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ABSTRACT

This thesis studies exploratory cluster analysis of genomic high-throughput data
sets and their interdependencies. In modern biology, new high-throughput mea-
surements generate numerical data simultaneously from thousands of molecules in
the cell. This enables a new perspective to biology, which is called systems biology.
The discipline developing methods for the analysis of the systems biology data is
called bioinformatics. The work in this thesis contributes mainly to bioinformatics,
but the approaches presented are general purpose machine learning methods and
can be applied in many problem areas.

A main problem in analyzing genomic high-throughput data is that the po-
tentially useful new findings are hidden in a huge data mass. They need to be
extracted and visualized to the analyst as overviews.

This thesis introduces new exploratory cluster analysis methods for extracting
and visualizing findings of high-throughput data. Three kinds of methods are
presented to solve progressively better-focused problems. First, visualizations and
clusterings using the self-organizing map are applied to genomic data sets. Second,
the recently developed methods for improving the visualization and clustering of
a data set with auxiliary data are applied. Third, new methods for exploring the
dependency between data sets are developed and applied. The new methods are
based on maximizing the Bayes factor between the model of independence and the
model of dependence for finite data.

The methods outperform their alternatives in numerical comparisons. In ap-
plications they proved capable of confirming known biological findings, which vali-
dates the methods, and also generated new hypotheses. The applications included
exploration of yeast gene expression data, yeast gene expression data in a new
metric learned with auxiliary data, the regulation of yeast gene expression by
transcription factors, and the dependencies between human and mouse gene ex-
pression.
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Chapter 1

Introduction

This thesis is about applying exploratory cluster analysis methods to genomic
data sets. Here genomic data means any data associated to the functionality and
the structure of genes: DNA sequence, proteins, metabolites, transcription factor
binding sites, etc., and, in particular, transcripts of genes. Exploratory cluster
analysis, in turn, refers to computational methods that aim at giving an overview
of data by grouping them. This chapter is an overview of the motivations and
the needs in biology and data analysis, and a summary of the contributions of the
thesis.

1.1 General motivation and background

Biology is the study of living things, and obtaining reliable, quantitative observa-
tions from living organisms has traditionally been a major challenge. As a conse-
quence, the development of biology has been strongly connected to the advances
made in measurement technologies. In particular, only the development of the
measurement methods and tools has enabled the discovery process of the cellular
components of organisms. From a certain point of view, this gradual revealing of
the particles of living organisms has also influenced the analysis and the hypothe-
ses in biology. It could be argued that, so far, the emphasis in biology has been
largely on the individual components of the organisms, and not on the functional,
highly interacting system they constitute.

The era of discovering components smaller than the human eye could observe
started with an important discovery made using a new analysis tool called micro-
scope. In 1665 Robert Hooke found small vesicles in plants and coined them “cells”
(Hooke, 1665). This lead to the realization that there were cells in almost every
living organism. Eventually the cell was accepted as one of the fundamental units
of life.

The introduction of the microscope also made possible the series of discoveries
of ever smaller components of the cell. The discovery of the molecular structure of
the DNA in 1953 (Watson and Crick, 1953) was a breakthrough that opened up
a new perspective on life. Then the genes in the DNA could be established as a
kind of fundamental units of life, explaining the inheritance of traits and diseases.
However, while the most individual system components had been observed and
described, the lack of description of the higher system structures still hampered
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the biological research.

During the nineties, a new page was turned in the book of the measurement
methods in biology: laboratory techniques capable of measuring the activity of
thousands of genes at the same time started developing (Schena et al., 1995; Lock-
hart et al., 1996). For the first time, with these high-throughput methods scientists
were able to get an overview of which genes are active in cells at a certain moment
and condition. Boosted by large consortium projects, particularly by the Human
Genome Project (for a history review, see Roberts et al. (2001)), the techniques
continued to be developed and be applied to new problems and they spread all over
the world. The field of biology started to become populated with various high-
throughput data sets containing information about states of the cell from many
different perspectives: gene expression, metabolite concentrations, protein-DNA
interactions, sequences of genes and proteins, etc. The centuries-long tradition of
analyzing single compounds in the cell started to shift towards the analysis of the
cell-wide collection of components and their interactions.

Along the wide-spread use of the high-throughput technologies, a new problem
emerged: the measurement techniques produced massive, noisy data sets describ-
ing the state of cells, but due to their huge size they were incomprehensible for
a human as such. It could be argued that the scientists’ ability to generate the
data had exceeded their ability to analyze that data. At this point the practition-
ers of data analysis and data mining using machine learning techniques started
to move in on the field. This started a new boom of bioinformatics, or computa-
tional biology, a discipline that emerged earlier in the analysis and managing of
genomic sequence data. The difference between bioinformatics and computational
biology is subtle, but both bioinformatics and computational biology can be seen
as the disciplines in which new computational methods are developed for analyz-
ing genomic data and solving biological research problems. The terms are used
interchangeably in this thesis.

The goal of machine learning is to build methods that learn from the data in
an automated way. The methods usually benefit from having a large amount of
data, and are thus well suited also for the analysis of data from biological high-
throughput measurement methods. The use of advanced data analysis methods
and high-throughput data has actually opened up a new stage in biology, often
called systems biology (Ideker et al., 2001), which tries to understand the cell as
one complex system. But as the stage changed, the hypotheses possible to conceive
changed also. In order to understand whether the genomic high-throughput data
and machine learning could offer answers or at least a tool in biology, new questions
have to be formulated. Therefore, since scientists only have the mass of data, it is
logical to start looking for those questions from that.

Ezxploratory data analysis (EDA) is a branch of statistics that aims to make
new discoveries from data. In its modern form, the techniques of computational
modeling and machine learning are often used. When applied to genomic data,
it is hoped that it can offer ideas for what could be inferred from the data, how
to use the existing data in a more specific way, or how to carry out the next
set of measurements. Exploratory data analysis is thus quite different from the
traditional hypothesis-based analysis in statistics, in which the aim often is to
answer one specific question formulated as a null hypothesis. While statistics is
much more than hypothesis testing, one characterizing viewpoint is that EDA
tries to give an overview of the data in order to facilitate the generation of new
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hypotheses concerning it.

In this thesis, the self-organizing map (SOM) (Kohonen, 1982, 2001) is used
as an exploratory tool to cluster and visualize gene expression data sets. New
methods for interpretation of SOM are introduced, and the viability of the SOM
approach in exploration of gene expression data is demonstrated in several case
studies.

In this thesis a recently introduced principle, learning metrics (LM) (Kaski
et al., 2001; Sinkkonen and Kaski, 2002; Kaski and Sinkkonen, 2004), is used to
guide clustering and visualization of gene expression data. LM tackles a crucial
problem in data analysis: similarity metric. For example, the use of Euclidean
metric is commonly accepted in clustering, but it implicitly assumes the equal
importance of the variables of data. This is not necessarily true at all. In contrast,
the methods using learning metrics derive the optimal metric from an auxiliary
data, as for example from gene functional classes. The analysis then focuses on
the variation in gene expression that is relevant for the functional classes, and, in
a sense, combines two information sources.

