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Abstract: Methods for selecting a research and development (R&D) project
portfolio have attracted considerable interest among practitioners and aca-
demics. This notwithstanding, the industrial uptake of these methods has
remained limited, partly due to the difficulties of capturing relevant concerns
in R&D portfolio management. Motivated by these difficulties, we develop
Contingent Portfolio Programming (CPP) which extends earlier approaches in
that it (i) uses states of nature to capture exogenous uncertainties, (ii) mod-
els resources through dynamic state variables, and (iii) provides guidance for
the selection of an optimal project portfolio that is compatible with the deci-
sion maker’s risk attitude. Although CPP is presented here in the context of
R&D project portfolios, it is applicable to a variety of investment problems
where the dynamics and interactions of investment opportunities must be
accounted for.
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1 Introduction

The selection of research and development (R&D) projects has attracted considerable in-
terest in the literatures on technology management and operations research (OR). These
projects involve many characteristics — such as uncertainties and interdependent resource
constraints — that are potentially amenable to analysis by OR techniques. Indeed, there
exists a variety of related methods, ranging from scoring methods such as value trees
(Keeney and Raiffa 1976, French 1986) to optimization models (see, e.g., Gear and Lockett
1973, Heidenberger 1996, Ghasemzadeh et al. 1999) and dynamic programming methods
such as decision trees and real options (French 1986, Dixit and Pindyck 1994, Smith and
Nau 1995, Trigeorgis 1996). Yet, despite the plethora of methodological approaches, these
methods have not enjoyed widespread industrial use, possibly due to the difficulties of
capturing the full range of phenomena that are relevant to the problem of selecting and

managing R&D projects.

Building on the literatures on decision analysis, R&D management, and portfolio optimi-
zation, we develop Contingent Portfolio Programming (CPP) as a modeling framework which
accommodates most of the characteristics that are relevant to the selection of risky pro-
jects. In CPP, projects are regarded as risky investment opportunities that consume and
produce several resources over multiple time periods. The staged nature of R&D projects
is captured through project-specific decision trees (cf. Gear and Lockett 1973) which sup-
port managerial flexibility by allowing the decision maker (DM) to take stepwise decisions
on each project in view of most recent information (Trigeorgis 1996). Uncertainties, on the
other hand, are modeled through a state tree in the spirit of stochastic programming (see,

e.g., Birge and Louveaux 1997).

While CPP permits a wide range of risk attitudes, we focus on a class of objective func-
tions that are a combination of a mean-risk model (Markowitz 1959, 1987) and a multi-
attribute value function (Keeney and Raiffa 1976). In particular, we consider two objective
functions which lead to linear programming models, permitting the solution of relatively

large-scale project portfolios. The first one is a mean-lower semi-absolute deviation model,



(mean-LSAD model; Ogryczak and Ruszsynski 1999) which is a special case of generalized
disappointment models with a standard measure of risk (Jia and Dyer’s 1996, Jia et al.
2001). The second is a mean-expected downside risk model (mean-EDR model; Eppen et

al. 1989) which is consistent with expected utility theory (Fishburn 1977).

The rest of the paper is structured as follows. §2 provides a brief overview of earlier ap-
proaches and §3 presents an introductory example. A formal development of CPP is given
in §4, followed by an analysis of computational complexity in §5. §6 concludes the paper

with suggestions for future research directions.

2 Earlier Approaches

Several methods for the selection of R&D projects have been developed over the past few
decades (for a review, see Martino 1995 and Henriksen and Traynor 1999). These methods
can be categorized into three aggregate groups: (1) scoring models, (2) optimization mod-
els, and (3) dynamic programming models. Among these, the two latter groups are more
relevant to CPP, although some ideas of scoring models (e.g., consideration of multiple at-

tributes) are also included in CPP.

Optimization models for project selection can be viewed as extensions of standard capital
budgeting models (see, e.g., Luenberger 1998). These models capture project interdepend-
encies and resources constraints, but they do not usually address uncertainties associ-
ated with the projects’ outcomes, which makes it impossible to attach risk measures to
project portfolios. There are some approaches based on utility functions, fuzzy set theory,
and chance-constraints, but the resulting models are problematic as they make restrictive

assumptions about the nature of uncertainty or the DM’s risk preferences.

Stochastic optimization models analogous to R&D portfolio selection models have ap-
peared in investment planning as well as asset and liability management (e.g., Birge and
Louveaux 1997, pp. 2028, and Mulvey et al. 2000). These two problem contexts share
similarities with the selection of R&D projects in that (i) the DM seeks to maximize the
value of a portfolio of risky assets in a multi-periodic setting and (ii) there are several asset

categories which parallel the multiple resource types consumed and produced by R&D
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projects. A key difference, however, is that in financial optimization the (dis)investment
decisions are unconstrained quantities that do not restrict the DM’s future decision op-
portunities (e.g., security trading). In contrast, R&D project selection involves “go /no go’-
style decisions where the “go”-decision leads to later project management decisions while

the “no go”-decision terminates the project without offering further decision opportunities.

