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Nonequilibrium electron transport in two-dimensional nanostructures modeled using Green’s
functions and the finite-element method
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We use the effective-mass approximation and the density-functional theory with the local-density approxi-
mation for modeling two-dimensional nanostructures connected phase coherently to two infinite leads. Using
the nonequilibrium Green’s-function method the electron density and the current are calculated under a bias
voltage. The problem of solving for the Green’s functions numerically is formulated using the finite-element
method~FEM!. The Green’s functions have nonreflecting open boundary conditions to take care of the infinite
size of the system. We show how these boundary conditions are formulated in the FEM. The scheme is tested
by calculating transmission probabilities for simple model potentials. The potential of the scheme is demon-
strated by determining nonlinear current-voltage behaviors of resonant tunneling structures.
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I. INTRODUCTION

Two-dimensional ~2D! nanodevices are structures
which electrons move in a restricted nanometer-size a
The phase-coherence length of electrons is of the order o
dimensions of the device. Electron transport through nano
vices cannot be modeled using the traditional descrip
based on diffusion or Boltzmann equations. One has to u
method which takes the quantum-mechanical character o
carriers, e.g., quantum interference, explicitly into accoun1

Nanodevices are fabricated using semiconduc
heterostructure techniques. A layer of semiconductor~e.g.,
AlGaAs! is grown on top of another semiconductor~GaAs!
with molecular-beam epitaxy. The two semiconductors h
different band gaps so that electrons accumulate in the
tential well at the semiconductor interface and form a
electron gas. Above the semiconductor layer metallic ga
are fabricated. Applying voltage on them the electron mot
can also be restricted in the horizontal direction and nano
vices, such as quantum point contacts and quantum dots
created.

The quantum-mechanical modeling of 2D nanostuctu
is usually based on the effective-mass approximation. For
ground-state carrier distribution one can employ, for e
ample, Monte Carlo methods2 or density-functional theory
~DFT!.3 The description of isolated structures is rath
straightforward because the system is finite and all the e
tron states can be calculated. Often the nanodevice is
nected to a measuring system by leads and the cur
through the system is measured. If the connection is w
the nanostructure can still be approximated as an isol
system, but in the case of strong coupling the combin
nanostructure-leads system has to be described. In this
the leads can have a considerable effect on the electr
structure of the nanodevice. The electronic structure of
kind of open system can be obtained using DFT by calcu
ing the wave functions in the scattering formalism using
Lippmann-Schwinger equation.4 The method also relates t
the conductance of the system in the limit of zero bias. A
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other possibility is to use DFT combined with the noneq
librium Green’s-function~NEGF! method.5 In this scheme
the wave functions are not calculated explicitly in the dev
region. The NEGF approach also enables the addition o
bias voltage between the leads and the calculation of
current through the system also in the nonequilibrium sta

The electronic-structure calculations using the Gree
functions demand extensive computer resources. There
the numerical method for the Green’s-function implemen
tion has to be chosen carefully. There is a wide range
different numerical methods available today for electron
structure calculations, e.g., the finite-difference method,6 the
linear combinations of atomic orbitals method, the wave
method,7 and the plane-wave method8 among the most popu
lar ones. Previously, the Green’s-function method coupled
DFT has been used in nanostructure calculations emplo
atomic orbitals,9,10 localized optimized orbitals in rea
space,11 Gaussian orbitals,12 or wavelets13 as basis functions

In the present work we have adopted the finite-elem
method ~FEM! to study 2D nanostructures within th
effective-mass theory and using the DFT-NEGF schem
Previously, in electronic-structure calculations the FEM h
been used, for example, in Refs. 14–18. The main adv
tages gained by the FEM in the present context are the
sibility to control the accuracy of the approximation v
mesh refinements, the ability to simulate easily different g
metrical configurations of the system, and the ease in
treatment of the boundary conditions. Moreover, the eval
tion of the basis functions is fast and the ensuing spa
linear systems allow the use of fast sparse solvers. In p
tice, we have chosen to use piecewise polynomials as b
functions. The polynomials are very fast and stable to eva
ate in any computational environment. The approximat
properties of the polynomials are well known and seve
error bounds are available.19 In the FEM the open boundar
conditions are easier to implement than in the fini
difference method1 and in the basis set methods9,10,13 in
which they are derived by first writing down the infinit
discretization matrix and then cutting out the central a
from it. In the FEM these boundary conditions are written
©2004 The American Physical Society25-1
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a simpler and more intuitive way as will be shown in th
work.

We use effective atomic units which are derived by p
ting the fundamental constantse5\5me51, and the mate-
rial constants, the effective electron mass and the dielec
constantm* 5e51 respectively. The effective atomic uni
are transformed to the usual atomic units using the relat

Length: 1a0* 51
e

m*
a0'

e

m*
~0.529 177310210!m,

Energy: 1 hartree* 51 Ha* 51
m*

e2
Ha

'
m*

e2
27.2116 eV,

Current: 1 a.u.* 51
m*

e2
a.u.'

m*

e2
6.6231 mA.

The organization of the present paper is as follows.
Sec. II. we present our 2D nanostructure model and exp
how the Green’s functions are used in the electronic-struc
and current calculations. In Sec. III we formulate the solut
of the Green’s functions within the FEM. Finally, in Sec. I
we deal with our test cases, which include confining well a
bottleneck model potentials and double-wall barrier syste
Section V contains the conclusions.

