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Structure of the Surface Vortex Sheet between Two Rotating 3He Superfluids
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We study a two-phase sample of superfluid 3He where vorticity exists in one phase (3He-A) but cannot
penetrate across the interfacial boundary to a second coherent phase (3He-B). We calculate the bending
of the vorticity into a surface vortex sheet on the interface and solve the internal structure of this new
type of vortex sheet. The compression of the vorticity from three to two dimensions enforces a structure
which is made up of 1

2 -quantum units, independently of the structure of the source vorticity in the bulk.
These results are consistent with our NMR measurements.
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FIG. 1. A-phase vorticity (drawn in cross section) curves into

the form of vortex lines or vortex sheets [6,7]. Both a surface vortex sheet on the A-B interface (�� 1 rad=s).
Consider an interface separating two phases whose
order parameters are coherent across the boundary. How
do topological line or planar defects behave when they
meet the boundary? The coherence rules out simple ter-
mination at the interface. The remaining alternatives are
that the defect crosses the boundary or is deflected to
continue along the boundary. If deflected, how does the
defect bend onto the interface and what is its structure
when it lies on the boundary? Such questions are cer-
tainly relevant for dislocations at coherent grain bounda-
ries in crystals. These questions also appear in liquid
crystals [1] and in the cosmos [2,3]. Here we provide an
answer in the context of superfluid 3He, where detailed
results can be achieved by combining experimental and
theoretical analysis [4,5].

The important defects in superfluids are vortex lines or
sheets, which can be created in a controlled way by
rotation. A crucial property of 3He superfluids are mul-
tiple length scales: The core diameter of a typical vortex
is 103 times larger in the A phase than in the B phase.
Correspondingly, the vortex energy in the A phase is
lower and vortices do not easily penetrate from the A to
the B phase but form a surface sheet on the phase bound-
ary (Fig. 1). Here we calculate how the vorticity in bulk
3He-A bends to form such a surface sheet. The calculated
internal structure of this surface sheet turns out to be
quite different from the vortex sheet that appears in bulk
3He-A. Finally, we report on NMR measurements and
show that our calculations are consistent with these.

To obtain a two-phase sample of superfluid 3He, the
A-B interface is stabilized in a gradient of magnetic field
[5]. Vortices are created by rotating the sample at angular
velocity � around the axis ẑz perpendicular to the inter-
face. In the A-phase section vortices are formed at a low
critical velocity vcA so that the average superfluid velocity
hvsAi approximates solid-body rotation, hvsAi � �� r.
Depending on preparation, the vorticity in the bulk is in
0031-9007=03=90(22)=225301(4)$20.00 
structures have a large ‘‘soft vortex core’’ region for
which the length scale �d � 10 �m is set by weak
dipole-dipole forces. The vortex line is doubly quantized
in units of the circulation quantum �0 � h=2m, where m
is the mass of a 3He atom. The bulk vortex sheet has
periodic units, which also consist of two quanta. The B
phase vortices, in turn, are singly quantized and have a
narrow ‘‘hard vortex core’’ with a radius comparable to
the superfluid coherence length �� 10 nm. Their smaller
core radius causes the B-phase critical velocity to be at
least an order of magnitude larger. Thus, the B phase
remains in a metastable vortex-free state, where its super-
fluid fraction is stationary in the laboratory frame:
vsB � 0. To sustain the difference in superflow velocities
at the A-B interface, the A-phase vorticity has to curve
onto the interface where it forms a surface vortex sheet
(Fig. 1).

Bending of vorticity into surface sheet.—We calculate
the macroscopic configuration for bending the vorticity,
in the form of both vortex lines and bulk sheets. For
vortex lines we use the Bekarevich-Khalatnikov model
[8]. The coarse-grained vorticity ! � 1

2r� hvsi is deter-
mined from the energy functional
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F � 1
2�s

Z
d3r��j!j 	 
hvsi � vn�

2
: (1)

Here �s is the density of the superfluid fraction. The first
term is the energy of vortex lines, where � �

2�0=�� ln
rv=rc� (Fig. 1) is on the order of the circulation
of a line. The second term is the energy penalty associ-
ated with the difference between the average superfluid
and normal velocities, hvsi and vn � �� r. For vortex
sheets we use the functional

F � 1
2�s

Z
d3r
vs � vn�

2 	
Z
sheet

d2r�: (2)

The latter term is the surface energy of the bulk sheet,
with the surface tension �. In contrast to Eq. (1),
the velocity vs � 
 �h=2m�r� is calculated exactly
(r2� � 0), treating the bending sheet as a tangential
discontinuity of vs.

