].
• If ϕ = ϕ1 V ϕ2 then ϕ2 ∈ L(i) and [ϕ1 ∈ L(i) or ϕ1 V ϕ2 ∈ L(i+ 1)].

If π is informative for ψ, the mapping L is called the witness for ¬ψ in π. Using
the notion of informativeness, safety formulae can be classified into three different
categories [1]. A safety formula ψ is intentionally safe iff all the bad prefixes for
ψ are informative. The formula ψ is accidentally safe iff every computation that
violates ψ has an informative prefix. In other words, ψ can have bad prefixes
which are not informative. Every computation is, however, guaranteed to have
at least one informative prefix. A safety formula ψ is pathologically safe if there
is a computation that violates ψ and has no informative bad prefix.

Accidentally safe and pathologically safe formulas always contain redun-
dancy. It is, however, an open problem if there are feasible ways to remove these
redundancies. As previously mentioned, it is possible to construct a singly expo-
nential finite automaton which detects all informative prefixes of a formula. This
means that as long as the given formula is not pathologic, using this construct
will return a correct result if used in model checking. For pathologic formulas
we must either remove the redundancy, do model checking with a Büchi au-
tomaton, or use a doubly exponential construct. However, any counterexample
returned by the singly exponential construction is a valid counterexample, even
for pathological formulas.

Deciding if an LTL formula ψ is pathologic is a PSPACE-complete problem in
the size of the formula [1]. The problem can be decided in the following way. It is
possible to construct an alternating Büchi automatonAtrue

ψ with a linear number
of states in |ψ| which accepts exactly all computations which have informative
prefixes [1]. We can also construct an alternating Büchi automaton A¬ψ where
L(A) = L(ψ) [5]. Pathologic formulas have violating computations which are
not informative. Thus, a formula is not pathologic if every computation that
satisfies ¬ψ is accepted byAtrue

¬ψ This can be verified by checking the containment
of L(A¬ψ) in L(Atrue

¬ψ ). The above check has the nice property that if ψ is
not a safety formula it will automatically rejected as pathological. Thus, in our
intended application there is no need for a separate check if ψ is a safety formula.

3.2 Translation Algorithm

The finite automaton for informative prefixes of Kupferman and Vardi [1] is
suboptimal for explicit model checkers. It will almost always have a state for
every subset of cl(ψ). While Geilen’s procedure [10] is not as inefficient, it will
still produce big automata. A more efficient construction will only consider some
subsets. We define the restricted closure rcl(ψ) of a formula ψ as the smallest
set with the following properties.

– All temporal subformulas ϕ ∈ cl(ψ), i.e. formulas with a temporal operator
at the root of their parse tree, belong to rcl(ψ).

– If a formula Xϕ belongs to rcl(ψ) then ϕ ∈ rcl(ψ).
– If no other rule applies, then the top-level formula ψ belongs to rcl(ψ).



Efficient Model Checking of Safety Properties 79

The restricted closure defines which sets of subformulas must be considered when
constructing a finite automaton for an LTL formula. Temporal subformulas must
belong to the restricted closure because they refer to other than the current state.
There are two special cases when other formulas are also included. The first case
is the immediate subformula of a next-operator. In this case the subformula must
be kept to ensure that it will be true in the next state. The second case is when
ψ is a propositional expression when the reason is that rcl(ψ) cannot be empty,
because this will result in an automaton with no states.

Let S be a subset of cl(ψ). We define sat(ψ, S) in the following way:

– sat(true, S) = true
– sat(false, S) = false
– sat(ψ, S) = true if ψ ∈ S.
– ψ = ψ1 ∨ ψ2: sat(ψ, S) = true if sat(ψ1, S) or sat(ψ2, S).
– ψ = ψ1 ∧ ψ2: sat(ψ, S) = true if sat(ψ1, S) and sat(ψ2, S).
– Otherwise sat(ψ, S) = false

We can now present our algorithm, which is an optimisation of the construction
presented in [1]. The general idea of both algorithms is to start from an empty
set of requirements and by going backwards compute all possible informative
prefixes. The algorithm as it is presented here will produce an automaton where
there are many transitions from one state to another state. In an implementation
these arcs would of course be joined to conserve memory.