II. MODEL AND GREEN’S-FUNCTION FORMULATION

A. The model for two-dimensional nanostructures

In real nanodevices electrons of the 2D electron gas ar
a potential well at the interface between two semiconduct
The electron density in the well is neutralized by a positiv
ionized donor layer separated from the potential well. T
lateral confinement of electrons is obtained by gate voltag
Electrons are in practice in the ground state with respec
the motion perpendicular to the interface. Therefore
model is strictly two dimensional.

A schematic sketch of the model is in Fig. 1. It shows t
region of interest between two semi-infinite leads. The
tential profile is a combination of interactions between el
trons and the positive constant background charge~jellium!,
and the external potential caused by the gate voltages. T
the layer of ionized donors and the 2D electron layer co
cide in our model. In many models the potential profile

FIG. 1. Model nanostructure between two infinite leads.
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approximated using a harmonic potential profile.3,20 In our
model this approximation cannot be used, because we s
for the electrostatic potential of an infinite system requiri
that the system is charge neutral. In order to keep the mo
simple the confinement of the electrons is established
shaping the background charge and, optionally, by exte
potentials in certain regions of the system.

We divide the infinite system into three separate area
shown in Fig. 1, the central areaV, the left regionVL , and
the right regionVR . We denote the boundary between t
regionsV and VL as ]VL and between the regionsV and
VR as ]VR . The Green’s functions are calculated in th
regionV. ]VL and]VR are nonreflecting open boundarie
On the other two boundaries]VP1/P2, which are far enough
from the important device region, the potential is assumed
be infinite, so that the Green’s functions vanish there.

We solve for the self-consistent electron structure of
system iteratively. The electron density is calculated from
Green’s functions. The effective potential is calculated fro
the electron density as usual in the DFT within the loc
density approximation~LDA !. After mixing the new effec-
tive potential with potential from the previous iteration th
electron density is recalculated. The loop is repeated u
convergence is achieved.

The effective potential has four terms

Ve f f5Vc1Vxc1Vbias1Vgate, ~1!

where Vc and Vxc are the Coulomb and the exchang
correlation potentials arising from the charge distributio
respectively. The calculation ofVc is discussed below in
more detail. ForVxc , we use the recent 2D-LDA functiona
by Attacaliteet al.21,22

Vbias takes care of the boundary conditions under the b
voltage.5 The total electrostatic potential has different leve
in the right and left leads. This introducesVbias as a linear
ramp potential overV. In the regionsVL and VR , Ve f f is
calculated as a potential of the infinite~jellium! wire. Then
Ve f f is also continuous ifV is large enough, so that th
electron density in]VL/R is close to the electron density o
an infinite wire. If this is not the case a discontinuity caus
unphysical effects near the boundaries]VL/R .

The ensuing energy scheme is shown in Fig. 2. Also
Fermi levels in the right and left leads differ by the appli
bias voltageDVbias . Vgate is an external gate potential. Us
ing gate voltages it is possible to increase or decrease

FIG. 2. Effective potentials and Fermi levels under the b
voltage.
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potential in certain regions, for example, to increase the
tential walls and to decrease the potential wells of a b
jellium system.

Below we use a notation in which a point inside the tw
dimensional regionV is denoted byr and a point outside the
regionV in regionVR or VL by r e . A point on the boundary
]VL is r L and a point on]VR is r R .

B. Green’s functions in electronic-structure calculations

We use Green’s functions in calculating the electro
structure and the current under an external bias voltage.
theory is explained in more detail in Refs. 1 and 5. T
electron density is calculated from the Green’s functionG,.
In order to obtainG, one has to solve first for the retarde
Green’s functionGr from

@v2Ĥ~r !#Gr~r ,r 8;v!5d~r 2r 8!, ~2!

where v is the electron energy andĤ is the DFT Hamil-
tonian of the system,

Ĥ~r !52 1
2 ¹21Ve f f~r !. ~3!

In this caser is a two-dimensional variable. Its componen
along and perpendicular to the leads arex andy, respectively.
Gr is zero on the boundaries parallel to the leads~see Fig. 1!.
If v is smaller than the bottom of the potentialVe f f in the
lead Eq. ~2! gives exponentially decaying solutions ther
Otherwise the solution oscillates with a very slowly decay
amplitude to the infinity. In order to ensure this propertyv
has a small imaginary partv5v81 ih. ih takes also care o
separation between retarded and advanced Green’s func
In final resultsh→01 .

The form ofGr(r ,r 8) in a uniform jellium wire is shown
in Fig 3. The real part has a pole atr 5r 8, while the imagi-
nary part behaves smoothly everywhere. This is why
imaginary part is much easier to approximate numerica
than the real part.

In equilibrium, when the Fermi functions inVL and VR
are identical,f L(w)[ f R(w), we obtain

G,~r ,r 8;v!52 f L/R~v!Gr~r ,r 8;v!. ~4!

This equation is also valid under a bias voltage at energiev
for which f L(v)5 f R(v) ~in practice,f L/R51 for those en-
ergies!. If Eq. ~4! is not applicable,G, has to be calculated
in a more complicated way. Equation~2! can be reformulated
using the so-called retarded self-energies of the leads,SR

r

andSL
r , as

@v2Ĥ02SL
r ~v!2SR

r ~v!#Gr~r ,r 8;v!5d~r 2r 8!. ~5!

Above, Ĥ0 is the Hamilton operator for the isolated centr
areaV. In practice,SL/R can be calculated from the bound
ary conditions for the Green’s functions at]VL/R . SL/R are
functions with nonzero values only at the boundaries]VL/R .
Next we define the functionsGL/R as

iGL5SL
r 2SL

a52i Im~SL
r !,
11532
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iGR5SR
r 2SR

a52i Im~SR
r !. ~6!

