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Associative Clustering for Exploring
Dependencies between Functional

Genomics Data Sets
Samuel Kaski, Janne Nikkilä, Janne Sinkkonen, Leo Lahti, Juha E.A. Knuuttila, and Christophe Roos

Abstract—High-throughput genomic measurements, interpreted as cooccurring data samples from multiple sources, open up a fresh

problem for machine learning: What is in common in the different data sets, that is, what kind of statistical dependencies are there

between the paired samples from the different sets? We introduce a clustering algorithm for exploring the dependencies. Samples

within each data set are grouped such that the dependencies between groups of different sets capture as much of pairwise

dependencies between the samples as possible. We formalize this problem in a novel probabilistic way, as optimization of a Bayes

factor. The method is applied to reveal commonalities and exceptions in gene expression between organisms and to suggest

regulatory interactions in the form of dependencies between gene expression profiles and regulator binding patterns.

Index Terms—Biology and genetics, clustering, contingency table analysis, machine learning, multivariate statistics.
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1 INTRODUCTION

ASSUME two data sets with cooccurring samples, that is,
samples coming in pairs ðx;yÞ, where x belongs to the

first set and y to the second set. In this paper, both x and y are
gene expression profiles or other multivariate real-valued
genomic measurements about the same gene. The general
research problem is to find common properties in the set of
pairs; statistically speaking, the goal is to find statistical
dependencies between the pairs.1

In this paper we search for dependencies expressible by
clusters. The standard unsupervised clustering methods,
reviewed for gene expression clustering for instance in [32],
aim at finding clusters where genes have similar expression
profiles. Our goal is different: to cluster the x and the y
separately such that the dependencies between the two
clusterings capture as much as possible of the statistical
dependencies between the two sets of clusters. In this sense,
the clustering is associative; it finds associations between
samples of different spaces. The research problem will be
formalized in Section 2.

The problem of searching for common properties in two
or more paired data sets differs from classic machine
learning problems, commonly categorized into unsuper-
vised and supervised. Supervised learning targets at
finding classes (in classification) or predicted values of a
variable (in regression). In probabilistic terms, the goal is to
build a good model for the distribution pðyjxÞ while, in the
kind of dependency modeling discussed in this paper, the
goal should be symmetric. Basic unsupervised learning, on
the other hand, is symmetric in a trivial sense: All variation
of one variable—be it x, y, or the combination ðx;yÞ—is
modeled, and there is no mechanism for separating
between-data-set variation from within-data-set variation.
Common to both kinds of learning, and indeed to all
machine learning, is model fitting: A model parameterized
by �� is fitted to the data.

A different kind of problem to be addressed in this paper
is modeling only the variation in x and y that is common to
both variables. In other words, we search for dependencies
between the x and y. This symmetric goal has traditionally
been formalized as maximizing the dependency between
two representations, x̂x � fxðx; ��xÞ and ŷy � fyðy; ��yÞ, of x and
y, respectively. A familiar example is canonical correlation
analysis [24], where both the fx and f y are linear projections
and the data are assumed to be normally distributed. This
idea has been generalized to nonlinear functions [4] and to
finding clusters of x informative of a nominal-valued y [3],
[37]. It has been formalized in the information bottleneck
framework [44], [40], resulting in efficient algorithms for two
nominal-valued variables [41], [35].

Symmetric dependency modeling with non or semipara-
metric methods (such as clustering) is a natural way of
formalizing the search for commonalities in cooccurring data
sets, when one is not able or willing to postulate a detailed
parametric model a priori. Such situations are common in
modern data-driven functional genomics: Microarray-based
high-throughput measurement techniques make it possible
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1. The fundamental difference from searching for differences between
data sets [18], where the relative order of the samples within the two sets is
not significant, both sets are within the same space, and the goal is to find
differences between data distributions, is that our data are paired and we
search for commonalities between the pairs of samples that can have
different variables (attributes) and different dimensionalities.
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to test broad hypotheses, related, for example, to organism-
wide differences in response or to functions of a gene over a
range of organisms. Mining the data stored in community-
resource databanks for new hypotheses is fruitful as well. In
data mining, the search for dependencies between data sets
is a considerably better-defined target than the common,
unsupervised search for clusters and other regularities.

We study two cases of symmetric dependency modeling:
search for regularities and differences in expression of
orthologous genes in different organisms and search for
regulatory interactions between expression and transcription
factor binding patterns.More generally,we argue that, once a
research goal can be dressed into a search for dependencies
between data sets, our approach is a well-defined middle
ground between purely hypothesis-driven research for
which hypotheses must be available and purely exploratory

research, where the task is often ill-defined.
Analogically to the two linear projections in canonical

correlation analysis, we use two sets of clusters as the
representations in the dependency search. Clusters are
more flexible than linear projections and they have a
definite role in exploratory data analysis, that is, in “looking
at the data:” Clustering reveals outliers, finds groups of
similar data, and simply compresses numerous samples
into a more manageable and even visualizable summary.
Clusters and other kinds of unsupervised models are of

particular importance as the first step of microarray data
analysis, where data are often noisy and even erroneous,
and in general not well-known a priori.2

For microarray data, the existing dependency-searching
techniques have two deficiencies. First, mutual information,
the dependency measure that they maximize, is defined for
probability distributions which in turn need to be estimated
from samples. The separate estimation stage with its own
optimality criteria will introduce uncontrollable errors to

the models. The errors are negligible for asymptotically
large data sets but nonnegligible for many real-life sets. We
will directly define a dependency measure for data instead
of distributions and justify it by combinatorial and Bayesian
arguments. For asymptotically large data sets, the depen-
dency measure becomes mutual information and can
therefore be viewed as a principled alternative to mutual
information for finite data sets.

The second shortcoming has been that the models are not

applicable to symmetric dependency clustering of contin-

uous data. While a trivial extension of existing continuous-
data methods may seem sufficient, a conceptual change is
actually required. Existing finite-data formulations either
maximize the likelihood pðyjxÞ of one data set, say y, given
x, or maximize the symmetric joint likelihood for pðx;yÞ.
Neither of these approaches is dependency modeling:
Conditional models are asymmetric, while joint density
models represent all variation in x and y instead of

common variation and, therefore, do not even asymptoti-
cally reduce to mutual information. A solution we present

in this paper is to use a hypothesis comparison approach
which translates to a Bayes factor cost function.

Bayesian networks, used also as models of expression
regulation [16], [36], are models for the joint density of all
data sources. In these models, the structure of dependencies
between variables is, at least to some extent, fixed in
advance. To a degree, dependencies can be learned from
data, but learning is hard and data-intensive. Our approach
complements Bayesian networks in two ways. First, it is
more exploratory and assumption-free because no depen-
dency structure is imposed, except the one implied by cluster
parameterization and division of the data set. Second, as
joint distribution models, Bayesian networks represent not
only the common variation between the data sets but partly
also the unique variation within each data set. In this sense,
the representations they produce are compromises for the
task of modeling the between-set variation.