Input: A formula ψ in positive normal form.
Output: A finite automaton A = 〈Σ,Q, δ,Q0, F 〉.
proc translate(ψ)
F := {∅}; Σ := 2AP ;
Q := X := F ;
while(X 
= ∅) do

S :=”some set in X”; X := X \ {S}
for each σ ∈ 2AP do

S′ := σ;
for each ϕ ∈ rcl(ψ) do //in increasing subformula order

switch(ϕ) begin
case ϕ = ψ1 ∨ ψ2:
if (sat(ψ1, S

′) or sat(ψ2, S
′)) then S′ := S′ ∪ {ϕ};

case ϕ = ψ1 ∧ ψ2:
if (sat(ψ1, S

′) and sat(ψ2, S
′)) then S′ := S′ ∪ {ϕ};

case ϕ = Xψ1:
if (ψ1 ∈ S) then S′ := S′ ∪ {ϕ};
case ϕ = ψ1 U ψ2:
if (sat(ψ2, S

′) or (sat(ψ1, S
′) and ϕ ∈ S)) then S′ := S′ ∪ {ϕ};

case ϕ = ψ1 V ψ2:
if (sat(ψ2, S

′) and (sat(ψ1, S
′) or ϕ ∈ S)) then S′ := S′ ∪ {ϕ};

end
if σ 
∈ rcl(ψ) then S′ := S′ \ {σ};



80 Timo Latvala

od
if(sat(ψ, S′)) then Q0 := Q0 ∪ {S′};
δ = δ ∪ {(S′, σ, S)};
X := X ∪ {S′}; Q := Q ∪ {S′}

od
od

The resulting non-deterministic automaton can easily be determinised. Although
this can theoretically result in an exponential blow up, according to our exper-
iments this does not usually occur. The deterministic automaton is, in fact, in
most cases smaller than the original.

The correctness of the algorithm is quite easy to justify using the same ar-
guments as Kupferman and Vardi [1]. There is technical report which considers
these questions in more depth [14].

Theorem 1. [14] Given an LTL formula ψ, the algorithm translate(ψ) con-
structs a finite automaton which accepts exactly the informative prefixes of ¬ψ.

The theoretical bound achieved by our algorithm is in most cases better than
the ones presented in [1, 10].

Theorem 2. [14] The number states of the automaton is bounded by 2rcl(ψ).

For LTL formulas without the next-operator the bound is equal tomax (2tf (ψ), 2),
where tf (ψ) denotes the temporal subformulas of ψ.

4 Implementation

We have implemented the optimised translation algorithm for safety LTL for-
mulae and also the check for determining if a formula is pathologic.

The implementation is BDD-based. BDDs are used to represent sets of formu-
las efficiently. Especially the translation algorithm heavily employs manipulation
of sets, which can easily be implemented with BDDs. However, BDDs can also
incur a certain overhead making the algorithm slower in some cases compared
to algorithms using simpler set representations.

The tool, scheck , has been implemented using ANSI C++ and it should com-
pile on most platforms where a C++-compiler supporting templates is available.
It is available online from http://www.tcs.hut.fi/~timo/scheck under the
terms of the GNU general public license (GPL). It easy to use scheck with Spin.
scheck uses the neverclaim facility together with “-DSAFETY” and a failing
assertion to stop Spin when a counterexample has been found.

The implementation of the translation algorithm is split into four separate
stages. The first stage simply parses the input formula and transforms it into
positive normal form. Optionally it can also perform some simple checks such
as check for syntactic safety of the formula. The next stage builds a symbolic
transition relation characterising the given formula. The third stage optionally
performs some automata theoretic transformations, such as determinisation of

http://www.tcs.hut.fi/~timo/scheck


Efficient Model Checking of Safety Properties 81

the automaton. The fourth and the last stage outputs the automaton to the
desired file or stream.