SL/R
a are the self-energies for the advanced Green’s func

Ga5(Gr)* . One can then write the electron density as t
sum of the electron flows from the leads to the regionV,
using

G,~r ,r 8;v!52 i f R~v!E
]VR

E
]VR

Gr~r ,r R ;v!GR~r R ,r R8 ;v!

3Ga~r R8 ,r 8;v!drRdrR8

2 i f L~v!E
]VL

E
]VL

Gr~r ,r L ;v!GL~r L ,r L8 ;v!

3Ga~r L8 ,r 8;v!drLdrL8 , ~7!

wheref R/L are the Fermi functions in the right and left lead
This equation has to be used in nonequilibrium situatio
when f RÞ f L .

Equation~7! corresponds to the electron density due
the states extending to infinity in the leads. Equation~4!
includes also the electron density of possible bound sta
which are localized nearV and decay exponentially in th
leads.

FIG. 3. Real~a! and imaginary~b! parts of the Green’s function
Gr(r ,r 8) for a uniform jellium wire. r 5(x,y) and r 8
5(21.6,15.4)~the position of the pole!.
5-3
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In order to calculate total electron density we integr
over the electron energyv,

r~r !5
21

2p E
2`

`

Im@G,~r ,r ;v!#dv. ~8!

We use both equations~4! and ~7! in this integration. Equa-
tion ~4! is analytic in the upper half of the imaginaryv plane
whereas Eq.~7! has poles below and above the realv axis.
Thus, using Eq.~4! it is possible to transfer the integral pa
from the real axis to the complex plane. Our integration p
is shown in Fig. 4. The first part is a semicircleCI in the
complexv plane using Eq.~4! and it takes care of the pos
sible bound states below the energy bands of the leads.
rest of the integration,CII , is close to the real axis and the
Eq. ~7! is used. On the semicircle only few integration poin
are needed because the rapid variations ofG, are smeared
out when the integration leaves the real axis. This is speci
useful for the bound states, which give rise to sharp pe
near the real axis.

Computationally, it is faster to solve forG, from Eq. ~7!
than from Eq.~4!. Equation~4! results in the inversion of the
entire matrix, because one needsGr(r ,r 8) in all the discre-
tion points of V. Electron density in Eq.~8! is calculated
using the diagonal entries of the imaginary p
Im@Gr(r ,r )#. Inversion of the matrix using direct sparse ro
tines from HSL~Ref. 23! occurs as follows. First one pe
forms the symbolic analysis and factorization to produce
ordering that reduces the fill-in. After that a numerical fa
torization with pivoting is performed producing the Choles
factor of the matrix. The set of linear equations with differe
right-hand sides are solved. The number of equation is e
to the dimension of the matrix. Equation~7! needs only the
Green’s functionsGr(r ,r 8) for r 85r L/R on the boundaries
]VL/R . This means that after factorization one has to so
for a set of only as many linear equations as there are
cretization points on]VL/R .

For 2D systems the use of Eq.~4! is justified because the
analytic continuation of the integrand reduces the numbe
points needed in the numerical integration of Eq.~8! and
because the discretization error is smaller for Eq.~4! than for
Eq. ~7!. Namely, only the imaginary part ofGr is used in Eq.
~8! so that the pole of Re(Gr) does not cause any majo
numerical problems if Eq.~4! is used.

FIG. 4. Integration path used in Eq.~8!.
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C. Electric current

The electric current is also calculated using the Gree
functions. The electron-tunneling probability through t
central region is obtained from

T~v!5E
]VL

E
]VL

E
]VR

E
]VR

GL~r L ,r L8 ;v!Gr~r L8 ,r R ;v!

3GR~r R ,r R8 ;v!Ga~r R8 ,r L ;v!drLdrL8drRdrR8 , ~9!

and the total current is calculated integrating over the ene
v and taking care of the electron occupations in both lea
In the effective atomic units the result is

I 5
1

pE2`

`

T~v!@ f L~v!2 f R~v!#dv. ~10!

III. FINITE-ELEMENT METHOD FOR SOLVING
GREEN’S FUNCTIONS

A. Variational formulation

The most demanding computational task is to find
Green’s function at different energies as presented above
this end, we first divide the domain of the problem into tw
disjoint parts, the computational domainV and the exterior
domain Ve. Only the computational domain is discretize
whereas the exterior is taken care of by the correspond
Green’s function~see below Sec. III B!. First, we cast Eq.~2!
into a variational, or weak, formulation for the domainV.
During the derivation we frequently make use of the Gree
formula

E
V
“u•“vdr5E

]V

]u

]n
vds2E

V
v¹2udr, ~11!

valid for a large class of functions, see Ref. 24. Aboven
denotes the outward normal ofV, and the line integration is
taken in the counterclockwise direction around the 2D a
V.

To proceed, we multiply Eq.~2! by a sufficiently smooth
function v and integrate the resulting identity overV giving

E
V

v~r !@v2Ĥ~r !#Gr~r ,r 8;v!dr

5E
V

v~r !H 1

2
¹2Gr~r ,r 8;v!1@v2Ve f f~r !#

3Gr~r ,r 8;v!J dr

5E
V

v~r !d~r 2r 8!dr5v~r 8!. ~12!

The use of the Green’s formula of Eq.~11! gives
5-4
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E
V

v~r !
1

2
¹2Gr~r ,r 8;v!dr

52E
V
“v~r !•

1

2
“Gr~r ,r 8;v!dr

1E
]VL

v~r L!
1

2

]Gr~r L ,r 8;v!

