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Shear Flow and Kelvin-Helmholtz Instability in Superfluids
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The first realization of instabilities in the shear flow between two superfluids is examined. The
interface separating the A and B phases of superfluid 3He is magnetically stabilized. With uniform
rotation we create a state with discontinuous tangential velocities at the interface, supported by the
difference in quantized vorticity in the two phases. This state remains stable and nondissipative to high
relative velocities, but finally undergoes an instability when an interfacial mode is excited and some
vortices cross the phase boundary. The measured properties of the instability are consistent with the
classic Kelvin-Helmholtz theory when modified for two-fluid hydrodynamics.
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unstable —when some circulation from the A phase the critical velocity for forming the first vortex line in the
Instabilities in the shear flow between two layers of
fluids [1] belong to a class of interfacial hydrodynamics
which is attributed to many natural phenomena. Ex-
amples are wave generation by wind blowing over water
[2], the flapping of a flag in the wind [3,4], and even flow
in granular beds [5]. In the hydrodynamics of inviscid and
incompressible fluids the transition from calm to wavy
interfaces is known as the Kelvin-Helmholtz (KH) insta-
bility [2,6]. Since Kelvin’s treatise in 1871, difficulties
have plagued its description in ordinary fluids, which are
viscous and dissipative. They also display a shear-flow
instability, but its correspondence with that in the ideal
limit is not straightforward. The tangential velocity
discontinuity in the shear flow is created by a vortex
sheet. In a viscous fluid a vortex sheet is not a stable
equilibrium state and not a solution of the hydrodynamic
equations [7].

Superfluids provide a close variation of the ideal invis-
cid limit considered by Kelvin and thus an environment
where the KH theory can be tested. The initial state is a
nondissipative vortex sheet —the interface between two
superfluids brought into a state of relative shear flow. So
far the only experimentally accessible case where this can
be studied in stationary conditions is the interface be-
tween 3He-A and 3He-B [8], where the order parameter
changes symmetry and magnitude but is continuous on
the scale of the superfluid coherence length �� 10 nm.
We discuss an experiment, where the two phases slide
with respect to each other in a rotating cryostat: 3He-A
performs solid-body-like rotation while 3He-B is in the
vortex-free state and thus stationary in the laboratory
frame. While increasing the rotation velocity �, we re-
cord the events when the AB phase boundary becomes
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crosses the AB interface and vortex lines are introduced
into the initially vortex-free B phase. On increasing the
rotation further, the instability occurs repeatedly. Such a
succession of instability events can be understood as a
spin-up of 3He-B by rotating 3He-A.

Our experimental setup is shown in Fig. 1. The AB
boundary is forced against a magnetic barrier in a
smooth-walled quartz container, by cooling the sample
below TAB at constant pressure in a rotating refrigerator.
The number of vortices in both phases is independently
determined from the simultaneously measured nuclear
magnetic resonance (NMR) spectra [10,11]. The state of
the sample can be changed from an all A phase to an all B
phase or to a two-phase configuration. The evolution of
the quantized vorticity as a function of � is then ob-
served to be radically different when the AB interface is
present.

The quasi-isotropic 3He-B supports singly quantized
vortices with a core size comparable to � [10]. In the
anisotropic 3He-A we form vortex lines [11] with con-
tinuous Skyrmion topology: Inside its central part the
order-parameter amplitude remains constant, but the ori-
entations of the axis of the orbital anisotropy cover a solid
angle of 4�. Such a ‘‘soft-core’’ structure carries continu-
ous vorticity with two circulation quanta and is 3 orders
of magnitude larger in radius than the ‘‘hard’’ core of the
B-phase vortex. Thus converting an A-phase vortex into a
B-phase vortex requires a large concentration of the flow
energy.

