
PUBLICATION P2

C. Peng, P. Cesar, and P. Vuorimaa. Integration of applications into digital
television environment. In Proceedings of the 7th International Confer-
ence on Distributed Multimedia Systems, Taipei, Taiwan, September 26–28,
2001, pages 266–272. Knowledge Systems Institute.

Part Two: Publications © 2001 KSI. Reprinted, with permission, from Proceedings of
the 7th International Conference on Distributed Multimedia Systems,

September 26-28, 2001, Taipei, Taiwan, pp. 266-272.

ISBN: 1-8901706-09-8 © 2001 KSI 97

INTEGRATION OF APPLICATIONS INTO DIGITAL TELEVISION
ENVIRONMENT

Chengyuan Peng, Pablo Cesar, and Petri Vuorimaa

Telecommunications Software and Multimedia Laboratory,
Department of Computer Science and Engineering,

Helsinki University of Technology,
P.O. Box 5400, FI-02015 HUT, Finland.

Email: pcy@tml.hut.fi, pcesar@tml.hut.fi, and petri.vuorimaa@hut.fi

ABSTRACT
The overall software system integration to run interactive
services in set-top box is hard and essential since there is
no ready system to ensure the cross-platform
interoperability of the applications. This paper presents a
layered system integration model, which consists of
interoperable applications, Application Programming
Interface (API), system software, and software and
hardware resources. The digital television applications are
classified into three categories according to the service
architecture. All applications are managed and controlled
by an application manager, which plays a central role in
the model. The set-top box hardware prototype used in
the system is a single board computer. Linux with selected
modules was chosen as the set-top box operating system.
Kaffe Java virtual machine was ported to Linux platform
to interpret Java bytecodes of applications. A working
prototype system is introduced in the paper. Finally, we
give the system running results and further improvement.

Keywords: software integration, middleware, application
manager, Kaffe Java virtual machine, Linux, DVB-Java
applications, set-top box.

1. INTRODUCTION
The digitalization of television is inevitable [1]. The main
reason is that digital technology allows more efficient
usage of radio frequencies. With digital broadcasting
technology it is possible to transmit 20-30 Mbps within
the capacity of one analogue television channel [2]. This
means four or five television channels instead of one. At
the same time, digital technology removes some defects,
e.g., ghost images. The additional capacity can also be
used for multi-channel sound system and additional
speech channels.

The digital television allows also broadcasting of data. All
kinds of interactive services can be introduced in digital
television environment. Thus, the main task of system
integration is to execute these digital television services to
ensure cross-platform interoperability.

Our work follows the Digital Video Broadcasting (DVB)-
Multimedia Home Platform (MHP) standard. The DVB-
MHP encompasses the peripherals and interconnection of
multimedia equipment via the in-home digital network.
The MHP solution covers the whole set of technologies
that are necessary to implement digital interactive services
in the home - including protocols, common API
languages, interfaces, and recommendations [3].

The DVB-MHP adds a technical solution for set-top box
that enables the reception and presentation of applications
in a vendor, author, and broadcaster neutral framework
[4]. Applications from various service providers are cross-
platform interoperable with different DVB-MHP
implementations in a horizontal market, where
applications, networks, and MHP terminals can be made
available by independent providers.

In order to realize this goal, the DVB-MHP has proposed
a reference model, which allows the development of high-
level APIs and applications, independent of the DVB-
MHP system infrastructure. The DVB-MHP reference
model mainly consists of four layers, i.e., hardware and
software resources, system software or middleware, APIs,
and interoperable applications.

The hardware and software resources include
tuner/demodulator, demultiplexer, decoders (A/V, DVB-
SI (Service Information), subtitles, etc.), graphics
processor, a common interface, a communication
interface/modem, a Conditional Access (CA) module,
memory, main processor, bootloader, remote control
receiver module, Real-Time Operating System (RTOS),
and associated drivers, etc. [5]. The minimum memory
configuration is 16 Mbytes RAM, 4 Mbytes video RAM,
and 8 Mbytes Flash ROM. The processor speed should be
from 150 mips to more than 200 mips [5]. It is specified
that 70 percent of CPU time should be devoted to run the
applications, remaining 30 percent being used for system
management [3].