From the biological perspective, the advantages of
clustering by maximizing dependency between two sources
of genomic information are at least two-fold. First, the new
problem setting makes it possible to formulate new kinds of
hypotheses about the dependency of the sources, not
possible with conventional one-source clusterings. Such
hypotheses are sought in the orthologous genes application
in Section 5. Second, mining for regularities in the common
properties of two data sets is a more constrained problem
that mining for any kinds of regularities within either of
them. Hence, assuming the sets are chosen cleverly, the
results are potentially better targeted. Our hypothesis is that
there will be less false positives in the discovered regulatory
interactions when expression and transcription factor
binding are combined in a dependency maximizing way,
compared to one-source clusterings. We will study the
interactions in Section 6.

2 ASSOCIATIVE CLUSTERING

The abstract task solved by associative clustering (intro-

duced in the preliminary paper [39]) is the following: cluster

two sets of data, with samples x and y, each separately, such

that 1) the clusterings would capture as much as possible of

the dependencies between pairs of data samples ðx;yÞ and
2) the clusters would contain (relatively) similar data points.

The latter is roughly a definition of a cluster.

Fig. 1 gives a brief overview of the method. For paired

data fðxk;ykÞg of real vectors ðx;yÞ 2 IRdx � IRdy , we search

for partitionings fV ðxÞ
i g for x and fV ðyÞ

j g for y. The partitions
can be interpreted as clusters in the sameway as in K-means;

they are Voronoi regions parameterized by their prototype

vectors mi. The x belongs to V
ðxÞ
i if kx�m

ðxÞ
i k � kx�m

ðxÞ
i0 k

for all i0 and correspondingly for y.

2.1 Bayes Factor for Measuring Dependency
between Two Sets of Clusters

The dependency between two cluster sets, indexed by i and
j, can be measured by mutual information if the joint
distribution pij is known. If only a contingency table of
cooccurrence frequencies nij computed from a finite data set
is available, mutual information computed from the
empirical distribution would be a biased estimate. A Bayes
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factor, to be introduced below, has the advantage of properly
taking into account the finite size of the data set while still
being asymptotically equivalent to mutual information.
Bayes factors have classically been used as dependency
measures for contingency tables (see, e.g., [20]) by compar-
ing a model of dependent margins to another model for
independent margins. We will use the classical results as
building blocks to derive an optimizable criterion for
associative clustering; the novelty here is that the Bayes
factor is optimized instead of only being used to measure
dependency in a fixed table. The categorical variables
defining the rows and columns of the contingency table
are defined by the Voronoi regions. They are parameterized
by the cluster prototypes which are optimized to maximize
the Bayes factor.

The Bayes factor compares two alternative models, one
describing a contingency table where the margins are
dependent and the other a table with independent margins.
The clusters are then tuned to make the dependent model
describe the (contingency table) data better than the
independent model, which can be interpreted as maximiza-
tion of dependency.

In general, frequencies over the cells of a contingency
table can be assumed to be multinomially distributed. The
model MI of independent margins assumes that the multi-
nomial parameters over cells are outer products of posterior
parameters at the margins: �ij ¼ �i�j. The model MD of
dependent margins ignores the structure of the cells as a two-
dimensional table and samples cell-wise frequencies di-
rectly from a table-wide multinomial distribution �ij.
Dirichlet priors are set for both the margin and the table-
wide multinomials.

Maximization of the Bayes factor

BF ¼ pðfnijgjMDÞ
pðfnijgjMIÞ

with respect to the margin clusters then gives a contingency
table where the margins are maximally dependent, that is,
the table is as far from the product of independent margins

as possible. In associative clustering, the counts are
influenced by the parameters of the Voronoi regions. The
BF is maximized with respect to these parameters.

After marginalization over the multinomial parameters,
the Bayes factor takes the form (derivation in the technical
report [38])

BF ¼
Q

ij �ðnij þ nðdÞÞQ
i �ðni� þ nðxÞÞ

Q
j �ðn�j þ nðyÞÞ ; ð1Þ

where ni� ¼
P

j nij and n�j ¼
P

i nij express the margins.
The hyperparameters nðdÞ, nðxÞ, and nðyÞ arise from Dirichlet
priors. We have set all three hyperparameters to unity,
which makes the BF equivalent to the hypergeometric
probability classically used as a dependency measure of
contingency tables. For large data set sizes N , the
logarithmic Bayes factor approaches mutual information
of the distribution pij ¼ nij=N with margins pi ¼ ni�=N and
pj ¼ n�j=N [38]:

1

N
logBF ¼

X
i;j

pij log
pij
pipj

� logN þ 1þO 1

N
logN

� �

¼ ÎIðI; JÞ � logN þ 1þO 1

N
logN

� �
;

ð2Þ

where ÎIðI; JÞ is the mutual information between the
categorical variables I and J having cluster indices as their
values.

2.2 Optimization of AC

The Bayes factor (1) will be maximized with respect to the

Voronoi prototypes. The optimization problem is combina-

torial for hard clusters, but gradient methods are applicable

after the clusters are smoothed. Gradients are derived in a

technical report [38]. An extra trick, found to improve the

optimization in the simpler case where one of the margins is

fixed [27], is applied here as well: The denominator of the

Bayes factor is given extra weight by introducing constants
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Fig. 1. Associative clustering (AC) in a nutshell. Two data sets are clustered into Voronoi regions. The Voronoi regions are defined in the standard way
as sets of points closest to prototype vectors, but the prototypes are not optimized to minimize a quantization error but by the AC algorithm. In this
example, the data sets are gene expression profiles and transcription factor (TF) binding profiles. A one-to-one correspondence between the sets exist:
Each gene has an expression profile and a TF binding profile. As each gene falls to a TF cluster and to an expression cluster, we get a contingency table
by placing the two sets of clusters as rows and columns and by counting genes falling to each combination of an expression cluster and a TF cluster.
Rows and columns, that is, the Voronoi regions defined within each data set, respectively, are called margin clusters, while the combinations
corresponding to the cells of the contingency table are called cross clusters. Associative clustering, by definition, finds Voronoi prototypes that
maximize the dependency seen in the contingency table. Voronoi regions are representations for the data sets just as the linear combinations are in
canonical correlation analysis. In both cases, dependency between the two parameterized representations is maximized. Maximization of dependency
in a contingency table results in a maximal amount of surprises, counts not explainable by the margin distributions. The most surprising cross clusters
with a very high or low number of genes potentially give rise to interesting interpretations. Reliability is assessed by the bootstrap.



�ð�Þ. A choice of �ð�Þ > 1 introduces a regularizing term to

the cost function that, for large sample sizes, approaches

margin cluster entropy and, thereby, in general, favors

solutions with uniform margin distributions.
The smoothed BF , here denoted by BF 0, is then

optimized with respect to the cluster prototypes fmg by a

conjugate-gradient algorithm (for a textbook account, see

[2]). We have

logBF 0 ¼
X
ij

log �
X
k

g
ðxÞ
i ðxkÞgðyÞj ðykÞ þ nðdÞ

 !