During the new era of systems biology, the use of multiple and various infor-
mation sources is becoming increasingly important. An example is modeling of
gene expression regulation using both expression data and protein—-DNA binding
data. The classical methods in exploratory data analysis have rarely focused on
the problems of data integration, hence no established approaches for data fu-
sion yet exist. While there are many possible ways to integrate data sources, the
problem calls for a rigorous definition to allow proper interpretation of the re-
sults. At the same time, the methods should be generally applicable, since new
high-throughput technologies are developed constantly. In this thesis a framework
for general data integration is proposed: maximization of statistical dependency
between the mathematical representations of information sources. The underlying
key idea in the framework is that the effects in data that are common to sources
are relevant, while source-specific effects are considered noise.

The primary aim in this thesis is to develop new generic methods that are ap-
propriate for analyzing high-throughput genomic data. A main motivation for the
research has been the fact that, at the moment, the biological hypotheses concern-
ing high-throughput genomic data are still largely unformulated. Consequently,
while the thesis does not try to answer specific biological questions, it certainly
aims to contribute to the formulation of the new perspectives in biology.

1.2 Contributions and organization of the thesis

In this thesis, exploratory cluster analysis of (multiple) genomic data sets is studied
as a new approach to make discoveries from the genomic high-throughput data,
especially from gene expression data. The specific contributions include

e application and development of new self-organizing map-based exploratory
data analysis approaches for gene expression data

e application of exploratory cluster analysis methods to genomic data sets, based
on the principle of learning metrics

e development of new exploratory methods capable of integrating genomic data
sets by maximizing their mutual dependencies, and in particular their appli-
cation to genomic data sets.
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In Chapter 2 background information about the functionality of the cell and
the data measured from it is presented. In Chapter 3 some of the most impor-
tant paradigms of machine learning are reviewed and concepts of exploratory data
analysis and clustering are introduced. In Chapter 4 the approach of exploratory
cluster analysis, applied to genomic data sets, is motivated and discussed together
with several case studies. In Chapter 5 the exploratory cluster analysis methods
for dependency analysis, together with their applications, are motivated and in-
troduced. The related works from the literature are reviewed in connection with
the appropriate methods throughout the chapters.



Chapter 2

Biological background

To understand what is required from the computational methods in bioinformatics,
it is essential to know the basics of cell biology and the measurement techniques
used to gather the data from the cell. Particularly, it is of great use to understand
the various noise sources and recognize which data can be regarded as approx-
imately commensurable and when. For example, certain measurements can be
grouped together to enhance the statistical power of the analysis in the presence
of noise, and to an extent inferences can be extended from the organism under
study to other organisms. Additionally, it is valuable to know whether some aux-
iliary data is available for the validation or enhancement of the analysis. This
chapter aims to give a short overview of these matters from the perspective of a
computational analyst. The part considering elementary biology is largely based
on the book by Campbell et al. (2001).

2.1 The cell

Practically every living organism is composed of cells. The main exception are
viruses, but it is in fact questionable whether they are actually alive. Cells have
an invariable basic structure across the organisms: they are small compartments
of an aqueous solution of chemicals encapsulated by a membrane (Alberts et al.,
1994). Thus many methods working on and the inferences made on the cell level
apply to a wide range of organisms. This is routinely utilized in biology, for
example by using model organisms like yeast or mouse to study human.

However, cells are not exactly similar in all organisms. A main classification of
the organisms is made by the presence of nuclear envelope in their cells: eukaryotes
have the membrane around their nucleus, but prokaryotes do not. Examples of
eukaryotic organisms are yeasts, plants, and animals, whereas all bacteria belong
to prokaryotes. Figure 2.1 is a schematic illustration of an eukaryotic cell and its
various parts. In this thesis the main focus is on eukaryotic cells, in particular, on
the baker’s yeast Saccharomyces cerevisiae which is the most understood eukaryotic
organism.

There are also different cell types within individual multicellular eukaryotic
organisms. This is mainly due to the specialization of the cells in different tissues.
Although genome in the cells is the same, the sizes and appearances of cells in
different tissues can vary dramatically. Even slight differences in cells between
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Figure 2.1: A schematic figure of an eukaryotic cell and its various parts. The figure is an
excerpt from Campbell et al. (2001). Figure omitted due copyright reasons.

tissues may add undesirable variance to the analysis, for example, when taking
samples from a certain tissue surrounded by some other tissue. This is because
the chemical content of the cells in different tissues varies, which is both the cause
and the effect of the genes being activated differentially in different tissues.

2.2 Genes and proteins

Genes are the basic units of any organism. Slightly simplifying, it can be said
that they determine the type of the organism and its individual characteristics.
In a eukaryotic cell the nucleus (see Figure 2.1) contains the deoxyribonucleic
acid (DNA) molecule in which the genes are encoded. Another molecule associ-
ated heavily with genes is the ribonucleic acid (RNA). Both the DNA and RNA
molecules consist of a sequence of nucleotides of four kinds: adenosine (A) (uracil,
U, in the RNA), thymine (T), guanine (G), and cytosine (C). Nucleotides can bind
to each other in certain pairs: A (U) + T and G + C, which is called hybridiza-
tion. The hybridization takes place in many reactions in the cell. In particular, it
is the mechanism that makes DNA a double-stranded molecule, binding the two
complementary nucleotide strands to each other.

The concept of gene can be defined in various ways, but most often its definition
is based on i) the gene being the hereditary unit of an organism, and ii) the gene
coding a protein. For example, before any molecular knowledge existed, in 1865
Mendel described genes as “particulate factors” that pass unchanged from a parent
to the offspring. A more recent and functional definition states that the gene is
a sequence of the DNA in nucleus that contains the information the cell needs to
manufacture a protein. The latter definition is adopted in this thesis.

Proteins are involved in practically all of the cell’s subprocesses. This is an
important fact, since cells are not static objects, but are in a continuous process of
living. This process is normally partly self-regulated, partly dependent on various
external chemical and physical signals. Whether the signal in the cell is of external
or internal origin does not matter: the actions induced by the signal and also the
actual handling of the signal are mainly taken care of by proteins.

The protein synthesis is of crucial importance for the cell, since the protein
concentrations in the cell in part determine its internal state. Figure 2.2 A rep-
resents the multistage process of making the proteins schematically. The code for
each protein is stored in the DNA and the production process can be regulated
at many stages to control the concentrations of the various proteins in the cell
(Figure 2.2 B).

Perhaps the most dominant regulatory mechanism for controlling the protein
concentrations in the cell is transcriptional regulation. It means regulation by
controlling which genes are transcribed and how much. Transcriptional regulation
is performed by a set of proteins called transcription factors (TFs), which bind
to a certain DNA sequence nearby a gene, called the promoter region of the gene.
Depending on the configuration of the TFs in the gene’s promoter region, the gene
is either transcribed to preemRNA, ak.a. primary transcript, or not. It is also
possible that the rate of the transcription is controlled in the sense that the TF
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Figure 2.2: A: The protein synthesis in both prokaryotic cells and in eukaryotic cells. The
double-stranded DNA is first opened, and a molecule called polymerase attaches at the DNA in
the start of the gene sequence to be transcribed. The polymerase advances along the DNA strand
and composes a pre-messenger RNA (pre-mRNA ) molecule which is the complement of the DNA
strand it is based on. The DNA sequence, and pre-mRNA, of a gene consists of two kinds of
sequences: ezons and introns. In the next processing stage, splicing of the pre-mRNA, the introns
are spliced out and only the exons end up in the mature mRNA, which is then transported out
of the nucleus to cytoplasm in the eukaryotic cell. This is not the case in the prokaryotic cells,
which have no nucleus. In the cytoplasm ribosomes read the mRNA strand and compose an
amino acid sequence based on the subsequential triplets of nucleic acids of mRNA: each nucleic
acid triplet, called a codon, corresponds to one amino acid. The newborn amino acid next folds
in a certain way to get its final three-dimensional structure, resulting in a potentially functional
protein. B: The possible control stages of gene expression in eukaryotic cell. The figures are
excerpts from Campbell et al. (2001). Figure omitted for copyright reasons.

configuration can make the transcription more or less probable, not just active or
in-active.