The staged nature of R&D projects has motivated the development of dynamic program-
ming approaches, most notably (1) decision trees based on decision analysis (see French
1986) and (2) real options (see, e.g., Dixit and Pindyck 1994, Trigeorgis 1996); for a com-
parative analysis of these two approaches, we refer to Smith and Nau (1995). Dynamic
programming methods capture the structure of consecutive decisions and uncertainties of
an R&D project, but they do not explicitly address projects interactions or resource con-
straints. In consequence, researchers have sought to link decision trees with portfolio
models (e.g., Heidenberger 1996 and Gear and Lockett 1973); this notwithstanding, the
resulting models have failed to capture many relevant phenomena in R&D portfolio selec-

tion, such as risk aversion and resource dynamics.

The ability to yield theoretically defensible discount rates is often stated as a major advan-
tage of the real options approach over decision trees (Trigeorgis 1996). However, this ap-
proach assumes that the cash flows from the project can be replicated with financial in-
struments for all states of nature, which may be unrealistic if the project results in inno-
vative products that are not similar to market-traded assets. Furthermore, much of the
real options literature employs continuous stochastic processes in the modeling of uncer-
tainties, whereas the uncertainties of R&D projects often relate to discrete events. These
features may make it difficult to use the real options approach in practical project selec-

tion problems.



3 Preliminary Example

In CPP, the DM makes decisions about which projects are started, when they are started,
what resources are allocated to them, and in what situations they are terminated or ex-
panded, among others. The decisions are subjected to relevant constraints (e.g., availabil-
ity of resources), and they influence the resource flows that are acquired from the project

portfolio.

For each project, the resource flows depend on the future states of nature. The resource
flows associated with a given portfolio management strategy are consequently uncertain,
which means that the final resource position at the end of the planning horizon is risky. It
is assumed that the DM seeks to maximize the utility (or equivalently, certainty equiva-

lent) of her final resource position.

For illustrative purposes, let us assume that the DM can invest in projects A and B in two
phases (see Figure 1). In period zero, she can start either one or both of the projects. If a
project is started, she can make an additional investment in period one, in which case the
project generates a positive cash flow in period two; otherwise, the project is terminated in
which case it yields no further cash flows. Any surplus that is not invested can be depos-

ited at an 8% risk-free interest rate. The initial budget is $9 million.

Uncertainties are captured through a state tree with seven states, of which two are asso-
ciated with period one and four with period two (see Figure 2). Taken together, Figures 1
and 2 correspond to the decision trees in Figures 3 and 4 where the projects’ cash flows
are shown as a function of the indexed action variables X (X = 1, if action is selected, X=0
if it is not). In Figures 5 and 6, these cash flows are shown as a function of action vari-
ables, while Figure 7 shows the cash flows from the entire portfolio. The two projects are
negatively correlated so that that if project A performs poorly, project B yields a high re-

turn, and vice versa.
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Based on Figure 7, resource constraints can now be written as
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Decision tree of project B

where RS's are nonnegative real-valued variables that denote the resource surplus in each

state (i.e., resource position).
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Figure 7 Cash flows of the project portfolio

For the measurement of risk, a second set of constraints is developed by introducing de-

viation variables AV, (AV.") which indicate by how much the value of the DM’s resource

position in a specific terminal state falls short of (or exceeds, respectively) the expected

value of the resource position at the end of the planning horizon. These constraints are

V. —EV —AV' + AV =0, where V, denotes the value of the resource position in state s,

EV is the expected value of the resource position over all terminal states, and the sum

—AV + AV, measures by how much V, differs from EV . Since there are no other re-

source types except money, EV is given by
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EV =50%-30%- RS.,, +50%-70%- RS, ,, +50%-40%- RS, ,, +50%-60%- RS

5227

while the deviation constraint for state si1 is RS,,—EV —AV_, +AV,, =0. The con-
straints for other terminal states can be expressed similarly. Because positive realizations
of AV will be penalized in the objective function by a negative coefficient, only one of the

terms AV, and AV, can be positive.

Because continued investments in period 1 are possible only if the project was initially

started, the following consistency constraints apply (cf. Figures 3 and 4):
Xasy ¥ X psv =1 Xaen + Xaen = X asy Xacrs ¥ Xaova = X asy

Xpsy + Xpgy =1 Xperi + Xpeni = X sy X +X =X

BCY2 BCN?2 BSY
The action variables X's are nonnegative integers; in fact, they are binary variables due to

the two leftmost consistency constraints.

The DM seeks to maximize the certainty equivalent of her terminal resource position. It is
assumed that this can be approximated in the mean-risk form by deducting a risk term
based on lower semi-absolute deviation (LSAD) from the expected resource position in pe-
riod 2 (see, e.g., Ogryczak and Ruszsynski 1999). For example, if the risk aversion coeffi-
cient for LSAD has been estimated at A = 0.5, the objective function is
Maximize CE = EV - 0.5-LSAD =
50%-30%- RS, +50%-70%- RS ,, +50%-40%- RS ,, +50%-60%- RS ,, —0.5-

[50%-30% - AV, +50% - 70% - AV, +50% - 40%: AV,;, +50%: 60%  AV:, | .