� �ðxÞ
X
i

log �
X
k

g
ðxÞ
i ðxkÞ þ nðxÞ

 !

� �ðyÞ
X
j

log �
X
k

g
ðyÞ
j ðykÞ þ nðyÞ

 !
;

ð3Þ

where

g
ðxÞ
i ðxÞ � ZðxÞðxÞ�1 exp �kx�m

ðxÞ
i k2=�2ðxÞ

� �
and similarly for gðyÞ. The gð�Þ are the smoothed Voronoi

regions at the margins. The Zð�Þ is set to normalizeP
i g

ðxÞ
i ðxÞ ¼

P
j g

ðyÞ
j ðyÞ ¼ 1. The parameters � control the

degree of smoothing of the Voronoi regions.
The gradient of logBF 0 with respect to an X-space

prototype m
ðxÞ
i is

r
m

ðxÞ
i

logBF 0 ¼
1

�2
ðxÞ

X
k;i0

xk �m
ðxÞ
i

� �
g
ðxÞ
i ðxkÞgðxÞi0 ðxkÞ L

ðxÞ
i ðykÞ � L

ðxÞ
i0 ðykÞ

� �
;

where

L
ðxÞ
i ðyÞ �

X
j

�
X
k

g
ðxÞ
i ðxkÞgðyÞj ðykÞ þ nðdÞ

 !
g
ðyÞ
j ðyÞ

� �ðxÞ�
X
k

g
ðxÞ
i ðxkÞ þ nðxÞ

 !

and for y accordingly. In the gradient, �ð�Þ is the digamma

function.
In summary, the optimization of AC proceeds as follows:

1. Parameters fmðxÞg and fmðyÞg are independently
initialized by choosing the best of several (here:
three) K-means runs initialized randomly.

2. On the basis of experience with other data sets, we
choose �ð�Þ ¼ 1:2.

3. Parameters �ð�Þ are chosen by running the algorithm
for half of the data and testing on the rest.

4. The fmðxÞg and fmðyÞg are optimized with a
standard conjugate gradients algorithm, using
logBF 0 as the target function.

Gradients of the m-parameters plugged into the algorithm

are shown above. The reported results are from cross-

validation runs.
In one-margin optimization with clusters in the other

margin fixed, the smoothing trick performs equivalently to

or better than simulated annealing [27]. Also note that

smoothing is for optimization only: Results are evaluated
with BF , which translates to having crisp clusters.

2.3 Uncertainty in Clustering

Our use of Bayes factors is different from their traditional
use in hypothesis testing, cf., [20]. In AC, we do not test
any hypotheses but maximize the Bayes factor to explicitly
find dependencies. This leaves the uncertainty of the
solution open.

A widely used “light-weight” (compared to posterior
computation) method to take into account the uncertainty in
clustering is bootstrap [12], [21]. As in [29], we use bootstrap
to produce several perturbed clusterings. We wish to find
cross clusters (contingency table cells) that signify depen-
dencies between the data sets and are reproducible.

Reproducibility of the found dependencies will be
estimated from the bootstrap clusterings as follows:

First, we define what we mean by a significantly
dependent cross cluster within a given AC-clustering. The
optimized AC model provides a way of estimating how
unlikely a cross cluster is, given that the margins are
independent. For this purpose, several (1,000 or more) data
sets of the same size as the observed one are generated from
the marginals of the contingency table (i.e., under the null
hypothesis of independence). The cross clusters with the
observed amount of data more extreme than that observed
by chance with probability 0.01 or less (Bonferroni corrected
with the number of cross clusters) are defined to be
significantly dependent cross clusters.

Next, the two criteria, dependency and reproducibility,
will be combined by evaluating how likely it is for each
gene pair to occur within the same significantly dependent
cross cluster in bootstrap (this is analogous to [29]). The
result, interpreted as a similarity matrix, will finally be
summarized by hierarchical clustering.

Please note that we do not expect to find dependencies
for all genes in the whole data sets, since, with noisy
genomic data, that would hardly be possible. In other
words, we are interested in finding the most dependent,
robust subsets of the data. This is exactly what the final gene
clusters from bootstrapped, most dependent cross clusters
provide.

2.4 Extremity of the Clusters

In the yeast case studies, we evaluate which cross clusters
are exceptional by their expression or TF binding profile.
For determining the extremity of the observed within-
cluster profiles, for each of them, 10,000 random sets of
genes were first sampled, each of the same size as the
cluster under study. We then computed within-cluster
average profiles for the observed cluster as well as for the
simulated ones. A part of the observed profile was denoted
as extreme if it was lower or higher in value than all the
simulations.

3 REFERENCE METHODS

First,weneed abaselinemethod to give a lower bound for the
results. For AC, it should not optimize the dependency of the
clusters, but only perform conventional clustering while
being as similar to AC as possible in other respects. In this
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work, the baseline method will be independent K-means

clusterings in both data spaces, since K-means is also

prototype-based clustering for continuous data-like AC. For

more detailed description and references of K-means, see, for

example, [7].
We compare AC to the information bottleneck (IB)

methods [17], [44]. The main problem with IB in our setting

is the continuous nature of our data: IB works on nominal-

valued data. We discretize the data first by K-means,

resulting in a new algorithm called K-IB here. For discrete

data, the closest alternative to AC among information

bottleneck methods would be symmetric two-way IB [17].

Our sequential implementation is based on [40].
We first quantize the vectorial margins x and y

separately by K-means without paying attention to possible

dependencies between the two margins. This results in

two sets of margin partitions which span a large, sparse

contingency table that can be filled with frequencies of

training data pairs ðxk;ykÞ. The number of elementary

Voronoi regions is chosen by using a validation set. In the

second phase, the large table is compressed by standard IB

to the desired size by aggregating the atomic margin

clusters. In this stage, joins at the margins are made with the

symmetric sequential algorithm [40] to explicitly maximize

the dependency of margins in the resulting smaller

contingency table.
The final partitions obtained by the combination of

K-means and IB are of a very flexible form and, therefore,

the method is expected to model the dependencies of the

margin variables well. As a drawback, the final margin

clusters will consist of many atomic Voronoi regions, and

they are therefore not guaranteed to be particularly homo-

geneous with respect to the original continuous variables (x

or y). Interpretation of the clusters may then be difficult. Our

empirical results support both the good performance of K-IB

and the nonlocalness of the resulting clusters.

4 VALIDATION OF ASSOCIATIVE CLUSTERING

4.1 Demonstration with Artificial Data

Figs. 2 and 3 demonstrate two key properties of AC with
artificial data sets that are as simple as possible.

The clusters focus on modeling those regions of the
margin data spaces, that is, those subsets of data, where the
cooccurring pairs x and y are dependent. This is clearly
visible as the high-density area of cross clusters in Fig. 2.

AC neglects variation that is irrelevant to the dependen-
cies between x and y. In Fig. 3, the AC clusters have
effectively become defined by only the relevant one of the
two dimensions. By contrast, standard clustering methods,
such as K-means, model variation in both dimensions.