In rotation with � � �ẑz, we assume the vorticity to
occupy the half space z > 0 and not to penetrate to z < 0.
We select a location far from the axis of rotation so that
the cylindrical coordinates can locally be approximated
with Cartesian coordinates, taking x in the radial direc-
tion. We assume that the vortex sheets at z! 1 are
perpendicular to x [6]. We then find that between two
sheets v � vs � vn � 2�
x� c�ŷy, where c is a constant.
This allows us to write Eq. (2) as
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0
dz
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Here b � 
3�=�s�
2�1=3 is the separation of two sheets in

the bulk (z! 1) and � is their radial displacement.
Surprisingly, we find that both models [(1) and (3)] give

exactly the same form of bending: In spite of different
physics and approximations, the radial deviation �
z� of
both vortex lines and vortex sheets is given by

z
a
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�����������������������
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For vortex lines a �
����������������
�=
4��

p
is on the order of the line

spacing 2rv. For vortex sheets a � b=
���
6

p
is 0.41 times

their equilibrium spacing in the bulk. The bending con-
tour plotted in Fig. 1 becomes horizontal at the radial
deviation � � a. After this point the bulk vorticity is
transformed to a new state of vortex matter—a surface
sheet. The vorticity in the sheet grows linearly with
distance r from the center and finally escapes to the
vertical sample boundary.

Structure of surface vortex sheet.—The order parame-
ter of superfluid 3He, a 3� 3 matrix A�j, takes in the A
phase the form A�j � �Ad̂d�
m̂mj 	 in̂nj�. Here m̂m, n̂n, and l̂l
are three orthogonal unit vectors that specify the orbital
part of the Cooper pair wave function. The vector d̂d
specifies the orientation of the spin part. Here we consider
only continuous vortex structures where the amplitude
�A is constant, and the circulation arises solely from a
smooth orientational winding of the triad (m̂m, n̂n, l̂l) in
space. The vortex textures are determined from the en-
ergy functional F �

R
A d

3r fA 	
R
B d

3r fB, where [9]
2fA � �?v2
A 	 
�k � �?�
l̂l � vA�

2 	 2CvA � r� l̂l� 2C0
l̂l � vA�
l̂l � r� l̂l� 	 Ks
r � l̂l�2 	 Kt
l̂l � r� l̂l�2 	 Kbjl̂l

� 
r� l̂l�j2 	 K5j
l̂l � r�d̂dj2 	 K6

X
ij

�
l̂l� r�id̂dj�
2 	 "djd̂d� l̂lj2 	 "h
d̂d �H�2; (5)
vA � vsA � vn, and vsA � 
 �h=2m�
P
im̂mirn̂ni. The first

nine terms give the gradient energy, while the last two
terms are the dipole-dipole and external field energies.
This functional replaces Eqs. (1) and (2) when the reso-
lution is increased from rv to the dipolar coherence length
�d � 
 �h=2m�

�������������
�k="d

p
. At the A-B interface one has [10]

d̂d � R
$
� ŝs; 
m̂m	 in̂n� � ŝs � ei�; l̂l � ŝs � 0 (6)

as boundary conditions, where ŝs is the normal of the
interface. The rotation matrix R

$
and the phase angle �

are quantities appearing in the B-phase order parameter
A�j � �Bei�R�j. On the A-phase side the role of the
phase angle is played by the rotation angle of m̂m and n̂n
around l̂l. The boundary conditions (6) imply the coher-
ence of the phase angle across the interface.