]nL
drL

1E
]VR

v~r R!
1

2

]Gr~r R ,r 8;v!

]nR
drR . ~13!

Thus, the original problem of Eq.~2! is equivalent to the
formulation

E
V
H 2“v~r !•

1

2
“Gr~r ,r 8;v!

1v~r !@v2Ve f f~r !#Gr~r ,r 8;v!J dr

1E
]VL

1

2

]Gr~r L ,r 8;v!

]nL
v~r L!drL

1E
]VR

1

2

]Gr~r R ,r 8;v!

]nR
v~r R!drR5v~r 8!, ~14!

for any sufficiently smooth functionv.
In order to obtain a solvable system, the boundary con

tions must be supplied at the boundaries]VL and]VR . For
conciseness we discuss only the case of]VL , the other case
]VR being similar. Consider the exterior problem

@v2Ĥ~r e!#ge~r e ,r e8 ;v!5d~r e2r e8!, r e8PVL ,

ge~r e ,r e8 ;v!50, r eP]VL ,]VP1/P2 , ~15!

for the Green’s functionsge of the semi-infinite lead. In
boundaries]VP1/P2 ge has the same boundary conditions
Gr . The boundary condition in]VL makes equations below
simpler, although it is possible to write them without th
restriction.

It follows that any sufficiently smooth functionu can be
written in the form

u~r e8!5E
VL

u~r e!d~r e2r e8!dre

5E
VL

u~r e!@v2Ĥ~r e!#ge~r e ,r e8 ;v!dre

5E
VL

u~r e!H 1

2
¹2ge~r e ,r e8 ;v!

1@v2Ve f f~r !#ge~r e ,r e8 ;v!J dre ~16!

for r e8PVL . Using the Green’s formula~11! for the exterior
domainVL twice for functionsu satisfying the same bound
11532
i-

ary conditions asGr , i.e., u(r e)50, whenr eP]VP1 /P2
and

lim
x→2`

uuu5 lim
x→2`

u“uu50, we can write

E
VL

u~r e!
1

2
¹2ge~r e ,r e8 ;v!dre

52E
VL

1

2
“u~r e!•“ge~r e ,r e8 ;v!dre

1E
]VL

1

2
u~r L8 !

]ge~r L8 ,r e8 ;v!

]nL8
drL8

5E
VL

1

2
ge~r e ,r e8 ;v!¹2u~r e!dre

1E
]VL

1

2
u~r L8 !

]ge~r L8 ,r e8 ;v!

]nL8
drL8

2E
]VL

1

2

]u~r L8 !

]nL8
ge~r L8 ,r e8 ;v!drL8 , ~17!

so that

u~r e8!5E
VL

ge~r e ,r e8 ;v!@v2Ĥ~r e!#u~r e!dre

1E
]VL

1

2
u~r L8 !

]ge~r L8 ,r e8 ;v!

]nL8
drL8

2E
]VL

1

2

]u~r L8 !

]nL8
ge~r L8 ,r e8 ;v!drL8 . ~18!

Taking u5Gr we have that@v2Ĥ(r e)#Gr(r e ,r 8;v)50
for r ePVL andr 8PV. Since in additionge50 on ]VL we
have by Eq.~18!,

Gr~r e8 ,r 8;v!5E
]VL

1

2
Gr~r L8 ,r 8;v!

]ge~r L8 ,r e8 ;v!

]nL8
drL8 ,

r e8PVL . ~19!

Now the representation formula~19! can be used to supply
the boundary condition to Eq.~14! ~see Ref. 25!.

Differentiating Eq.~19! with respect tor e8 and lettingr e8
→r LP]VL we obtain the term corresponding to the le
boundary]VL in Eq. ~14! as

E
]VL

1

2

]Gr~r L ,r 8;v!

]nL
v~r L!drL

5E
]VL

E
]VL

1

4
Gr~r L8 ,r 8;v!

]2ge~r L8 ,r L ;v!

]nL]nL8
v~r L!drL8drL

5^ŜLGr ,v&. ~20!

It is possible to make the similar derivation for the right le
to obtain ^ŜRGr ,v&. The terms^ŜLGr ,v& and ^ŜRGr ,v&
which set the boundary conditions are the ones which m
5-5
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difference betweenĤ and the isolated HamiltonianĤ0.
When we compare Eqs.~5! and ~14! we see that we have
derived here the variational form for the self-energy opera
ŜL . It includes line integrals over the boundary]VL to-
gether with a trace mapping from functions onV to the
functions on]VL . The functionSL

r in Eq. ~6! is given by

SL
r ~r L ,r L8 !5

1

4

]2ge~r L8 ,r L ;v!

]nL]nL8
, ~21!

with zero extension outside the boundary]VL .
The mapping generated above by Eq.~20! is called the

Dirichlet-to-Neumann mapping since in general it maps
Dirichlet datumu of a solution to a partial differential equa
tion to the corresponding Neumann datum]u/]n.

B. Exterior Green’s function

The exterior Green’s function for the semi-infinite lea
can be calculated numerically as the surface Green’s func
of a periodic system.13 In the present work the potential i
uniform in the leads along the lead axis. Therefore we
solve for the isolated Green’s function using the analy
one-dimensional solution along the lead and the numer
transverse wave functionsxm(y).1 The ensuing exterior
Green’s function for the quasi-two-dimensional semi-infin
wire is

ge5 (
m51

`
2 ixm~y!xm* ~y8!

km
~eikm(x2x8)2eikm(x1x8)!,

~22!

wherexm(y)’s are solutions to the Kohn-Sham equation

S 2
1

2
¹22Ve f f~y! Dxm~y!5emxm~y!, ~23!

with

km5A2~v2em!. ~24!