With this objective function, the optimal strategy is to start both projects, but to terminate
project A in period 1 if state s occurs and project B if state s; occurs (i.e., decision vari-
ables Xasy, Xacy1, Xacne, Xssy, Xseni, and Xpeye are one while all other X's are zero). In pe-
riod 2, the corresponding expected resource position is EV = $18.80 million and the LSAD
term is $2.95 million, which leads to the optimal CE value $18.80 - 0.5 x $ 2.95 = $17.33
million. In period 2, the resource position attains its lowest level in state si2 at $13.76 mil-
lion, well above the 1.082 x $9 =~ $10.50 million obtained by depositing the initial budget at
the risk-free interest rate. Thus, even though both projects entail the risk of losing most of
the initial investment when evaluated in isolation, the optimal strategy yields a return that

surely exceeds the risk-free interest rate.



Assuming that the same risk-free interest rate is applied to all states, the present value of
the optimal project portfolio can be readily calculated. That is, by discounting the CE of
the final resource position at the 8 % risk-free interest rate and by deducting the initial

budget of $9 million from this value, the net present value of the portfolio is found to be
$5.85 million. The risk-adjusted discount rate p that accounts for both time and risk

preferences can be computed from EV/(1+p)2:CE/(1+rf)2, which gives

p=1+r,)VEV/CE -1= 1.08-4/18.80/17.33 -1=12.5%.

4 Mathematical Development

The constraints and the objective function of a CPP model are defined by resource types,
the state tree, and project-specific decision trees. We first define these three concepts and

then discuss the constraints and the objective function in CPP.

4.1 Resources

Resources are inputs and outputs that are either consumed or produced by projects. They
can be production factors (e.g., money, equipment), intangibles (e.g., intellectual property
rights), or other relevant assets that the DM may be interested in. A resource type is de-

noted by r and the set of all resource types by R.

4.2 States of Nature

The time-state model of CPP is a state tree which represents the structure of future states

of nature. Each state prevails during one period within the planning horizon {O, - T}. The

T
set of states in period ¢ is denoted by §,, and the set of all states is § = USI . The time
t=0

period of state se S is denoted by #(s).

The state tree starts with a single base state s, in period 0. Each state s'e S, ,,0<¢<T is

1>
followed by at least one state seS,. This relationship is modeled by the function
B:S — § which returns the unique (immediate) predecessor s'e §,_ of state se S,,1>0,
(by convention, B(s,)=s,). The n-th predecessor of se S, (= n) is defined recursively by

B"(s) = B(B"'(s)), where B’(s)=s. This function can be used to obtain the states on a

35



36

path from the base state s, to state s. These states, together with state s, are contained

in §%(s)={s'e $13k 20 such that B*(s) =s'}.

States result through uncertain events (e.g., “markets went up”). The probability that state

se S, (t>0) obtains, subject to the assumption that its predecessor B(s) has occurred, is

given by the conditional probability p,,(s). The base state s, occurs with probability

one, i.e., p(s,)=1. Unconditional probabilities for the other states s S, (>0) are com-

puted recursively from the equation p(s) = py (s)- p(B(s)) .

4.3 Projects

4.3.1 Decision Points

The DM takes decisions with regard to projects ze€ Z . Following Gear and Lockett (1973),

the decision opportunities for each project are structured as a decision tree which consists
of decision points: that is, for each project z€ Z , there is a set of decision points D, such

that at decision point d € D_, the DM chooses one of the actions in ae€ A,. The decision

point at which action a can be taken is d(a). The first decision point of project z is the

base decision point d ZO .

At each decision point d , the DM has information about (i) what state s(d)e€ S prevails at

this point, and (ii) what actions she has taken earlier on with regard to project z, if any;

this information is conveyed by the action that immediately preceeds d. For all decisions

points d € D, other than the base decision point, this action, called the parent action of

d , is given by the function ap(d). It is assumed that the decision points form a consis-

tent tree so that each decision point has a unique parent action.

For each action athere is an action variable X, that is equal to the number of times that

this action is selected at decision point d(a) (e.g., 1 if the action is selected once; O if the

action is not selected). Apart from binary choices, action variables can be used to model

decisions that correspond to nonnegative integers or continuous real numbers.

A prgject management strategy X is defined by the action variables that are associated



with the decision points d € D, of project z. A portfolio management strategy X is the

DM'’s complete plan of action for all projects z€ Z and all states s S .

4.3.2 Resource Flows

The project management strategy X, induces a resource flow RF(X,,s) of resource type

r in state s. Letting ¢ (s) denote the flow of resource type r in state s due to action a,

this flow is given by
RF/(X,.s)= Y. D ci(s)-X,.

deD_: ach,;
s(d)xs®(s)
where the restriction in the summation of decision points ensures that actions influence

resource flows only in the current state and relevant future states. The aggregate resource

flow RF'(X,s) in state s is obtained by adding the flows for all projects, i.e.,
RF'(X,s)=) RF/(X,.9)=Y. > Y ci(s)-X,.