4.2 Validation of Bootstrapped AC Analysis with
Real Data

Especially in bioinformatics, it is often challenging to test
new methods since there rarely exists any ground truth, that
is, known correct answers. We validated the (bootstrapped)
AC approach by searching for dependencies between data
sets containing known, real-world duplicate measurements
that should be more dependent than random pairs.

Expression profiles of orthologous man-mouse gene
pairs with unique LocusIDs were derived from a public
source [43] (http://expression.gnf.org/data_public_U95.gz,
http://expression.gnf.org/data_public_U74.gz) using the
HomoloGene [46] database and Affymetrix annotation files.
The expression measurements include 46 human and
45 mouse arrays covering a wide range of tissues and cell-
lines. For 21 of the tissues, expression values were available
for both species.
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Fig. 2. Associative clustering concentrates on dependent subsets of
data. Here, both margin spaces, denoted by X and Y, are one-
dimensional, and the figure shows a scatterplot of the data (dots on the
plane where X and Y are the axes). Cluster borders in the X-space are
shown with the vertical lines and cluster borders in the Y-space with
horizontal lines. The resulting grid of so-called cross clusters then
corresponds to the contingency table; the number of dots within each
grid cell gives the amount of data in a contingency table cell. The AC
cells are sparse in the bulk of independent data in the middle and denser
on the sides where the X and Y are dependent. K-means, in contrast,
focuses on modeling the bulk of the data in the middle. (For this data set,
AC has lots of local maxima.)

Fig. 3. Associative clustering focuses on modeling the variation that is
relevant to dependencies between the data sets. Both of the margin
spaces are two-dimensional here, and the data has been constructed
such that the vertical dimension of the x-space is dependent on the
horizontal dimension in the y-space. All other variation is uniform noise.
Lines are approximate cluster borders (Voronoi borders), and the small
crosses are the prototype vectors. Associative clustering neglects the
irrelevant variation in both margin spaces and models the relevant,
dependent variation. In contrast, K-means, as all purely unsupervised
clusterings, models all the variation including noise.



We have derived two different data sets from the original
data: 1) a larger one for this validation study, with known
ground truth in the form of naturally multiplicated genes
and 2) a smaller one for the actual analysis without any
multiplicated genes (presented in Section 5).

Due to technicalities related to the Affymetrix oligonu-
cleotide array platform, in the original data sets [43], one
gene (LocusID) may have multiple expression profiles. In
the verification data set, these profiles were considered as
independent samples, resulting in a total of 4,500 gene
expression profile pairs. These “duplicate orthologous
genes,” representing the same sequence-level similarity
between the species, should cooccur in the significantly
dependent cross clusters (see Section 2.3) more often than
randomly chosen orthologous genes, and, since AC should
model dependencies more effectively than K-means, also
more often than in the cross clusters produced by K-means.

The validation study was carried out by exactly the same
procedures as we will use in the rest of the experiments of
the paper, to validate the setting.

The number of clusters was chosen to be such that each
cross cluster would, on average, contain roughly 10 data
points. For the verification set, this translates to 19 clusters
in both margin spaces. We sampled 100 bootstrap data sets,
computed AC for each, got 100 different contingency tables,
and, from these, we computed a similarity matrix for the
genes as described in Section 2.3.

The optimization parameter �was chosen by leaving half
of the data for validation.

We then tested with a rank sum test whether the
similarity distribution of the known duplicates is different
from the similarity distribution of all the other genes. In AC,
the known duplicates turned out to cooccur unexpectedly
frequently in dependent cross clusters (rank sum test;
p < 2:2� 10�16).

Compared to K-means, AC detected connections of the
multiple ortholog profiles statistically significantly more
often (sign test, p < 0:001). These two results support the
validity of AC in finding dependent subsets of data better
than standard unsupervised clustering.

5 EXPERIMENTAL RESULTS: DEPENDENCIES

BETWEEN MAN AND MOUSE

Functions of human genes are often studied indirectly, by
studying model organisms such as the mouse. An under-
lying assumption is that so-called orthologous genes, that is,
genes with a common evolutionary origin, have similar
functional roles in both species. Exploration of dependencies
(regularities and irregularities) in functioning of ortholo-
gous genes helps in assessing to which extent this assump-
tion holds. In practice, gene pairs are defined as putative
orthologs based on sequence similarity, and we seek for
regularities and irregularities in their expression by asso-
ciative clustering.

An exceptional level of functional conservation of an
orthologous gene group may indicate important physiolo-
gical similarities, whereas differentiation of function may be
due to significant evolutionary changes. Large-scale studies
on orthologous genes may ultimately lead to a deeper

understanding of what makes each species unique. (For
related approaches, see, e.g., [6], [9], [11], [14], [30]).

5.1 Data and Experiments

In the original data [43], multiple expression profiles may
correspond to one gene. In Section 4.2, they were used for
validating the methods, whereas, in this section, we use a
single representative profile for each gene. The profiles
corresponding to a same gene are averaged after discarding
weakly correlating ðr < 0:65Þ profiles of the same gene,
when multiple measurements from incomplete or poten-
tially nonspecific probe sets are available. This results in a
set of 2,818 orthologous gene pairs with unique LocusIDs.

5.2 Quantitative Comparisons of the Methods

Adependency-maximizing clusteringmethod should 1) find
dependencies and 2) represent the results as homogeneous
clusters. We compared AC to a baseline method that does
not search for dependencies at all, that is, separate K-means
for both mouse and man, and to symmetric IB following a
discretization with K-means (see Section 3). The both � : s of
AC and the number of initial K-means clusters for IB were
chosen using a validation set as in Section 4.2.

AC produced significantly more dependent clusters than
standard K-means clustering (10-fold cross-validation,
paired t-test with d:f: ¼ 9; p < 0:001). All methods were
run in each fold from three different intializations, of which
the best result according to each method’s own cost
function was selected. Averaged log-BF costs were �52:9
and �115:8 for AC and K-means, respectively. However,
cluster homogeneity was not significantly reduced by
focusing on dependency modeling (at the p < 0:05 signifi-
cance level). Differences of the methods in cluster homo-
geneity have been visualized in Fig. 4.

K-IB produced significantly ðp < 0:001Þ more dependent
clusterings (log-BF=10.24 on average over cross-validation
folds) than AC and K-means. On the other hand, cross
clusters from AC studies are significantly more homoge-
neous than those of K-IB and random clustering ðp < 0:002Þ.
The measure of homogeneity (actually dispersion) was the
sum of intracluster variances.

In summary, as expected, AC extracts more dependen-
cies than K-means and the clusters are more homogeneous
(and hence easier to interpret) than those of K-IB. K-IB is a
good method for searching for dependencies if homogene-
ity is not essential.

5.3 Biological Results: Findings of Mice and Men

Bootstrapped AC produces a similarity matrix for the genes,
computed from the cooccurrence frequencies of genes in the
AC cross clusters. The matrix is summarized with simple
hierarchical clustering in this section, and a set of most
homogeneous gene clusters is extracted by cutting the
dendrogram at a specific cut-off level and discarding genes
belonging to clusters smaller than three genes.