The alternative splicing of the primary transcript is another possible regulation
process for the protein production (RNA processing in Figure 2.2 B). Alternative
splicing enables the generation of different RNAs from the same pre-mRNA se-
quence. The mechanism takes place at the stage in which the non-coding regions
inside the gene, introns, are sliced out, and only the coding parts, ezons, are joined
together and exported from the nucleus. In alternative splicing, the splicing sites
are different from the “normal” version of the mRNA, resulting in a different ma-
ture mRNA. This is one of the reasons why no one-to-one mapping exists between
the genes in the DNA and the actual proteins.

A relatively recently discovered regulatory process is RNA interference (RNAi).
It takes place right after transcription and works by inactivating the mature mRNA
by hybridizing to it a complementary RNA strand (Dykxhoorn et al., 2003). It is
still unclear how common RNAI regulation is in a normal cell but it has a great
potential in gene therapy and an important role in certain diseases.

Post-translational modifications refer to all processes that take place after the
mRNA is translated and folded into a functional protein. An example of this
is provided by various interactions between proteins that results in formation of
larger units, called protein complexes, which have functions different from their
individual protein components.

The final functional proteins are the key players in the cell. They are used for
building the various components of the cell, for delivering signals, for controlling
gene expression, and they also take part in metabolic processes.

The interactions between proteins and other molecules in the cell form complex
networks that are extremely diverse, in size and in topography. Unveiling these
interaction networks of the various processes in the cell is an essential part of
understanding the functionality of the cell. But the task is difficult both due to
the complexity of the cell’s system and due to lack of information about the cell.
Figure 2.3 shows an example of the known interactions between proteins and other
molecules in one process of the cell, which demonstrates the potential complexity
of such networks.
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Figure 2.3:  The glycolysis/gluconeogenesis process in the cell demonstrating the potential

complexity of the interactions on a molecular level. The squares represent proteins or RNA,
circles represent other molecules, and squares with round corners are other processes. The figure
is taken from Kyoto Encyclopedia of Genes and Genomes (KEGG).
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2.3 Data concerning the cell

Understanding a dynamic, complex system requires, first of all, time series mea-
surements of most of the variables in the system. Unfortunately, for the cell this
requirement can not be fulfilled. In fact, making measurements from the cell is
currently one of the largest challenges in biology. Of special interest are the protein
concentrations in cells in certain conditions at a certain time, but so far there are
no practical or reliable methods to gather this information. Recent advances in
laboratory techniques, however, have enabled the measurement of the gene activity
on a genomic scale.

2.3.1 Measuring gene expression

Gene expression means the activity of a gene, measured by the amount of the
mRNA produced from it and present in the cell at some specific time or envi-
ronmental condition. Gene expression of thousands of genes can be measured
simultaneously from cells with DNA microarrays (Schena et al., 1995; Lockhart
et al., 1996). Currently, there are several microarray techniques; all of them are
based on the same mechanism: hybridization of the mRNA in a sample(s) to the
complementary nucleotide sequences attached on the arrays.

The basic idea in all microarrays is that a set of probes that correspond each
known gene and expressed piece of mRNA (called ESTs, expressed sequence tags)
in a certain organism has been immobilized on a small piece of suitable media
(often glass). When measuring the gene expression in a cell population, a sample
of cells of interest is collected and the mRNA is isolated. After possible prepro-
cessing, the mRNA is labeled with certain marker molecules and hybridized on the
microarray. The relative amount of mRNA hybridized on each probe reflects the
mRNA concentration in the sample cells. The amount of mRNA on each probe is
nowadays usually determined by measuring the intensity of light, characteristic to
label molecules, with a laser scanner.

The different types of microarrays can be categorized in two main classes from
the perspective of analyzing them: comparative and non-comparative arrays. In
comparative arrays there are always two samples that are hybridized on the array,
one typically being some sort of a reference sample (Schena et al., 1995). The
comparative arrays are often called ¢cDNA arrays or spotted arrays, referring either
to the material of the probe or to the probe attachment technique: spotting (or
printing). The reason for using comparative hybridization in spotted arrays is
usually the so-called spot variation, which means that the probes for the different
genes are not equally sensitive and thus can not be trivially compared on the
absolute intensity level. Without several replications of the array measurement,
the only available data from the comparative arrays are the ratios of the intensities
for each probe.

In non-comparative hybridization arrays the probes are not spotted, but build
directly on the array. They are more comparable and enable, at least in principle,
measurement of the absolute levels of mRNA in the hybridized sample. More
importantly, the reproducibility is better in this kind of microarrays and they do
not require as many replications of the array measurement. However, they are
more expensive respectively. The most common of the non-comparative micro-
arrays currently is Affymetrix GeneChip (Lockhart et al., 1996).

The microarray experiments are complex processes with many parameters and
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choices. Hence, standardization of microarray experiments is extremely important.
Attempts aiming for this include, for example, Minimum Information About a Mi-
croarray Experiment (MIAME) (Brazma et al., 2001) that specifies the subjects
that should be reported with every microarray experiment. The common stan-
dards for the experiments ease the publication, the reproduction, and the storage
of microarray data in public repositories, see for example Barrett et al. (2005);
Brazma et al. (2003).

2.3.2 Other high-throughput information about the cell

Microarrays measuring gene expression offer one of the first ways to make high-
throughput measurements about the cell. However, the power of the gene ex-
pression measurements will become fully utilized only after development of other
high-throughput measurement techniques, when all the information can be inte-
grated. The following sections browse the selection of the most widely used other
high-throughput technologies briefly.

Hybridization-based methods

Other array-based hybridization approaches include at least the scanning of single-
nucleotide polymorphisms (SNPs) from a genome (SNP-chips), comparative genome
hybridizations (CGH-arrays), and protein-DNA interaction measurements. These
methods are based on the hybridizing genomic DNA on microarray, not mRNA.

In SNP analysis the probes on the array consist only of the specific parts of the
DNA that are known to include single nucleotide mutations. The resulting data
are of binary nature (though noisy): either a SNP is present in the sample or it
is not (see Lipschutz et al. (1999)). Detection of SNPs is relevant, for example, in
research of hereditary diseases.

Measurement of the gene copy number and DNA multiplications is called com-
parative genome hybridization (CGH) analysis (Snijders et al., 2001). It is based
on hybridizing the sample genome with a reference genome on an array containing
probes for each gene present in the genomes. The data obtained are of continu-
ous nature in the same sense as in the gene expression measurements, and reflect
the multiplications and deletions in the DNA of the sample genome. The gene
copy number and other chromosomal changes play a very important role in can-
cers, where they are assumed to be a reason for abnormal gene expression, and a
mechanism in part responsible for a normal cell turning into a cancer cell.