We calculate the order parameter in the surface sheet
by minimizing the total energy F numerically. The main
assumption is that the solutions are homogeneous in the
(radial) x direction and periodic in the perpendicular
(azimuthal) y direction. Locally these assumptions are
approximately satisfied everywhere except near points
where new vorticity enters the sheet. The velocities far
above and below the sheet satisfy jv1B � v1A j � 2�0=Ly
[or Ly � 2�0=
�r�] when there are two circulation
quanta per period Ly. Since the velocity is effectively
screened on the A-phase side by vorticity, we can take
v1A � 0. The experiment is performed in a magnetic field
H k ẑz which locks d̂d ? H [11]. Since the variation of d̂d
has only a minor effect, we approximate the B phase R

$

with a constant. In contrast, the phase field �
y; z� on the
B-phase side has to be properly included, via fB �
1
2�s
vsB � vn�

2 and vsB � 
 �h=2m�r�. Otherwise, a sur-
face vortex sheet is not stable, as is the case for a sheet
which would coat a solid container wall [4].

Depending on the density of vorticity in the surface
sheet, we obtain two different textures which both incor-
porate 1

2 -quantum vortex units. These textures are inde-
pendent of the initial ansatz, i.e., whether a two-quantum
vortex line or one period of the bulk vortex sheet is placed
above the A-B interface at the start of the iterative energy
225301-2
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minimization. This means that the bulk structures lose
their identity and transform at the A-B interface to sur-
face sheet textures.

The low-density texture in Fig. 2 has all the vorticity
aligned on the A-B interface. It separates into two com-
posite one-quantum vortices. These consist of two
1
2 -quantum cores, although the vorticity r� vsA (not
shown) cannot be divided into distinct 1

2 -quantum units.
At high density a different packing of the vorticity be-
comes energetically favorable. The resulting texture in
Fig. 3 has two 1

2 -quantum cores on the A-B boundary
and the remaining circulation localized as a one-quantum
vortex above the A-B interface. Here the vorticity r�
vsA is maximized in the 1

2 -quantum regions. The distin-
guishing feature of the different vortex components is the
solid angle which their orientational distribution of l̂l
covers. For instance, the circular one-quantum vortex
above the A-B plane in Fig. 3 includes all orientations
of the positive hemisphere with respect to the x axis,
while the two 1

2 -quantum vortices each cover one quadrant
on the negative hemisphere.

The first-order transition between the two textures
takes place at Ly � 5:7�d or when the velocity difference
in shear flow jv1B � v1A j � 2:8 mm=s. This value is in the
middle of our measuring range. In the calculations the
transition is hysteretic, especially on moving from high
to low density. Transitions between the two textures are
thus expected as a function of � and r: The density of the
surface vorticity increases with r as 1

2�r=�0. Thus, at
high � one expects to find the low-density texture in the
center and the high-density one outside a critical radius.
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FIG. 2 (color). Orbital texture of the surface sheet at low
density of vorticity (Ly � 8�d) in a frame where vn � 0. The
cones point along l̂l and their yellow stripes indicate the
rotation of m̂m and n̂n around l̂l. On the A-B plane (x-y plane) l̂l
is parallel to the interface [Eq. (6)]. Its orientations there are
shown in the diagram on the bottom. The four highlighted
regions (l̂l � �x̂x) are the centers of 1

2 -quantum cores which
pairwise form one-quantum composites. Two 1

2 -quantum cores
in one pair are separated by dc � 0:26�d 	 0:135Ly �
0:0027L2

y=�d, when 5:5�d � Ly � 20�d.
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Transfer of vorticity across A-B interface.—Our NMR
measurements of the two-phase sample show that the A-B
interface is stable up to high rotation. Ultimately, at a
critical angular velocity �c, which corresponds to a
critical B-phase superflow velocity vc � �cR with re-
spect to the container wall at r � R, the A-B interface
undergoes an instability and a small number of circula-
tion quanta manage to cross the interface and form the
first vortex lines in the B phase. An analysis of this event
as a function of temperature and barrier field shows that
vc is determined by the hydrodynamic rigidity of the
interface, on which the texture of the surface vortex sheet
has little effect. The upper limit for the density of vor-
ticity in the surface sheet is thus placed by the shear-flow
instability. With our solenoidal barrier magnet, this
means that �c & 1:6 rad=s. If the rotation is increased
above �c, then the instability occurs repetitively at the
constant critical velocity vc, as analyzed in Fig. 4.