The basic idea of the second stage is to construct a symbolic transition rela-
tion which adheres to the translation rules given in the previous section. Symbolic
reachability analysis is used to construct the automaton. To represent the states,
2 ∗ N BDD variables are reserved, where N is the number of subformulas, i.e.
|cl(ψ)| = N . One variable describes if the subformula belongs to the current
state and one variable is for the next state. By using quantification it is easy
remove state bits not in rcl(ψ).

The third stage of the translation is an optional determinisation of the au-
tomaton. Early experiments showed that in almost all cases determinisation
makes the automaton smaller. A deterministic automaton also has shorter model
checking times, because it causes less branching in the product automaton. See
the section on experiments for more details. If the automata are to be used for
monitoring executions of software, determinisation is mandatory, although it can
be performed on-the-fly while monitoring. Before the third stage, the automa-
ton is converted to an explicit representation. Determinisation is easier when the
automaton is in an explicit form. The arcs are still represented as BDDs since
this allows easy manipulation of the arcs.

The last stage of the translation outputs the automaton to a file or a stream.
Here, the only challenge is to output the arc labelling, represented as BDDs,
succinctly using ∧, ∨ and negation in front of the propositions.

4.1 Checking Pathologic Safety

Implementing, a check for if a formula is pathologic involves implementing an
emptiness check for the intersection of two automata. Recall that an LTL formula
ψ is pathologic iff L(A¬ψ) 
⊆ L(Atrue

¬ψ ). This is equivalent to that L(A¬ψ ×
Ātrue

¬ψ ) 
= ∅.
Our implementation does not directly follow the procedure described in [1].

We perform the following steps when we are given an LTL formula ψ.

1. Construct a Büchi A¬ψ automaton corresponding to the negation of ψ.
2. Construct a deterministic finite automaton B¬ψ, which accepts all informa-
tive bad prefixes of ψ.

3. Interpret B¬ψ as a deterministic Büchi automaton and construct the com-
plement B̄¬ψ.

4. Construct the product automaton C = A¬ψ × B̄¬ψ.
5. Check if L(C) = ∅.
The reason we require that B¬ψ is deterministic is that complementing a nonde-
terministic Büchi automaton is complicated and has an exponential time lower
bound [15], while complementing a deterministic Büchi automaton can be done
in linear time. The procedure outlined above is not optimal in the complexity
theoretical sense but it works quite well when the size of B¬ψ does not explode.
An optimal approach could use alternating automata, as outlined in [1].



82 Timo Latvala

We have presented how all steps can be performed except the complemen-
tation of the deterministic Büchi automaton. We follow the presentation Vardi
given in his lecture notes [16]. Let A = 〈Σ,Q, δ, s0, F 〉 be a deterministic Büchi
automaton. The complement Ā = 〈Σ, Q̄, δ̄, s̄0, F̄ 〉 can be computed with the
following operations.

– Q̄ = (Q× {0}) ∪ ((Q− F )× {1}),
– s̄0 = s0 × {0},
– F̄ = (S − F )× {1}, and
– for all states q ∈ Q and symbols a ∈ Σ:

δ̄((q, 0), a) =
{{(δ(q, a), 0)}, if δ(q, a) ∈ F
{(δ(q, a), 0), (δ(q, a), 1)}, if δ(q, a) 
∈ F

δ̄((q, 1), a) = {(δ(q, a), 1)}, δ(q, a) 
∈ F

The size of the complement is at most twice the size of the original automaton.
In the implementation we first compute explicit state representations of A¬ψ

and B¬ψ. Next, the deterministic automaton B¬ψ is complemented using the
procedure above. Finally the product is computed and an emptiness check is
performed using Tarjan’s algorithm for finding strongly connected components.
The tool has an interface for using an external translator to construct the Büchi
automaton A¬ψ, to benefit from more optimised Büchi translators than the
simple one of the tool.

5 Experiments

In order to evaluate the implementation, scheck, we conducted some experiments.
Four experiments were performed. The two first experiments measured the per-
formance of the tool for random formulae, while for the third experiment we used
the formulas in the specification pattern system [17]. In the fourth experiment
scheck was interfaced with the model checker Spin to measure performance on
practical models. We have collected the models used and other relevant files to
a webpage: http://www.tcs.hut.fi/~timo/spin2003.