We solve Eq.~23! using self-consistency iterations for th
electron density and the potential profileVe f f(y). As ex-
plained before we use a model in which the positive cha
forms a thin wire and the electron wave functions spread
of this charge. The effective potentialVe f f consists only of
Vxc andVc , and no external potential is applied. In practi
the summation in Eq.~22! is truncated typically after a few
tens of states so that the results are well converged.

The charge densities resulting from this calculation
used in the boundary conditions when calculating the C
lomb potential of the nanosystem. The total charge per
length is zero in an infinite wire, but there are local var
tions in the charge density in the transverse direction. As
example, we show in Fig. 5 the effective potential and
positive and negative charge densities in a case with
transversal modes in the wire. A cut perpendicular to the w
axis is shown.
11532
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C. Finite-element discretization

To obtain a numerical approximation for the Green
function Gr in the computational domainV we select a
finite-dimensional spaceSh defined onV and project our
problem of Eq.~14! into Sh by solving forGh

r PSh such that

E
V
H 2

1

2
“Gh

r ~r ,r 8;v!•“vh~r !

1@v2Ve f f~r !#Gh
r ~r ,r 8;v!vh~r !J dr

1^ŜLGh
r ,vh&1^ŜRGh

r ,vh&5vh~r 8! ~25!

for everyvhPSh .26 A matrix equation is obtained by selec
ing a basis$f i% i 51

N for Sh and expandingGh
r in the basis,

Gh
r ~r ,r 8!5 (

i , j 51

N

gi j
r f i~r !f j~r 8!. ~26!

Selectingvh5fk in Eq. ~25! we obtain

(
i , j 51

N

gi j
r f j~r 8!H E

V
F2

1

2
“f i~r !•“fk~r !

1@v2Ve f f~r !#f i~r !fk~r !Gdr1^ŜLf i ,fk&

1^ŜRf i ,fk&J 5fk~r 8!. ~27!

Denoting

FIG. 5. Electron density~solid line!, positive background charge
~dotted line!, andVe f f ~dashed line! for an infinite uniform wire.
5-6
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aik5E
V
S 2

1

2
“f i~r !•“fk~r !

1@v2Ve f f~r !#f i~r !fk~r ! Ddr

1^ŜLf i ,fk&1^ŜRf i ,fk&, ~28!

and

mkl5E
V

fk~r 8!f l~r 8!dr8, ~29!

we have that

(
i , j 51

N

gi j
r mjl aik5mkl . ~30!

Exploiting the symmetry of the coefficientsai j we see that
gi j ’s are the entries in the inverse of the matrix given by E
~28!.

We connectSL/R to the discretized forms as

SL/R,i , j5^ŜL/Rf i ,f j&. ~31!

Further, let us denote

Gh
a5(

k,l
gkl

a fk~r !f l~r 8! ~32!

and

ĜL/R52 Im~ŜL/R
r !, ~33!

with

GL/R,i j 5^ĜL/Rf i ,f j&5GL/R, j i , ~34!

since ĜL/R is symmetric. Now, for example, the electro
tunneling probability of Eq.~9! can be written in the dis-
cretized form as

T~v!5 (
i , j ,k,l 51

N E
]VL

E
]VL

E
]VR

E
]VR

GL~r L ,r L8 !gi j
r f i~r L8 !f j

3~r R!GR~r R ,r R8 !gkl
a fk~r R8 !f l~r L!drLdrLdrRdrR8 ,

5 (
i , j ,k,l 51

N

^ĜLf i ,f l&gi j
r ^ĜRfk ,f j&gkl

a

5 (
i , j ,k,l 51

N

GL,l i gi j
r GR, jkgkl

a . ~35!

D. Finite-element basis

So far we have not touched the subject of selecting
basis functionsf i in Sec. III B above and thus the spaceSh .
In principle, we could select any computable set$f i% i 51

N ,
but adhere to a traditional choice in the finite-element pr
tice, namely, to the set of piecewise polynomial functio
The basis functions are constructed as follows. Assume
11532
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.
at

V is partitioned into a simple mesh ofN nodes andM poly-
gonsTi conforming to the usual requirements imposed o
finite-element mesh. These polygons can have a variet
shapes but the simplest choice of triangles in two~and tetra-
hedral in three! dimensions will serve our purposes. W
choose the basis functionsf i to be element-wise linear func
tions that have the value 1 in a single node of the mesh
0 in other nodes~see Fig. 6!. The corresponding finite-
element spaceSh is

Sh5H vh5(
i 51

N

cif i uciPCJ 5$vhPC~V!uvhuTi
PP1~Ti !%,

~36!

whereC(V) denotes the set of continuous functions inV
and P1(Ti) is the set of polynomials of degree one in th
polygonTi .

An element-wise polynomial basis has several adv
tages. First, polynomials are fast to evaluate and they ca
integrated exactly on a suitable reference element. Sec
the piecewise nature allows the use of a local basis ensu
that the matrix (ai j ) i , j 51

N is very sparse. Third, the accurac
of the discretization can be controlled via mesh refineme
and coarsening.

The local nature of the basis functions gives rise to
sparse matrix. Due to recent developments in linear alge
there are fast direct solvers27 ~also parallel!28,29 for sparse
systems arising from discretization of partial different
equations. Since we must solve for all the coefficientsgi j of
the approximate Green’s functiongh we are faced with the
problem of solvingN linear systems with different right-han
sides. This kind of setting is favorable to direct methods o
iterative ones. Nevertheless, the computation itself is a tim
consuming procedure and cannot be substantially acceler
with the techniques known today.

