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Abstract

We discuss the properties of devices of small Josephson junctions in
light of phase fluctuation theory and the energy band structure which
arises from the delocalization of the phase variable. The theory is ap-
plied in the realization of a mesoscopic amplifier, the Bloch oscillating
transistor. The device characteristics and comparison with theory and
simulations are discussed. The current gain of the device in a stable op-
erating mode has been measured to be as high as 30. Measurements on
input impedance and the power gain show that the BOT is an amplifier
designed for middle-range impedances, ranging from 100 kΩ − 10 MΩ.
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1 Introduction

The conjugate nature of charge and phase gives rise to a rich array of physical
phenomena, which have been intensively studied both theoretically and experi-
mentally. The quantum nature of the phase variable was shown in macroscopic
tunnelling experiments [1] and its conjugate relationship to the charge or, more
precisely, the quasicharge has been shown in many consequent studies [2].

One of the consequences of the charge-phase conjugate relationship is the
Coulomb blockade of Cooper pairs which arises in very small Josephson junc-
tions [3]. The system is described in phase or charge space, depending on
which variable is a good quantum number and, consequently, determines the
eigenstates of the quantum system. Associated with the two variables are two
competing energy scales, the charging energy EC = e2/2C and the Josephson
coupling energy EJ . The Hamiltonian for the small Josephson junction has a
periodic potential, hence, Bloch states and a corresponding energy band struc-
ture can be derived − analogously with the conduction electrons in solid state
physics [4, 5].

Incoherent tunnelling, the interaction of tunnelling electrons or Cooper pairs
with the electromagnetic environment, is a strong effect observed in small tunnel
junctions both in the normal and superconducting states [6, 7]. Small tunnel
junctions can be used as sensitive detectors of environmental impedances and
noise sources but, this sensitivity also means that attention to control of the
electromagnetic environment is essential when designing mesoscopic devices.

The Bloch Oscillating transistor is a mesoscopic device which is based on
the dynamics of the Bloch bands in a voltage biased Josephson junction (JJ)
in a resistive environment. The main operating principle was demonstrated in
several articles [8, 9, 10]. The conclusions that can be drawn from these articles is
that the BOT shows considerable current and power gain (∼ 30). Additionally,
the noise temperature at the optimum operation point was observed to be as
low as 0.4 K, although, the theoretical and simulated noise temperature has
been shown to be 0.1 K or even below. The BOT has an input impedance,
which can fairly easily be tailored by fabrication to be in the range 100 kΩ− 10
MΩ. Thus, the BOT is a device suitable for use at mid-range impedances
and it complements the group of basic mesoscopic devices: the single-electron
transistor (SET) - a device for high-impedance applications and the SQUID, a
low impedance device. At this point, we would like to point out that one should
not confuse the BOT device with the Bloch transistor [11], which is a similar
but, fundamentally, a different kind of JJ device where the current of a single
Cooper pair transistor (SCPT) is modulated by a gate voltage.

This paper will briefly review the physics that gives rise to the voltage-
current relation of the Josephson junction in light of both the Bloch band model
and incoherent Cooper pair tunnelling. After the theory, a few observations on
the ”Bloch nose” - a consequence of Bloch Oscillations - will be presented. The
last part of the paper will take on a more device oriented approach with the
discussion of the experiments and the question how well the findings can be
reproduced by theoretical simulations on the Bloch oscillating transistor.
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2 Theory

2.1 Theory of Bloch states

In mesoscopic systems the phase and charge comprise a conjugate pair of quan-
tum variables, analogously with the more familiar space and momentum coor-
dinates. The variables thus satisfy the commutation relation

[φ, Q] = 2ie. (1)

The total classical Lagrangian for a single, isolated Josephson junction can be
written as

L =
Q2

2C
+ EJ cos φ, (2)

which consists of the charging energy due to the capacitance C and the Joseph-
son coupling energy as the potential. From the commutation relation (1) we
can immediately write the quantum mechanical Hamiltonian [5] as

H = −EC
∂2

∂(φ/2)2
− EJ cos φ− }

2e
Iφ + Henv + Hint, (3)

where also the interaction between the driving current and the phase variable
∝ Iϕ, the junction environment energy Henv and the coupling with the environ-
ment Hint have been included. Depending on the theoretical framework used,
some, or none of the last three terms are included.

To set the initial stage, we consider only the first two terms in the Hamil-
tonian, in the case when EC À EJ and the charge is a good quantum number,
thus leading to Coulomb blockade of Cooper pairs and a complete delocalization
of the phase. Equation (3) then takes the form of the familiar Mathieu equa-
tion with the well-known solutions of the form Ψq

n(ϕ) = eiϕq/2eun(ϕ), where
un(ϕ) is a 2π-periodic function and the wave functions are indexed according to
band number n and quasicharge q [12]. More precisely, the Mathieu equation
has also 4π periodic solutions, which correspond to the the case of quasiparticle
tunnelling [13]. The resulting energy band structure is illustrated in Fig. 2. Ver-
ification of the existence of the energy bands has been carried out by different
methods in Refs. [14, 15, 16].