€eZ €Z deD.: acA;
s(d)es®(s)
For the time being, we assume that resource flows are linear in the action variables, which
means that interactions among actions (e.g., synergies) are not accounted for. In principle,

such interactions can be captured through cross-terms for pairs of action variables. In

this case, the aggregate resource flow becomes

RF'(X,)=). > D> > D)X, -X,.

€Z deD.: acA;eZ deD.: deA;
s(d)eSB(s) s(d")eS"(s)

4.4 Constraints

The four main constraint types in CPP are (i) decision consistency constraints, (ii) resource

constraints, (iii) optional constraints, and (iv) deviation constraints.

4.4.1 Decision Consistency Constraints

The structure of decision points influences how many actions can be selected at a given
decision point d . For instance, if the parent action of d was selected once, the DM ar-
rives at d and chooses one of the actions in A, ; but if the parent action was not selected,
the DM does not arrive at d so that none of the actions at d can be selected. Thus, at
each decision point other than the base decision point, the number of selected actions is

the same as the number of times that its parent action was selected. At the base decision

point d0 the DM usually chooses one of the alternative actions; however, multiple project

10
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instantiations (i.e., exact copies) can be modeled by allowing the number of selected ac-

tions to be greater than one, say L.

The above requirements imply the following decision consistency constraints

Y X, =L VzeZ (1
azeA(J
> X,=X,, VdeD\d’} Vie Z. (2)
ac Ay

Unconstrained quantitative decisions, which do not form a decision tree, can be modeled
by omitting the constraints (1) and (2). For example, decisions in securities trading can be
modeled by associating with each state a continuous unconstrained action variable which

is equal to the amount of transactions in that state.

4.4.2 Resource Constraints

Resource constraints can be employed to ensure that there is a nonnegative stock of re-
sources in each state. They are modeled through resource surpluses that would remain in
state se S, if the DM were to choose the portfolio strategy X . The surplus of resource

type rin state se S is
) {b’(s)+RF’(X,s) if 5 = s,

N

b'(s)+RF"(X,s)+at, .-RSh, ifs#s,

(s)>s B(s)

where b’ (s) is the initial endowment of resource r in state s€ S and ay,,_,, is the rate at
which the surplus in state B(s) is transferred to s. Initial endowments cannot be influ-
enced by the DM and they do not entail any costs. The transfer rate may depend on the

resource type and the state: it may be equal to (1 + risk-free interest rate) for money, while

the rate for perishable goods may be zero.

The resource surplus variables RS are continuous, and for a given portfolio strategy X,

they can be solved using the following resource constraints
RF'(X,s,) — RS;0 =-b"(s,) VreR

RF"(X,s)+ ., ,, RSp,, — RS, =-b"(s) VseS \ {s,} VreR.
Resource surplus variables are usually constrained to non-negative values. However,
negative values may also be permitted in order to allow for the possibility to borrow funds,

for instance.

11



4.4.3 Optional Constraints

Optional constraints include any other constraints that may apply. The two most com-
monly discussed optional constraints in the literature are prerequisite constraints, which
define relations between follow-up and prerequisite projects, and project version con-
straints which model alternative versions of a project. Additional examples on optional
constraints are given by Ghasemzadeh et al. (1999). Note that in CPP project versions can
be modeled with a single project in which the choice among the project versions is made

at the base decision point so that no dedicated constraints for this purpose are needed.

4.5 Objective Function

The DM seeks to maximize the utility of the terminal resource position, viz.
maxU[X],
where U is the DM’s preference functional and X is the value of the resource position in

period T. Under expected utility theory, the preference functional is given by
U [X ] =F [u(X )] , where u is the DM’s von Neumann-Morgenstern utility function.

4.5.1 Linear Preference Models

Because nonlinear utility functions can entail computational challenges in the context of
large-scale portfolios, we focus on two special cases of the objective function that (i) im-
plement a reasonable model of risk aversion and (ii) lead to a linear programming model.
In both cases, we assume that the DM’s preference functional can be approximated as a
mean-risk model; such models have been widely used in the field of portfolio selection (see

Markowitz 1952, 1959).

We also assume that the value of the final resource position is (i) additive with regard to
resource types and (ii) linear with respect to the amount of surplus of each resource (see,
e.g., Keeney and Raiffa 1976). These two latter assumptions are not overly restrictive as
linear pricing is widely employed in financial modeling. For a given state, the total value of
resource surpluses can be obtained by associating state-dependent weights w’ with each
resource type. These weights can be interpreted as unit prices so that the monetary value

of resource surpluses in state sis given by

12
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V.(RS)=) w RS/,

reR

where w! is the unit price of resource type rin state s € Sr. The expected (monetary) value

of the terminal resource position is thus given by

EV,(RSy)= Y. p(s)-V, (RS,)=Y p(s)- Y wi RS/, (3)

seSr seSr reR

where RS, is a vector of all RS’s for which re Rand se Sr.