Analysis of genome-wide protein—-DNA interactions with microarrays is a re-
cent and promising technique. One way to do that is to use so-called chromatin
immunoprecipitation (ChIP) combined with cDNA arrays (Ren et al., 2000; Lee
et al., 2002). The method is based on i) immobilizing the proteins (for example
transcription factors) binding the chromatin of DNA, ii) digesting the DNA and
immunoprecipitating the protein-DNA complexes with an antibody for the protein
from the rest of the solution (enriching the solution with the protein of interest),
and iii) hybridizing the solution on a microarray against the un-enriched solution.
The ratios in each spot then reflect the amount of the tagged regulator attached to
the corresponding gene. Note that the resulting data are real-valued, since there
can be multiple binding sites and a lot of measurement noise.

10
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Other methods

Several other methods exist to collect data from the cell, and the number of tech-
niques is growing all the time.

Perhaps the most traditional and fundamental genomic-scale data from the
cell is the DNA sequence itself. Although the actual sequencing (deciphering the
nucleotide order of the genome) is not necessarily trivial, the information about the
nucleotide sequence of each gene is presently freely available for many organisms
in the databases accessible through internet. These sequences can be used to
study, among other things, the alternative splicing as well as the binding sites of
transcription factors. In particular, note that sequencing of DNA is the prerequisite
for the transcriptome analysis, that is, gene expression microarrays.

Multiple techniques for mass spectrometry can be used to analyze the contents
of any sample at the molecular level. For example, they can be used to study the
metabolic compounds in blood, or to obtain protein “fingerprints” of the samples.

There are also attempts to develop microarrays that are not based on the
principle of hybridization. Among these, the protein chips are of great interest
since they could potentially be used to analyze the protein content of cells in a
high-throughput fashion. However, the technology is challenging and the quality
of the data is not yet acceptable (Michaud et al., 2003).

Finally, so-called tissue chips are designed for the analysis of hundreds of tissue
samples at a time. The data from these chips are largely qualitative, but greatly
speeds up the analysis in comparison to the traditional methods (Kononen et al.,
1998).

2.3.3 Public databases

The existing information about the cell is largely stored in various databases ac-
cessible through the internet, both commercial and non-commercial. In addition
to the databases containing measurements, there are also numerous databases con-
taining higher-level information about the cell, like various classifications for genes.
These databases are in a fundamental position in creating a holistic perspective
on the cell and its functions. Some examples of the cellular-level information con-
tained in the databases include gene ontology, molecular reaction pathways, molec-
ular interactions, and phylogenetic information. The most important of these are
presented briefly in the following.

Gene ontology

The main goal of the Gene Ontology (GO) project (Consortium, 2000) is to provide
a congsistent vocabulary for genes, which is applicable to all eukaryotic organisms.
In practice, GO can be used as a classification for genes and it includes three
separate ontologies (classifications): biological process, molecular function, and
cellular component. Each annotated gene is mapped to one node (class) in each
ontology.

A common practice to utilize GO is to check whether its classes are overrep-
resented in some gene groups, obtained, for example, from clustering analysis. If
they are, it serves as a validation for the gene group, since it is then more likely
that it represents some biologically interpretable entity, or part of it, in the cell.

11
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Metabolic and regulatory pathways

Pathways represent knowledge concerning causalities in the cell. These causalities
are of utmost importance, since, in principle, they enable inference and prediction
of the effects of individual experiments on the cell. However, the available knowl-
edge is still rather limited, but it should nonetheless be used whenever possible to
utilize all the existing information in the analyses.

Molecular interactions

Interactions between various molecules can be used in models as prior information
or as validation data, hence they are highly important. The Biomolecular Interac-
tion Network Database (BIND) is a storage of molecular interaction information.
Three kinds of interactions are documented in BIND: molecules that associate with
each other to form interactions, molecular complexes that are formed from one or
more interaction(s), and pathways that are defined by a specific sequence of two
or more interactions.

Proteins
UniProt (Universal Protein Resource) is the most comprehensive database of in-
formation on proteins. It is a central repository of protein sequence.

Genomes

The annotated sequences of organisms are stored, for example, in Ensembl database.
Ensembl offers the sequence data and software for analyzing it. In principle, all
the information concerning DNA sequences can be found there.

Availability

Links to these databases and to many more can be found for example in Galperin
(2005) and its supplement in the WWW,
http://nar.oupjournals.org/cgi/content/full/33/suppl_1/D5/DC1.

12



Chapter 3

Methodological background

A vast array of computational methods exist in the literature that have been, or
could have been, applied to genomic data sets. It is impractical to try to present in-
dividual methods comprehensively here, this chapter rather focuses on the general
paradigms relevant to many of them, in particular from the perspective of explo-
rative cluster analysis. The chapter begins with a short introduction to the branch
of computational modeling called statistical machine learning and its paradigms,
providing some background for the actual methods presented in Chapters 4 and 5.
The concepts of explorative data analysis and clustering are explained in the last
section of the chapter.

3.1 Representation of data

In computational modeling the observations concerning some phenomena are usu-
ally treated in numerical format. This means that, for a set of objects, we have a
set, or sets, of variables or features for which we have observed numerical values.
For example, for a set of genes (objects) we could have measured their expression
(values) in a set of treatments (variables). The concept “data” hence refers to the
numerical values, and is often denoted with a symbol D. If the data consist of
observations for the same variables for each object, it is convenient to represent
the data and the variables as a matrix, often denoted with X, where each row
corresponds to an object and each column a variable. Then the observed values
for the ith object can be represented as a vector x; = (241, %2, ..., Tin ), where n is
the number of the variables, or the dimensionality of the data.

The observed data can also sometimes be described as a set of observations
{x;}Y¥ |, x; € R", which is often abbreviated as {x} in this thesis.

3.2 Statistical machine learning

Computational models are representations composed of mathematical and statis-
tical concepts that can be manipulated with algorithms in computers. In general,
computational modeling aims at characterization, summarization, prediction, and
simulation of phenomena. If there is uncertainty in the observations, the compu-
tational models often use the concepts of statistical modeling.

13
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Statistical machine learning is a relatively new branch of computational model-
ing that encompasses a variety of methods from different fields including statistics,
mathematics, neural networks, and information theory. Its goal is to develop com-
putational, statistically justified models that learn efficiently from the data in an
automated way. Learning here means that the models have some structure speci-
fied a priori with parameters that are optimized in the sense that the model best
describes the data, or some property of it. Statistical machine learning is usually
differentiated from the traditional statistics and information theory usually by its
more complex models, and in part by its emphasis on efficient algorithms. The
motivation and algorithms of the neural networks, on the other hand, are often
based on the biological neural networks and heuristics derived from them, but
rigorous neural network methods can be seen as a part of the statistical machine
learning genre. In the end, good results, practicality, and generality of the machine
learning methods often allow compromises on the theoretical side. The methods
applied and developed in this thesis fall mostly in the category of statistical ma-
chine learning by their techniques, but their usage and goals are exploratory (see
Section 3.3).

3.2.1 Overview of concepts in statistical machine learning

Machine learning approaches dealing with real-world data are often based on build-
ing a model at least partly on statistical and information-theoretic concepts, op-
timizing it with mathematical tools in a computer-aided way, and then possibly
visualizing the results. This section overviews the most important paradigms used
in the design of machine learning models.

Statistical modeling

Statistics is a branch of applied mathematics concerned with the collection and
interpretation of quantitative data and the use of probability theory to estimate
population parameters. Population here refers to the idea that there exists some
“true” distribution or population of the data from which the observed sample (data
set) is drawn.

