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Abstract. We consider the problem of bounded model checking for linear tem-
poral logic with past operators (PLTL). PLTL is more attractive as a specifica-
tion language than linear temporal logic without past operators (LTL) since many
specifications are easier to express in PLTL. Although PLTL is not more expres-
sive than LTL, it is exponentially more succinct. Our contribution is a new more
efficient encoding of the bounded model checking problem for PLTL based on
our previously presented encoding for LTL. The new encoding is linear in the
bound. We have implemented the encoding in the NuSMV 2.1 model checking
tool and compare it against the encoding in NuSMV by Benedetti and Cimatti.
The experimental results show that our encoding performs significantly better
than this previously used encoding.
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1 Introduction

Bounded model checking [1] is an efficient method of implementing symbolic model
checking, a way of automatically verifying system designs w.r.t. properties given in a
temporal logic. Symbolic model checking allows verification of designs with large state
spaces by representing the state space implicitly. In bounded model checking (BMC)
the system is represented as a propositional logic formula, and only the bounded paths
of the system are considered. Given a system model, a temporal logic specification and
a bound k, a formula in propositional logic is generated which is satisfiable if and only if
the system has a counterexample of length k to the specification. A satisfiability (SAT)
solver is used to check if the generated formula is satisfiable. By letting the bound
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grow incrementally we can prove that the system has no counterexample for the given
property. Although basic BMC is an incomplete method in practice (it is difficult to
a priori determine a reasonably small bound k which guarantees completeness) it has
been very successful in industrial context [2–4]. The success of BMC is mostly based
on that propositional logic is a compact representation for Boolean functions and that
BMC allows leveraging the vast improvements in SAT solver technology made in recent
years.

Linear temporal logic (LTL) is one of the most popular specification languages used
in model checking tools and many model checking tools support some variant of it.
However, in most of its incarnations only the so called future fragment of the language
(which we will denote by LTL) is considered. This fragment includes only temporal op-
erator which refer to future states. Recently, several papers [5–7] have also considered
supporting LTL with past operators (PLTL). The main argument for adding support for
past operators is motivated by practice: PLTL allows more succinct and natural specifi-
cations than LTL. For instance, the specification “if the discharge valve is open, then the
pressure alarm must have gone off in the past” can easily be expressed in PLTL while
expressing it in LTL is not as straightforward. We believe that an intuitive specifica-
tion language reduces the probability of a model checking effort failing because of an
erroneous specification. The usefulness of PLTL has already been argued earlier in [8].

PLTL also has theoretical advantages compared to LTL. Although PLTL and LTL
are equally expressive [9, 10], PLTL is exponentially more succinct than LTL [11]. This
succinctness comes for free in the sense that model checking for LTL and PLTL are
both PSPACE-complete in the length of the formula [12]. In practice, however, PLTL
model checking algorithms are more difficult and complex to implement.

The first to present a reasonable solution for doing BMC with PLTL were Benedetti
and Cimatti [7]. They showed how the standard BMC encoding [1] can be extended
to handle PLTL. Our main contribution is a new encoding for BMC with PLTL based
on our LTL encoding [13]. Unlike the encoding in [7], the size of our new encoding is
linear in the bound k. The new encoding is quadratic in the size of the formula. When the
number of nested past operators is fixed, the encoding becomes linear in the size of the
formula. The new encoding has been implemented in the NuSMV 2 model checker [14]
and we have experimentally evaluated our encoding. The results clearly show that the
new encoding has better running times and that it generates smaller SAT instances than
the current encoding in NuSMV. Since the new encoding is also very simple, it allows
a straightforward implementation.

2 Bounded Model Checking

The main idea of bounded model checking [1] is to search for bounded witnesses for a
temporal property. A bounded witness is an infinite path on which the property holds,
and which can be represented by a finite path of length k. A finite path can represent
infinite behaviour, in the following sense. Either it represents all its infinite extensions
or it forms a loop. More formally, an infinite path π = s0s1s2 . . . of states contains a
(k, l)-loop, or just an k-loop, if π = (s0s1 . . .sl−1)(sl . . . sk)ω. The two cases we consider
are depicted in Fig. 1.
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Fig. 1. The two possible cases for a bounded path.

In BMC all possible k-length bounded witnesses of the negation of the specification
are encoded as a SAT problem. The bound k is increased until either a witness is found
(the instance is satisfiable) or a sufficiently high value of k to guarantee completeness
is reached.

Note that as in [7, 13, 15] the shape of the loop and accordingly the meaning of
the bound k is slightly different from [1]. In this paper, a finite path of length k for
representing an infinite path with a loop contains the looping state twice, at position
l −1 and at position k.

2.1 LTL

LTL is a commonly used specification logic. The syntax is defined over a set of atomic
propositions AP. Boolean operators we use are negation, disjunction and conjunction.
Regarding temporal connectives, we concentrate on the next time (X ), the until (U ) ,
and the release (R ) operators. The semantics of an LTL formula is defined along infinite
paths π = s0s1 . . . of states si. The states are part of a model M with transition relation T
and initial state constraint I. Further, let πi denote the suffix of π starting from the i:th
state. The semantics can then be defined recursively as follows:

πi |= ψ ⇔ ψ holds in si for ψ ∈ AP.
πi |= ¬ψ ⇔ πi �|= ψ.
πi |= ψ1 ∨ψ2 ⇔ πi |= ψ1 or πi |= ψ2.
πi |= ψ1 ∧ψ2 ⇔ πi |= ψ1 and πi |= ψ2.
πi |= Xψ ⇔ πi+1 |= ψ.
πi |= ψ1 Uψ2 ⇔ ∃n ≥ i such that πn |= ψ2 and π j |= ψ1 for all i ≤ j < n.
πi |= ψ1 Rψ2 ⇔ ∀n ≥ i,πn |= ψ2 or π j |= ψ1 for some i ≤ j < n.