For the opposite limit, EJ À EC , we should index the system eigenstates
according to the phase variable and the charge would be completely delocalized.
This situation corresponds to the classical superconducting state of the Joseph-
son junction, which can also be described in the ”tilted washboard” picture
when including the third term, ∝ Iφ in the Hamiltonian (3). This model can
easily be extended to the well known resistively and capacitively shunted junc-
tion (RCSJ) model, where one includes a dissipative resistor in the circuit. But,
we will not discuss or apply the RCSJ model in this paper as it is mostly used
in the case of large Josephson junctions in the context of macroscopic quantum
tunnelling.
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Next, we consider the Josephson junction in the band picture, when the
phase is delocalized and the state of the system can be described by its quasi-
charge q. For a more realistic situation, we also need to consider the junction’s
coupling to its environment. The detailed and involved calculations for the cases
with ohmic and quasiparticle dissipation can be found in Refs. [5, 13]. The
physics is rich in detail and includes phenomena such as the zero-dimensional
quantum phase transition when the system goes from a superconducting R <
RQ to an insulating state R > RQ [17].

The instantaneous voltage over the junction is given by

V =
dEn(q)

dq
. (4)

We consider the system to be either current or voltage biased, meaning that the
environmental resistor is situated in parallel or in series with the junction (see
Fig. 1). With a steady current I flowing through the junction the quasicharge
evolves according to

dq

dt
= I. (5)

V
x

I

V

I
x

V

I

R

R

Figure 1: Schematic view of the series or voltage bias (left) and the parallel or
current bias (right) configurations as defined in the text.

In the voltage biased case, the voltage over the total system consists of the
voltage drop over the series resistor and the junction voltage

Vx = IR + V. (6)

In the current biased case, where the resistor is parallel with the junction, we
have the relation for the total current

Ix = V/R + I. (7)

Hence, one can freely switch between these two cases if one defines Ix = Vx/R
In practice, we fabricate the resistor in series with the junction, and thus

consider next the former case of voltage bias. If the resistor R is large (compared
to the CB resistance of the junction), we can still think of the junction itself to
be current biased. Hence, if the driving current is low enough, dq/dt ¿ eδE1/},
where δE1 is the gap between the first and second band, the quasicharge q is
increased adiabatically and the system stays in the first band. We are then in
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the regime of Bloch oscillations; the voltage over the junctions oscillates and
Cooper pairs are tunnelling at the borders of the Brillouin zone, or as for the
definitions here (see Fig. 2), at q = ±e. Consequently, the current through the
junction is coherent and the voltage and charge over the junction oscillate with
the frequency

fB = I/2e. (8)

The theoretical Ix − V characteristics for an external current bias thus first
shows an increase of the junction voltage with increasing current but at the
onset of Bloch oscillations, the voltage decreases. If the current I is not adia-
batically small, we can have Zener tunnelling between adjacent energy bands.
The tunnelling is vertical, i.e, the quasicharge does not change. The probability
of Zener tunnelling between bands n− 1 and n when EC À EJ is given by

PZ
n,n−1 = exp

(
−π

8
δE2

n

nEC

e
}I

)
= exp

(
−IZ

I

)
, (9)

where δEn = En − En−1 and IZ is the Zener break down current [18].
The downward transition can take place through several processes. The cases

we need to consider are transitions due to quasiparticle tunnelling and due to
charge fluctuations caused by the environment. The quasiparticle transitions
in the JJ couple q states that differ by one e. In the BOT, the transitions are
primarily driven by a current bias through a second junction, explicitly designed
for returning the system to the lowest band. The external environment gives rise
to, e.g., current fluctuations that couple linearly to the phase variable. These
can cause both up and downwards transitions. The strength of the fluctuations
is given by the size of the impedance: the larger the impedance the smaller
are the current fluctuations and the transitions rates. As we will see later on,
the successful operation of the BOT requires one to control both the upwards
and downwards transition rates, or rather their relative strength. Later, when
discussing a very simple BOT model, we will make use of the Zener transition
rates and transitions due to charge fluctuations, both derived in Ref. [13].

2.2 Incoherent tunneling and phase fluctuation theory

It is well known that the electromagnetic environment of tunneling junctions
affect the tunneling process by allowing exchange of energy between the two
systems formed by the tunnel junction and the external circuit [6, 19, 20, 21].
The influence of the external circuit can be taken into account, for example,
within the so called P (E)-theory, which is a perturbation theory assuming weak
tunneling. The external environment is thought of as consisting of lumped
element electric components which give rise to a classical impedance Z(ω). The
impedance is quantized using the Caldeira-Leggett model, which consists of an
infinite amount of LC-oscillators. Hence, in this limit, one can model dissipative
quantum mechanics. The energy fed into the bath never returns to the tunnel
junction system.
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A perturbative treatment of the Josephson coupling term gives rise to a
simple looking result for incoherent Cooper pair tunneling [19, 21]. The forward
tunneling rate is directly proportional to the probability of energy exchange with
the external environment:

−→
Γ (V ) =

π

2}
E2

JP (2eV ), (10)

and the backward tunneling rate is
←−
Γ (V ) =

−→
Γ (−V ), thus leading to the total

current

I(V ) = 2e
(−→

Γ (V )−←−Γ (V )
)

=
πeE2

J

}
[P (2eV )− P (−2eV )] . (11)

The function P (E) can be written as

P (E) =
1

2π}

∫ ∞

∞
dt exp

[
J(t) +

i

}
Et

]
, (12)

which is a Fourier transform of the exponential of the phase-phase correlation
function

J(t) = 〈[ϕ(t)− ϕ(0)]ϕ(0)〉 . (13)