Practically oriented statistics is centered around the observed set of data, D,
and some model M (#) with parameters 6 for that data. The relation between the
model and the data in statistics is usually defined with a likelihood,

p(DIM, 6), (3.1)

which measures the probability of the observed data given the model and the
specific parameter values. The concept of likelihood is more or less common to all
probability-based statistics, but opinions differ on whether one should use it as a
primary source of inference about the data and the model.

There are numerous possible categorizations for the methods in statistical mod-
eling. Three of the most salient characterizations are reviewed here: Bayesian
modeling, generative/discriminative methods, and supervised /unsupervised meth-
ods.

Bayesian modeling is sometimes regarded as a fundamentally different philo-
sophical school in statistics. It differs from the traditional approaches especially in

14
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the interpretation of the probabilities of events: instead of treating them as ratios
of the number of successes against the number of events based on a large number
of replications, in Bayesian modeling they are viewed more generally as subjective
degrees of belief. The second big difference is the treatment of all parameters as
random variables in the Bayesian statistics, which results in representing them
with probability distributions. Lastly, the Bayesian statistics include the concepts
of a priori information and a posteriori information, which mean that the inference
made is incremental: the prior distribution is based on the previous data or belief,
and the posterior distribution is computed when the new data is observed. The
Bayesian way to do inference is based on the ideas of Reverend Thomas Bayes from
the 18th century, and on the later derived Bayes’ formula that gives the posterior
probability of the model given the data

p(DIM)p(M) _ Jop(DIM, 0)p(0|M)d6p(M)
P(D) 2n P(D|M)p(M)

The key idea is to take into account the uncertainty in the parameter values 6 by
defining a probability distribution, a prior, p(6|M) for it, and integrating it out in
the marginal likelihood term p(D|M). The use of Eq. 3.2 results in the inference
about how well the model M describes the data, and it can be used in model
selection.

Whether the chosen model M is the correct one is a fundamental question in
statistical modeling. In principle, and from the Bayesian point of view, one is inter-
ested in knowing which model M, will produce the highest posterior probability
for the observed data P(M,,|D) = > (g(lgl‘ M)P)(%’X} 5- It is often not possible to
compute the posterior probabilities of all the models, but they are compared in a
pairwise manner with the ratio:

P(Mi|D) _ P(D|M,) P(M)
P(Ms|D) — P(D|Mz) P(Mz)’

p(M|D) = (3-2)

(3.3)

where, in the right side, the first ratio is called the Bayes factor. The second
ratio, the models’ prior probabilities, is often assumed to equal one, and only
the Bayes factor is used to select the model (see for example Kass and Raftery
(1995)). Instead of fully marginalized likelihoods P(D|M), it is possible to use
the likelihoods p(D|0, M), where  is a maximum likelihood estimate of §. This
leads the Bayes factor to the so-called likelihood ratio, which has a long history in
various tests used in traditional statistics. Bayes factors are used in Publications
5, 8, and 9 as optimization criteria. For a more comprehensive introduction to the
subject see for example (Gelman et al., 2003) and (Kass and Raftery, 1995).

However, the question about the correct model family is also often neglected
and the M is assumed to be fixed. Then the primary interest are usually the
parameters 6. The Bayesian method is then to compute the posterior, that is, the
probability distribution over the parameter configurations given the data and the
model,

p(D|6, M)p(6] M)
Jo (D16, M)p(6|M)d6’

where the normalizing denominator is the marginalized likelihood P(D|M) =
J, p(D|6, M)p(0|M)d6 from Eq. 3.2.

If the posterior of the parameters has to be summarized, or the integral in
Eq. 3.4 is too difficult to compute, the posterior is sometimes maximized. This

p(0|D, M) = (3.4)
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is called mazimum a posteriori (MAP) estimation of the parameters. If the prior
of the parameters p(f|M) is assumed uniform over all possible 0, the approach
reduces to the one used in traditional statistics and is called mazimum likelihood
(ML) estimation of the parameters. MAP estimates are used in Publications 5
and 7, and ML estimates in Publication 3.

Generative and discriminative modeling division is historically related to
classification tasks (“discrimination”), but it is nowadays associated with a wider
array of modeling tasks. The decisive question is whether to model the whole phe-
nomenon related to the task and solve the task based on that model (generative
modeling), or to build a model solving the task directly (discriminative model-
ing). Naturally, the phrasing of the question is applicable only if the task can be
seen from both perspectives, as, for example, classification and regression. The
discussion below concerns such tasks.

The idea of generative modeling is to build a model that is assumed to have
generated the observed data. Generative models rely heavily on the properties of
the full probabilistic modeling in their attempt to describe the entire phenomenon
with probability distributions. Given that the model is correct and there is only
a little data available, they can be superior to discriminative models (Ng and
Jordan, 2002). However, they can also be computationally very heavy. Examples
of generative models are mizture models (see for example Gelman et al. (2003))
and graphical models (see for example Jordan (1999)).

In contrast, discriminative models are designed to solve a specific task, and
they often neglect the aspects of probability distributions that are not straight-
forwardly relevant to the task. An example of a discriminative model is support
vector machine (SVM) designed for classification (Vapnik, 1998; Shawe-Taylor and
Cristianini, 2004). It carries out the classification solely based on the class bound-
ary in a feature space. Given enough data, the discriminative models often out-
perform the generative ones in their task (Ng and Jordan, 2002).

The terminology is sometimes rather vague. For instance, the modeling of
conditional distributions is often held equal to discriminative modeling, but it can
be argued that it represents only a subset of discriminative tasks. From a wider
perspective, all models directly solving the task of interest and neglecting some
irrelevant aspects of the phenomenon are discriminative. For a recent textbook
about the subject, see for example Jebara (2003).

The supervised and unsupervised learning dichotomy is related to dis-
criminative learning. In particular, discriminative learning is practically always
supervised learning, but not vice versa. Supervised learning usually means that
there exist some “correct answers” in the task the model is trying to solve. Usu-
ally this is some relevant auxiliary information for the primary data, such as class
labels. A supervised model then focuses solely on modeling this auxiliary infor-
mation, disregarding all the aspects in the primary data that are irrelevant for the
auxiliary data. Unsupervised learning, on the other hand, means that there exists
no correct answer for the task the model is trying to solve, an example of this
being density estimation.

The division of computational models into supervised and unsupervised meth-
ods can sometimes be misleading. The main reasons for that are too vague defi-
nitions of the terms, and the fact that the two categories do not cover all possible
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methods. The models searching for dependencies or utilizing some auxiliary data,
which are studied and applied in this thesis, are examples of the methods not really
fitting into either of the categories.

Information theory

A field of research closely related to statistical modeling is information theory,
which focuses on data compression and the transmission rate of the data (Cover
and Thomas, 1991). Information theory uses concepts of statistics in its defini-
tions of various notions, and, on the other hand, many probabilistic models apply
information-theoretic concepts. The elementary concepts of information theory
will be presented here.