From Fig. 4 it is concluded that the number of circu-
lation quanta �N, which is transferred across the A-B
interface in one event, can be either odd or even.
Measurements accumulated in the constant conditions
of Fig. 4 on more than 200 instability events display a
smooth probability density distribution P
�N�, which is
centered around h�Ni � 8 and where both odd and even
values of �N are equally likely. This indicates that the
vorticity from the bulk A phase breaks through the A-B
interface as single quanta, although the source object, the
A-phase vortex, is doubly quantized. Thus, after an in-
stability event the number of quanta in the B-phase sec-
tion of the sample can be odd, while it is in the bulk A
phase even. This means that one unpaired quantum must
be accommodated and stored in the surface sheet in stable
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FIG. 3 (color). Orbital texture of the surface sheet at high
density of vorticity (Ly � 5�d). With increasing density, the
two 1

2 -quantum cores in the center of Fig. 2 form a one-quantum
composite, a circular meron, which pops above the A-B plane,
as seen in this figure. The highlighted regions on the A-B plane,
the two outermost 1

2 -quantum vortices from Fig. 2, are now
isolated, but weakly bound by the meron above the A-B inter-
face. The separation between the 1

2 -quantum cores is dc �
0:0743�d 	 0:507Ly, when 2�d � Ly � 7:5�d.
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FIG. 4. NMR measurements on the shear-flow instability of
the A-B interface provide information on the A-phase surface
vortex sheet. (A) NMR absorption spectra of 3He-B in the
vortex-free state (N � 0) and with 69 vortex lines (N � 69).
The ratio of the Larmor and counterflow peak heights, mea-
sured at constant conditions (at � � �ref <�c), is a linear
function of N. (B) A repetitive sequence of instability events
with increasing �. The data points plot the peak height ratio
from NMR spectra measured at �ref . The spacing of the
horizontal grid lines is the calibrated equivalent of one vortex
and yields the number of new B-phase vortex lines �N created
in each instability event (explicitly given at each discontinuous
step). The dashed vertical lines (and arrows in panel D) denote
the � values where the Larmor peak height rises abruptly
while � is slowly increased by a small increment. The sloping
dashed line is a fit through the corner points and defines the
effective radial location Reff of the instability: N �

2�=�0�R

2
eff
���c�. (C) One of the instability events in

greater detail. The resolution allows us to conclude that �N
is a small random number, which can be even or odd.
(D) Discontinuous superflow velocity with increasing � at r �
Reff : v � jvsB � vnj � �Reff � �0N=
2�Reff�. The horizontal
dashed line is equivalent to the sloping dashed line in panel B
and defines the mean critical velocity vc.
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state. These properties remain unchanged if the A-phase
section of the sample is arranged to support the bulk
vortex sheet, in any of its different global configurations,
as explained in Ref. [7]. The measurements support the
conclusion from the texture calculations that, compared
to the bulk A-phase vortex textures, the surface sheet is
made up from smaller building blocks and has autono-
mous structure, independently of the bulk vortex textures
above the A-B interface. The experiments cannot as yet
distinguish between the two calculated textures, but in
225301-4
both cases the vorticity can be combined to one-quantum
units which allow the transfer of vorticity from the A to
the B phase.

Discussion.—Stable vortex sheets are discussed in co-
herent quantum systems with a multicomponent order
parameter. So far, two examples have been experimen-
tally identified, both in anisotropic superfluid 3He-A,
namely, the bulk vortex sheet [6] and the present surface
sheet. The stability of their structures is based on different
principles. The bulk sheet is topologically stable: Its
linear quantized vorticity consists of one-quantum build-
ing blocks, known as merons or Mermin-Ho vortices,
which come pairwise as a combination of a circular and
a hyperbolic unit. These are confined within a domain-
wall-like planar defect. In the surface sheet the quantized
vorticity is confined to two dimensions by the hydro-
dynamic binding of the circulation to the interfacial
boundary. The texture is made up of 1

2 -quantum building
blocks to satisfy the in-plane boundary condition of the
orbital anisotropy axis l̂l at the A-B interface [Eq. (6)]. The
two calculated textures are the first with experimental
basis, where fractionally quantized units appear in 3He
superfluids, since so far the predicted isolated 1

2 -quantum
vortex [12] has not been observed in 3He-A.

This collaboration was carried out under the EU-IHP
ULTI-3, the ESF COSLAB, and ESF VORTEX
programs.
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