We used three LTL to Büchi translators as reference: a state of the art tool
by Paul Gastin and Dennis Oddoux [18], the translator packaged with the Spin
tool [2], and an efficient implementation of the algorithm described in [19] by
Mäkelä, Tauriainen and Rönkkö [20]. In the following we refer to the tool of
Gastin and Oddoux as ltl2ba, to the tool of Mäkelä et al. as lbt and to the
translator of Spin simply as spin. The two first tests were conducted on a machine
with a 266 MHz Pentium II processor with 128 MB of memory. The third and
fourth tests were conducted on a machine with a 1 GHz AMD Athlon processor
with 1 GB of memory.

For the two first tests which involve random formulae and random state-
spaces we have used the LTL to Büchi translator test bench by Tauriainen and
Heljanko [21]. The tool includes facilities for randomly generating LTL formulae



Efficient Model Checking of Safety Properties 83

and measuring different statistics such as the size of the generated automaton
and generation time.

The first test generates random syntactically safe formulae. Most safety for-
mula encountered in practice will probably be of this form. The idea is to measure
how well the tools can cope with typical safety formulae. Statistics measured are
the number of states and transitions in the automata produced, the time to gen-
erate the automata and the size of the product of a random state space of twenty
states and the automaton. The number states and transitions in the generated
automaton and generation give an indication of the general performance of the
translator while the size of the product statespace depends on both the size of
the generated automaton and the structure of the automaton. Automata which
have small product statespaces can potentially at an early stage ’decide’ if the
current sequence under inspection cannot satisfy the given formula.

We generated one thousand formulas of fixed length between five and 22,
three times. For lbt and spin we stopped the generation at 15 because we started
to run out of memory. We set scheck to generate deterministic automata, as
preliminary experiments indicated that this improved performance. To compare
to the other tools we computed the mean E(M(proc, L)) over the three times for
each procedure proc, formula length L and measure M . The ratio of the means
E(M(scheck,L))
E(M(proc,L)) have been computed in Figure 1.
When we compare the size of the automatons generated, i.e. number of states

and transitions, scheck seems to be very competitive when formula sizes grow.
Especially the procedures based on [19] cannot compete well. When the formu-
las are short spin and ltl2ba are able to compete, but when the length of the
formulas grows, scheck clearly scales better than the other tools. At the time
when the measurements were made scheck did not check for a “sink state” in its
deterministic automata. If the tests were rerun, scheck would probably narrow
down the small lead spin and ltl2ba have in short formulae. Long formulae are
not affected as much by the removal of one sink state. Note that in the number
of transitions scheck scales even better compared to the other tools. One reason
is probably that scheck generates deterministic automata.

Generation time gives a different picture of how well the tools perform. The
tools based on [19] have an advantage with short formulae but do not scale as
well. ltl2ba is however much faster than scheck in all cases. It scales better and
it is faster for short formulae. It is possible that the implementation of scheck
using BDDs gives the other tools an competitive advantage. This is supported
by the fact that scheck produces smaller or as small automata as the other tools
but is still in some cases significantly slower.

We expected scheck to have smaller product statespaces, because the au-
tomata it generates are deterministic. When the automaton is deterministic,
the branching factor should be smaller. The results also confirm this. scheck
generates smaller product statespaces than all three other tools.

The second test is in a sense a generalisation of the first. Now we randomly
generate any type of LTL formula and use the implemented check for pathologic
formulae to see if its a safety formula which can be used in the tests. This test