The wuncertainty of a discrete random variable X is defined in information
theory as entropy H(X)

Zp z) log, p(x (3.5)

Loosely said, entropy measures the information content in the distribution p(x).
Relative entropy or Kullback-Leibler divergence D measures the difference be-
tween two probability mass functions p(z) and ¢(z):

D(pllq) = Zp x)log, g(g (3.6)

A very important concept in this thesis is the mutual information I(X,Y), which
is a measure of dependence between two discrete random variables X and Y

_ T C)
=22 ple)loss o (30

In other words, mutual information is the measure of information that X contains
about Y and vice versa (in the sense of their probability distributions). Note
that mutual information can be interpreted as relative entropy between the fac-
torized joint distribution p(z)p(y) and the full joint distribution p(z,y). Mutual
information, or its finite-data variant, is used in Publications 3, 5, 7, 8, and 9.
Originally, mutual information was defined only for two random variables, but
it can be extended to multiple variables. The most straightforward extension is
the so-called multi-information (see for example Studeny and Vejnarova (1999)),

MI(X:,...,X Z S logQM7 (3.8)

Tn

which measures the dependency of any two or more variables. The most important
practical difference to mutual information is thus that a large multi-information
does not necessarily imply the dependency between all the variables. Publication
9 uses multi-information.

The information-theoretic concepts were presented for discrete data here, but
their natural generalizations for continuous data exist as well (Cover and Thomas,
1991).
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Neural networks

Neural networks refer to computational models that are inspired by biological
neural nets. They usually consist of small conceptual components called neurons
and an interaction network connecting them. Estimation of the parameters in
these models is usually referred to as learning or training of the neural network.

Neural networks are sometimes referred to as non-parametric models. This
means that the observed phenomenon is modeled with a flexible model with pa-
rameters without a trivial interpretation. In contrast, in parametric models param-
eters have some straight-forward interpretation in the context of the application.
Note that although non-parametric models might perform numerically better in
analysis tasks, their interpretation can sometimes be tedious.

Neural networks approaches can be regarded as the pioneering models to more
flexible statistical machine learning models, and they have produced many efficient
and elegant methods for data analysis. For textbooks see for example Haykin
(1999); Kohonen (2001); Bishop (1995). An example of neural networks is the
self-organizing map (SOM) (Kohonen, 1982, 2001) that is studied and applied in
Publications 1, 2, 4, and 6.

Generalizability of the computational models

The key idea in all modeling is to capture the aspects of the phenomenon that
remain the same for the future, or unseen, data from the same source. Usually all
other aspects in the data are regarded as noise that is random and does not reflect
the true behavior of the system. If the model succeeds in this it is said that the
model generalizes well or it predicts well. A big practical problem is how to build
such models, and a number of different approaches exist to achieve this goal.

There are two underlying reasons for a model not generalizing well: i) the
model may be incorrect in the sense it cannot reflect the behavior of the system
(induces bias), or ii) the model might be too flexible (complex) for the amount
of available data (induces variance). These two reasons and their interactions are
often characterized in supervised learning by the bias-variance trade-off (Geman
et al., 1992), which has also been generalized to any maximum-likelihood-based
cost functions (Heskes, 1998).

When an over-complex model is fitted to too scarce data, the model is actually
fitted partially to the noise, and consequently the results with that model for new
data are bad. This phenomenon is called over-fitting.

In theory, in the Bayesian framework the averaging over parameter distribu-
tions together with a good choice of their priors usually protects from over-fitting.
However, in practice the fitting of complex Bayesian models can be very time-
consuming and has its own problems (Gelman et al., 2003; Jordan, 1999). Addi-
tionally, the choice of the priors can sometimes be challenging.

Another way to avoid over-fitting, especially when searching for a point esti-
mate of the parameters such as ML or MAP, is to use some regularization during
the fitting of the model. In practice, this kind of methods prevent the model from
being fitted too well to the training data, usually by optimizing some other objec-
tive in addition to the actual cost function of the model. Such regularizations are
used in Publications 5, 7, 8, and 9.

In addition to regularization, over-fitting of a model can be controlled in point
estimation by averaging the parameter values over the multiple fittings of the model
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to different training sets. In its optimal form, with multiple truly independent
training and test sets this kind of averaging requires a lot of data and is impractical
nearly always. The idea itself, however, is still applicable when the training and
the test sets are composed with re-sampling methods, such as cross-validation and
bootstrap.

Cross-validation (Stone, 1974) is a method in which the data set is divided
randomly into N subsets and the model is fitted with a data set consisting of N —1
subsets and evaluated using the subset that was left out. This one computation
is called fold, and it is then repeated so that all the subsets are left out once.
If the parameters are identifiable from one fold to another and their distribution
is unimodal, they can be averaged over folds to get a robust estimate of them.
While this is not always possible, it is usually at least possible to average the
value of the cost function or of the prediction. These robust estimates for unseen
data are often used for model comparisons. Note that the folds are not completely
independent and estimates are thus always slightly biased. Cross-validation is used
in Publications 3, 5, 7, 8, and 9, in model comparison.

In bootstrap (Efron, 1979; Efron and Tibshirani, 1993) the idea is to generate
many bootstrap sets from the original data set by sampling it uniformly with re-
placement. Bootstrap sets are of the same size as the original one, and based on
them it is often possible to estimate the biases and variances of the parameters of
the model. Bootstrap is used in Publications 8 and 9 to reduce the uncertainty of
the clustering.

3.3 Exploratory data analysis (EDA)

Exploratory data analysis (EDA) is a certain perspective to data analysis, not a
collection of methods. It aims at giving an overview of data, which is of crucial
importance when the data is completely new, or when it is not clear what ques-
tion the data should answer. For a new data set, it is advisable to perform at
least a basic EDA to discover possible unexpected behavior in the data, such as
measurement errors.

EDA has its roots in the seventies, when Tukey published his seminal book
Ezploratory Data Analysis (Tukey, 1977). The book opened the era of “looking-
at-data” with relatively simple boxplots and graphs that are still in use. From
those days researchers have moved towards more advanced visualizations and other
methods, but the aim has remained the same: to explore unknown data in order
to gain insights into the phenomenon and to generate more detailed hypotheses.

The most dominant method types in EDA are perhaps clustering and visual-
ization of the data. The reason for their predominance is that both of them can
naturally give summaries of the data, and especially combinations of the two work
well in practice. In the literature, both types have been applied extensively to
genomic data sets, in particular to gene expression data (see Chapter 4). This
thesis focuses on exploratory cluster analysis.

3.3.1 Clustering

The intuitive aim of clustering is to compose groups of data in such a way that the
data items are more similar within each group than between the groups. Despite
the intuitiveness of the goal, the clustering task is inherently difficult in general.
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For example, it has been argued that it is impossible to satisfy a scale-invariance,
a richness, and a consistency simultaneously with any clustering function (Klein-
berg, 2002). Moreover, a rather common tendency to apply clustering methods
to tasks that should be solved by other means leads to arbitrary and suboptimal
results. Nonetheless, clustering can be a highly useful and even necessary tool for
summarization of vast data sets, when used in a considerate way.

The specific aim of the clustering analysis can vary depending on the task at
hand. At least the following related objectives can be distinguished:

e summarization of a data set (with discovered clusters and their prototype
features)

e class discovery (discovery of some assumed class structure in the data)
e local generalization over data (to improve the parameter estimation in models).

Although the objectives can, in principle, be reached with an identical computa-
tional machinery, the clustering result obtained is not necessarily interpretable in
the perspectives of all the objectives. Especially the last goal is not always sensi-
ble in all applications, whereas the first two generally are. Note that, in the last
objective, the primary aim is not to discover the assumed latent class structure,
but only to use it in parameter estimation. Actually, the preferable alternative
for the last objective would, of course, be to measure more replicates of individual
data items, but this is usually infeasible.