4.5.2 Risk Measures

Several dispersion statistics have been proposed in the literature on portfolio selection.
Markowitz (1952, 1959) suggests the use of variance and semivariance for the selection of
securities. Expected downside risk (EDR) has been employed in capacity planning (Eppen
et al. 1989), while absolute deviation has been applied in real-time stock market analysis
(Konno and Yamazaki 1991). These last two measures are linear, which make them at-
tractive for large-scale portfolio selection problems. Also, these measures lead to mean-
risk models that are consistent with the first and second degrees of stochastic dominance
(FSD and SSD; Levy 1992, Ogryczak and Ruszczynski 1999, Fishburn 1977), which sug-

gests that the resulting models are theoretically reasonable.

In particular, we employ expected downside risk (EDR; Eppen et al. 1989, Fishburn 1977)

and lower semi-absolute deviation (LSAD) as measures of risk. Specifically, EDR is given

by
EDR[X]=) p(0)lx—11=) p(x)(t—x),

where p(x) is the probability mass function of X and t is the target value from which de-

viations are computed. When the target value is equal to the expression t = ux = E[X], we

have
LSAD[X1= ) p()lx—p 1= p(x)(ty —x).
all x: all x:
X<ply X<Hx

Both measures can be calculated from deviation constraints as follows. Let AV," and AV,

be nonnegative deviation variables which measure how much the total value of the re-

source surpluses in state s € Sr (i.e., V| ) differs from the risk measure’s target value t.

For EDR, these variables satisfy the equations
V. (RS,)—t—AV +AV, =0 VseS§,, (4)

13



where only one of the variables AV," and AV, can be positive, because AV has a nega-

tive coefficient in the objective function. The EDR of the value of the final resource posi-

tion is given by the sum

> p(s) AV . 5)

seSrp

The LSAD measure can be computed by using t = EV, (RS, ) in (4) instead of a fixed target

value t. This leads to
V. (RS,)—-EV,.(RS;) —AV/+AV =0 VseS,, (6)

whereafter the LSAD can be obtained from (5).

4.5.3 Mean-Risk Model

The objective function can now be stated in the mean-risk form

max EV,.(RS;)—RP,(AV;), (7)
where EVris defined by Equation (3), and RP.(AV, ) is given by
RP.(AVy)=2-) p(s)-AV], (8)
seSr

where deviation variables AV terms are obtained either from (4) (EDR) or (6) (LSAD).

When the mean-risk model gives a certainty equivalent for a random variable, like the
mean-LSAD model does, RPr can be interpreted as the DM’s risk premium. By substituting

Equations (3) and (8) into (7), the objective function becomes

max(z p(s)(z w RS/ —A- AV;]].

seSy reR

Importantly, the mean-EDR model falls within the scope of expected utility theory! (Fish-
burn 1977), and can therefore be regarded as an acceptable model of risk aversion; in par-
ticular, it does not suffer from dynamic inconsistencies (Machina 1989), which may occur
with the mean-LSAD model and other non-expected utility models. On the other hand, the
mean-LSAD model can be motivated by its link to disappointment models and standard

measures of risk (Jia and Dyer 1996, Jia et al. 2001) and the properties of constant abso-

1 Since E[X]|-A-EDR[X]=) p(x)(x—A(t-x))+ ) p(x)x. the mean-EDR model is

all x: all x:
x<t xt

A+ ADx—At, x<t

equivalent to the utility function u(x) = .
X, x>t

14
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lute risk aversion and constant relative risk aversion (see French 1986): if the value of the
final resource position is subjected to a positive affine transformation, the certainty
equivalent undergoes a similar transformation so that CE[a-X + b] = a-CE[X] + b for con-
stants a > 0 and b. In expected utility theory, no utility function implies both risk aversion

and such a linear pricing property.
5 Complexity Analysis

5.1 Model Size

Although CPP is based on linear programming, the required computational effort may be-
come prohibitive if the model is very large. It is therefore instructive to examine the num-

ber of decision variables and constraints in a CPP model (see Tables 1 and 2). Here,

D= UDZ is the set of all decision points and A = U UA . is the set of all actions.

€2 €ZdeD,

Because deviation variables and resource surplus variables are continuous, there are at
most |A| integer variables in a CPP model. The number of integer variables can be reduced
by not constraining one of the action variables at each decision point to integer values.
Still, this variable can assume integer values only, because it is related to the other inte-

ger-valued actions at the same decision point through Equations (1) and (2). The upper

bound for the number of integer variables can thus be reduced to |A| - |D|

Table 1 Number of Decision Variables
Decision variable Number Type
Action variables (X’s) Al Typically integer
Resource surplus variables (RS’s) ISIIRI Continuous
Deviation variables (AV’s) 2:1541 Continuous
TOTAL IAl + ISI- IRl + 2-1S

Table 2 Number of Constraints
Constraint Number
Decision consistency constraints IDI
Resource constraints ISI-IRI
Deviation constraints 1Sl
Optional constraints 0

TOTAL

IDI + 1S1-IRI + 1S71 + O

15



For example, a CPP model with three resource types, five time periods, a binary state tree
(where each state is split into two further states in the next period) and thirty projects
with four consecutive “go/no go” decisions leads to 15-30 = 450 integer action variables
and equally many continuous action variables, as well as 31-3 = 93 continuous resource
surplus variables and 2-16 = 32 continuous deviation variables (cf. Table 1). This leads to
a total of 450 integer variables and 575 continuous variables. The number of constraints
is 450 + 31-3 + 16 + 0 = 559. This model can be readily solved using standard techniques

of mixed integer programming (MIP).