84 Timo Latvala

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Formula length

S
ta

te
 r

at
io

lbt
spin
ltl2ba

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Formula length

T
ra

ns
iti

on
 r

at
io

lbt
spin
ltl2ba

5 10 15
0

1

2

3

4

5

6

7

Formula length

T
im

e 
ra

tio

lbt
spin

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Formula length

P
ro

du
ct

st
at

e 
ra

tio

lbt
spin
ltl2ba

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Formula length

P
ro

du
ct

tr
an

si
tio

n 
ra

tio

lbt
spin
ltl2ba

5 10 15 20 25
0

50

100

150

200

250

Formula length

T
im

e 
ra

tio

ltl2ba

Fig. 1. Comparison of the tools with syntactically safe formulae



Efficient Model Checking of Safety Properties 85

5 10 15 20 25
55

60

65

70

75

80

85

90

95

Formula length

% 
pat

hol
ogi

c fo
rm

ula
s

5 10 15 20 25
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Formula length

Av
era

ge 
gen

era
tion

 tim
e [s

]

Fig. 2. scheck performance for general formulae

is only performed for scheck, as none of the other tools can check if a formula is
pathologic.

One hundred formulas and their negation were generated for each length
ranging from five to 22. As can been seen from the first plot, most of the gen-
erated pathologic or liveness formulas and the percentage grows when formula
length increases. This is of course not surprising as the temporal operators of-
ten describing liveness properties are more likely to occur. The generation time,
which includes the time to check if the formula is pathologic, for formulas which
are not pathologic shows the familiar exponential increase which usually mani-
fests itself sooner or later when solving PSPACE-complete problems. Our suspi-
cion is that why scheck can require exponential time but not generate exponential
automata is due to inefficiencies in implementation when using BDDs in scheck.
One conclusion which is not affected by high rejection ratio of the formulas is
that scheck can clearly scale well when identifying pathologic formulas. We refer
the interested reader to [14] for more statistics.

The third test measures the same statistics as the two first but here we use
the formulas from the specification pattern system [17]. Of the 60 patterns for
LTL, 36 patterns are safety formulas to which we applied the translators. As
spin ran out of memory for some of the formulas it was excluded from the test.
The results can be found in Table 1.

For the fourth test we used five models of distributed algorithms. We used
the model checker Spin, using “-DSAFETY” with scheck and normal LTL model
checking with the others, to check a safety property on each model. Because the

Table 1. Statistics for the specification pattern formulas (36 formulas)

states arcs time [s] product states product arcs

ltl2ba 160 348 0.5 3037 15406

lbt 1915 31821 1.2 25134 763203

scheck 144 316 2.1 2481 9806



86 Timo Latvala

Table 2. Experiments on practical models. A ’-’ means out of memory

model scheck spin ltl2ba

states arcs t [s] states arcs t [s] states arcs t [s] |ψ|
peterson(3) 17476 32343 0.06 21792 45870 0.09 21792 45870 0.09 10
peterson(4) 3254110 709846 20.8 4216030 10315000 37.3 4216030 10315000 37.5 10
sliding(1,1) 130799 407238 0.9 258456 890026 2.2 258432 890386 2.2 21
sliding(1,2) 518050 1670120 3.9 1027130 3604660 9.8 1027120 3604410 9.8 21
sliding(2,1) 5447700 18271400 534.7 10794100 39649800 1097.4 10794000 39645700 1097.6 21
erathostenes(50,1) 522 522 0.03 522 522 0.03 678 678 0.03 7
erathostenes(60,2) 324 324 0.02 357958 647081 4.0 794322 1319710 8.4 10
erathostenes(70,3) 522 522 0.04 2047030 4407400 48.5 3110700 6474410 76.6 13
erathostenes(80,4) 789 789 0.04 - - - - - - 16
erathostenes(80,5) 847 847 0.04 - - - - - - 19
iprot 7095180 20595400 377.0 16011900 46288600 1006.2 16011900 46288600 1003.7 21
giop 146646 215640 1.8 255105 524493 4.8 255105 524493 4.6 9

tool lbt did not have a Spin interface it did not participate in the tests. The
property for peterson, sliding, iprot, and giop is a property which holds while
the property for erathotenes does not hold. Additionally, the specification for
erathotenes was parametric (the second parameter of the model). The statistics
compared are size of the product statespace, which gives an indication of the
memory use of the model checker, and the time used for model checking. Table 2
contains the results.