As the most reliable dependencies produced by a high
cut-off are expected to be relatively trivial findings of
similar behavior of orthologous genes in mouse and man,
we set the threshold lower to include some unexpected
findings as well. The (arbitrary) cut-off limit was set to
include clusters with average cooccurrence frequency larger
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than 80 percent (of the bootstrap samples). This resulted in
139 orthologous gene pairs in 31 clusters.

5.3.1 Overall Regularities in Ortholog Expression

Many orthologous genes are expected to be functionally
similar, and similarity can, at its simplest, be measured by
correlation. Weak correlation of expression of orthologous
genes suggests differentiated gene function (or heavy
noise), whereas strong correlation is an indication of
functional conservation. To some extent, a global trend
exists in our data: Median correlation of expression profiles
of orthologous man-mouse gene pairs in the common
21 tissues is 0.33. It is expected that this trend dominates the
AC analyses concerning unexpectedly common expression
trends (large cross clusters) as well. Indeed, the more
similar (highly correlating) the expression profiles of an
orthologous gene pair are, the more often it tends to be
located in an unexpectedly large cross cluster. This was
measured by correlating the occurrence frequency with the
correlation between the orthologs, and the resulting
correlation coefficient r ¼ 0:41 suggests that AC is indeed
capable of detecting the simple tendency of the orthologs to
depend linearly.

Weakly or negatively correlating orthologs are the other
extreme; they are kinds of outliers and tend to be located in
exceptionally small cross clusters. Expression similarity
correlates negatively ðr ¼ �0:38Þ with frequency of occur-
rence in small cross clusters.

5.3.2 General Functional Trends of Dependent Genes

Orthologous genes are often functionally similar, although
some deviation may have occurred in the course of
evolution. Orthologous gene groups with exceptional
functional conservation could be expected to be of a specific
importance for species survival.

Such a cross-species feature is likely to contribute to
dependencies in the data and should be detected in AC
analyses. A straightforward approach to study such
functional trends is to check enrichment of Gene Ontology
(GO) [1] categories among the most dependent genes.

The most enriched GO categories among the genes
showing remarkable dependency (average cooccurrence
level � 80=100, minimum cluster size 3) were ribosomal
categories (all findings having EASE score with the
conservative Bonferroni correction < 0:05 are listed; EASE

[23] is a program that annotates the given gene list based on
GO and calculates various statistics for it). The three most
significantly enriched GOs, for both species, were cellular
component categories “cytosolic ribosome (sensu Eukarya)”
and “ribosome,” and the molecular function category
“structural constituent of ribosome.” Also, the biological
process “transmission of nerve impulse” was enriched for
both species. For human, the “eukaryotic 48S initiation
complex,” “cytosolic small ribosomal subunit (sensu Eu-
karya),” “small ribosomal subunit,” and “synaptic trans-
mission” categories were also enriched.

The dependency structure of data is mostly explained by
genes from these categories. A natural explanation for the
enrichment of ribosomal functions in large cross clusters is
that they often require coordinated effort of a large group of
genes and function in cell maintenance tasks that are critical
for species survival. High conservation of such genes has
been suggested also in earlier studies (see, e.g., [26]). The
current result is an additional indication of exceptional
conservation of ribosomal genes and of their crucial role for
the cellular functions of an organism.

By contrast, enrichment of the “transmission of nerve
impulse” category is somewhat surprising and worth more
careful studies. It is interesting to note that such genes seem
to contribute more to commonalities in the data than genes
with other conserved functions. No straightforward biologi-
cal explanation for this phenomenon could be found so far.

5.3.3 Examples of Finer-Scale Regularities

Minor regularities are revealed by the individual clusters. In
addition to conserved expression, AC can potentially reveal
orthologs with functional deviation.

We used median correlation as a rough measure to order
the clusters and picked two clusters: one with the highest
(suggesting preservation of function) and one with the
lowest (suggesting differentiation of function) median
correlation as examples.

The cluster with the highest median ortholog correlation
contained three genes with strongly testis-specific expres-
sion (LocusID pairs 8852-11643, 11055-53604, 1618-13164;
Fig. 5). Literature studies confirmed that the function of
these genes is related to reproduction. Disturbances in the
function of the last gene are known to cause infertility
although its functions are otherwise not well-known.
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Fig. 4. Dispersion of (a) margin clusters and (b) cross clusters in mouse-man studies. AC produces clusters that are comparable to K-means,
whereas the clusters of K-IB are more dispersed (significantly in (b)). RAND is a kind of an upper limit for cluster dispersion, obtained by randomly
assigning samples to clusters.



Although the presence of strongly correlated orthologs in
the most dependent clusters of the two species is not
surprising as such, the strong relationship of the three genes
suggests a possibly unknown functional link.

The clusters having salient regularities suggest interac-
tions: The gene products may have physical interaction,
they may share a common pathway, or they may otherwise
be responsible of similar biological functions. Even corre-
lated expression within a single species is known to be a
valuable cue for such interactions (see, e.g., [8], [13], [19]),
and preservation of coexpression in evolution is an even
stronger hint. Moreover, such “conserved correlations”
have also been suggested to be useful in confirming
orthologous relationships between genes [15].

Low between-species correlation in a cluster with
five genes suggests differentiated gene function (Fig. 6).
Three of the genes are known to be related to embryonic
development and three are transcription factors. We were
not able to find an interpretation for the cluster from the
literature. It is reliable, however, and hence potentially
interesting; the genes were clustered together in an
exceptional cross cluster in over 80 out of 100 bootstrap
samples. Our data is from adults, in which the embryonic
genes may have unknown functions.

5.3.4 Functionally Exceptional Orthologs

Outliers, that is, genes having peculiarities in their function,
can be sought by computing how often they end up in an
unexpectedly small cross cluster in the bootstrap. Such

genes are comparatively rare; only 1.5 percent of the
orthologs end up in an exceptionally small cross cluster
with a frequency of � 50 percent. Such exceptional
orthologs tend to correlate weakly or negatively, and
potentially hint at differentiated gene function. Note that
AC takes more than correlation into account as only three of
the 43 found orthologs are among the 43 most weakly
correlating orthologs. Hence, these exceptional genes could
not have been found based on the correlation analysis alone.

Enrichment of certain GO categories among such excep-
tional orthologs would indicate functionalities that are more
often differentiated between species. Interestingly, closest to
significant enrichment were the “secretion” category with its
subcategory “protein secretion” and the “signal transduc-
tion” category with subcategories of “cell communication,”
“signal transduction,” and “cell surface receptor linked
signal transduction” for human, and “cell communication”
and “G-protein coupled receptor protein signaling path-
way” for mouse. These categories have EASE score of< 0:05
without Bonferroni correction. With Bonferroni correction,
the enrichment is not significant, however.