Commonly used abbreviations are the standard Boolean shorthands 
 ≡ p ∨¬p for
some p ∈ AP, ⊥ ≡ ¬
, p ⇒ q ≡ ¬p∨q, p ⇔ q ≡ (p ⇒ q)∧ (q ⇒ p), and the derived
temporal operators Fψ ≡
Uψ (’finally’), Gψ ≡ ¬F¬ψ (’globally’).

It is always possible to rewrite any formula to positive normal form, where all nega-
tions only appear in front of atomic proposition. This can be accomplished by using
the dualities ¬(ψ1 Uψ2) ≡ ¬ψ1 R¬ψ2, ¬(ψ1 Rψ2) ≡ ¬ψ1 U¬ψ2 and ¬Xψ ≡ X¬ψ.
In the following we assume all formulas are in positive normal form.
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2.2 Bounded Model Checking for LTL

We briefly review our simple and compact encoding for bounded model checking LTL
given in [13]. This encoding has been shown to outperform previous encodings and in
addition is much simpler to implement. Moreover, it forms the basis for our new encod-
ing of PLTL in this paper. It consists of three types of constraints. Model constraints
encode legal initialised finite paths of the model M of length k:

|[M]|k := I(s0)∧
k∧

i=1

T (si−1,si),

where I(s) is the initial state predicate and T (s,s′) is a total transition relation. The
loop constraints are used to detect loops. We introduce k fresh loop selector variables
l1, . . . , lk that have the following constraint: if li is true then si−1 = sk. In this case the
LTL encoding treats the bounded path as a (k, i)-loop. If no loop selector variable is
true the LTL encoding treats the path as a simple path without a loop. At most one loop
selector variable is allowed to be true. Thus, the loop selector variables show where the
bounded path loops. This is accomplished with the following constraints:

|[LoopConstraints]|k ⇔ Loopk ∧AtMostOnek,

Loopk ⇔ ∧k
i=1 (li ⇒ (si−1 = sk)) ,

AtMostOnek ⇔ ∧k
i=1 (SmallerExistsi ⇒¬li) ,

SmallerExists1 ⇔ ⊥, and

SmallerExistsi+1 ⇔ SmallerExistsi ∨ li, where 0 < i ≤ k.

The constraints select a (k, l)-loop (also called lasso-shaped path) from the model, when
a loop is needed to find a counterexample. Finally, LTL constraints restrict the bounded
path defined by the model constraints and loop constraints to witnesses of the LTL
formula. The encoding utilises the fact that for lasso-shaped Kripke structures the se-
mantics of CTL and LTL coincide [16, 17]. Essentially, the encoding can be seen as
a CTL model checker for lasso-shaped Kripke structures based on using the least and
greatest fixpoint characterisations of U and R . The computation of the fixpoints for U
and R is done in two parts. An auxiliary translation 〈〈·〉〉 computes an approximation
of the fixpoints that is refined to exact values by |[·]|. The presentation of the constraints
differs slightly from [13] to allow easier generalisation to the PLTL case.

ϕ 0 ≤ i < k i = k

|[p]|i pi pi

|[¬p]|i ¬pi ¬pi

|[ψ1 ∧ψ2]|i |[ψ1]|i ∧ |[ψ2]|i |[ψ1]|i ∧ |[ψ2]|i
|[ψ1 ∨ψ2]|i |[ψ1]|i ∨ |[ψ2]|i |[ψ1]|i ∨ |[ψ2]|i
|[Xψ1 ]|i |[ψ1]|i+1

∨k
j=1

(
l j ∧ |[ψ1]| j

)

|[ψ1 Uψ2]|i |[ψ2]|i ∨
(|[ψ1]|i ∧ |[ψ1 Uψ2 ]|i+1

) |[ψ2]|i ∨
(
|[ψ1]|i ∧

(∨k
j=1

(
l j ∧〈〈ψ1 Uψ2〉〉 j

)))

|[ψ1 Rψ2]|i |[ψ2]|i ∧
(|[ψ1]|i ∨ |[ψ1 Rψ2 ]|i+1

) |[ψ2]|i ∧
(
|[ψ1]|i ∨

(∨k
j=1

(
l j ∧〈〈ψ1 Rψ2〉〉 j

)))

〈〈ψ1 Uψ2〉〉i |[ψ2]|i ∨
(|[ψ1]|i ∧〈〈ψ1 Uψ2〉〉i+1

) |[ψ2]|i
〈〈ψ1 Rψ2〉〉i |[ψ2]|i ∧

(|[ψ1]|i ∨〈〈ψ1 Rψ2〉〉i+1

) |[ψ2]|i
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The conjunction of these three sets of constraints forms the full encoding of the boun-
ded model checking problem into SAT:

|[M,ϕ,k]| = |[M]|k ∧|[LoopConstraints]|k ∧|[ϕ]|0.
The LTL formula ϕ has a witness in M that can represented by a finite path of length k
iff the encoding is satisfiable. For more details on the encoding and how it can be used
for model checking please refer to [13].