The large difference in core radii is also the origin for
the much lower rotation at which vortices start forming in
the A phase at the outer sample circumference, compared
to the B phase [10]. If the sample consists of only B phase,
2002 The American Physical Society 155301-1



FIG. 2 (color). The two configurations of vortex lines with
the AB boundary in rotation. (a) �<�c: Vortex lines are
formed in 3He-A while 3He-B remains vortex-free. Near the
AB boundary the A-phase vortices bend parallel to the interface
and form a vortex sheet between the sliding superfluids. The
radial distributions of the normal and superfluid velocities far
from the AB interface are depicted below, with vnA � vnB �
�r, while vsB � 0. (b) � 	 �c: Vortices are observed to
appear in the B phase in events of a few lines at a time. They
form a central cluster in the B-phase section. (c) A hydro-
dynamically stable state with respect to externally imposed
perturbations in �, T, or H exists at the AB interface for � 	
�c. A topologically stable configuration for the vortex-line
intersection with the AB interface is suggested in Ref. [14]: The
doubly quantized A-phase vortex terminates at the AB interface
in two point singularities, known as boojums. These, in turn,
are the end points of two singly quantized B-phase vortices.
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FIG. 1 (color). Stabilization of the first-order 3He-A–3He-B
phase boundary. At pressures p 	 21 bars , the A phase extends
to lower temperatures in external magnetic field (see phase
diagram on the right). The sample (length 11 cm, radius R �
0:3 cm) is first cooled to the A phase. On further cooling, the
A ! B transition happens in the coldest place at the bottom.
The AB boundary then starts to move up and rises to a height z
where the barrier field Hb�z� equals the value of the thermody-
namic A ! B transition HAB�T; p�. The A phase in the top
section remains in a metastable supercooled state [9].
Ultimately, the boundary disappears when HAB�T; p� >
�Hb�z��max. For p � 29:0 bars and Hb�z� as shown in the figure
with a current of 4 A in the barrier solenoid, the stable AB
boundary exists below 2.07 mK down to 1.33 mK. The NMR
spectrometers operate in homogeneous static magnetic fields of
10 and 35 mT, chosen for best measuring sensitivity of the
single-vortex signal.
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setup of Fig. 1 is vcB > 7 mm=s [12]. In the A phase the
critical velocity vcA is a factor of 20 smaller [13], inde-
pendently of the presence of the AB boundary.

Vortex lines are thus easily created at low rotation in
the A-phase section of the sample, while no vortices are
detected in the B-phase section [Fig. 2(a)]. This is the
ideal nondissipative initial state where the two superfluid
phases slide along each other without friction. When � is
increased further, sudden bursts of vortex lines are ob-
served in the B-phase section (Fig. 3). The onset �c

depends on temperature and on the current in the barrier
magnet. Overall, the measured characteristics of the
bursts fit a shear-flow instability, which provides a
mechanism for the circulation to cross the AB interface.

3He-A and 3He-B are states of the same order-
parameter manifold. One of the conditions on their phase
boundary is that the phase of the order parameter has to
be continuous [14]: If the circulation is not continuing
across the interface [Fig. 2(a)] then the existing A-phase
vortex lines have to bend and form a vortex layer on the
AB interface. This is the only hydrodynamically stable
state, with vortex-free flow seen by the B-phase spec-
trometer and a large cluster of vortex lines detected by
the A-phase spectrometer. The buildup of a sheetlike
vortex layer means that the A-phase circulation cannot
easily penetrate into the vortex-free B phase and the AB
interface remains stable up to the measured critical ve-
locity uc � �cR� 2–4 mm=s< vcB.
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At � > �c, some vortex lines have broken through the
AB phase boundary. Thus there exists also a stable con-
figuration in which vortices from the A phase continue
into the B phase, where they form a cluster in the center
[Fig. 2(b)]. The likely topology of the intersection is
illustrated in Fig. 2(c). Thus, although the AB interface
is not directly monitored by the two NMR spectrometers,
the hydrodynamically stable states below and above �c

can only be the configurations in Fig. 2. By comparing
B-phase vortex-line creation in the presence and absence
of the AB interface, we conclude that the events in Fig. 3
originate from the AB phase boundary.