The phase-phase correlation function is determined by the fluctuations due to
the environment and it can be related to the environmental impedance with the
fluctuation-dissipation theorem. The result is that J(t) can be found by

J(t) = 2
∫ ∞

0

dω

ω

ReZt(ω)
RQ

coth(β}ω/2)[cos(ωt)− 1]− i sin(ωt)}, (14)

where RQ = h/4e2, and

Zt(ω) =
1

iωC + 1/R
(15)

is the impedance seen by the junction.
We also need to consider quasiparticle tunneling, especially in the BOT

circuit, where we also have an NIS junction. We will not, however, take into
account Cooper pair transfer by Andreev [22] reflection as it is not essential in
our experiment. For quasiparticles the perturbative tunneling rate assumes the
familiar form

Γqp =
1

e2RT

∫ ∞

−∞

∫ ∞

−∞
dEdE′N1(E)

N1(0)
N2(E′ + eV )

N2(0)

× f(E)[1− f(E′ + eV )]P (E − E′).
(16)

Here, the density of states on the two sides of the junction depend on whether
the lead, i = 1 or 2, is normal or superconducting. In the superconducting
region we have Ni(E)/Ni(0) = |E|/√E2 −∆2, for |E| > ∆ and zero otherwise,
and in the normal region Ni(E)/Ni(0) = 1.
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2.3 BOT conceptual view

The circuit schematics and a conceptual view of the BOT operation cycle are
shown in Fig. 2. The basic circuit elements are the Josephson junction, or
SQUID, at the emitter, with a total normal state tunnel resistance of RJJ , the
single tunnel junction at the base with the normal state resistance RN , and the
ohmic collector resistance RC . The BOT base is usually current biased with a
large resistance RB at room temperature, but the large stray capacitances CB

result in an effective voltage bias. A requirement for the BOT operation is that
the charging energy EC = e2/(2C) is of the same order of magnitude as the
Josephson energy EJ . However, for the theory presented in this paper to be
valid, we have to require that EJ/EC ¿ 1.

RB

VC
RC

VB

CB

iB

Collector

Emitter

Base

i
E

iC
E
/E
C

q/e

0-1 1

1

0

2

3

RN

RJJ

VI

Figure 2: Circuit layout of the BOT and conceptual view of its operating cycle.
The island, with voltage VI , is marked by the circle (◦). The two band approx-
imation of the BOT dynamics: Bloch oscillations (red arrows), Zener tunneling
and Coulomb blockade (black arrows) and relaxation due to quasiparticle tun-
neling (blue arrow) .

The theory describing the workings of the BOT is outlined in articles [9, 10].
The work by Hassel and Seppä [10], contains both an analytical approximation
of the physics and the basic principles for a simulation which are also to some
extent used in this paper to test the agreement between the experiment and
simulation.

The basic physical principle of the BOT relies on the existence of Bloch bands
in the JJ, which is embedded in a resistive environment R À RQ = h/4e2. The
BOT is voltage biased to a point on the lowest band where Bloch oscillations
can start. The supercurrent thus flows due to coherent Bloch oscillations (see
Fig. 2) in the lowest band until the flow is stopped by Zener tunneling into the
second band. The JJ is Coulomb blockaded until it relaxes down to the first
band, either intrinsically due to charge fluctuations caused by the environmental
resistance or by a tunneling quasiparticle due to an external control current. The
intrinsic relaxation is detrimental for BOT operation and thus the fluctuations
should be kept low by requiring that R À RQ = h/4e2. In practice, we need
R & 100RQ to be close to the ideal operation as outlined here. The control
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current is injected through the second junction, which in our case is a normal-
insulator-superconductor (NIS) tunnel junction. The amplification mechanism
can, in its simplest form, be said to arise from the number of Bloch oscillations
triggered by one quasiparticle. The Coulomb blockade of Cooper pairs (CBCP)
is thus a necessity for the BOT to function.

Our simulation of the BOT is based on the method given in Ref. [10]. In
the simulation it is assumed that the current flowing in the different parts of
the BOT: the JJ, NIS junction and resistor can be treated separately and the
dynamics of the island charge QI is simulated and averaged over a large number
of steps (typically 10 - 100 million). The tunneling rates or, rather, the tunnel-
ing probabilities in the JJ and NIS are calculated using the P (E)-theory [21]
described earlier and assuming the same resistive environment for both junc-
tions. The capacitance in Eq. (15) is then C = CJJ + CNIS . The tunneling at
each point in time is then determined by comparing a random number and the
tunneling probability of the different junctions, which depends on the voltage
across them. Furthermore, the simulation actually assumes that EJ/EC ¿ 1
and that the energy bands can be approximated by parabolas: E(q) = q2/2C.
In this case, the quasicharge is equal to the real island charge QI , which is,
according to the model in Fig. 2 also the charge over the Josephson junction.
Hence, QI = VICJJ , where VI is the island voltage indicated in Fig. 2. The
equation for the simulated island charge is then given by

dQI

dt
=

VC − VI

RC
−

(
dQI

dt

)

QP1

−
(

dQI

dt

)

QP2

−
(

dQI

dt

)

CP

. (17)

Here the collector voltage VC takes the role of Vx in the theory of Bloch os-
cillations considered earlier. The island charge is thus modified by four terms:
the constant relaxation current through the collector resistor, the quasiparti-
cle tunneling through the base junction (QP1) and JJ (QP2), and the Cooper
pair tunneling in the JJ. This simulation method can be described as a ”time-
dependent” P (E)-theory. The theory excludes any quantum mechanical in-
teractions between the Josephson and NIS junctions. This simplification has
shown to be quite useful in determining the main operation principles of the
device. Although, one can argue that this simple treatment of the island volt-
age as a time dependent variable while the tunneling rates are unaffected by
island dynamics is not the correct way. As pointed out in Ref. [23], the average
fluctuations of the phase of the island will govern the tunneling in the Joseph-
son junctions and, therefore, a more rigorous approach would account for the
peculiar phase fluctuations from the tunneling quasiparticles. However, how to
include the Zener tunneling and the dynamics of the Bloch bands into the phase
fluctuation model is still under investigation.