Part Two: Publications

ISBN: 1-8901706-09-8 © 2001 KSI 98

The system software layer isolates the interoperable
applications from the hardware and software resources
layer. The applications do not directly access resources.
They use the APIs to access the resources of set-top box.
The APIs provide the associated services to the
applications. An API by definition is a set of high-level
functions, data structures, and protocols, which standard
interface for platform-independent application software
[6]. The system software supports APIs, Java virtual
machine, resident software (i.e., application manager,
which controls the lifecycle and signaling of DVB-Java
applications, called Xlets), databases (DVB-SI), etc.

The operating system is one of the most important
software resources in set-top box. A set-top box operating
system requires handling sophisticated tasks in a small
memory space. It must be fast, reliable, and capable of
functioning in real-time environment. A number of real-
time operating systems have emerged to drive the next
generation of advanced set-top box. Linux is one of the
candidate operating systems. In addition to being free and
having a large developer community, many of its features
are suitable for set-top box (cf. Section 3.1).

The Java virtual machine is the key technology to ensure
the cross-platform interoperability of the applications. The
Java virtual machine is an abstract computing machine
[7]. It is hardware- and operating system- independent.
Like a real computing machine, it has an instruction set
and manipulates various memory areas at run time. The
Java virtual machine knows nothing of the Java
programming language, only of a particular binary format.

2. APPLICATIONS

Figure 1. Digital television service architecture.

Figure 1 shows a digital television service architecture,
which describes the roles of the different services [8]. The
services are divided into three categories: Navigator,
Digital Teletext, and Interactive Programs. The Navigator
is the main index of digital television services. Through it,
the viewer can access all the other services of the digital
television. The Digital Teletext is an enhanced version of
current Teletext service [9]. Finally, the Interactive
Programs are enhanced versions of current television
programs.

2.1 Navigator
The main task of the Navigator is to display program
information to the viewer (cf. Figure 2). For example, in
the DVB standard [10] the program information is
transmitted according to the Service Information (SI)
specification [11]. The DVB-SI fields contain information
about the available networks, channels, programs, and
also data services. The Navigator displays this information
to the viewer and allows the viewer to access the different
services.

The DVB-SI fields can also carry information about the
forthcoming programs (e.g., channel, date, starting time,
ending time, description, and type). This information is
displayed by the Electronic Program Guide (EPG). In the
above service architecture, the EPG is integrated within
the Navigator. Thus, the Navigator is a place where the
viewer can access information about services available
now and in the future. The Navigator can contain
information provided by different operators at the same
time. Thus, it is a neutral information source, and should
contain only generic information.

Figure 2. EPG from Navigator.

2.2 Digital Teletext Service
The current analogue Teletext [9] is a popular service,
e.g., in Europe. The service contains textual information
with simple graphics, which is displayed as pages. The
user can access different pages by giving three digit codes
with a remote control.

Navigator

Brewsor

Banking

Email

Channels

Programs

Services

Settings

Channel Info bar

Digital
Teletext

Games

Chat

News

Sports

Programs

Shopping

Interactive
Programs

Game
shows

Talk shows

News

Sports

Shopping
Services

Part Two: Publications

ISBN: 1-8901706-09-8 © 2001 KSI 99

The main advantage of the Digital Teletext is that it can
contain formatted text, tables, high-quality graphics,
images, and even animations (cf. Figure 3). The viewer
can access pages by menus and scrolling page lists on
screen or even uses bookmarks and color coded
hyperlinks, which are activated by the four color (i.e., red,
green, yellow, and blue) buttons of the remote control.

Figure 3. Sports page from Digital Teletext service.

The Digital Teletext service is in fact a simple browser.
The main difference is that the interactivity is more
limited. Thus, services that contain more interactivity
(e.g., games) should be separate applications. The Digital
Teletext content should be coded with some markup
language. Extensible Markup Language (XML) is a
natural choice for this purpose. In [12] and [13], we have
described an XML based implementation of the Digital
Teletext service.

Figure 4. Interactive program from Ice Hockey
program.

2.3 Interactive Programs
Finally, the interactive programs form the third service
category. They are usually based on some existing
television program format. For example, infomercials,
quiz shows, and talk shows are already interactive. The
viewers have to use telephone, fax, or Internet to contact
the service provider, though.

The main advantage of the digital television is that the
viewers can use the interactive programs directly on their
television screen with the remote control. The viewers
can, for example, access background information, chat
with other viewers, or place orders. The example
application was an interactive service for ice hockey TV
program (cf. Figure 4).