3 Bounded Model Checking with Past Operators

Benedetti and Cimatti [7] were the first to consider bounded model checking for PLTL.
Their approach is based on the original encoding of Biere et al. [1]. The approach is
such that it generates constraints separately for each possible bounded path with a loop
(for all values of 0 ≤ l ≤ k). This makes sharing structure in the formula difficult. Our
encoding is based on a different solution where the concerns of evaluating the formula
and forming the bounded path have been separated. As we shall see, this allows for a
simple and compact encoding for PLTL.

3.1 PLTL

Extending LTL with past operators results in a logic which is more succinct than LTL
and arguably more intuitive for some specifications. The simplest past operators are the
two previous state operators Yψ and Zψ. Both are true if ψ was true in the previous
time step. The semantics of the operators differ at the origin of time: Yψ is always false
while Zψ is always true. Similar to the derived future operators Fψ and Gψ are Oψ
(’once’) and Hψ (’historically’) that hold if ψ holds once in the past or ψ holds always
in the past, respectively. The binary operator ψ1 Sψ2 (’since’) holds if ψ2 was true once
in the past and ψ1 has been true ever since. Note that ψ2 must have been true at some
point in the past in order for ψ1 Sψ2 to hold. The other past binary operator ψ1 Tψ2

(’trigger’) holds when ψ2 holds up until the present starting from the time step where
ψ1 was true. If ψ1 never was true ψ2 must have been true always in the past.

We define the semantics of PLTL by extending the formal semantics of LTL. Only
semantics for the new operators are given.

πi |= Yψ ⇔ i > 0 and πi−1 |= ψ.
πi |= Zψ ⇔ i = 0 or πi−1 |= ψ.
πi |= Oψ ⇔ π j |= ψ for some 0 ≤ j ≤ i.
πi |= Hψ ⇔ π j |= ψ for all 0 ≤ j ≤ i.
πi |= ψ1 Sψ2 ⇔ π j |= ψ2 for some 0 ≤ j ≤ i and πn |= ψ1 for all j < n ≤ i.
πi |= ψ1 Tψ2 ⇔ for all 0 ≤ j ≤ i : π j |= ψ2 or πn |= ψ1 for some j < n ≤ i.

Useful dualities which hold for past operators are ¬(ψ1 Sψ2) ≡ ¬ψ1 T¬ψ2, ¬Hψ ≡
O¬ψ, ¬(ψ1 Tψ2) ≡ ¬ψ1 S¬ψ2, ¬Oψ ≡ H¬ψ, ¬Zψ ≡ Y¬ψ, and ¬Yψ ≡ Z¬ψ. Ex-
amples of simple PLTL formulas are G(p⇒Oq) (’all p occurrences are preceded by an
occurrence of q’) and FG(pS¬q) (’eventually p will stay true after q becomes false’).
Recall that we assume that all formulas are in positive normal form.
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The maximum number of nested past operators in PLTL formula is called the past
operator depth.

Definition 1. The past operator depth for a PLTL formula ψ is denoted by δ(ψ) and is
inductively defined as:

δ(ψ) = 0 for ψ ∈ AP,
δ(◦ψ) = δ(ψ) for ◦ ∈ {¬,X ,F ,G} ,
δ(ψ1 ◦ ψ2) = max(δ(ψ1),δ(ψ2)) for ◦ ∈ {∨,∧, U , R} ,
δ(◦ψ) = 1 + δ(ψ) for ◦ ∈ {Y ,Z ,O ,H} , and
δ(ψ1 ◦ ψ2) = 1 + max(δ(ψ1),δ(ψ2)) for ◦ ∈ {S , T} .

PLTL has features which impact the way model checking can be done. We illustrate
these features through examples. As a running example we use an example from [7]
adapted to better suit our setting. In this example the system to be model checked is a
counter which uses a variable x to store the counter value. The counter is initialised to
0 and the system adds one to the counter variable x at each time step until the highest
value 5 is reached. After this the counter is reset to the value 2 in the next time step and
the system starts looping as illustrated in Fig. 2. Thus the system is deterministic and
the counter values can be seen as an infinite sequence (012)(3452)ω corresponding to a
(6,3)-loop of the system.

Fig. 2. Execution of the counter system.

Consider the (6,3)-loop of the counter system. The formula

((x = 3)∧YYY(x = 0))

holds only at time point 3 but not at any later time point. This demonstrates the (quite
obvious) fact that unlike pure future LTL formulas, the PLTL past formulas can distin-
guish states which belong to different unrollings of the loop. We introduce the notion
of a time point belonging to a d-unrolling of the loop to distinguish between different
copies of each state in the unrolling of the loop part.

Definition 2. For a (k, l)-loop π we say that the period p(π) of π is (k− l)+1, i.e., the
number of states the loop consists of. We define that a time point i≥ 0 in π belongs to the
d-unrolling of the loop iff d ≥ 0 is the smallest integer such that i < l +((d +1) · p(π)).