2.4 Alternative analytical theory

The physical principle of the BOT current gain can also be derived analytically
from another viewpoint [8]. The average BOT emitter current can be thought of
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as the result of being in either of the two states: the Bloch oscillation state with
a time-averaged constant current and the blockaded state with zero current:

IE =

{
VC/RC , τ↑ = 1/Γ↑

0, τ↓ = 1/(Γ↓ + ΓB).
(18)

The amount of time the system spends in each state is given by the Zener
tunneling rate, Γ↑, the intrinsic relaxation Γ↓, and the quasiparticle driven
relaxation ΓB . The base current, however, flows during the opposite times:

IB =

{
0, τ↑ = 1/Γ↑

eΓB , τ↓ = 1/(Γ↓ + ΓB).
(19)

From these equations we can simply derive the average emitter and base currents

〈IE〉 =
VC

RC

τ↑
τ↑ + τ↓

. (20)

〈IB〉 = −eΓB
τ↓

τ↑ + τ↓
. (21)

From Eq. (21) we can solve for ΓB and insert this into Eq. (20) in order to find
the emitter current

〈IE〉 =
VC

RC

Γ↓
Γ↑ + Γ↓

− VC

eRC

1
Γ↑ + Γ↓

〈IB〉 . (22)

We thus find the current gain

βE = −∂ 〈IE〉
∂ 〈IB〉 =

VC

eRC

1
Γ↑ + Γ↓

. (23)

The base current relaxes through the collector resistance and, therefore, the
collector and emitter gains are related by

βE = βC − 1. (24)

The current gains are defined with the minus sign for convenience, because, both
theoretically and empirically, with the sign convention used here the derivatives
are negative.

Next, we have to find the transitions rates Γ↓(VC) and Γ↑(VC) as a function
of the collector voltage. Fortunately, these have been calculated by Zaikin and
Golubev [24]. The Zener tunneling rate in a resistive environment, and with the
assumption EJ ¿ EC , is given by

Γ↑ =
v

2τ
exp

{
− vz

v − 1

[
1 +

〈
δq2/e2

〉

(v − 1)2

]}
, (25)
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and the down relaxation rate due to charge fluctuations is given by

Γ↓ =
vz

τ
√

2π 〈δq2/e2〉 exp
{
− (v − 1)2

2 〈δq2/e2〉 (v − 1)2
}

, (26)

where v = CVC/e, τ = RC and

vz =
π2R

8RQ

(
EJ

EC

)2

. (27)

The voltage vz is naturally related to the Zener break down current IZ =
evZ/(4τ). Equations (25) and (26) are given as function of the bias voltage v,
although, the theory is strictly valid for the current bias case. One can switch
from the current biased to voltage biased case by doing the transformation as
discussed earlier by setting I = VC/R. In our experiment, the relevant case is
the voltage biased one.

Closed forms for the charge fluctuations in a resistive environment can be
found in the two limits of thermal and quantum fluctuations:

〈
δq2

〉
=





kBCT, kBT À αsEC

2e2αs

π2
ln(ωcτ), kBT ¿ αsEC ,

where αs = RQ/R. At the low temperature limit where quantum fluctuations
dominate one needs to know the cut-off frequency ωc, which depends on the
details of the external impedance Z(ω). In practice, our experiments are done
in a regime where kBT ' αsEC , where both effects are present.

The two-state model presented here has also been used for the basic mecha-
nism that generates the output noise of the BOT [10]. The noise of the device is
found to be output governed and the input current noise is, therefore, inversely
proportional to the current gain [25].

3 Fabrication and measurement

The fabrication of the BOT is done using standard electron beam lithography
and 4-angle shadow evaporation. The order of the evaporation process was

BOT # RN RJJ RC EJ EC
Emax

J

EC

Emin
J

EC

1 90 24 188 0.28 0.93 0.3 0.03
2 53 8.8 368 0.37 0.78 2.1 1.8

Table 1: BOT parameters for two measured samples. RN and RJJ are the
normal state resistances of the NIS and JJ tunnel junctions, respectively. Re-
sistances are given in units of kΩ and energies in Kelvins. The tunability of the
EJ/EC ratio is indicated by the max and min values.

11

Publication 9 (Page 11/27)



chromium (1), aluminum (2), oxidization (3), chromium (4), copper (5) and
aluminium (6). Originally, the BOT device was designed to have an NIN junc-
tion as base junction, but the technique of manufacturing both SIS and NIN
junctions on the same sample has not yet been mastered, therefore, we em-
ployed NIS junctions instead. In the first design, the NIS junction consisted
of an aluminium-aluminumoxide-copper interface, but it turned out to be the
most sensitive part of the device and it often was already broken after bonding
to the sample holder. The insertion of an additional, 7 nm thick chromium layer,
seemed to protect the junction and improved the sample yield considerably.