3. SYSTEM INTEGRATION MODEL
Figure 5 shows the system integration model with the
necessary system components. It complies with the DVB-
MHP reference model. The Linux and Kaffe OpenVM
[16] were selected as the operating system and Java virtual
machine of the set-top box, respectively. The XML parser
and Java Media Frame Work (JMF) API are as part of the
APIs. The resident applications (i.e., Navigator, Digital
Teletext, and application manager), which belongs to the
system software, are on the same level of the APIs since
they uses both low-level and high-level APIs. Kaffe Java
virtual machine is used to interpret the Java bytecodes of
applications. The drivers include remote control, network,
and display console driver, etc.

Figure 5. Digital television system integration model.

3.1 Set-top Box Operating System
Linux is truly global standard and most of its features are
suitable for set-top box. For example, it is very easy to
port to new platforms (i.e., a hardware change does not
mean a re-selection or re-writing of the operating system).
Linux is made for networking. Virtually all networking
protocols in use in the Internet are native to Linux [17].
There are no runtime royalties. Linux is sophisticated,
efficient, robust, reliable, modular, and highly
configurable.

Although Linux is not a real-time operating system (i.e.,
the Linux kernel does not provide the required event
prioritization and preemption functions), several add-on
options are available that can bring real-time capabilities
to Linux-based systems [17].

The Linux was selected as our set-top box operating
system. All unnecessary components, like virtual memory

Linux Operating System,
Drivers, Network Interfaces, Hardware

Interoperable Applications

Java Class libraries (API),
XML parser,

JMF API

Navigator,
Digital Teletext,

Application manager

Kaffe Java Virtual Machine

Part Two: Publications

ISBN: 1-8901706-09-8 © 2001 KSI 100

and networked file system, were removed from the
operating system.

Set-top box is different from traditional desktop PCs. For
example, X-windows on the digital television screen is not
needed. Instead of X-windows, we use a text-based frame
buffer console. This important feature is supported by
Linux Kernel 2.2.x.

The main idea behind the frame buffer console is to
provide a hardware-independent console device. The
frame buffer device provides an abstraction for the
graphics hardware. It represents the frame buffer of some
video hardware and allows application software to access
the graphics hardware through a well-defined interface, so
the software doesn't need to know anything about the low-
level (e.g., hardware registers) system [15].

3.2 Set-top Box Java Virtual Machine
Transvirtual Technologies, Inc. offers the first truly cross-
platform Java implementation - Kaffe Java virtual
machine. It is free and available as open source code. It
runs on virtually any Internet appliance or embedded
system [16]. Kaffe is compact, extensible, and easy to
install and configure. Kaffe was developed on Unix-like
systems, specifically Linux, so that it is easy to port it to
Linux.

Kaffe is a full implementation of the PersonalJava 3.0
specification, including the PersonalJava Class Libraries,
as well as integrated classes for handling graphics, file
management, and networking. Specifically, its Abstract
Window Toolkit (AWT) 1.1 implementation supports for
non-windows platforms (e.g., frame buffer console
device) using its own Java based windowing system.
Customizable “look and feel” has no memory and
execution costs of Sun’s swing.

Kaffe’s Java virtual machine includes core virtual
machine, native operating system thread, garbage
collection, class loaders, interpreter, verifier, Just-In-Time
(JIT) compiler, standard Java Native Interface (JNI)
interface to native code, network, etc. Kaffe also has the
minimum footprint for Java virtual machine, which can be
as little as 54 KBytes. The minimum core libraries are 138
KBytes. Diskless operations do not need native file
systems. Classes can be loaded from RAM, ROM, or flash
memory [16].

3.3 Application Manager
All the applications (i.e., resident and downloadable
Xlets) need an application manager to launch the code,
control its execution, and collect garbage (i.e., manage the
lifecycle of the applications and signaling). Each
application cannot run by itself without the application
manager.

The application manager is by definition a part of the
system software and resident in the set-top box. It is
responsible for checking the code and data integrity,
synchronizing the commands and information, adapting
the presentation graphic format to suit the platform
display, obtaining and disposing of the system resources,
managing the error signaling and exceptions, initiating
and terminating any new sessions, and allowing the
sharing of variables and contents [4]. In addition, the
application manager must maintain a remote control key
event model to manage the button events [18].