At the time point 3, which belongs to the 0-unrolling of the loop, the formula YYY(x =
0) holds. However, at the time point 7 belonging to the 1-unrolling of the loop the
formula YYY(x = 0) does not hold even though they both correspond to the first state
in the unrolling of the loop.
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Benedetti and Cimatti [7] observed that encoding the BMC problem for PLTL when
the bounded path has no loop was fairly straightforward. It is simple to generalise the
no loop case of Biere et al. [1] to include past operators, as they have simple semantics.
In the no loop case our encoding reduces to essentially the same as [7]. This case is an
optimisation that can sometimes result in shorter counterexamples but is not needed for
correctness. When loops are allowed the matter is more complicated and therefore we
will focus on this part in the rest of the paper. The fact which enables us to do bounded
model checking of PLTL formulas (containing past operators in the loop case) is the
following property first observed by [11] and later independently by [7]: for (k, l)-loops
the ability to distinguish between time points in different d-unrollings in the past is
limited by the past operator depth δ(ϕ) of a formula ϕ.

Proposition 1. Let ϕ be a PLTL formula and π be a (k, l)-loop. For all i ≥ l it holds
that if the time point i belongs to a d-unrolling of the loop with d ≥ δ(ϕ) then: πi |= ϕ
iff π j |= ϕ, where j = i− ((d− δ(ϕ)) · p(π)).

Proof. The proposition directly follows from Theorem 1 and Lemma 2 of [7].

The proposition above can be interpreted saying that after unrolling the loop δ(ϕ) times
the formula cannot distinguish different unrollings of the loop from each other. There-
fore if we want to evaluate a formula at an index i belonging to a d-unrolling with
d > δ(ϕ), it is equivalent to evaluate the formula at the corresponding state of the δ(ϕ)-
unrolling.

Consider again the running example where we next want to evaluate whether the
formula

F ((x = 3)∧O ((x = 4)∧O (x = 5))) (1)

holds in the counter system. The formula expresses that it is possible to reach a point
at which the counter has had the values 3,4,5 in decreasing order in the past. By using
the semantics of PLTL it is easy to check that this indeed is the case. The earliest time
where the subformula ((x = 3)∧O((x = 4)∧O(x = 5))) holds is time 11 and thus the
top-level formula holds at time 0. In fact the mentioned subformula holds for all time
points of the form 11+ i ·4, where i ≥ 0 and 4 = p(π) is the period of the loop 3452. The
time point 11 corresponds to a time step which is in the 2-unrolling of the loop 3452.
This stabilisation at the second unrolling is guaranteed by the past operator depth of
two of the formula in question. The subformula ((x = 4)∧O(x = 5)) has past operator
depth δ(ϕ) = 1 and it holds for the first time at time step 8 which is in the 1-unrolling of
the loop. Again the stabilisation of the formula value is guaranteed by the past operator
depth of one of the formula in question. It will also hold for all time steps of the form
8 + i ·4, where i ≥ 0. Thus, if we need to evaluate any subformula at a time step which
belongs to a deeper unrolling than its past operator depth, e.g. if we want to evaluate
((x = 4)∧O((x = 5))) at time step 16 in 3-unrolling, we can just take a look at the truth
value of that formula at the time step corresponding to the unrolling of the formula to
its past operator depth, in this case at time step 8 = 16− (3−1) ·4.

3.2 Translation

At this point we are ready to present the propositional encoding of the BMC problem
for PLTL. From the previous discussion it is fairly obvious that an efficient encoding



Simple Is Better: Efficient Bounded Model Checking for Past LTL 387

requires that we encode the unrolling of the loop in a sensible manner and encode the
semantics of the operators succinctly.

The basic idea of the encoding is to virtually unroll the path by making copies of the
original k step path. A copy of the original path corresponds to a certain d-unrolling.
If all loop selector variables li are false the encoding collapses to the original path
without a loop. The number of copies of the path for a PLTL formula ϕ is dictated by
the past operator depth δ(ϕ). Since different subformulas have different past depths,
the encoding is such that subformulas with different past depths see different Kripke
structures. Fig. 3 shows the running example unwound to depth d = 2, for evaluating
formula (1).

Fig. 3. Black arcs show the Kripke structure induced by virtual unrolling of the loop for k = 6 up
to depth 2 (i.e., δ(ϕ) = 2) when l3 holds.

The PLTL encoding |[ϕ]|di has two parameters: d is the current d-unrolling and i is
the index in the current d-unrolling. The case where d = 0 corresponds to the original
k-step path. Subformulas at virtual unrolling depth beyond their past operator depth can
by Prop. 1 be projected to the depth corresponding to the past operator depth. From this
we get our first rule:

|[ϕ]|di = |[ϕ]|δ(ϕ)
i , when d > δ(ϕ).

The rest of the encoding is split into cases based on the values of i and d. Encoding
atomic propositions and their negation is simple. We simply project the atomic propo-
sitions onto the original path. The Boolean operators ∨ and ∧ are also easy to encode
since they are part of standard propositional logic.
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ϕ 0 ≤ d ≤ δ(ψ),0 ≤ i ≤ k

|[p]|di pi

|[¬p]|di ¬pi

|[ψ1 ∧ψ2]|di |[ψ1]|di ∧|[ψ2]|di
|[ψ1 ∨ψ2]|di |[ψ1]|di ∨|[ψ2]|di

The translation of the future operators is a fairly straightforward generalisation of
our pure future encoding of Sect. 2.2 published in [13]. The path is copied as many times
as required by the past depth. When d < δ(ψ) the translation is essentially identical to
the pure future encoding with the exception of the case i = k. As only the loop part of
the copy of the path is relevant (see Fig. 3), the successor for i = k must be encoded to
select the correct state in the next d-unrolling. This is accomplished by using the loop
selector variables li.