Instead of having a single JJ at the emitter we made two parallel junctions,
which thus form a SQUID loop. The SQUID configuration gives the possibility
of tuning the effective Josephson coupling energy according to

EJ =
√

E1
J + E2

J + 2E1
JE2

J cos(πΦ/Φ0), (28)

where E1
J and E2

J are the Josephson energies for the two junctions, Φ is the
externally applied magnetic flux perpendicular to the loop area and Φ0 = h/(2e)
is the quantum of flux. The EJ tuning allows us to find the optimum operating
point in terms of the current gain [9] as well as giving the possibility to compare
the EJ dependence with the theories presented in this paper. In practice, the
asymmetry of the SQUID junctions makes the tunability less than perfect as
can be noted from Table 1.

The BOT measurements were done on two different dilution refrigerators: a
plastic dilution refrigerator (PDR-50) from Nanoway and the other from Leiden
Cryogenics (MNK-126-500). In these experiments, both had a similar base
temperature of 30 mK. The filtering in the PDR consisted mainly of 70 cm
long thermocoax cables on the sample holder. Also, micro-wave filters from
Mini-circuits (BLP 1.9) were used at room-temperature. In the Leiden setup,
besides the 1 m long thermocoax on the sample holder, additional powder filters
(provided by Leiden) were present. Similar measurement results were achieved
with both setups, although the effective temperature of the sample, deduced
from the zero bias resistance, was somewhat lower with the Leiden setup: 45-60
mK as compared to 80-100 mK with the Nanoway setup (see e.g. Ref. [26]).

The measurement set-up used in this work is shown in Fig. 3. Most of
the complexity comes from the requirements of the power gain measurement,
which will be presented in Sec. 4.2.4. The BOT base is DC current biased
by a large resistor RB , which is located at room temperature. The size of the
resistor was typically 1 − 10 GΩ. For differential measurements, an AC-signal
is fed through a coupling capacitor CC , in order to circumvent the large biasing
resistor. Voltages are measured with low noise LI-75A voltage amplifiers and
their output is fed into EG&G Instruments 7260 DSP lock-in amplifiers. An
additional, surface-mount resistor, RCC , is located on the sample holder, a few
cm from the chip. Therefore, this resistor is initially also at base temperature.
The role of the resistor is to act as load to the BOT, in order to allow a clear
measurement of power gain. The resistor was also in used in noise measurements
[25] to convert current noise to voltage noise.

12
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Figure 3: Measurement scheme for power gain, current gain and input im-
pedance measurements. The BOT circuit is bounded by the dashed box. The
AC signal is capacitively coupled through the capacitor CC . The signal from
the pre-amplifiers LI-75A and DL-1211 are fed into lock-in amplifiers. The AC
signals are denoted by small letters.

4 Experiment

4.1 Observation of the Bloch nose

Our experiments correspond to the voltage biased configurations of Fig. 1. The
voltage is gradually lifted towards the top of the energy band where it can
overcome the first barrier and start to oscillate. The IV characteristics thus
first shows an increase of the junction voltage with zero current (when ne-
glecting any quasiparticle leakage) and then at the threshold voltage where
V = max {dEn(q)/dq} a current appears but the voltage over the junction goes
down as the time averaged voltage tends to zero. When the system tunnels to
a higher band, the Bloch oscillation is interrupted and a voltage drop is once
again formed over the junction. Thus, for an increasing bias current, the voltage
starts to rise again.

The actual measurement can be done with respect to the external voltage
Vx (2-point measurement) or with respect to the real junction voltage V : either
by a 4-point measurement [29, 30] or one can simply subtract the known voltage
RI from the total (with the assumption that the resistor R is ohmic). According
to the earlier transformation between the serial and parallel configurations, we
can compare the IV curves from our experiment with a series resistor with
the theoretical treatment in Ref. [13], which is for the parallel case by plotting
Ix = Vx/R against V − the voltage over the JJ.

In the experiments on the Bloch oscillating transistor, we have also observed
the Bloch nose and thus find the characteristic sign of Bloch oscillation. The
IV curve of a Josephson junction in a resistive environment for sample 1 (see
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parameters in Table 1) is shown in Fig. 4. The curves are a result of a 2-point
measurement where both the total current I and the transformation Ix = Vx/R
are plotted against the total voltage Vx and the junction voltage V = Vx − IR,
respectively. In this way, one can truly see the Bloch nose in the form predicted
in Refs. [5, 13]. The Bloch nose disappears when the ratio EJ/EC goes down, a
manifestation of the fact that Zener tunneling sets in already at lower currents.
Theoretically, the voltage for the onset of back bending is given by Vb = 0.25e/C,
when EJ/EC ¿ 1 and the dissipation is due to quasiparticles in the JJ [13].
Without quasiparticle tunneling, and for EJ ¿ EC , it would equal e/C. In our
experiment, the observed Vb is 23 µV, which is only little more than half of the
theoretical value with quasiparticle dissipation: Vb = 0.25e/C = 40 µV.

Figure 4: IV curve of sample #1 from a 2-point measurement. The lowest
curve shows the total current I vs. Vx (for EJ/EC = 0.3) and the following
curves are transformed to parallel configuration Ix = Vx/R vs. V = Vx − IR
with EJ/EC = 0.3, 0.24 and 0.03 from top to bottom.