In comparison, a conventional decision tree for the same portfolio selection problem would
contain an enormous number of decision and chance nodes. The first decision node of the
tree would entail 230 alternative decisions, one for each possible project portfolio, and each
of these decisions would lead to a binary chance node that resolves at the end of the first
period. At the start of the second period, there would be 230-2 decision nodes, each pre-
ceded by the earlier portfolio decision and the chance outcome. Assuming that these and
ensuing decision nodes entail at most 230 decision alternatives each, we obtain an upper
limit of 1 + 230.2 + (230.2)2 + (230.2)3 = 1028 for the number of decision nodes. Apart from
being intractable, the resulting tree would still require that the sufficiency of resources is
verified at each decision node. On the other hand, building a separate conventional deci-
sion tree for each project would not support the consideration of project interactions or
the variability of portfolio returns. Nevertheless, in this case, each decision tree would
contain 15 decision nodes and 15 chance nodes, resulting in a total of 450 decision nodes

and equally many chance nodes.

A challenge with all state tree based approaches, including CPP, is that the size of the
state tree can become excessively large if the outcome of the project portfolio depends on a
large number of risk factors. This is often the case when the outcome of each project de-
pends on a project-specific risk factor, because the number of states then increases expo-
nentially with the number of projects. For example, in a setting where each project either
fails or succeeds and the success of each project is independent of that of other projects,

the number of corresponding terminal states becomes 2n, where n is the number of pro-
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jects. With a sufficiently large n, this necessarily leads to a CPP model that cannot be

solved in a reasonable time.

The above situation does not arise if CPP is used to capture external uncertainties, such
as market risks and regulatory changes that are not influenced by the projects. This focus
on external uncertainties is natural in CPP, because the state tree is shared by all projects
and project decisions do not influence state probabilities. Hence, CPP may be particularly
suitable for scenario analysis where portfolio management strategies are optimized with

regard to a relatively small number of states.

5.2 Computational Experiments

The computational performance of CPP models was tested with a dedicated C++-
application that runs under Windows XP operation system using LP Solve 4.0.1.9 software
package for LP and MIP models (available at ftp://ftp.es.ele.tue.nl/pub/lp_solve/). The
optimizations were run on a laptop computer with 512 MB of memory and 1.06 GHz Pen-

tium III processor.

5.2.1 Experimental Setup

In our numerical experiments, the number of projects, stages per project, time periods,
and resources varied as described in Tables 3 and 4. For each model type, 30 models with
randomized resource flows and state probabilities were generated. The timeout for the so-
lution algorithm was set to 20 minutes to ensure that the total computation time re-
mained reasonable even in cases where the median solution time was several minutes and

the worst case solution time could have been several hours.

INSERT TABLES 3 AND 4 AROUND HERE

In most cases, we used two resource types, (i) money with the risk-free interest rate of 5%
and (ii) a perishable capacity resource with a zero transfer rate. Any additional resource
types, if present, were perishable capacity resources. The weight (i.e., unit price) of capac-
ity resources in the objective function was O and that of money was 1. In the first period,

the initial budget for money was $2 million multiplied by the number of projects, while
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initial monetary endowments in other periods were zero. In each period, initial endow-
ments for other resources were equal to one unit of resources multiplied by the number of

projects.

The state tree had a binary structure such that each non-terminal state was split into two
states in the next period. The probabilities for the terminal states were computed by gen-
erating real numbers from the uniform distribution over the unit interval and by normaliz-
ing the resulting numbers. The probabilities of the other states were aggregated from

those of the terminal states.

Project decision trees consisted of binary “go/no go”-decisions in two or more stages. The
first decision was taken in period O, followed by the next decision in every consecutive pe-
riod up to the total number of stages. Each “go”-decision entailed an immediate cost. Each
cost was obtained by (i) deciding on the most likely value of the cost and (ii) by multiplying
this value with a random number from the (0,1)-lognormal distribution, implying a log-
normal distribution for all costs. The most likely values for costs were assumed to rise
linearly with time so that later stages were more expensive to carry out than earlier ones.
We used the value of $1 million for the first stage, implying a cost of $2 million of the sec-
ond stage, $3 million for the third stage, and so on. Costs for other resources were mod-
eled similarly, using a most likely value of 1 resource unit for the first stage and a linear

growth model.