ϕ 0 ≤ d < δ(ϕ),0 ≤ i < k 0 ≤ d < δ(ϕ), i = k

|[Xψ1 ]|di |[ψ1]|di+1
∨k

j=1

(
l j ∧ |[ψ1]|d+1

j

)

|[ψ1 Uψ2]|di |[ψ2]|di ∨
(
|[ψ1]|di ∧ |[ψ1 Uψ2]|di+1

)
|[ψ2]|di ∨

(
|[ψ1]|di ∧

(∨k
j=1

(
l j ∧ |[ψ1 Uψ2]|d+1

j

)))

|[ψ1 Rψ2]|di |[ψ2]|di ∧
(
|[ψ1]|di ∨ |[ψ1 Rψ2]|di+1

)
|[ψ2]|di ∧

(
|[ψ1]|di ∨

(∨k
j=1

(
l j ∧ |[ψ1 Rψ2]|d+1

j

)))

When d = δ(ϕ) we have reached the d-unrolling where the Kripke structure loops
back. At this depth we can guarantee that the satisfaction of the subformulas has sta-
bilised (see Prop. 1). Therefore we call the auxiliary translation 〈〈ϕ〉〉d

i , which is needed
to correctly evaluate until- and release-formulas along the loop (see [13]), at this depth.

ϕ d = δ(ϕ),0 ≤ i < k d = δ(ϕ), i = k

|[Xψ1]|di |[ψ1]|di+1
∨k

j=1

(
l j ∧ |[ψ1]|dj

)

|[ψ1 Uψ2]|di |[ψ2]|di ∨
(
|[ψ1]|di ∧ |[ψ1 Uψ2]|di+1

)
|[ψ2]|di ∨

(
|[ψ1]|di ∧

(∨k
j=1

(
l j ∧〈〈ψ1 Uψ2〉〉d

j

)))

|[ψ1 Rψ2]|di |[ψ2]|di ∧
(
|[ψ1]|di ∨ |[ψ1 Rψ2]|di+1

)
|[ψ2]|di ∧

(
|[ψ1]|di ∨

(∨k
j=1

(
l j ∧〈〈ψ1 Rψ2〉〉d

j

)))

〈〈ψ1 Uψ2〉〉d
i |[ψ2]|di ∨

(
|[ψ1]|di ∧〈〈ψ1 Uψ2〉〉d

i+1

)
|[ψ2]|di

〈〈ψ1 Rψ2〉〉d
i |[ψ2]|di ∧

(
|[ψ1]|di ∨〈〈ψ1 Rψ2〉〉d

i+1

)
|[ψ2]|di

The starting point for the encoding for the past operators is using their one-step
fixpoint characterisation. This enables the encoding of the past operators to fit in with
the future encoding. Since past operators look backwards, we must encode the move
from one copy of the path to the previous copy efficiently. To save space we do not give
the encodings for the derived operators Hψ ≡ ⊥Tψ and Oψ ≡ 
Sψ since they are
easily derived from the encodings of the binary operators ψ1 Tψ2 and ψ1 Sψ2.

The simplest case of the encoding for past operators occurs at d = 0. At this depth,
the past is unique in the sense that the path cannot jump to a lower depth. We do need
to take into account the loop edge, so the encoding follows from the recursive charac-
terisation ψ1 Sψ2 and ψ1 Tψ2. Encoding Yψ and Zψ is trivial.
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ϕ d = 0, i = 0 d = 0,1 ≤ i ≤ k

|[ψ1 Sψ2]|di |[ψ2]|di |[ψ2]|di ∨
(
|[ψ1]|di ∧|[ψ1 Sψ2]|di−1

)

|[ψ1 Tψ2]|di |[ψ2]|di |[ψ2]|di ∧
(
|[ψ1]|di ∨|[ψ1 Tψ2]|di−1

)

|[Yψ1]|di ⊥ |[ψ1]|di−1

|[Zψ1]|di 
 |[ψ1]|di−1

When d > 0 the key ingredient of the encoding is to decide whether the past opera-
tor should consider the path to continue in the current unrolling of the path or in the last
state of the previous unrolling. The decision is taken based on the loop selector vari-
ables, which indicate whether we are in the loop state. In terms of our running example,
we need to traverse the straight black arrows of Fig. 3 in the reverse direction. We im-
plement the choice with an if-then-else construct (li ∧ψ1)∨ (¬li ∧ψ2). The expression
encodes the choice if li is true then the truth value of the expression is decided by ψ1,
otherwise ψ2 decides the truth value of the expression.