It would seem that the advantage of using finite automata for safety prop-
erties is very significant when debugging models. The fact that the algorithm
can stop immediately when the error has been discovered without completing
an infinite loop can result in significant gains. If the property holds the gain
is smaller, but still there. It would appear that scheck causes less branching in
product statespace. These results are of course preliminary and to get a clearer
picture of the situation more tests are required.

6 Discussion

The implementation of the translation procedure presented in this work, scheck,
produces smaller automata than the state of the art of the LTL to Büchi au-
tomata translators. In some cases the difference is exponential, while in other
times it is negligible. The resulting product statespaces are also smaller for
scheck. This is probably because scheck produces deterministic automata. The
fact that determinising would result in much smaller automata came as a pleas-
ant surprise. It is a well-known that determinising a non-deterministic automa-
ton can result in an exponentially larger automaton. Safety properties can be
expressed using reverse deterministic automata [1]. Apparently, the succinctness
of non-determinism is not needed in the forward direction, when using random
formulae. Currently scheck (version 1.0) does not apply a minimisation algo-
rithm to the deterministic automata produced. This would be simple to add
but we leave this to further work. Automata generation time was the one area
where the results for scheck were disappointing. Although scheck generates the
automaton for almost any formula used the tests in a few seconds, this is quite
slow compared ltl2ba which in most cases would only use a few hundreths of
a second. One of the reasons could be that scheck uses BDDs to manage sets,



Efficient Model Checking of Safety Properties 87

which sometimes can cause overhead even when the sets are small. A non-BDD
implementation would probably perform better. To produce even smaller au-
tomata faster than scheck, another approach is probably required. It would be
interesting to see if starting from alternating automata as in [18] could facilitate
an efficient translation.

For practical models it would seem that using scheck gives the most gain
when debugging models, especially if the properties are complex. The gain will
not manifest itself if we are model checking a formula of the form Gp as most
LTL to Büchi automata translators handle this case optimally. More experiments
are needed to get a clearer picture of the situation.

In order to be able to benefit from treating safety properties as a special case
we must be able to recognise safety formulae. There are two ways in which this
can be done. Either we only use the syntactically safe subset of LTL, which is easy
to recognise or we implement pathologic checking in the tool. Experiments seem
to confirm that pathologic checking is feasible. This means that both options
for recognising safety properties are available and can be used. In some cases,
as many probably have noticed, it is possible to interpret the Büchi automaton
produced by a normal translator as a finite automaton, and use it directly for
model checking. This could be confirmed by interpreting the produced finite
automaton as the output of scheck and check if it is pathologic. In this way,
a normal LTL to Büchi automata translator could in some cases be used to
output finite automata. The construction of Geilen [10] has the advantage that it
can provably produce correct Büchi and finite automata for informative prefixes
with very small changes.

The results of Geilen [10] indicate that there is tight relationship between
the Büchi automata and the finite automata for LTL formulas. In the future
it would seem reasonable that a translator tool could produce both small finite
automata and small Büchi automata.

scheck is available online from http://www.tcs.hut.fi/~timo/scheck and
ready to be used with Spin.

Acknowledgements

The author is grateful to Keijo Heljanko for fruitful discussions and comments
on drafts of the paper.

References

[1] Kupferman, O., Vardi, M.: Model checking of safety properties. Formal Methods
in System Design 19 (2001) 291–314 74, 75, 77, 78, 79, 80, 81, 86

[2] Holzmann, G.: The model checker Spin. IEEE Transactions on Software Engi-
neering 23 (1997) 279–295 74, 82

[3] Kurshan, R.: Computer-Aided Verification of Coordinating Processes: The
Automata-Theoretic Approach. Princeon University Press (1994) 74

[4] Vardi, M.Y., Wolper, P.: Automata-theoretic techniques for modal logic of pro-
grams. Journal of Computer and System Sciences 32 (1986) 183–221 74

http://www.tcs.hut.fi/~timo/scheck


88 Timo Latvala

[5] Vardi, M.: An automata-theoretic approach to linear temporal logic. In: Logics
for Concurrency: Structure versus Automata. Volume 1043 of LNCS. Springer
(1996) 238–266 74, 78