E. Mesh generation

An important property affecting the quality of the finite
element approximation is the underlying mesh and espec
the shape and the size of individual elements. Several te
niques for mesh generation in two and three dimensions
available. All the techniques have in common that they try
produce meshes with elements of desired local size and
quality. There are also several indicators for evaluating
quality of the shape of a single element. Perhaps the m
common is to require that there are no large angles in

FIG. 6. A linear basis functionf. The function is one in a given
mesh node and descends linearly to zero in the adjacent node
5-7
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element. Typically, the larger the maximal angle of an e
ment is, the worse the resulting approximation will be.

In this work we use Delaunay meshes30 for triangular el-
ements in two-dimensional problems. They are known to
very robust in producing high-quality triangular meshes
different shapes of domains. A Delaunay mesh can be c
acterized as follows. A mesh consisting ofN nodes andM
triangular~or tetrahedral! elements satisfies the Delaunay c
terion if the circumscribeCj of a triangle~or tetrahedron! Tj
of the mesh contains no nodes of the mesh. Meshes sat
ing the Delaunay criterion are called Delaunay meshes.

It can be shown that for a given set of points in a plan
Delaunay triangulation always exists and is even unique w
a minor assumption on the placement of the nodes. Furt
more, among all triangulations of the nodes, the Delau
triangulation maximizes the minimum angle present in
triangulation. The max-min property can be usually cons
ered as a guarantee of high-quality elements.

Unfortunately the Delaunay criterion is not sufficient for
high-quality tetrahedral mesh in three dimensions. This
due to the presence of ‘‘slivers’’ in Delaunay meshes. Th
elements can have very large angles deteriorating the
proximation capabilities, and yet they satisfy the Delaun
property. Therefore alternative techniques must be sough
when producing meshes in three dimensions. Typical
proaches use a mixture of different methods, e.g., oc
methods, advancing front methods, and Delaunay metho

However, it should be noted that the quality of the resu
ing mesh produced by a mesh generation algorithm depe
heavily on the shape of the domain to be meshed. V
simple domains such as cubes and other rectangular dom
are usually well treated by virtually any method, where
more complicated domains having holes and cuts need m
attention.

F. Coulomb interactions

The effective potential is also calculated using the FE
and the same mesh as for the Green’s functions is usedVxc
is simply evaluated in every node point. The potential cha
densities are two dimensional but the Coulomb is treate
three dimensions. In this case it is not efficient to solve
the three-dimensional Poisson equation, but to evaluate
integral

Vc~r !5E r~r 8!2rp~r 8!

ur 2r 8u
dr8. ~37!

Above,r is the electron density andrp is the positive back-
ground charge density. In this work we have linear ba
functions, so that we can calculate Eq.~37!, r 8 being sepa-
rate at each node points, and extrapolate the result to
other points. The extrapolation essentially gives the sa
solution as theL2 projection of Eq.~37!.

The integral is evaluated by integrating basis functions
every element. For elements with no pole (r is not inside the
element!, the integral is evaluated using the Gauss
quadrature rules for triangles.31 Elements which haver in
one corner are evaluated by making a mapping from
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triangle to a square in which the pole disappears.32 If the pole
is inside an element~in the L2 projection it is! the same
mapping works again. In this case the element is divided i
three smaller ones, withr 8 being an interior node.

IV. TEST SYSTEMS

This section is devoted for testing and demonstrating
scheme. First the transmission probability over a given
tential well and through a given bottleneck potential are
termined. The aim of these non-self-consistent calculation
to provide, through the comparison with the exact results
idea of the numerical accuracy of our methods. Therea
we demonstrate the possibilities of the scheme by solv
self-consistently the electronic structure and the current
der a bias voltage for different resonant tunneling system

A. Transmission probability over a potential well

Basic quantum mechanics gives the transmission pr
ability over a potential well~see the inset in Fig. 7! as

T~v!52F11
V0

2sin2@A2~v1V0!L#

4v~v1V0!
G21

, ~38!

where V0 and L are the depth and the length of the we
respectively, andv is the electron energy. Our numeric
approach obeys this result accurately. For example, Fig
gives the transmission probability calculated using Eqs.~9!
and ~35! for a narrow wire with a potential well. For the
energies shown there is only one transverse mode in
wire. The good agreement between the numerical and a
lytic results indicates that the FEM mesh is fine enough.

FIG. 7. Transmission probability over a potential well. The so
line corresponds to the analytic solution of Eq.~38! and the circles
are calculated using the FEM code. In this calculationL510a0* ,
V051 Ha* , the width of the wireW53a0* , and the average dis
tance between the FEM mesh nodesh50.3a0* .
5-8
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B. Transmission probability through a bottleneck potential

Next we study how the FEM node density affects t
results. We calculate the electron transmission probability
a function of energy using different FEM meshes. Our sc
tering potential is a bottleneck shown in Fig. 8. The elect
transmission probability is shown in Fig. 9 as a function
the energy. Stepwise jumps in the transmission probab
mean that new transverse modes emerge with increasing
ergy v. The narrow peaks near the beginning of each s
correspond to the constructive interference of the incid
wave with the wave reflected twice at the lead-bottlene
boundaries.33 Increasing the energy means making the el
tron wavelength shorter so that more points are neede
describe the wave functions. Thus, with a fixed element s
h it is possible to characterize transversal modes up t
certain energy only. Thereafter the transmission probab
collapses due to the loss of numerical stability.