ϕ 1 ≤ d ≤ δ(ϕ),2 ≤ i ≤ k

|[ψ1 Sψ2]|di |[ψ2]|di ∨
(
|[ψ1]|di ∧

((
li ∧|[ϕ]|d−1

k

)
∨

(
¬li ∧|[ϕ]|di−1

)))

|[ψ1 Tψ2]|di |[ψ2]|di ∧
(
|[ψ1]|di ∨

((
li ∧|[ϕ]|d−1

k

)
∨

(
¬li ∧|[ϕ]|di−1

)))

|[Yψ1]|di , |[Zψ1]|di
(

li ∧|[ψ1]|d−1
k

)
∨

(
¬li ∧|[ψ1]|di−1

)

The only case left, which actually can be seen as an optimisation w.r.t. the above
case, occurs at i = 1. The encoding has the general property that if l j is true all con-
straints generated by the encoding for i < j will not affect the encoding for d > 0. At
i = 1 we can thus ignore the choice of continuing backwards on the path and always
proceed to the previous d-unrolling.

ϕ 1 ≤ d ≤ δ(ϕ), i = 1

|[ψ1 Sψ2]|di |[ψ2]|di ∨
(
|[ψ1]|di ∧|[ψ1 Sψ2]|d−1

k

)

|[ψ1 Tψ2]|di |[ψ2]|di ∧
(
|[ψ1]|di ∨|[ψ1 Tψ2]|d−1

k

)

|[Yψ1]|di , |[Zψ1]|di |[ψ1]|d−1
k

Combining the tables above we get the full encoding |[ϕ]|di . Given a Kripke structure
M, a PLTL formula ϕ, and a bound k, the complete encoding as a propositional formula
is given by:

|[M,ϕ,k]| = |[M]|k ∧|[LoopConstraints]|k ∧|[ϕ]|00.
The correctness of our encoding is established by the following theorem.

Theorem 1. Given a PLTL formula ϕ, a bound k and a path π = s0s1s2 . . . which is a
(k, l)-loop, π |= ϕ iff |[M,ϕ,k]| is satisfiable.

Proof. (sketch) The proof proceeds as an induction on the structure of the formula. All
future cases follow a similar pattern. As an example, consider the case ϕ = ψ1 Uψ2.
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By appealing to the induction hypothesis we can assume that |[ψ1]|di and |[ψ2]|di are
correct. The future encoding replicates the path δ(ϕ) times, which ensures that at d =
δ(ϕ) all subformulas have stabilised (see Prop. 1). Let k′ = k + p(π) · δ(ϕ) denote the
index of π which corresponds to the final index of the unrolled model. We first prove

that the encoding is correct at πk′ corresponding to |[ϕ]|δ(ϕ)
k . We will make use of the

equivalence: πi |= ψ1 Uψ2 iff πi |= ψ2 or
(
πi |= ψ1 and πi+1 |= ψ1 Uψ2

)
.

First assume that |[ϕ]|δ(ϕ)
k holds. The encoding has the following property: for a

(k, l)-loop π, whenever |[M,ϕ,k]| has a satisfying truth assignment where no loop se-
lector variable li is true another satisfying truth assignment exists where ll is true. Thus

we only need to consider the case where ll is true. From |[ϕ]|δ(ϕ)
k it follows that either

|[ψ2]|δ(ϕ)
k holds, or that |[ψ1]|δ(ϕ)

k and 〈〈ϕ〉〉δ(ϕ)
l hold. In the former case we can appeal to

the induction hypothesis and we are done. In latter case we can argue by the definition

of 〈〈ψ1 Uψ2〉〉 that |[ψ2]|δ(ϕ)
j must hold for some l ≤ j ≤ k. Let j be the smallest such

index. Since 〈〈ψ1 Uψ2〉〉δ(ϕ)
l holds and the definition of 〈〈ψ1 Uψ2〉〉 forces |[ψ1]|δ(ϕ)

i to

hold until j, we can conclude that |[ψ1]|δ(ϕ)
i holds for all l ≤ i < j. By the induction

hypothesis and the semantics of U we can then conclude πk′+1 |= ϕ. Combining this
with πk′ |= ψ1, we get πk′ |= ϕ.

Now assume that πk′ |= ϕ. By the equivalence above and the semantics of until
we can split the proof into two cases. In the case πk′ |= ψ2 we can by the induction

hypothesis conclude that |[ψ2]|δ(ϕ)
k and thus |[ϕ]|δ(ϕ)

k . In the other case we have that
πk′ |= ψ1 and that ψ2 is satisfied at some later index. Let j′ be the smallest such index

and denote j = l + j′ − (k′ + 1). Then we know that |[ψ2]|δ(ϕ)
j must hold (Prop. 1 and

induction hypothesis) and therefore also 〈〈ϕ〉〉δ(ϕ)
j holds. By the semantics of U we have

that πi |= ψ1 for all k′ ≤ i < j′. This fact together with |[ψ2]|δ(ϕ)
j implies that 〈〈ϕ〉〉δ(ϕ)

i

holds for all l ≤ i ≤ j. Consequently, |[ϕ]|δ(ϕ)
k holds since we know that |[ψ1]|δ(ϕ)

k holds.
Once the correctness of the case d = δ(ϕ), i = k has been established, the correctness

of the remaining cases are easily established. Since the encoding |[ψ1 Uψ2]|di directly
follows the recursive semantic definition of U to compute all the other cases of i and d,
and these cases ultimately depend on the proven case we can conclude the encoding is
correct for these as well.