Figure 6 shows the interface between Xlets and the set-top
box resources [18]. The set-top box resources include
shared memory, video plane, On Screen Display (OSD)
plane, properties, etc. Non-resident Xlet code can be
loaded into set-top box memory from data carousel at run
time. The signaling information of an Xlet is carried in the
Application Information Table (AIT), which can be
identified from the broadcasting transport streams or from
the network (IP).

Figure 6. The interface between Xlets and set-top box
environment.

The application manager and an Xlet implement
XletContext and Xlet interfaces, respectively. The
interfaces define the protocols of behavior that can be
implemented by any applications, anywhere. The
interfaces define a set of methods, but do not implement
them. The application manager and Xlet application that
implement the interfaces agree to certain behavior. In
addition, the XletContext acts as a bridge between Xlet
and the application manager so that an Xlet can access
system resources and notify the state changes to the
application manager during its execution. The application
manager is also able to control the state changes of Xlet
and terminate an Xlet at any time.

3.4 Service Delivery and Control
The applications include resident and downloadable
software. They were implemented using Java language.

Properties

Properties caching

Signal state
changes

Application
manager

AIT + code

Set-top box resources

Object/Data carousel

Xlet XletContext

Part Two: Publications

ISBN: 1-8901706-09-8 © 2001 KSI 101

The Navigator and Digital Teletext service are the resident
applications. Thus, they belong to the system software and
were stored in the flash memory of set-top box. They use
the Java APIs, and thus, they are in the same level as the
APIs (cf. Figure 5). The resident applications are updated
via a hardware module-bootloader of the set-top box by
means of the Navigator.

A downloadable application is multiplexed with the
television program and transmitted using so called Digital
Storage Media -Command and Control (DSM-CC) object
carousel, which send the code and data as a repeating
cycle. The objects are automatically downloaded into the
digital television receiver (i.e., set-top box), which then
runs them. DSM-CC UU (User to User) is the interface
that is used to extract DSM-CC carousel objects from the
broadcast streams, or via an interactive access to a remote
server if there is a return channel.

The Navigator and Digital Teletext service can be initiated
via remote control. Usually, there are buttons in a remote
control, which corresponds to the two functions. Also,
there is a button on the remote control to be used to launch
the downloadable applications (i.e., interactive programs).

4. IMPLEMENTATION

Figure 7. Testing system.

4.1 Hardware and Software Environment
The set-top box hardware for system testing is an all-in-
one multimedia Pentium processor-based single board
computer (SBC) - PCM-5864. It uses K6-2 processor. The
CPU speed is 266 MHz. It supports a 36-bits LCD flat
panel, 32-bit PCI-bus 100/10 Mbps Ethernet interface,
video in and TV-out (supports NTSC and PAL formats),
and integrated 3D surround audio.

A programmable watchdog timer is used as an internal
timer of the set-top box. The configurations also include
32 Mbytes RAM, 2 Mbytes standard display RAM, and a

Compact Flash card with 16 Mbytes memory. The display
resolution was set to 640 x 480 mode [19]. Figure 7 shows
the screenshot of the testing system.

The Debian Linux 2.2 with Linux kernel 2.2.4, Kaffe Java
virtual machine 1.05, and XML parser were installed in
the hard disk. Since Kaffe does not support Xerces parser
(by Apache) that implements Sun’s Java API for XML
Parsing (JAXP) interface, xp (by James Clark) parser with
Docuverse Document Object Model (DOM) was used.
The VESA 2.0 was used as the frame buffer console
driver. The Java bytecodes and data of Navigator, Digital
Teletext, application manager, and drivers were also
stored in the hard disk.

The applications (i.e., Navigator, Digital Teletext, and Ice
Hockey) were originally developed in Windows 98 and
JDK1.2 environment. In a later stage, the code was
immigrated to Debian Linux 2.2 and Kaffe 1.05
environment. Finally, the Java bytecodes of Navigator and
Digital Teletext were ported to the set-top box
environment. The Ice Hockey Java bytecodes were placed
on the server and loaded via HTTP protocol. The Java
Media Frame Work (JMF 1.0) player was used to
playback video.

4.2 Run-time System
The application manager is started up automatically after
the set-top box was powered up and kept running until the
set-top box was powered down. The application manager
was scheduled as the lowest priority thread if no
application is running.

It kept a data table in volatile-memory (RAM) during run-
time. The data table maintained the signaling information
of running or paused Xlets. Each record in the data table
contained a class loader, Xlet object, current state, and
initial class of the running or paused Xlet.