The first report on the Coulomb blockade of Cooper pairs was made by
Haviland et al. in Ref. [3]. Bloch oscillations and the role of Zener tunneling was
investigated by Kuzmin et al. in experiments with a single Josephson junction in
an environment of a chromium resistor [31, 32]. The characteristic Bloch nose
feature, or the regions of negative differential resistance, was first measured
for 1- and 2-dimensional SQUID arrays [27, 28]. In later experiments using
SQUID arrays as a tunable, but very nonlinear, high impedance environment,
the Bloch nose could for the first time be clearly observed in a single Josephson
junction [29, 30]. Although, there the authors plot I vs. V and do not make
the transformation Ix = Vx/R as done here. It should be noted, that our
observation of the Bloch nose thus involves a real, linear resistive environment
as the electromagnetic environment.
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4.2 Device characteristics

4.2.1 DC Current-voltage characteristics

We will now describe the results of experiments of sample #1 (parameters are
given in table 1, whereas for the definition of symbols, see Fig. 3) The maximum
gain was achieved for the maximum EJ/EC ratio, which was 0.3 for this sample.
Hence, if not otherwise mentioned, all the following presentations of the results
are taken for this value. Also, the output current was usually measured through
the SQUID, or the emitter lead, and thus we let I denote IE and β denote βE

from now on. According to the theories on BOT operation outlined earlier, the
gain should increase with EJ/EC . However, the theories assume that EJ ¿ EC

so that it suffices to consider only the dynamics between the first two bands. In
the BOT measurements described in Ref. [9] the maximum gain was achieved
for EJ/EC = 3.4, which also means that more than the two first bands may
contribute to the dynamics.

Figure 5: IV curve for sample 1 at IB = 40 pA (black curve) and 60 pA (red
curve) and the DC-current gain (blue curve) calculated by direct subtraction of
the two IV curves. The extra RCC = 100 kΩ was located at collector. T = 0.34
mK.

In Fig. 5 a typical IV -curve of the BOT is shown for two values of the
base current and also the corresponding current gain is included in the graph.
The BOT has current amplification for both positive and negative values of
VC . However, as can be seen from the figure, the amplification is largest for
negative VC . This we consider the normal operating mode of the BOT and the
gain region for positive VC we call the inverted mode. Simulated IV curves
and current gain are shown in Fig. 6 for the same device parameters as in the
experiment. A slightly larger base current than in the experiment, 100 pA as
compared to 40 pA, was used to find a matching current gain. The two sets of
IV s look quite similar. However, the simulated one shows sharper features due
to both a lower effective temperature and a higher base current, which leads to
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Figure 6: Simulated IV curve with the same device parameters as in the experi-
ment presented in Figure 5. Base current 100 pA (black curve) and 110 pA (red
curve) and the DC-current gain (blue curve) calculated by direct subtraction of
the two IV curves.

hysteretic behavior for the inverted operating region. Raising the temperature
or lowering the base current in the simulation leads to a decreasing current
gain. A prominent discrepancy between the experimental and simulated IV s
is the location of the Bloch ”back bending” and the maximum gain. In the
experiment, this region is about 100 µV further than in the simulation. This is
an indication of the fact that the dynamics may actually involve higher bands.
More simulations for different BOT parameters can be found in Ref. [10].

4.2.2 Current gain

Next, we consider the IC − IB relation for a fixed bias voltage VC and as a
function of the ratio EJ/EC . In Figs. 7 and 8 the IC − IB curves are shown for
the normal and inverted operating regions. In these measurements, the extra
collector resistance RCC was absent, hence we have larger operating currents
than when it was present (see below). In the simulated IC − IB curves for
the normal region, the gain was only about half of that which was observed
experimentally, and the gain region is also much wider. However, by increasing
the ratio EJ/EC in the simulation to values slightly above those obtained from
the experiment (the simulated EJ/EC = 0.4 is included in Fig. 7 while the
maximum ration in the experiment was 0.3), the simulated gains become closer
to the experimental.

16

Publication 9 (Page 16/27)



The simulation for the inverted mode showed diverging gains due to hys-
teretic behavior that leads to very low dynamic region. This approach to hys-
teretic and divergent state could also be observed experimentally, as can be
noticed in Fig. 8.

Figure 7: IC-IB curves for the normal operating region for different EJ/EC

ratios. The experimental curves (solid lines) go through the ratios 0.03, 0.07,
0.12, 0.17, 0.21, 0.25, 0.28, 0.29 and 0.30 from top to bottom. The simulated
curves (dotted lines) go through the ratios 0.25, 0.28, 0.30 and 0.40 from top to
bottom.

We measured the differential gain as a function of VC with lock-in amplifiers.
The results for the normal operating region are presented in Fig. 9 for the case
when the extra collector resistance RCC was present. The gains are then a
factor of 3 larger than in the above measurement without RCC . This is also in
close agreement to simulated gains, which will be discussed further in section
4.2.3.

The dynamic region (DR) in terms of the base current IB can be inferred
from the gain curves in Fig. 9 by using the simple, linearized, relation: ∆IB =
∆VC/(Zoutβ). The resulting DR versus β plot is shown in Fig. 10. The large
spread in the datapoints are mostly due to the errors in determining Zout by
numerical differentiation of IV curves. From the plot we see that the DR falls
as ∝ β−1 (in fact, the exponent of the regression is −0.89 ± 0.12). As already
mentioned, the simulated gains for the normal region had a much wider DR,
though with less gain than in the experiment.