Proving correctness for the past operators follows a similar pattern. Consider ϕ =
ψ1 Sψ2. By the induction hypothesis we can assume that |[ψ1]|di and |[ψ2]|di are dealt
with correctly. For the past operators the case i = 0,d = 0 initialises the encoding while
the other cases are computed using the recursive semantic definition of S . The cor-
rectness of the initialisation can be argued using the semantics of S and the induction
hypothesis. Again by Prop. 1 we do not need to go deeper than i = k,d = δ(ϕ). With
these ingredients we can establish the correctness of the translation for |[ψ1 Sψ2]|di .
Performing a case analysis for the rest of the past operators completes the proof. ��

The following result can be proved as a straightforward generalisation of the no
loop case of [1] to PLTL.
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Theorem 2. If |[M,ϕ,k]| has a satisfying truth assignment where all loop selector vari-
ables li are false then no matter how the corresponding finite path is extended to an
infinite path π, it holds that π |= ϕ.

The new encoding is very compact. Let |I| and |T | denote the size of the initial state
predicate and the size of the transition relation seen as Boolean circuits.

Theorem 3. Given a model M, a PLTL formula ϕ, a bound k, the size of |[M,ϕ,k]| seen
as a Boolean circuit is of the order O (|I|+ k · |T |+ k · |ϕ| ·δ(ϕ)).

Proof. The unrolling of the transition relation and the loop constraints contribute the
term O (|I|+ k · |T |). For each subformula of ϕ we add a constant number of constraints
at each time point and k constraints at time points i = k. Although k constraints that refer
to other linear sized constraints (|[·]| and 〈〈·〉〉) are added at i = k, the circuit remains
linear because |[·]| and 〈〈·〉〉 can easily be shared among the constraints. As the loop is
virtually unrolled there are O (k ·δ(ϕ)) time points for a subformula in the worst case.
Combining these two we get O (|I|+ k · |T |+ k · |ϕ| ·δ(ϕ)). ��
The translation is linear in all components but since δ(ϕ) can be O(|ϕ|), it can be seen as
worst case quadratic in the formula length. Usually, however, linearity w.r.t. the bound
k is the most critical as finding deeper bugs is considered more important than handling
very large formulas. When dealing with formulas of fixed δ(ϕ), e.g. pure LTL formulas,
the encoding is linear in |ϕ|.

4 Experiments

We have implemented the new encoding in version 2.1.2 of the NuSMV 2 model
checker [14]. This facilitates easy comparison against NuSMV, currently the only pub-
lished PLTL bounded model checker, which is based on the encoding given in [7]. For
our implementation of the new PLTL encoding we have adapted the optimisations for
the future LTL encoding presented in [13].

We have performed two different sets of experiments. In order to asses how the
encodings scale in general, we model checked randomly generated formulas on small
randomly generated models. This lets us evaluate how the encodings scale when the
size of the formulas is increased or the length of the bound is increased. We also tested
the encodings on a few real-life examples to corroborate our findings from the random
experiments. In both experiments we measured the size of the generated conjunctive
normal form (CNF) expressions. Specifically, we measured the number of variables,
clauses and literals (the sum of the lengths of the CNF-clauses) in the generated CNF,
and the time to solve the CNF instance. All experiments were run on a computer with an
AMD Athlon XP 2000+ processor and 1 GiB of RAM using the SAT solver zChaff [18],
version 2003.12.04. Our implementation and files related to the experiments are avail-
able at http://www.tcs.hut.fi/˜timo/vmcai2005/.

4.1 Random Formulae

The experiments with random formulae were performed in the following way. Random
formulae were generated with the tool described in [17]. We generated 40 formulas for
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Fig. 4. Random formulae benchmarks.

each formula size between three and seven. For each formula we generated a BMC
problem for all bounds up to k = 30. The BMC problem is constructed using a ran-
dom Kripke model with 35 states that was generated with techniques described in [17].
The Kripke models have a fairness requirement that requires that at least one of two
randomly selected states should appear infinitely often in a counterexample path. This
eliminates many short counterexamples and makes the measurement more meaningful
for larger values of k.

Figure 4 has twelve plots depicting the results of the benchmarks. In the first row, all
results are averaged over the bound and show how the procedures scale with increasing
formula size. In the second row, all results are averages over the formula size and show
how the procedures scale in the bound k. For the third row the size of the formula is fixed
at 5 and the plots show the average over the 40 formulas. The plots in the first column
show the number of variables in the generated CNF. Plots in the second column show
the number of clauses and plots in the third column the number of literals in the CNF.
The last column has plots which show the time to solve the CNF instances.
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From the plots it is clear that the new encoding scales much better than the encoding
implemented in NuSMV. This is the case both when considering scaling w.r.t. the size
of the formula and the length of the bound.

4.2 Real-Life Examples

The second set of experiment were performed on a few real-life examples. We used five
models of which four are included in the NuSMV 2 distribution. The models were an
alternating bit protocol (abp), a bounded resource protocol (brp), a distributed mutual
exclusion algorithm (dme), a pci bus (pci) and a 5-bit shift-register (srg5). For abp and
pci we checked a property with a counterexample while the properties for brp, dme and
srg5 were true properties. The template formulae are collected in Table 1.

Table 1. Properties used in real-life benchmarks.