Whenever an Xlet changed its state, the application
manager had to be notified about the state change so that it
could track the state of the Xlet. The application manager
could not force an Xlet to provide its service.
Downloadable Xlets could only be activated via
broadcasting and viewer’ request. Xlets could be
terminated at any time. There is no limit on simultaneous
applications running in the set-top box memory as long as
there is enough memory.

A system configuration file was used to record the states
and configurations of Xlets, initialize the system, keep
shared resources, save user’s profiles, tuning information,
etc. The data information of resident Xlets was got, when
it was downloaded from the bootloader. The application
manager was responsible for getting the AIT table
information from the data carousel for the interactive
services. In the testing system, we used a local binary (bit

Part Two: Publications

ISBN: 1-8901706-09-8 © 2001 KSI 102

stream) file instead of transport streams sending from data
carousels.

This configuration file was kept in cache during the
system running. There are several shared variables for
each application’s running state, which are used by Xlets
to notify the application manager about their state
changes.

Xlets accessed the resources and shared variables (e.g.,
video plane, graphics plane, system properties, etc.)
provided by the set-top box via the XletContext interface
passed by the application manager. The application
manager also completed the adaptation of platform display
and remote control key event operation, e.g., resize the
video size, add and remove the key listeners for the Xlets.

The Navigator was initiated by pressing “Navig” button
on remote control. If the viewer wanted to leave the
Navigator to select the Digital Teletext service by pressing
“text-TV” button, the application manager did the garbage
collection for the Navigator and loaded the Digital
Teletext code without starting a new Java virtual machine.

Similarly, the Ice Hockey application was started when
viewer pressed the “App” button on the remote control.
The Java bytecodes were downloaded from the Internet by
reading the AIT table, and at the same time the application
manager wrote the application state in the system
configuration file dynamically.

5. RESULTS
Some performance results from the system execution are
shown in the Table 1, Table 2, Table 3, and Table 4. The
total resident storage of resident applications and system
software except for interactive program (Ice Hockey) is
14727 KB (cf. Table 1). It is possible to port them to the
Flash memory (16 MB).

Software Storage (KB)
Linux 12000
Kaffe Java virtual machine 411
Kaffe APIs 1075
XML parser APIs 713
JMF APIs 643
Application manager 17
Navigator 121
Digital Teletext 81
Ice Hockey 77
Total 14727

Table 1. Storage of resident system software and

applications.

The memory consumption of Kaffe Java virtual machine,
The JMF video player, and three applications is shown in

Table 2. The total memory consumption is 12200 KB
(nearly 12 MB). The three applications, which were
simultaneously together with the application manager,
consume about 4720 KB. It is possible for set-top box
with minimum memory configuration (i.e., 16MB) (cf.
Section one) to run applications simultaneously.

Software RAM (KB)
Kaffe Java virtual machine 2360
JMF video player 5120
Application manager 712
Navigator 2360
Digital Teletext 1336
Ice Hockey 312
Total 12200

Table 2. Memory consumption of resident system

software and applications at run time.

The start-up latencies of applications are shown in Table3.
The results are acceptable. The test system used JMF
video player as TV program instead of video decoder in
real broadcasting environment. Therefore, the delay can
be improved in the future.

Applications Start-up delay (second)
JMF video player 5.52
Application manager 0.11
Navigator 6.32
Digital Teletext 5.17
Ice Hockey 3.23

Table 3. Start-up latencies of the applications.

Table 4 shows the switching times between applications
while three applications were running in the set-top box.
The results shown are also acceptable.

Applications
From To

Switching
delay (second)

Navigator Digital Teletext 1.38
Digital Teletext Navigator 2.25
Navigator Ice Hockey 0.84
Ice Hockey Navigator 1.85
Digital Teletext Ice Hockey 0.93
Ice Hockey Digital Teletext 1.57

Table 4. Switching latencies between applications.

6. CONCLUSIONS
This paper presented a system integration model and a
service architecture for future set-top box. In particular, a
working prototype system and services were designed and
developed. The system components consisted of Linux

Part Two: Publications

ISBN: 1-8901706-09-8 © 2001 KSI 103

operating system with selected modules, necessary
drivers, Kaffe Java virtual machine, and minimum Java
classes (APIs) including XML parser, an application
manager, and two resident applications.

The work has shown that it is ideal to execute the
applications to ensure the cross-platform interoperability
based on this system architecture and the selected system
components. And also the applications developed, which
were based on the service architecture, can be well
managed by the system software – application manager in
the set-top box.