To some extent, the secretion categories above could be
related to the overall signaling phenomena. The protein
secretion category fits well into this picture since many of
these signaling pathway initiators are, in fact, secreted
molecules. For example, G protein pathways include a
variety of extracellular agents like hormones, neurotrans-
mitters, chemokines, and local mediators that are all
systemically secreted molecules [33]. From the relative
abundance of such orthologs among those with exceptional
functionality, we may derive a hypothesis of their role in
species divergence.

The most extreme gene (LocusIDs 998 and 12540 for
human and mouse, respectively) occurs in an exceptionally
small cluster in � 80 of the 100 bootstrap iterations. The
expressions in man and mouse correlate negatively ð�0:47Þ
in this case and the ortholog is exceptional already as such.
The human gene is only expressed in neuronal tissues,
whereas the mouse gene is more generally expressed
(Fig. 7). Such outliers may be either real functional
differences in the species or measurement errors. Which-
ever the reason, the detection of the outlier was useful.

Groups of orthologous genes with a similar but excep-
tional functional relationship would be more reliable
findings than individual outliers. Unfortunately, cooccur-
rence of orthologous gene pairs in exceptionally small cross
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Fig. 5. Average expression profiles of the genes within the cluster

showing the highest correlation between mouse and man. Only the

21 tissues which were measured for both species are shown for clarity.

No genes were expressed ðAD < 200Þ in the remaining tissues. The

tissue list is in the Appendix.

Fig. 6. Expression profile plots of the genes in the cluster with weakest median correlation between the orthologs. Since the correlation is low, no

immediate relationships are visible. The cluster is very reliable, however, and hence the orthologs probably share some unexpected higher-order

dependency.



clusters is rare. The two cases with the most frequent

cooccurrence in small cross clusters have a frequency of 45

out of 100 bootstrap iterations. It is interesting to note that,

in both cases (Fig. 8), mouse genes are only weakly or not at

all expressed in the 21 tissues common to the organisms. In

the first case, the mouse and human genes are known to be

related to translational regulation. Differences in the

expression levels might hint at differentiation in the

translational mechanisms. In the second case, the human

genes (Protein tyrosine kinase 2 and Glia maturation factor,

LocusID-pairs 5747-14083 and 2764-63985) are expressed

specifically in neuronal tissues and are known to participate

in the regulation of growth and differentiation of neurons.

5.4 Summary

In summary, AC reproduced known findings and per-

formed as expected in comparison with alternative meth-

ods. Although this case study is technically interesting and

completely new, its biological implications are not yet as

convincing as in the second one (Section 6).
From the man-mouse orthologs, we found clusters of

highly conserved orthologs, possibly unknown functional

relationships between genes, and examples of exceptional

relationships between orthologs suggesting differentiation

in gene function between species. Some of the findings

remain unexplained but could be used as starting points for

more detailed studies.

6 EXPERIMENTAL RESULTS: DEPENDENCIES

BETWEEN GENE EXPRESSION AND

TRANSCRIPTION FACTOR BINDING

The baker’s yeast, Saccharomyces cerevisiae, is a popular
eukaryotic model organism due to the representativeness of
its genetic regulation and because of its easy experimental
handling.

Gene expression regulation operates on several levels, of
which perhaps the most crucial is transcriptional control.
This is handled by a set of regulatory proteins called
transcription factors (TFs) that bind to DNA in the gene
regulatory (promoter) region and can either enhance or
suppress the gene’s expression. In most cases, TFs interact
inter se to make up macromolecular complexes before
binding to the regulatory regions of DNA. Since TFs are
manufactured by expressing the relevant genes, they are the
key components of gene interaction networks. In this work,
we focus on the dependencies between the TFs and gene
expression, that is, on the gene regulatory network.

Regulatory interactions have been studied by measuring
genome-wide expression with microarrays in knock-out
mutation experiments and in time series experiments. In the
knock-out experiments, a mutation is targeted to a single
gene in the yeast genome to modify (usually knock out) the
normal function of that gene. It is then hoped that, by
measuring the gene expression changes with microarrays
after the mutation, the role of the mutated gene in cellular
processes is revealed. Genes belonging to the same
regulatory pathway as the mutated gene could be unveiled,
for example. In time series experiments, the goal is often to
infer causality in the gene regulatory network based on the
sequential changes in expression levels. However, since the
interaction network between the genes is complicated,
discerning the direct effects of the knock-out or the change
of expression in a time series from noise and the mass of
second-order effects can be very difficult, if not impossible.
At least a comprehensive, very expensive high resolution
time-series experiment with numerous replications would
be required. The same holds for knock-out experiments.
Thus, alternative approaches are worth exploring.
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Fig. 7. The most strongly exceptional outlier gene, detected based on its

most frequent occurrence in an unexpectedly small cross cluster.

LocusIDs 998 and 12540 for human and mouse, respectively.

Fig. 8. Two examples (A and B) of frequently cooccurring and exceptional “clusters” of gene pairs. (They cooccurred frequently in exceptionally small

crossclusters).Geneexpressionprofilesbelong tohuman-mouseLocusIDpairsA110438-57316,A27458-22384andB15747-14083,B22764-63985.



Gene expression is not the only source of information
about gene regulation. For instance, microarray-based
chromatin immunoprecipitation (ChIP) allows measuring
the binding strength of the transcription factor proteins on
any gene’s promoter region [31]. This reveals which TFs are
able to bind the specific gene’s promoter and are thus
potential regulators. But, many TFs bind numerous gene
promoter regions and are still not operational regulators.
The number of false positives can be very high and, thus,
inferring the regulatory relationships based on the binding
information alone is not in general possible.

Combining data from the several sources is a promising
option, and exploratory models are perfectly suited for the
first studies. We combine the functional information (gene
expression) and the potential regulator information (TF
binding). We make the following assumptions: First, it is
assumed that the genes are coexpressed in groups that are
unknown, cf., [16], [36]. Second, it is sensible to assume that
a common set of transcription factors binds to the
coexpressed genes. Otherwise, groupwise expression
would be very unlikely. This is of course an oversimplifica-
tion, but it has some biological justification. To be more
realistic, we do not assume that all the genes are regulated
in such a manner; we relax the simplification by assuming
that only subsets of genes behave this way, only a subset of
transcription factors need to be the same, and coexpression
needs to take place only in a subset of knock-out experi-
ments or time points.

Associative clustering, when applied to expression and
TF binding data, makes precisely these assumptions, and
we now aim to find subsets of genes whose expression is
maximally dependent on their transcription factor binding
profiles. These sets then act as hypotheses for expression
coregulation.

6.1 Knock-Out Expression and TF Binding

The yeast expression used in this analysis has been
measured from 300 different mutation strains with cDNA
microarrays [25] (http://www.rii.com/publications/2000/
cell_hughes.html). Transcription factor binding data on
genes for 113 transcription factors was obtained from [31]
(http://web.wi.mit.edu/young/regulator_network). After
taking the logarithm of the expression ratios, imputing
missing values with genewise averages, standardizing the
treatmentwise variances to unity, and including only the
genes appearing in both data sets, we had two full data
matrices, each with 6,185 genes. The number of clusters in
the margin spaces was chosen to produce roughly 10 data
points in each cross cluster, resulting in 30 clusters in the
expression space and 20 clusters in the TF-binding space.