In Fig. 9~a! the size of the elements in each calculation
the same throughout the whole calculation area. Accordin
the two uppermost curves corresponding to the FEM n
distancesh51a0* and h52a0* , we need about four node
between the adjacent zero-value lines of the electron w
function. This means that the FEM node distance ofh
53a0* should give a reasonable result for the first transve
mode. In contrast, the results show large oscillations of
transmission due to discretization errors. The reason for
is that the pole of the real part of the Green’s function is
approximated accurately enough. When determining
transmission the arguments of the Green’s function are
the opposite boundaries@Eq. ~9!#. These Green’s-function
values are calculated by solving a linear equation problem
which one of the arguments ofGr(r ,r 8) is fixed, e.g., on the
left boundary]VL and the other argument runs over t
central region to the right boundary]VR . If the FEM mesh
is not dense enough near the left boundary where the po

FIG. 8. Bottleneck model potential. The potential is const
inside the leads and in the bottleneck between the leads. At
boundaries the potential rises to infinity. The dimensions areL
5H510a0* and W530a0* . The length of the calculation areaS
530a0* . The FEM mesh shown has smaller elements near
boundaries]VL/R .
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a large numerical error propagating to the elements neede
Eq. ~9!.34 In Fig. 9~b! the number of points at the boundarie
]VL/R is larger than inside the calculation areaV. The figure
shows that the effects of the discretization errors are n
strongly reduced at low energies, but the transmission pr
ability at high energies collapses as fast as in Fig. 9. In c
clusion, when one wants to describe the transmission p
ability only up to a certain energy value, the optimum way
choose the sizes of the elements is to use smaller elem
near the boundaries]VL/R than inside the areaV. In this
simple test system the bottleneck potential is relatively wi
but if the bottleneck is narrow in comparison with the rest
the wire, it is reasonable to refine the mesh also in the n
region. Finally, the above refinement is also needed w
calculating the electron density in nonequllibrium using E
~7!. The real part ofGr(r ,r 8) is needed between a point o
the boundary]VL,R ,and an arbitrary point in the centra
regionV.

t
he

e

FIG. 9. Electron transmission probability as a function of t
energy for different FEM meshes.~a! All the elements in each cal
culation are of the same size. The FEM node distanceh51a0*
~solid line!, h52a0* ~dashed line!, and h53a0* ~dotted line!. ~b!
The elements are smaller near the boundaries]VL/R ~see Fig. 8!.
The minimum distancehmin51a0* and the maximum distance
hmax52a0* ~solid line! andhmax53a0* ~dashed line!.
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C. Resonant tunneling through double-barrier
potential systems

1. Symmetric barrier system

In this section we demonstrate the potential of our sche
by showing results of self-consistent electronic-structure
culations for 2D nanostructures under a finite bias volta
We restrict ourselves to zero-temperature calculations.
test system is a double-barrier potential structure, a sc
matic sketch of which is shown in Fig. 10~a!. A jellium wire
is cut by two vacuum regions and additional potential ba
ers are introduced within them in order to adjust the poten
and the transmission. We consider two special cases. Ca
has thinner potential wallsLW

R/L51a0* than case B for which
LW

R/L51.25a0* . This difference means that the connection
the leads differs remarkably in its strength. We make con
with real semiconductor systems by converting our res
from the effective atomic units to the SI units using the
fective mass of electronsm* 50.067 and the dielectric con
stant e512.4 for GaAs. Thena0* 59.779 nm and 1 Ha*
511.8672 meV. The positive background charge den
0.2(a0* )22'231015 m22 corresponds to a reasonable ele
tron density at the GaAs/AlGaAs interface. The ground-st
electron density of the double-barrier system is shown in F
10~b!, exhibiting Friedel oscillations in both leads. The wir
are so thin that only one transverse mode is occupied.

The effective potential along the symmetry axis of t
double-barrier system at zero-bias voltage is shown in F
11~a!. The potential barriers are so small that the quant
dot is strongly connected to the leads. When we add the
voltage to the system, the potential of right lead increa

FIG. 10. Double-barrier potential system.~a! The model. The
gray areas correspond to the positive background charge. At
gaps there is an additional potentialVw52 Ha* . The size of calcu-
lation areaV is 2935(a0* )2, the width of the background charg
W53a0* , and length of the quantum dotL59a0* . Case A has
LW

L/R51a0* and case BLW
L/R51.25a0* . The number of FEM nodes

used in the calculations is 2105.~b! The total electron density a
zero-bias voltage for case A.
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and that of the left lead decreases. The change ofVe f f for
case B is shown in Fig. 11~b!. The maximum bias voltage
applied is small in comparison to the barrier heights. T
potential drop occurs between the potential walls, not in
leads. This is expected because the leads are ballistic,
no scatterers at all. At smallDVbias values the potential in
the quantum dot stays at the level of the potential in the
lead. This is seen in the upper panel of Fig. 11~b!. When
DVbias is large enough the potential in the dot rises close
the mean value in the leads~see the lower panel!. A nearly
inversion-symmetric potential develops. In case A the pot
tial in the quantum dot develops differently. It follow
mainly the potential level of the right lead for all bias vol
ages studied.