The theory in Ref. [10] predicts that the gain should rise exponentially with
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Figure 8: IC-IB curves for the region of inverted operation for different EJ/EC

ratios. The experimental curves (solid lines) go through the ratios 0.03, 0.07,
0.12, 0.17, 0.21, 0.25, 0.28, 0.29 and 0.30 from bottom to up. The simulated
curves (dotted lines) go through the ratios 0.17, 0.21, 0.25, 0.29, 0.30 from
bottom to top.

the square of the ratio EJ/EC :

β = 2 exp

[
πe2RC

8}

(
EJ

EC

)2
]
. (29)

According to our simple model presented in Sec. 2.4 the gain dependence
is non-monotonic. This could, however, be a failure of the model as we are in
a region were its validity is not guaranteed by the perturbation theory. For
EJ/EC = 0.1 the gain starts to rise again. From the full time-dependent simu-
lations, the dependence is also exponential but less than the normal mode gains
from experiment (Fig. 11). When taking heating effects into account in both
the simulation and analytical model, decreased the gain and made the fit worse.

4.2.3 Input impedance

The applications of the BOT are largely determined by its input and output
impedances, power gain and the noise temperature (for measurements on the
noise temperature see [25]). We have studied the input impedance

Zin =
dvB

diB
. (30)
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C

Figure 9: The emitter current gain at the normal operating region for EJ/EC =
0.3 and the base currents 0-100 pA, with 10 pA increments from right to left.
The measurements were done using the lock-in technique of Fig. 3. Here, the
100 kΩ resistor at collector was present, thus leading to smaller base currents
for optimal operation.

at different levels of the current gain. In Fig. 12 the dependence is shown for the
case where IB = 60 pA. The input impedance and β were measured with lock-in
amplifiers with excitation frequency of 17.5 Hz. The measurement results had
to be corrected for the fact that part of the AC-current leaks through the strain
capacitance, which mostly originates from the thermocoax. The corrected input
impedance is then

Zin =
zZC

ZC − z
, (31)

where z = dv′B/di′B is the measured AC-differential impedance at the base and
ZC = 1/(ωCB). With the assumption that CB ' 600 fF, the AC and DC gains
became equivalent.

The theoretical input impedance is easily calculated for the black box model,
assuming lumped circuit elements and a known, constant current gain β. Using
the notation in Fig. 2 we can write for the island voltage VI

VI = VC −R′IC , (32)

where R′ = RC +RCC , which includes the extra collector resistor. On the other
hand we also have

VI = VB − IBRN . (33)

As we know that IC = βIB we get from these two equations

∆VB = VC −R′βIB + IBRN , (34)
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Figure 10: Dynamic region (width at half maximum, in IB-space) as function
of β for the normal region for the base current IB = 10, 20, 50, 70 and 100 pA
(from left to right). The solid line is a linear regression with slope −0.89±0.12.

and the input impedance is then

Zin =
dVB

dIB
= RN −R′β. (35)

Note that usually RN is much smaller than the second term and that β < 0,
making the input impedance positive. The input impedance observed in the
experiment (Fig. 12) shows some deviation from the simple model. At the point
of maximum gain the impedance is 1.4 the value of the model, but as one moves
to either side of the maximum, the behavior is more complicated and also non-
symmetric. The simulated curve reveals that the behavior could be anticipated
from the dynamical model, which gives approximately the same 1.4 deviation
from the simple model as observed in the experiment. The asymmetric feature
shows that the simple model, that Zin is proportional to β, is followed quite
closely for the part of the current gain where voltage is higher than the optimum
operating point.

4.2.4 Power gain

An important measure of the device performance is the power gain

η = Pout/Pin, (36)

where Pin = i2BZin and Pout = i2CZout, and the currents are rms values. The
simple black-box model for the input impedance, where Zin = βRC , gives a
theoretical power gain of

η =
Zout

RC
β. (37)
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Figure 11: Current gain β as a function of EJ/EC . The base current IB was 100
pA both in the experiment an simulation. Experiment normal operating mode
(¤), simulation (dashed line), the analytical model presented in this paper (•)
and the analytical approximation from Ref. [10] (thin line). The temperature
was assumed to be the same as base temperature in the experiment, T = 34
mK.

The setup for the power gain measurement is shown in Fig. 3. The AC-signal
was capacitively coupled to by-pass the large bias resistor RB . We measured the
power delivered by the BOT to a 100 kΩ resistor (RCC), which acted as a load at
the collector. The measured power at the output is given by Pout = v2

CC/RCC ,
where vCC is the measured AC-voltage over the load. The measured power gain
in this case becomes η = (v2

CC/i2B)/(RCCZin). The simple black box model
gives a power gain of η = (RCC/R′)β. Taking into account the measured input
impedance in Fig. 12 we find that, for IB = 60 pA, η ' (RCC/1.4R′)β ' 6,
which agrees with the independent measurement in Fig. 13.

The power gains for IB = 0 − 100 pA at the normal operating point are
shown in Fig 13. The largest measured power gain was around 35 for IB = 100
pA. The output impedance of the device itself at the operating point was in
the range −50 kΩ to −100 kΩ. The gain might be expected to grow rapidly
when RCC approaches |Zout|. However, a positive load impedance with similar
absolute magnitude as the negative output impedance may lead to oscillatory
behavior.