The clustering methods can be coarsely divided into partitional and hierarchi-
cal methods (Jain and Dubes, 1988). Partitional methods partition the data into
non-overlapping clusters, and hierarchical methods create a hierarchy of clusters.
Partitional clusterings are often model-based, meaning that the clustering intro-
duces a model, such as a set of parameter vectors in the same space as the observed
data, and an algorithm that optimizes the parameters of the model according to
some cost function. Often partitions equal so-called Voronoi regions that are areas
of the data space where, for all the points in that region, the closest parameter
vector is the same (Voronoi (1908); see for example Kohonen (2001)). Hierarchical
methods, on the other hand, operate more often on the similarity matrix, and the
data points are clustered more directly based on their mutual similarities. The
most common clustering methods are reviewed in Chapter 4.

3.3.2 EDA in the process of statistical data analysis

Data analysis in any field is usually a multi-stage and iterative process. In the
analysis of genomic high-throughput data, the first stage is, or at least should be,
the formulation of the objective. This means that there should be at least one well-
defined objective which the data and the experimental design for the measurements
aim to fulfill.

The experimental design of a study focuses on the plan which defines what
should be measured, with how many replicates, and in what conditions, in order
to render the obtained data maximally useful for the analysis goal.

After the measurements have been made, it is advisable to use exploratory
analysis methods such as visualizations to check the properties of the data. This
exploratory stage gives guidance for the subsequent analysis stages, and may also
indicate if some part of the measurements needs to be redone. This stage is
sometimes called quality control of the data.
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The initial exploratory analysis confirms the suitability of the data for analysis,
and the following phase is to build the computational model that aims to answer
the primary question. Naturally, there exists a multitude of different kinds of
questions and models, each combination producing a different analysis. Slightly
simplifying, it can be said that this stage is a hypothesis testing step in which a
model of some assumption (question) is formulated and its correctness is tested
based on the measured data.

After these stages the first analysis is usually concluded. This is the point at
which the exploratory analysis can be used again in the most fruitful way, this time
in search for new possible hypotheses (questions) concerning the data. This stage is
also often referred to as data mining. As the number of public data sets increases
constantly, the possibility of new discoveries and the need for new exploratory
methods gets more and more significant all the time.

As a summary, exploratory data analysis is an integral part of the data analysis
process and should never be overlooked.
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Chapter 4

Exploratory cluster analysis of
genomic data sets

This chapter presents two of the main contributions of the thesis: i) the new self-
organizing map-based approaches for exploratory cluster analysis of genomic data,
and ii) the applications of the methods that integrate continuous primary data and
discrete auxiliary information to analysis of genomic data. In the first section, the
exploratory cluster analysis of genomic data is motivated. The following sections
present the specific approaches including the summaries of the methods and bio-
logical settings, and the main results of the analyses, as well as the related work
presented in the literature.

4.1 Motivation of EDA for genomic data

Firstly, exploratory data analysis (EDA) provides means to understand the key
properties of unknown public data sets. Along the recent increase in the amount
of available biological data, it has become a necessity to perform EDA for any
analysis including some publicly available data with unknown characteristics.

Secondly, an important area of application for EDA is the initial quality control
of the genomic high-throughput measurements. Since the measurement techniques
are able to produce thousands of numerical values about the cell, it is not possi-
ble to check the quality of the data simply by “eyeballing” the numerical values.
Already simple visualizations like box-plots and histograms help a lot, but more
complicated methods, such as clusterings and projections, may reveal unexpected
or undesired properties in the measured data. EDA offers information for perform-
ing the appropriate pre-selection and preprocessing of the data.

The third reason for the importance of EDA in bioinformatics is the potential
complexity of both data and the hypotheses that one is able to conceive. These
complexities are a natural result of the complexity of the system that generates
the data. In this case the system is the fusion of living cells and the laboratory
techniques used to measure them. Together they generate data that are inher-
ently hierarchical, have dependencies between the levels of hierarchy, and are from
highly interacting sources. The most common example of this is perhaps the gene
expression data that have both biological and technical noise, a natural complex
hierarchy in the form of the cell processes, and interactions between the genes.
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EDA, being unsupervised by nature, offers a possibility to search and discover the
phenomena caused by that complexity and reflected, sometimes even unexpectedly,
in the data.

The fourth argument for the necessity of EDA in bioinformatics is the need to
take advantage of multiple information sources. This need is generated by numer-
ous unpredictable interactions between data sets that should be utilized. However,
building of highly detailed models without any overview of the dependencies be-
tween the data sets may lead to inferior results and wasted efforts. The future of
computational biology lies in systems biology, and it will only increase the need for
new exploratory methods capable of summarizing the relations between multiple
data sets.

4.1.1 Clustering of genomic data

Since clustering is a basic method in exploratory data analysis, its applicability
deserves some extra attention. Naturally, the publications of the thesis and the
results therein, as well as applications presented in the literature, provide evidence
in favor of the success of the clustering and visualization of genomic data. However,
there also exists a priori justifications for the applicability of clustering methods
to genomic data specifically.

Clustering of gene expression profiles operates in all three different clustering
perspectives: i) summarization, ii) class discovery, and iii) local data averaging
(see Section 3.3). First, the classical motivation to summarize any vast data set
with a small set of clusters is relevant: typical genomic data sets are large. This
is because genomes may contain tens of thousands of genes which are studied in
numerous experimental conditions.

Second, it is known that the genes are expressed in groups. This is due to
many functions in the cell requiring a large variety of proteins (i.e., activated
genes). Hence, clustering of gene expression profiles can be seen as a well-justified
tool for discovering functional groups of genes. Additionally, if clustering is carried
out for the variables (experimental conditions), another latent class structure can
also be found, for example, in the form of disease subtypes. This kind of natural
grouping is also present in a number of other types of genomic data, such as in
protein sequence data, and in protein-DNA interaction data.

Third, model parameters can be estimated more robustly by taking advantage
of the group-wise activation of genes. Currently, both the cost and the noise of
the biological experiments are high, which results in carrying out an inadequate
number of replicates per gene in one data set. This hinders reliable estimation of
parameters, but can be overcome in part by local averaging of data.

In computational biology the data sets are generally very large and clustering is
practically always needed at some point, also in visualization. Hence, the focus in
this thesis will be on clustering methods, some of which lend themselves naturally
for visualization.

4.2 Exploratory cluster analysis of a single genomic
data set

Exploration of a single genomic data set is a common problem setting in bioinfor-
matics. One of the main goals is usually to get an overview of the data, prefer-
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ably with some visualization. Since the data sets often consist of thousands of
genes they should also be summarized in the overview, for example, by clustering.
Combinations of clustering and visualization are thus of great interest. However,
performing the tasks separately and sequentially usually results in a suboptimal
solution.

The self-organizing map (Kohonen, 1982, 2001) performs both the clustering
and the projection of the data simultaneously. It enables the visualization of
the density structure of the data naturally, it is not sensitive to the shapes or
the number of clusters, and it provides a groundwork where additional data, if
available, can be visualized as well.

This section presents a self-organizing map -based approach for analyzing single
genomic data sets. It is based on Publications 1, 2, and 4. The most commonly
used alternatives are reviewed and contrasted to the self-organizing map approach.