Model Property
abp G (p ⇒ YHq)
brp FG (p ⇒ O (q ⇒ Or))
dme G (p ⇒ pT (¬pTq))
pci G p ⇒ G (q∧Y (¬q∧O (r∧O (s∧Ot))) ⇒ O (u∧O (v∧Gw)))
srg5 FG p∧GFq∧GFr ⇒ F (sS (t S (uS (vSw))))

We measured the number of variables, clauses, and literals in the generated CNF,
and the time used to solve an instance at a specific bound k. We also report the cumu-
lative time (Σ time) used to solve all instances up to the given k. The results of the runs
can be found in Table 2.

The new encoding was always the fastest. In all cases the new encoding produced
the smallest instances w.r.t. all size measures. For srg5, NuSMV was not able to proceed
further than k = 18 because the computer ran out of memory. The reason for this can
be found in the apparently at least cubic growth w.r.t. the bound k of the encoding for
nested binary past operators.

Table 2. Real-life benchmarks.

Model k NuSMV New
vars clauses literals time Σ time vars clauses literals time Σ time

abp 16 25,175 74,208 174,644 104 342 22,827 67,116 158,096 52.5 269
10 14,115 41,228 98,304 0.9 2.5 8,961 25,736 62,156 0.7 2.2

brp 15 30,225 89,218 211,334 4.6 15.9 13,346 38,536 93,076 1.5 7.5
20 56,935 169,008 398,564 19.2 75.6 17,731 51,336 123,996 3.2 19.7
10 49,776 139,740 338,752 10.3 15.1 28,855 76,947 192,235 6.3 17.5

dme 15 139,071 404,485 962,837 98.9 171 42,685 115,282 288,030 15.5 70.2
20 346,166 1,022,630 2,411,522 1,017 1,812 56,515 153,617 383,825 41.2 214
10 81,285 242,133 567,029 96.7 188 60,456 179,616 421,156 69.8 151

pci 15 159,885 477,358 1,116,914 2,441 5,408 90,611 269,491 631,891 888 2,422
18 227,357 679,429 1,589,029 2,557 19,119 108,704 323,416 758,332 867 11,992
10 137,710 412,952 963,900 53.6 90.7 1,655 4,757 11,445 0.0 0.1

srg5 18 1,264,988 3,794,698 8,854,918 14,914 33,708 2,999 8,677 20,869 0.2 0.9
30 N/A N/A N/A N/A N/A 5,015 14,557 35,005 0.7 6.6
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5 Discussion and Conclusions

We have presented an encoding of the BMC problem for PLTL. The encoding is linear
in the bound k unlike the encoding by Benedetti and Cimatti [7]. In the general case the
encoding is quadratic in the size of the formula but if we fix the past operator depth,
the encoding is also linear in the size of the formula. Experiments confirm that the
encoding is more compact and efficient than the original encoding. In the experiments
our encoding scales better both in the bound k and in the size of the formula.

After having independently discovered our new encoding we very recently became
aware of a manuscript [19] discussing an alternative approach to bounded model check-
ing of PLTL. Our approach differs in many ways from that of [19], the main differences
being that their approach does not perform any virtual unrolling at all and that their
starting point is the so called SNF encoding for BMC [15]. It is easy to modify our
encoding not to virtually unroll (k, l)-loops by defining the past operator depth function
δ(ϕ) to return the constant 0 for all formulas irregardless of their past operator depth.
However, in this case the encoding would not remain sound for formulas with looping
counterexamples. For example, verifying the formula ¬GFYYY(x = 0) on our run-
ning example would result in a counterexample at k = 6 even though the formula holds.
We do not see how soundness for full PLTL could be achieved without performing
virtual unrolling.

If we restrict ourselves to searching for non-looping counterexamples (not all PLTL
formulas have non-looping counterexamples) or to specifications in some subset of full
PLTL, the virtual unrolling could be discarded while maintaining soundness. However,
although virtual unrolling has a small overhead it also has benefits. For example, model
checking formula (1) on our running example requires the transition relation to be un-
rolled 6 times with our encoding but the encoding of [19] requires the transition relation
to be unrolled 11 times before the first witness is found. Due to the efficiency of our en-
coding the overhead of virtual unrolling is small and the potential gain in using smaller
bounds can be significant. We argue that our approach can be more efficient than [19],
at least in the cases where the encoding is dominated by the system transition relation
size (|T | � |ϕ|) and the counterexample can be detected earlier by virtual unrolling.
In our opinion the new encoding is also easier to understand and implement than that
of [19].

There are still possibilities for improving the performance of our encoding and ex-
tending it to other uses. The bounded satisfiability problem asks if there is any model
represented as a bounded path of length k for a given PLTL formula ψ. The new en-
coding can easily be extended to solve this problem by removing all constraints set by
the transition relation on the state variables. If the encoding is viewed as a Boolean
circuit, the loop selector variables li and the atomic propositions (and their negations)
are viewed as input gates, then the encoding generates a monotonic Boolean circuit.
This could be exploited in specific SAT solver optimisations. Another possible topic for
future research is considering incremental encodings for BMC in the spirit of [20].
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International Journal on Software Tools for Technology Transfer 4 (2002) 57–70

18. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an efficient
SAT solver. In: Proceedings of the 38th Design Automation Conference, IEEE (2001)

19. Cimatti, A., Roveri, M., Sheridan, D.: Bounded verification of past LTL. In: Formal Methods
in Computer-Aided Design (FMCAD 2004). Volume 3312 of LNCS., Springer (2004) 245–
259
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