A simulated power gain for IB = 60 pA is shown in the inset. The agreement
looks fairly good but when the base current is increased in the simulation the
effect on the gain is quite small compared to the large increase observed in
the experiment. In fact, in the simulation the gain starts to drop when IB is
increased. The simulation was also quite sensitive to the capacitance CCC (see
Fig. 3), here we settled for a ratio CB/CCC = 50, which gave a good balance
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Figure 12: Zin/(βR′) as function of β for IB = 60 pA for experiment (blue
curve) and simulated case (red curve). The lower part of the curves is the
behavior left of the maximum gain and the upper part is for the right side.
Inset: Zin and β as function of VC for experiment (thick lines) and simulation
(thin lines).

between achieving a more realistic model and simulation stability. The value of
CB used in the simulation was 1 pF, which means that the base voltage drops
less than 0.1 % when a quasiparticle tunnels to the island.

5 Conclusions

We have here briefly reviewed the physical principles and computational meth-
ods that have been applied to analyze the Bloch Oscillating Transistor. The
circuit has been shown to produce a variety of interesting physical phenomena
that also have a potential for practical applications. The measurements on the
BOT have shown that the device works according to the physical principles
discussed. The Bloch nose as a manifestation of the competition between co-
herent current via Bloch oscillations and Coulomb blockade of Cooper pairs was
observed in a controlled resistive environment. The smallness of the observed
blockade, would indicate that the environmental dissipation is dominated by
quasiparticles.

The optimal BOT parameters are quite difficult to specify, mainly, because
the used models are approximations that hold in a certain regime for the pa-
rameters. We seek to optimize RN , RJJ , R, EJ/EC and the capacitance CB ,
and at the same time keeping in mind what the optimum input and output
impedances should be for a specific application. The analytic model of Sec 2.4
gives a closed formula for the current gain, and can thus used for optimization.
In all the models, the gain grows with EJ/EC , but simultaneously, we have the
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Figure 13: Power gain with 100 kΩ load for IB =0, 20, 60, 80 and 100 pA from
right to left and Inset: Power gain for IB = 60 pA (•) and simulated curve (red
line)

requirement EJ/EC ¿ 1 for the theories to be valid. However, nothing stops us
to go to somewhat larger EJ/EC ratios in the simulation, although, the bands
then increasingly deviate from the parabolic approximation. The simulation
shows that the gains also increase with EJ/EC , but naturally, with the expense
of the dynamic region. The simple analytic model does not depend on RN at
all. However, in the analytical model of Ref. [10] the device performance im-
proves as RN is reduced. A too transparent base junction would, however, be
undesirable for many reasons: the increased transparency could increase charge
fluctuations and destroy the Bloch oscillations in the Josephson junction. In
fact, in our samples the NIS junction was quite resistive. Also, small RN would,
in practice, mean larger capacitance and smaller blockade. The model indicates
that a larger collector resistance RC is always desirable. This is probably a
general conclusion, bearing in mind that the input impedance increases linearly
with RC . In practice, fabricating chromium on-chip resistors larger than 0.5 MΩ
has proven difficult when dealing with the constraints of keeping the line short
enough (. 30 µm) to minimize the capacitance to ground and thick enough (&
7 nm) to avoid nonlinearities.

The observed device properties of the BOT can be qualitatively reproduced
by simulations and the simple theoretical considerations presented here. There
are, however, still quite many discrepancies between simulations and experi-
ment. Often the values of the simulation for gains and impedances were a
factor 2 from the experimental case. The simulations do show that the main
operating principle of the BOT can be understood by the processes outlined.
There are still some places for improvement, e.g., by taking into account the
true phase fluctuations caused by tunneling of quasiparticles to the island. But,
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this would mean a great increase in the complexity of the simulation, introduc-
ing new numerical challenges. Also, taking into account the true band structure
of the device might improve the agreement, especially for EJ > EC . While
awaiting a more complete theoretical treatment, the simulations can be used for
qualitative modelling of the BOT. The device could still be used for mesoscopic
experiments as an on-chip amplifier and detector, were a good current gain is
needed at medium level impedances, but, the exact device properties can be
inferred only from experiment.
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Appendix

Transconductance

The transconductance can be calculated in the simple black box model by g =
∂IC/∂VB = −β(∂IB/∂VB) = −β/(RCβ) = −1/RC . For sample #1, 1/RC =
5.3 µS and the maximum observed transconductance was 5.0± 0.5 µS.

Figure 14: IV and transconductance curve for BOT #2. VB = 0 (black curve)
and VB = 17.9 µV (red curve). The dotted lines show the points where the IV s
cross and the transconductance changes sign.

For sample #2, which had a larger RC = 368 kΩ, the transconductance was
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9.1 µS, which is about 3.5 larger than expected from the simple model above
(see Fig. 14). The IV s cross at the dips in the IV -curves, thus giving rise to a
sign change in transconductance, and also for the current gain. Thus, the input
impedance Zin = β/g stays positive in all measurements.

The IV curve for sample #2 was intrinsically hysteretic in behavior when ap-
plying a current bias to the base via an additional resistor at room-temperature.
The hysteresis, however, disappeared when the biasing resistor was between 100
kΩ and 1 MΩ, which could indicate that the device has a region of negative
input impedance in this range. Simulations have shown that the input im-
pedance is always positive, but that the base IB − VB curve can be hysteretic
and, therefore, the observed hysteresis is a consequence of the device switching
between two operating regimes, which have the same base current but different
impedance levels.
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