The behavior of the potential level in the quantum dot
connected to the occupation of the dot resonance state an
position relative to the lead Fermi levels. Figure 12 sho
the local density of states~LDOS! calculated by integrating
over the quantum dot area. For the zero-bias voltage, b
cases, A and B, have a resonance peak below the Fermi l

he

FIG. 11. Double-barrier potential system B.~a! The zero-bias
voltage effective potential along the symmetry axis. The ene
zero corresponds to the bottom of energy band in an infinite
system with the electron density of 0.2(a0* )2. The Fermi level is
shown by the dashed line.~b! The change ofVe f f due to bias volt-
age. In the upper panelDVbias50.03 Ha* ~0.36 meV! and lower
panelDVbias50.06 Ha* ~0.71 meV!.
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When the biasDVbias is applied the potentials and the Ferm
levels are shifted by1 1

2 DVbias and 2 1
2 DVbias in the left

and right leads, respectively. This defines the so-called
window on the energy axis. At smallDVbias the value of the
resonance peak to case B moves down in energy. The r
nance, which gives a large contribution to the charge in
dot, is below the left Fermi level. The bias-induced cha
redistribution takes place near the left barrier. Thus the
tential in quantum dot stays at the level of the left lea
However, whenDVbias is large enough the resonance pe
enters the bias window, the charge redistribution occurs q
symmetrically at both barriers and the potential level in
quantum dot is in the middle between the left and right le
levels. The resonance peak of case A is wider than tha

FIG. 12. LDOS in the region between the barriers shown in F
10. ~a! LDOS for case A with narrow barriers.~b! LDOS for the
case B with wide barriers. The vertical lines denote the Fermi le
position in the leads. Both in~a! and ~b! the uppermost panel
correspond to the zero-bias calculation, the middle panels
DVbias50.03 Ha* , whereas the lowest panels correspond
DVbias50.06 Ha* .
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case B because the connection to the leads is stronger.
wide resonance enters the bias window at a low bias va
and its position follows the Fermi level of the right lea
Then the bias-induced charge redistribution takes place a
left barrier and the potential level in the dot follows that
the right lead. The asymmetric behavior of the voltage d
in our model systems has analogies with the case of ato
chains between two electrodes.35

The position of the resonance peak relative to the Fe
levels has a large effect on the electron transmission p
ability through the double-barrier potential system. The c
rent flow is due to the states with energies between right
left Fermi levels, i.e., in the bias window. When the res
nance peak moves into this region there is a steep increa
the current. Thereafter the current stays approximately c
stant as a function of the bias voltage. This characteri
behavior of the double-barrier potential is visible in Fig. 1
Case B with the sharper resonance peak has a steeper ra
the current than case A. Moreover, the raise occurs a
higher bias voltage in case B than in case A.

2. Asymmetric barriers

So far both the potential barriers in the system of F
10~a! have been identical. Inspired by the prospect to u
nonsymmetric molecules as rectifiers36,37 we have studied
also double-barrier systems with nonidentical barriers. T
zero-bias conductivities of the cases A and B~see Fig. 13 and
its caption! are 0.060G0 and 0.014G0. These are of the sam
order in magnitude as conductivities calculated for molecu
between electrodes.37 In the next example we have reduce
the height of the second barrier in case A by a factor of 2
order to create an asymmetric system.

The ensuing current-voltage curve is shown in Fig. 1
The curve is asymmetric with respect to the direction of

.

l

to

FIG. 13. Current as a function of the bias voltage for the doub
barrier potential systems shown Fig. 10.~a! Case A with the barrier
width of 1a0* . ~b! Case B with the barrier width of 1.25a0* . The
zero-bias conductivities of case A and B are 0.060G0 and 0.014G0,
respectively.
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applied bias. The double-barrier system shows a clear re
fication effect resembling that for asymmetric molecu
wires.37 The reason for the rectification effect is seen in t
LDOS in the quantum dot given in Fig. 15. When the b
over the system is zero a resonance peak is below the F
level as it was in the previous cases A and B. For posit
bias voltages~the potential is higher in the lower-barrie
side! the resonance peak moves up in energy and the r
nance is emptying of electrons. This causes the increas
the conductivity. In the case of negative bias voltages~the
potential is higher in the higher-barrier side! the resonance
peak follows the Fermi energy of the lower-potential lea
The situation is similar to that of system B above at low bi
The resonance does not enter the bias window as fast a
the case of the positive voltage and the current increa
slowly.

V. CONCLUSIONS

We have developed a computational scheme to mo
two-dimensional nanostructures connected to two se
infinite leads. The electron density and the current are ca
lated self-consistently using the nonequilibrium Green
function approach. The single-particle electron states
handled within the density-functional theory.

We have formulated the problem using the finite-elem
approximation. In this approximation the boundary con
tions are easy to derive and implement. We have shown
derivation of the Dirichlet-to-Neumann boundary conditio

FIG. 14. Current-voltage curve for a double-barrier poten
system with asymmetric barriers.
e
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and the discretized forms of physical quantities such as
tunneling probability.

Tests with model potential systems show the numer
accuracy and its dependence on the finite-element mesh
sen. Especially, we show that for efficient accurate calcu
tion it is important to refine the mesh near the boundar
between central region and the boundaries. Self-consis
calculations for resonant tunneling structures demonst
the efficiency of the scheme.

We have treated systems with up to 10 000 degrees
freedom. Three-dimensional atomistic systems described
the pseudopotentials would need roughly one order of m
nitude more degrees of freedom which is with in present-d
computational capabilities. The present two-dimensio
work is an important step in the development towards thr
dimensional atomistic modeling of nonequilibrium transp
in nanoscale devices.
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FIG. 15. LDOS for the double-barrier potential system w
asymmetric potential barriers. The LDOS corresponds to the qu
tum dot region between the barriers.
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