The configurations of the hardware and software
environment of the set-top box are compatible with
standard set-top boxes. The results in Section 5 are
acceptable and satisfactory. Our work can be a valuable
basis of the vendors of future set-top box.

We shall improve the system performance both from
hardware and software resources, e.g., further removing
unnecessary components of Linux operating system,
booting Linux operating system from Flash memory using
Compact Flash card, storing part of system components
and configurations in Flash memory in stead of hard disk,
analysis of caching part of Digital Teletext pages in
memory, etc.

We shall also set-up a server that is used to simulate the
data carousel mechanisms to delivery applications, SI, and
AIT information to the set-top box. Further more, the
more important one is to add fault-tolerant function to the
system to ensure the reliability. Finally, performance
according to the criteria and implementation guidelines of
the standards shall be measured.

7. ACKNOWLEDGMENT
The Future TV project (http://futuretv.uta.fi) is funded by
the National Technology Agency of Finland together with
major Finnish television, telecommunications, and digital
media companies. The author Chengyuan Peng would like
to thank Nokia Oyj foundation for the support during the
research work.

8. REFERENCES
[1] B. Fox, “Digital TV comes down to earth,” IEEE

Spectrum, October 1998.
[2] M. Milenkovic, “Delivering interactive services via a

digital television infrastructure,” IEEE Multimedia,
vol. 5, no.4, Oct./Dec. 1998, pp. 34-43.

[3] J. - P. Evain, “The Multimedia Home Platform - an
overview,” EBU Technical Review, spring 1998.

[4] Gerard O’Driscoll, “The essential Guide to Digital
Set-top Boxes and Interactive TV,” Prentice Hall
PTR, 2000.

[5] NorDig II, “Digital Integrated Receiver Decoder
Specification, for use in cable, satellite and terrestrial
networks,” Version 0.9.

[6] DVB-MHP, “Multimedia Home Platform,” European
Broadcasting Union, February 2000.

[7] T. Lindholm, F. Yellin, The Java Virtual Machine
Specification, Sun Microsystems, Inc., 1999.

[8] P. Vuorimaa, “Digital television service architecture,”
Proceedings of IEEE International Conference on
Multimedia and Expo, ICME2000, New York City,
NY, USA, July 30 - Aug. 2, 2000, pp. 1411-1414.

[9] ETSI ETS 300 706, “Enhanced teletext
specification,” European Telecommunication
Standardization Institute (ETSI), 1997.

[10] ETSI TR 101 200, “Digital video broadcasting (DVB)
– a guideline for the use of the DVB specifications
and standards,” European Telecommunication
Standardization Institute (ETSI), 1997.

[11] ETSI EN 300 468, “Digital Video Broadcasting
(DVB; Specification for Service Information (SI) in
DVB Systems,” European Telecommunication
Standardization Institute (ETSI), 1998.

[12] P. Vuorimaa and C. Sancho, “XML based text TV,”
Web Information Systems Engineering, WISE2000,
Hong Kong, June 19-20, 2000.

[13] C. Peng and P. Vuorimaa, “A Digital Teletext
Service,” Proceedings of the 9th Int. Conf. in Central
Europe on Computer Graphics, Visualization and
Computer Vision, WSCG'2001, Czech Republic,
February 5 - 9, 2001, pp. 120-125.

[14] C. Peng, P. Vuorimaa, “A Digital Television
Navigator,” Proceeding of the Internet and
Multimedia Systems and Applications, IMSA’2000,
Las Vegas, USA, Nov. 19-23, 2000, pp. 69-74.

[15] L. Ayers, “Kernel 2.2's Frame-buffer Option,” Linux
Journal, issue 36, January 1999.

[16] Transvirtual, “Wherever you want to run Java, Kaffe
is there,” white paper, 1999.

[17] R. Lehrbaum, “Using Linux in Embedded and Real-
Time Systems,” Embedded Linux Journal, issue 75,
2000.

[18] C. Peng, P. Vuorimaa, “Digital Television
Application Manager,” accepted to the IEEE
International Conference on Multimedia and Expo,
Tokyo, Japan, August 22-25, 2001.

[19] G. Sivaraman, P. Cesar, and P. Vuorimaa, “System
software for digital television applications,” accepted
to the IEEE International Conference on Multimedia
and Expo, Tokyo, Japan, August 22-25, 2001.