6.1.1 Quantitative Evaluation

We first used this data to validate the performance of AC in
the two tasks it addresses: maximizing the dependency and
keeping the clusters homogeneous. These were measured
in 10-fold cross-validation runs with prevalidated � for AC
and prevalidated number of K-means clusters for K-IB.
Prevalidation was analogous for both methods: The data
was divided into two equally sized parts and several
parameter values were tried from three different random
initializations. Of these, the parameter value giving the best

AC cost was chosen. The final cross-validation runs were
also started from three different random initializations.

AC discovered dependencies in the data significantly
better than the reference methods (10-fold cross-validation,
paired t-test; d:f: ¼ 9; p < 0:001). The dependency was
measured with (natural) logarithmic Bayes factor (log-BF),
the average value of which was 8.84 for AC, �46:37 for IB,
and �262:29 for K-means. The value of log-BF is tradition-
ally interpreted to signify strong evidence against the null
hypothesis if it is at least 6-10 [28].

The homogeneity, or actually dispersion, of the clusters
was measured simply by the sum of the componentwise
variances in cross-validation. The comparison was made for
both margin clusters as well as for cross clusters. Margin
clusters produced by AC were statistically significantly less
dispersed than those produced by IB, but for cross clusters
the difference was not significant.

6.1.2 Biological Results

We sought for biologically interesting findings by boot-
strapping the AC (100 bootstrap data sets) and by otherwise
using the same parameters as in the above cross-validation
tests. A similarity matrix was generated for the genes from
the bootstrap results (see Section 4.2) and summarized by
the average-distance variant of hierarchical clustering.
Clusters with average cooccurrence higher than 20 out of
100 and with the minimum size of 3 genes were chosen for
the final analysis, resulting in 20 clusters.

The clusters were first screened with EASE, which found
enriched gene ontology classes in 12 of the 20 clusters
(Fisher’s exact test, Bonferroni corrected; p < 0:05). It is of
course likely that clusters without significant GO enrich-
ments are also biologically meaningful, but their interpreta-
tion is more cumbersome and is therefore left for future
work. In the following, we present a sample of four
representative AC cluster types.

The first, most notable cluster is a large set of about
one hundred genes that all code for ribosomal proteins.
These genes are known to be expressed often very
homogeneously, and they can also often be found in
conventional cluster analyses, cf. [5], [34].

The next two clusters are examples of how AC identifies
and highlights modules where a subset of the genes and
their main regulator(s) have been previously identified in
wet lab experiments. However, the modules also contain
novel components not previously associated to the corre-
sponding biological function.

The second cluster is an example of a cluster type rarely
found in conventional analyses. It contains only four genes,
of which three are known to code for proteins involved in
lipid metabolism and one to code for a growth factor
transporter. The most reliable and strongest transcription
factor bindings in this cluster are by proteins INO2/
YDR123Cp and INO4/YOL108Cp that are known to form a
protein complex and then regulate lipidmetabolism. The fact
that AC detects two interacting TFs shows that the method
can be used, to a certain extent, to predict TF interactions as
well. Moreover, it also unveils which potential target genes
are responsible for the lipid metabolism regulation observed
in wet lab experiments. In other words, the reliability of gene
function annotations is enhanced through the use of AC.
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The third cluster of 31 genes contains 20 genes involved
in amino acid and derivative metabolism. The best identi-
fied regulator for this cluster is GCN4/YEL009Cp, a
transcriptional activator of amino acid biosynthetic genes
known to respond to amino acid starvation. Here again, it is
shown that the AC creates a partially new cluster and
identifies a good candidate regulator.

About two thirds (28) of the genes in the fourth cluster,
the most interesting so far, are of unknown molecular
function. Even the biological process they contribute to may
be unknown. The known genes map to such GO categories
as “nuclear organization and biogenesis” and the most
reliable transcription factor associated to genes in this
cluster was YAP5p/YIR018Wp. This transcription factor is
known to be activated by the main regulators (SBF and MBF
[22]) of the START of the cell cycle, a time just before DNA
replication. This clearly refers to cell-cycle regulation and to
organization of the nucleus prior to replication.

6.2 Time Series Gene Expression and TF Binding

The expression data for this case studywasmeasured during
yeast cell cycle and was originally published in two diff-
erent papers [10], [42] (http://genome-www.stanford.edu/
cellcycle/links.html). The data consisted of 77 timepoints in
total. The transcription factor binding data used here is the
updated (2003) version of [31] for 106 transcription factors. In
this case study, the missing values were imputed with the k-
nearest neighbor method ðk ¼ 10Þ [45] and logarithms were
taken from both of the data sets. Including only the genes
present in both data sets resulted in a total of 5,618 genes. The
chosen cluster numbers were 30 in the expression space and
20 in the TF-binding space.

6.2.1 Numerical Results

The tests were run as described in Section 6.1. The
differences in dependency modeling between all the
methods were statistically significant also for this data pair
(10-fold cross-validation, paired t-test; d:f: ¼ 9; p < 0:001).
Natural logarithmic Bayes factor for AC was 32.27, for
IB �13:17, and for K-means �92:30, implying that AC found
a very strong dependency between the data sets.

The measure of cluster homogeneity, or actually disper-
sion, was the same as in the previous cases: the sum of the
componentwise variances. For this data pair, AC produced
significantly (10-fold cross-validation, paired t-test; d:f: ¼ 9;
p < 0:001) less dispersed cross clusters and margin clusters

than IB. Fig. 9 visualizes the margin cluster and cross cluster
dispersion for all methods.

6.2.2 Biological Results

In a similar manner as in the previous case, we sought for
biological findings from the bootstrapped AC clusters. The
clusters with average distance smaller than 60 (times in the
same dependent cross cluster out of 100) and withmore than
two genes were chosen. This resulted in a total of 16 clusters.

Gene ontology classes were enriched statistically sig-
nificantly in 13 of the 16 clusters (EASE; Fisher’s exact test,
Bonferroni corrected; p < 0:05). In the similar spirit as in the
knock-out mutation case, we give a representative sample
of four clusters.

Two clusters are essentially the same as in the in knock-
out case study, the ribosomal proteins being the first of them.

The second cluster is the same as the most interesting
(fourth) cluster in the knock-out case. This provides more
evidence that the cluster represents a biologically robust
motif, having a homogeneous profile in both TF-binding
and expression.

The third cluster (Fig. 10) contains a significantly high
number of genes involved in cell cycle regulation and, more
specifically, at the stage of entry into the mitotic cell cycle
(nine genes out of 33). The main regulator identified in this
module is SIP4p/YJL089Wp which is possibly involved in
SNF1p/YDR477Wp-regulated transcriptional activation.
This latter signaling factor is required for transcription in
response to glucose limitation. Interestingly, SIP4p/
YJL089Wp has a DNA-binding domain similar to the
GAL4p/YPL248Cp transcription factor, involved in galac-
tose response, another route in energy metabolism. Taken
together, this cluster contains some clear references to cell
cycle regulation on one hand and energy metabolism on the
other and proposes a set of genes that can bridge and
connect these two biological processes. Thereby, AC offers
the hypothesis for a relation between biological functions, in
addition to some clues on what genes could be involved.