In the classical KH instability the interface between
fluids with densities �1 and �2 becomes destabilized by
inertial effects, which are normally balanced by gravity g
and surface tension �. The relative velocity jv2 � v1j acts
as a drive. When it reaches a critical value [2] given by

�1�2

�1 � �2
�v2 � v1�

2 � 2
�������
�F

p
; (1)

where F � g��1 � �2� is the gravitational restoring
force, waves with wave vector k �

����������
F=�

p
are created on

the interface.
This approach can be generalized for superfluids in

terms of two-fluid hydrodynamics [15]. For superfluid
155301-2
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FIG. 4. Critical velocity �c for the first appearance of
B-phase vortex lines in the presence of the AB boundary as a
function of temperature, while � is slowly increased ( _�� �
5� 10�4 rad=s2). The current in the barrier solenoid is con-
stant but different for the three sets of data. It controls the
magnetic force F which is largely responsible for the shape of
the curves: As a function of decreasing temperature the curves
start at TAB�HAB � 35 mT� and end at the temperature at which
HAB equals the maximum value of the barrier field Hb at the
given current. The steep slopes at both ends of the curves are
caused by the rapidly changing value of rHb. The solid curves
represent Eq. (2) if one sets �c � jvsB � vnj=R and vsA � vn.
No fitting parameters are used. The values for ��T�, �A �
�B�T;H�, and �sB�T;H� are obtained from accepted references
[8,18–20], while Hb and rHb apply for the profile Hb�z� at the
location of the AB boundary: HAB�T� � Hb�z�.
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FIG. 3. Instability events during slowly increasing rotation
(d�=dt � 2:5� 10�4 rad=s2). NMR absorption signals as a
function of � are recorded (shifted arbitrarily on the vertical
scale). The vertical jumps mark events in which �N new vortex
lines enter the B phase section of the sample. The height of each
jump is proportional to �N, a small stochastic number. When
averaged over a large interval of �, the number of B-phase
vortex lines grows linearly with �. This is demonstrated also
by the dashed line: the instability occurs independently of � at
constant critical drive, i.e., uc�jvsB � vnjr�R��cR� const .
The three topmost signal traces were recorded at the same
temperature; i.e., measurements at fixed T yield the same �c (if
small variations in vcA are accounted for [13]). The two bottom
traces at different T illustrate that �c depends on temperature.
Here TAB�H � 0� � 0:785Tc and Hb as in Fig. 1.
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3He under our experimental conditions it is safe to assume
that the normal fractions are always in solid-body rota-
tion. Instead of gravity, the restoring force is now pro-
duced by the magnetic barrier Hb�z�, owing to the
difference in the susceptibilities �A and �B�T;H�: F �
�1=2���A � �B�T;H��r�H2

b� at HAB�T�. The restoring
force can thus be calculated as a function of temperature
and current in the barrier solenoid. The motion of the AB
interface with respect to the normal component is subject
to a finite damping [16]. Since the initial state is non-
dissipative, damping modifies, but does not explicitly
appear in, the stability condition [17]. The onset of the
instability can be derived from the dynamics of small
amplitude perturbations, as Eq. (1) is generally derived in
textbooks [1], or from the thermodynamics when pertur-
bations of the interface lead to a negative free energy in
the rotating frame. The mode for which the interface first
becomes unstable has the same wave vector k �

����������
F=�

p
as

before at a drive given by

1

2
�sA�vsA � vn�

2 �
1

2
�sB�vsB � vn�

2 �
�������
�F

p
; (2)

where �s, �n and vs, vn are the densities and velocities of
superfluid and normal components.

In Fig. 4 we plot the measured �c�T� for the magnetic
barrier profiles Hb�z� at three different constant solenoid
currents. To compare with Eq. (2) we note that the maxi-
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mum of jvsA � vnj in the A phase is limited by the small
critical velocity vcA [13]: in practice we may set vsA �
vn�0. As seen in the figure, with no fitting parameters
the agreement with experiment is surprisingly good. We
may also compare with the classical formulation in Eq. (1)
by setting jv1 � v2j � jvsA�R� � vsB�R�j � R�c, and
�1 � �2 � �s�T;H�. We then find that this critical veloc-
ity is by �

���
2

p
larger than that from Eq. (2) and the fit to

measurements not as good.
In the classical expression (1) only the relative velocity

matters while in two-fluid hydrodynamics reference
frame considerations are important. In Eq. (2) the refer-
ence frame is fixed to the rotating container. Here it is the
‘‘superfluid winds’’— the counterflow of the superfluid
and normal components, jvs � vnj, on each side of the
interface —which produce the instability. It takes place
even if the two superfluids have the same densities and
velocities. In this sense it resembles the flapping flag
instability discussed by Rayleigh [3] where the fixed
reference frame is provided by the flagpole. In the super-
fluid it is the normal components of both phases which
establish the contact between the superfluid fractions and
the container walls. After a change in �, ultimately at
constant � the normal components achieve solid-body
rotation with the container. Therefore Eq. (2) should
155301-3
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remain valid even in the low temperature limit, when
�n ! 0 and �sA � �sB ! �, if one waits long enough.

A further comparison to Eq. (2) is obtained from the
number �N of new B-phase vortex lines after an insta-
bility event. In Fig. 3 it is seen that �N�10. At 0:77Tc

(with uc��cR�0:39 cm=s at 29.0 bars) the measured
average for more than 100 events is �N�11. We interpret
�N to correspond to the number of circulation quanta ��
h=2m3, which fit in one corrugation of the interface mode
of size �c=2��=k. If we set vcA�0, then there are in
solid-body rotation N��R2 �c=� vortex lines in the A
phase which all flare out into the lateral sample boundary
at the AB interface [Fig. 2(a)]. Measured along the pe-
rimeter of the sample there are �cR=� circulation quanta
per unit length and thus in one corrugation �N �
��uc�=�k��. From Eq. (2) this is seen to be �N �
�2���=��uc�sB�, which at 0:77Tc gives nine vortex lines
in agreement with the measured number.

Earlier rotating experiments have all been performed
in the absence of a strong magnetic field gradient. It is
then not possible to localize the AB interface at a fixed
position. Instead one can record the motion of the inter-
face through the sample in a slow A ! B transition dur-
ing cooling at constant � [21]. An A-phase vortex layer
and tangential vortex-free B-phase counterflow are mov-
ing with the interface. Depending on the interface veloc-
ity, part of the A-phase vortex lines are swept with the
interface to the sample boundary and are annihilated
there, while part of the lines break through the boundary
into the B phase. As a result the total circulation is found
to be reduced after the A ! B transition. As the AB
interface is in motion, the state is dissipative and Eq. (2)
is not directly applicable. Nevertheless, applying dimen-
sional arguments we find that the time for the KH insta-
bility to develop is ��kuc��1, which from Eq. (2) is seen
to be ��=�u3c�sB�. To form vortices, this time must be less
than the transition time tAB for the A ! B interface to
sweep through the entire sample. This leads to an effec-
tive critical velocity uc � ��=��sBtAB��

1=3. It fits the mea-
surements in Ref. [21] in the limit of slow interface
velocities and shows that the AB interface becomes stiffer
and less permeable at increasing velocity. At suitable
velocities the removal of vortices from the system in front
of the moving AB phase boundary becomes quite effec-
tive. Similar mechanisms have been discussed for sweep-
ing away the abundantly created magnetic monopoles
from the early Universe [22].

To summarize, in uniform rotation the magnetically
stabilized AB phase boundary has been found to give rise
to a state with tangential superfluid shear flow. The reason
for this is a large energy barrier which prevents the
nucleation of point and line defects on the small length
scale �. This situation evolves into the first example of a
shear-flow instability where the initial state is nondissi-
pative. The outcome of the instability is the transmission
155301-4
of a burst of vorticity across the interface. The instability
creates corrugations in the interface and its vortex coat-
ing, upon which the vortex lines in the deepest trough are
pulled by the Magnus force through the boundary. The
process represents a new intrinsic mechanism of defect
formation, applicable to interfaces between superfluids or
to the free surface of a superfluid [23].

This collaboration was carried out under the EU-IHP
program ULTI 3 and the ESF program COSLAB.
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