[6] Hardin, R., Kurshan, R., Shukla, S., Vardi, M.: A new heuristic for bad cycle
detection using BDDs. In: Computer Aided Verification (CAV’97). Volume 1254
of LNCS., Springer (1997) 268–278 75

[7] Esparza, J., Heljanko, K.: Implementing LTL model checking with net unfoldings.
In: SPIN 2001. Volume 2057 of LNCS., Springer (2001) 37–56 75, 77

[8] Heljanko, K.: Combining Symbolic and Partial Order Methods for Model Checking
1-Safe Petri Nets. PhD thesis, Helsinki University of Technology, Department of
Computer Science and Engineering (2002) 75

[9] Sistla, A.: Safety, liveness, and fairness in temporal logic. Formal Aspects in
Computing 6 (1994) 495–511 75, 77

[10] Geilen, M.: On the construction of monitors for temporal logic properties. In:
RV’01 - First Workshop on Runtime Verification. Volume 55 of Electronic Notes
in Theoretical Computer Science., Elsevier Science Publishers (2001) 75, 78, 80,
87

[11] Berard, B., Bidoit, M., Finkel, A., Laroussinie, F., Petit, A., Petrucci, L.,
Schnoebelen, P.: Systems and Software Verication. Model-Checking Techniques
and Tools. Springer (2001) 75

[12] Havelund, K., Rosu, G.: Synthesizing monitors for safety properties. In: Tools
and Algorithms for the Construction and Analysis of Systems. Volume 2280 of
LNCS., Springer (2002) 342–356 75, 77

[13] Helovuo, J., Leppänen, S.: Exploration testing. In: Application of Concurrency
in System Design (ACSD’2001), IEEE (2001) 201–210 77

[14] Latvala, T.: On model checking safety properties. Technical Report 80, 85
HUT-TCS-A76, Helsinki University of Technology (2002) Available from
http://www.tcs.hut.fi/Publications

[15] Safra, S.: Complexity of Automata on Infinite Objects. PhD thesis, The Weizmann
Institute of Science (1989) 81

[16] Vardi, M.: Automata-theoretic approach to design verification. Webpage (1999)
http://www.wisdom.weizmann.ac.il/~vardi/av/notes/lec2.ps 82

[17] Dwyer, M., Avrunin, G., Corbett, J.: Property specification patterns for finite-
state verification. In: Workshop on Formal Methods in Software Practice, ACM
Press (1998) 7–15 82, 85

[18] Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation. In: Computer
Aided Verification (CAV’2001). Volume 2102 of LNCS., Springer (2001) 53–65
82, 87

[19] Gerth, R., Peled, D., Vardi, M., Wolper, P.: Simple on-the-fly automatic verifica-
tion of linear temporal logic. In: Protocol Specification, Testing, and Verification,
Warsaw, Chapman & Hall (1995) 3–18 82, 83

[20] Mäkelä, M., Tauriainen, H., Rönkkö, M.: lbt: LTL to Büchi conversion (2001)
http://www.tcs.hut.fi/Software/maria/tools/lbt/ 82

[21] Tauriainen, H., Heljanko, K.: Testing LTL formula translation into Büchi au-
tomata. STTT - International Journal on Software Tools for Technology Transfer
4 (2002) 57–70 82

http://www.tcs.hut.fi/Publications
http://www.wisdom.weizmann.ac.il/~vardi/av/notes/lec2.ps
http://www.tcs.hut.fi/Software/maria/tools/lbt/

	Efficient Model Checking of Safety Properties
	Introduction
	Preliminaries
	LTL

	Model Checking LTL Safety Properties
	Informativeness
	Translation Algorithm

	Implementation
	Checking Pathologic Safety

	Experiments
	Discussion


	Copyright: © 2003 Springer-Verlag. Reprinted with permission from T. Ball and S. Rajamani, editors, Model Checking Software. 10th International SPIN Workshop, Portland, Oregon, USA. Lecture Notes in Computer Science, volume 2648, pp. 74-88.