The fourth cluster contains nine genes of unknown
molecular function or associated biological process. The
associated transcription factor ACE2p/YLR131Cp is known
to activate expression of early G1-specific genes, localizes to
daughter cell nuclei after cytokinesis, and there delays G1
progression in the daughters. Based on this data, the
nine genes can be predicted to act during the G1 phase of
the cell-cycle, thus specifying what kind of targeted
experiments are needed to establish their function.
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Fig. 9. (a) Margin cluster and (b) cross cluster dispersion for all methods in cell-cycle experiments, demonstrating that AC produces clusters that are
almost as compact as K-means clusters, whereas the IB-clusters are significantly more dispersed. RAND is a kind of an upper limit for cluster
dispersion, obtained by randomly assigning samples to clusters.



7 CONCLUSION AND FUTURE WORK

We have introduced a new approach for a relatively little-
studied machine learning or data mining problem: From
data sets of cooccurring samples, find what is in common.
We have formulated the problem probabilistically, ex-
tending earlier mutual information-based approaches. The
new solution is better-justified for finite (relatively small)
data sets.

The introduced method, coined associative clustering
(AC), summarizes dependencies between data sets as
clusters of similar samples having similar dependencies.
Such a method is particularly needed for mining functional
genomics data where measurements are available about
different aspects of the same set of functioning genes. Then, a
key challenge is to find commonalities between themeasure-
ments. The answer should reveal characteristics of the genes,
not only characteristics of the measurement setups.

The work is pure machine learning in the sense that the
model is a general-purpose semiparametric model which
learns to fit a new data set instead of being manually
tailored. As a result, it is probably not as accurate as more
specific models, but it can be expected to be faster and
easier to apply to new problems. Its main intended
application area is in exploratory data analysis, “looking
at the dependencies in the data” in the first stages of a
research project.

The method was validated and applied in two functional
genomics studies. The first found regularities anddifferences
between the functioning of orthologous genes in different
organisms, suggesting evolutionary conservation and diver-
gence. The second explored regulatory interactions between

gene expression and transcription factor binding. Both trivial
and unexpected findings were made: known regularities,
outliers, and hints about unexpected regularities.

While the proposed method was shown to be viable
already as such, it can be further improved. We did not
address the problem of choosing an optimal number of
clusters. If clustering is interpreted as a partitioning or
quantization of data to compress its presentation, then the
exact number of clusters is not a crucial parameter, but
nevertheless, the results could be improved by optimizing
it. Since the task is formulated in Bayesian terms, Bayesian
complexity control methods are applicable in principle. The
setting is not standard, however, because of the nonstan-
dard (new) use of the Bayes factors and because of
discontinuities in the objective function.

Another direction of improvement is regularization of
the solution. Dependency-searching methods may poten-
tially overfit the data, which is well-known from canonical
correlation analysis and can be avoided by regularization.
We have developed two regularization methods for AC
with one fixed margin. “Entropy regularization” was used
here because it is easier in practice and has not been shown
to be worse than the alternative [27]. In the present case,
bootstrap also helped. Another related question is which
kinds of priors to use for the distributional parameters. The
simple constant Dirichlet priors used in this work may be
too informative. Hierarchical modeling should be more
appropriate but it is computationally more complex.

A third area worth investigating is the parameterization
of the clusters. It should be investigated whether the hard
Voronoi regions, used up to now because they are easily
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Fig. 10. Two examples of bootstrapped cross clusters, associated to cell cycle, that reveal both known and novel dependencies between gene
expression and TF binding. The upper figures show the average expression profiles (bars) of the clusters and confidence intervals (curves). The
periodicity of the cell cycle in the expression is clearly visible. The lower figures show the average TF-binding profile of the clusters with confidence
intervals. The average TF-bindings rising above the confidence interval are considered reliable. Note that the confidence intervals are very
conservative; they have been estimated based on random clusters. In Cluster A, there was only one reliable TF binding, SIP4. It could be verified
from the literature (see text for details). SIP4 binds also the genes in Cluster B, but, additionally, there is one extremely strongly binding TF, SFL1
(the rightmost bar). Its putative regulatory interaction with the gene cluster during cell cycle is a new finding.



interpretable and make the theory manageable, could be
replaced by smooth and more regular-sized clusters.
Alternatively, the degrees of freedom of the clusterings
could be directly reduced to regularize the solution.

Finally, a comprehensive comparison of the relative

merits of dependency maximization and more traditional

Bayes networks and graphical models of the whole joint

distribution should be carried out. It is clear that the

two approaches focus on different properties of data and

that our semiparametric models need less prior knowledge

than specialized models of gene regulation, for instance,

and are hence more general-purpose. We expect that

exploratory models of the type introduced here are viable

as complementary methods for gathering the necessary

prior knowledge for the more specific models.

APPENDIX

TISSUES IN MOUSE-HUMAN DATA

The first 21 tissues are considered to be common for both

species. (Listed in the following order: tissue number:

human tissue: mouse tissue. Tissues are separated with

commas.)
Common tissues: 1: cerebellum: cerebellum, 2: cortex:

cortex, 3: amygdala: amygdala, 4: testis: testis, 5: placenta:

placenta, 6: thyroid: thyroid, 7: prostate: prostate, 8: ovary:

ovary, 9: uterus: uterus, 10: 0DRG: 0DRG, 11: salivary gland:

salivary gland, 12: trachea: trachea, 13: lung: lung, 14:

thymus: thymus, 15: spleen: spleen, 16: adrenal gland:

adrenal gland, 17: kidney: kidney, 18: liver: liver, 19: heart:

heart, 20: caudate nucleus: striatum, 21: spinal cord: spinal

cord lower.
Noncommon tissues: 22: fetal brain: digits, 23: whole

brain: gall bladder, 24: thalamus: hippocampus, 25: corpus

callosum: large intestine, 26: pancreas: adipose tissue, 27:

pituitary gland: lymph node, 28: prostate cancer: eye, 29:

OVR278E: skeletal muscle, 30: OVR278S: snout epidermis,

31: fetal liver: tongue, 32: HUVEC: trigeminal, 33: THY+:

bladder, 34: THY-: small intestine, 35: myelogenous k-562:

stomach, 36: lymphoblastic molt-4: hypothalamus, 37:

burkitts Daudi: epidermis, 38: bukitts Raji: spinal cord

upper, 39: hep3b: bone, 40: A2058: brown fat, 41: DOHH2:

olfactory bulb, 42: GA10: mammary gland, 43: HL60:

umbilical cord, 44: K422: bone marrow, 45: ramos: frontal

cortex, 46: WSU: -.
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