The revenues began one period after the last “go”-decision. Similarly to costs, revenues
were randomized by first selecting a most likely value for the revenue and then multiply-
ing this number by a random number drawn from the (0,1)-lognormal distribution. For
each project, revenues were distributed evenly over time, in the sense that the most likely
revenue was the same for each period. The cumulative sum of the most likely values for
revenues over the time horizon was assumed to be 1.15 times the sum of most likely val-
ues for costs over the time horizon. For example, for a two-staged project the sum of the
most likely values for costs was $3 million and hence the sum of the most likely values for
revenues was $3.45 million. In a model with four periods, this would imply that the most

likely revenue in the last period and in the second last period was $1.725 million. Projects
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did not yield inflows for other resources.

In most cases, a mean-LSAD model with the risk aversion coefficient 41=0.5 was em-
ployed. We also conducted experiments with the mean-EDR model with 4=0.5 and the
target value of b-1.05", where b is the initial budget and T denotes the last time period.

These are indicated by the symbol & in Tables 3 and 4.

5.2.2 Results

Some CPP models were solved as MIP models (Table 4) and some as LP models where inte-
ger variables were left continuous (Table 3). The results for LP models suggest that CPP
models for realistic portfolio selection problems can be solved in a reasonable time, and
that relatively few projects involve action variables with non-integer values. For example,
CPP models with 250 3-staged projects, 2 resources, and 5 time periods (16 terminal
states) were solved in a median time of 46.7 s. Models with 50 5-staged projects, 2 re-
sources, and 9 time periods (256 terminal states) had a median solution time of 6 min 59
s. Typically, LP models with less than 6,000 variables and 3,000 constraints could be
solved within the 20-minute time-out limit. In most cases, the number of non-integer ac-

tion variables was small, about 3%-10% of all action variables.

In LP models, the possibility to borrow additional resources and the DM’s risk neutrality
led to (i) a lower number of fractional integer variables and (ii) a higher probability of at-
taining an integer solution (Table 3). In the presence of both assumptions, action variables
always assumed integer values, suggesting that fractional project management decisions

were either due to limited resources or the DM’s risk aversion.

Typically, MIP models were much more time-consuming to solve than LP models (Table 4):
for example, an MIP model with 30 3-staged projects, 2 resources, and 5 time periods
could be solved in a median time of 49.4 s, while the LP model took only 0.32 s to solve.
The mean and standard deviation of the solution time seemed to grow exponentially with
the number of integer variables, wherefore models with more than 350 integer variables
could not usually be solved within the 20-minute time-out limit. However, the possibility

to borrow resulted in significantly shorter solution times, as models with 100 3-staged
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projects, 1 resource, and 5 time periods were solved in a median time of 3.335 s which is
not much more than the median solution time of 2.835 s for LP models. When both the
possibility to borrow and the assumption of risk neutrality were introduced, there was no

significant difference in the solution times of MIP and LP models.

6 Summary and Conclusion

The CPP modeling framework presented in this paper is applicable to the portfolio man-
agement of correlated R&D projects and, more generally, to the analysis of investment
problems where the dynamics and interdependencies of risky investment opportunities
must be accounted for. This framework has several appealing characteristics, such as the
explicit consideration of resource dynamics and managerial flexibility. It also accommo-
dates a wide range of risk attitudes, including two risk averse preference models that lead

to linear CPP models.

Our simulations indicate that LP and MIP formulations for CPP models of realistic size can
be solved in a reasonable time. LP models of about a hundred five-staged projects and
several hundreds of states can be solved in a reasonable time by using a standard per-
sonal computer and a public domain C++ LP package. MIP models, on the other hand,
usually take much more time solve; MIP models with a couple of tens of three-staged pro-

jects and less than a hundred states have usually an acceptable solution time.

There are several avenues for further research. On the theoretical side, CPP needs to be
extended to settings where more complex resource dynamics must be accounted for (e.g.,
cost of storage, proactive management of multi-purpose resources) or where the DM’s ac-
tions influence the structure of the state tree. In terms of future applications, CPP seems
particularly useful in settings where separate decision trees for each project can be devel-
oped, but where the optimal decisions are interlinked by resource constraints and the

need for a portfolio management strategy which accounts for the DM’s risk attitude.
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Table 3

Solution times for LP CPP models. 30 iterations were performed per setting.

Solution time (s)

No. of fractional integer variables

=}
T |23 |5| 8% |83 |85 | § |82 &8 | 5| 3| F |gg|& |5 @ &g
& S 2. ® =i B =N s 8 X a X S 8 NS a. S “B=]
[0} S s} =} D o @ 9 D o o S o = o & 5B S o S ==
3 2 | a | g o = g = o = o! o2 | e £ 2 o =g | 2 g 2 | e
=+ ® = — o — e v = 0 c =} [ g o R [= =] o ()=
& o} @ = a3 I e~ o o 5 5 0
o) w = ©n = = 5 a Q Q = 5 a Q Q n 3
® & o} S} a a S} a a
s] = = =] = =
& 5 5 5 5
20 3 5 2 374 218 140 0.184 | 0.028 | 0.161 0.18 0.201 13.67 7.24 8 13 18 3%
30 3 5 2 514 288 210 0.332 | 0.064 0.3 0.32 0.35 14.07 6.91 10 14 16 0%
60 3 5 2 934 498 420 1.208 | 0.232 | 0.992 | 1.152 | 1.312 15.03 6.57 10 13 19 0%
100 3 5 2 1494 778 700 4.11 0.671 3.645 | 4.016 | 4.516 19.03 7.53 12 19 23 0%
250 3 5 2 3594 1828 1750 47.541 | 7.042 | 43.032 | 46.738 | 50.923 | 23.53 5,75 19 23 26 0%
100 4 5 2 3094 1578 1500 19.353 | 5.178 | 15.723 | 18.015 | 19.348 | 47.23 11.92 36 46 58 0%
100 3 6 2 1590 858 700 7.272 1.352 | 6.299 6.9 8.322 24.6 7.89 19 24 29 0%
100 4 6 2 3190 1658 1500 35.672 | 5.917 | 30.884 | 35.451 | 39.036 | 58.97 15.51 46 57 65 0%
100 5 6 2 6390 3258 3100 285.30 | 77.21 | 214.92 | 278.89 | 335.79 | 126.9 34.99 100 120 140 0%
100 4 9 2 4534 2778 1500 481.58 | 111.30 | 374.06 | 470.59 | 550.49 65.1 16.8 53 64 69 0%
25 5 9 2 3084 2053 775 145.95 | 38.66 | 117.64 | 141.68 | 166.22 | 123.27 | 31.25 94 117 145 0%
50 5 9 2 4634 2828 1550 413.54 | 100.53 | 318.94 | 418.52 | 452.75 | 152.53 | 38.19 115 146 181 0%
30 4 6 5 1279 797 450 4.821 0.791 4.226 | 4.667 | 5.198 60.33 17.34 45 57 72 0%
100 4 6 5 3379 1847 1500 73.554 | 25.105 | 53.196 | 64.153 | 77.932 65.8 18.72 49 61 81 0%
20 3 5 1 343 187 140 0.146 | 0.031 0.13 0.14 0.15 12.93 5.35 10 11 15 0%
100 3 5 1 1463 747 700 3.386 | 0.598 | 2.884 | 3.195 | 3.745 19.6 6.16 14 19 21 0%
100* 3 5 1 1463 747 700 3.167 1.017 | 2.674 | 2.835 | 3.004 6.47 4.64 2 7 10 20 %
100# 3 5 1 1463 747 700 2.869 | 0.402 | 2.574 | 2.804 | 3.145 11.6 3.46 9 11 13 0%
100*# 3 5 1 1463 747 700 2.45 0.493 | 2.263 | 2.323 | 2.423 0 0 0 0 0 100 %
1000*# |3 5 1 14063 7047 7000 618.18 | 268.27 | 323.91 | 605.19 | 827.79 0 0 0 0 0 100 %
1000 3 5 1 1463 747 700 3.047 | 0.401 2.704 | 3.004 | 3.194 11.87 3.9 9 12 13 0%
1000 3 5 2 1494 778 700 3.581 0.437 | 3.255 | 3.545 | 3.936 12.7 3.45 10 12 14 0 %
*: borrowing is allowed, #: risk neutrality, ©: mean-EDR model.
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Table 4 Solution times for MIP CPP models. 30 iterations were performed per setting.
Solution time (s)
@ B Q Q o o e} o o @ o B > 2 X 8 s
ol ¢ | & | E S = lad o > el 5 & 2 3 2 g
® @ o ) = =] o = c c o g
o ® 5 ® = =3 o g g ®»
® e o) S} a a
@ ® 5 & =3 =4
a @ 15 <)
- 1
10 3 5 2 234 148 70 1.626 1.861 0.471 0.952 1.552 0
15 3 5 2 304 183 105 7.807 22.855 0.971 1.622 4.076 0
20 3 5 2 374 218 140 10.371 12.612 2.484 7.05 12.147 0
25 3 5 2 444 253 175 41.841 58.301 6.35 22.442 43.943 0
30 3 5 2 514 288 210 128.988 196.7 7.28 49.391 130.498 0
35 3 5 2 584 324 245 242.688 319.226 30.263 99.162 277.799 1
40 3 5 2 654 358 280 406.089 389.605 90.05 285.33 484.627 4
20 3 5 1 343 187 140 7.394 11.98 0.912 2.203 9.383 0
20* 3 5 1 343 187 140 0.247 0.073 0.21 0.23 0.24 0
60* 3 5 1 903 467 420 1.573 0.648 1.141 1.272 1.773 0
100* 3 5 1 1463 747 700 4.31 2.402 2.904 3.355 4.727 0
200* 3 5 1 2863 1447 1400 26.062 16.252 14.661 18.917 28.772 0
100# 3 5 1 1463 747 700 > 1200 - > 1200 > 1200 > 1200 30
10m 3 5 2 234 148 70 1.626 3.15 0.32 0.691 1.412 0

*: borrowing is allowed, #: risk neutrality, &: mean-EDR model.

24



52