4.2.1 Self-organizing map (SOM)

Self-organizing map (Kohonen, 1982, 2001) is an algorithm that maps a high-
dimensional data onto a lower-dimensional lattice in a fashion that aims at pre-
serving the topology. In particular this means that high-dimensional data can be
visualized on a 2-dimensional display in such way that items that are close-by on
the display are also close-by in the original space. The virtue of SOM is that it
can be used as a clustering and a visualization tool simultaneously, and therefore
it facilitates a quick way to search for interesting density structures in the data. It
lacks, however, a proper cost function as well as a probabilistic interpretation, and
assessing the uncertainty in the SOM visualization in a rigorous way is difficult.
Nonetheless, SOM serves as an excellent tool for exploratory data analysis (Kaski,
1997; Vesanto, 2002).

SOM is composed of a lattice of the prototypes m; € R™ in the same space
as the data {x;}, x; € R". The lattice defines the neighborhood relationships
between the prototypes and is usually rectangular or hexagonal. The nodes of
the lattice are commonly referred to as units or neurons of the map. During the
learning of SOM the prototypes are fitted to the data.

The fitting of the SOM to data takes place, in short, by moving the prototypes
and their neighbors towards their closest data points in data space until conver-
gence. Intuitively, it can be thought of as a flexible fishing-net that is stretched to
cover the observed data points. The initial locations of the prototypes, m;(t = 0),
may be either random or, for example, on the plane spanned by the two first prin-
cipal components of the data. The original iterative learning rule for SOM for the
1th prototype is

m;(t+ 1) = m;(¢) + he; () (x(t) — my(t)), (4.1)
where ¢ is the iteration index, x(¢) is the data point sampled from the observed

data at iteration step t, and h.;(t) is the neighborhood function defined over the
lattice and centered on the prototype ¢ closest to x(t), defined by

c=arg miin{HX(t) —m,(t)||}. (4.2)

The neighborhood function h.;(t) is the essence of SOM: it induces the self-
organization of the map by allowing not only the closest prototype, but also its
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neighboring prototypes on the lattice to be moved towards the observed point x(¢).
The exact form of h.;(t) may vary, but it is often chosen to be Gaussian. The width
and the value of the neighborhood function decrease during the learning, in order
to ensure the convergence and a global ordering of the map.

Other crucial parameters of SOM are the size and the dimensionality of the
lattice, topology of the lattice, and the training time. The most important of
these are the first two. For visualization purposes it is common to choose the
dimensionality to be two, but higher dimensionality is possible if the emphasis is
on the preservation of the topology. The size of the lattice, that is, the number of
prototypes, is sometimes thought to reflect trivially the number of clusters in the
data. This, however, leads to a suboptimal usage of SOM, since for visualization
purposes it is advisable to use as many prototypes as possible to increase the
resolution of the map. This naturally raises the question about over-fitting the
map to the data, but it can be controlled by increasing the final width of the
neighborhood function while increasing the number of the lattice nodes. The joint
effect of these parameters, the map size and the neighborhood width, is sometimes
called the stiffness of the map, and intuitively it means the flexibility of the lattice
in the data space.

There are many variants of SOM, of which one of the most relevant for bioin-
formatics is the so-called dot-product SOM (Kohonen, 2001). In dot-product SOM
the best matching prototype is defined by

c=arg miin{xT(t)mi(t)} (4.3)

and the update rule is

. omy (t) 4 hei(t)x(t)
D) = O heOx@)]

which normalizes the prototype vectors automatically to unit length.

The importance of the dot-product SOM in gene expression analysis is due to
the occasional need to normalize the expression profiles (vectors) to the unit length
in order to emphasize the similarities in their shape. The underlying assumption
is that it is important whether the expressions of two genes correlate over various
conditions or time points, rather than whether the expressions in the individual
conditions are of the same absolute magnitude. In such normalizations the data
will become projected to the surface of a hypersphere, and it is natural to require
that the SOM lattice should also lie on the same sphere. Allowing SOM to cut
through the empty sphere would make its interpretation difficult, and it even might
cause SOM to get stuck in local optima in the middle of the hypersphere far away
from the data. The dot-product SOM has been used in Publications 1, 2, 4, and
6.

(4.4)

Another variant is the batch SOM (Kohonen, 2001). It introduces an improve-
ment to the update rule that is based on first mapping all the data onto their
closest prototype vectors, and then computing the new locations of the prototype
vectors as weighted averages of the data. The batch SOM has less convergence
problems and it is faster to optimize than the original SOM.

An enhancement to the visualization property of SOM was introduced in the
ViSOM algorithm (Yin, 2002) that aimed at preserving the density structure of the
data on the lattice by forcing the distances between prototypes to be approximately
constant in the data space. Another interesting variant in bioinformatics is the

25



CHAPTER 4. EXPLORATORY CLUSTER ANALYSIS OF GENOMIC DATA SETS

Figure 4.1: a U-matrix of the SOM trained with patent abstract data for visualizing the general
density structure of the data. Light shade denotes high density of the data. b New visualization
method reveals smaller details of the density structure. c¢ Distribution of the class “optical
computing devices” plotted on the SOM. The class characterizes the left lower corner cluster.
d Distribution of the patent class “electrical digital data processing” revealing which clusters
include patents associated with digital data processing. Note: In the distribution figures the
dark color reflects a high amount of data. The figure is taken from Publication 1.

SOM of symbol strings (Kohonen and Somervuo, 1998), that has been used for
example in the analysis of human endogenous retroviruses (Oja et al., 2003b). For
an extensive list of SOM variants (and their applications), see (Oja et al., 2003a).

Summarizing, SOM is well suited to exploratory data analysis (Kaski, 1997)
and it has been applied to a multitude of cases including, for example, process
industry (Vesanto, 2002; Alhoniemi, 2002), text mining (Lagus, 200), image re-
trieval (Koskela, 2003), gene expression analysis (Tamayo et al., 1999; T6éronen
et al., 1999; Golub et al., 1999), and to an analysis of a collection of SOM-related
papers (Oja et al., 2003a).

Interpreting the mapping of SOM

In visualization tasks the lattice of the self-organizing map is used as a groundwork
on which various aspects of the data can be plotted. The main interest is usually
the density structure of the data which gives an overview of the similarities between
the data items.

One of the most widely used methods to visualize the density structure of
the data on the SOM lattice is U-matrix (Ultsch and Siemon, 1990). It is based
on computing the distances of the prototype vectors in the original data space
and then visualizing these on the SOM lattice, for example with gray shades.
The fundamental reason why this works is that the point density of the prototype
vectors in SOM approximates the point density of the data in some sense, although
obtaining the exact results of the nature of the approximation in a general case
has turned out to be problematic (Kohonen, 1999). Figure 4.1 a is an example of
U-matrix visualization of the SOM.

The U-matrix display reveals the dominant cluster structure of the data. How-
ever, it is not a perfect visualization. In particular, small clusters and areas of
homogeneous density may become neglected in the conventional U-matrix visual-
ization. With the new method presented in Publication 1, it is possible to visualize
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density structures that U-matrix is likely to miss. In short, the new method vi-
sualizes the changes in the gradient of the density, from one map unit to another.
A large change in the gradient indicates the presence of a cluster border between
the units. In a way, the new method can be seen as emphasizing the areas where
SOM and U-matrix do not manage to visualize the data density well enough (for
more details see Publication 1). Figures 4.1 a and b demonstrate the differences
between the two visualizations in a case study analyzing patent abstract data.

After the areas of interesting changes in the data density have been detected,
it is usually of interest to know how these can be interpreted in terms of the orig-
inal variables. A natural way is to compute local factors by principal component
analysis (PCA) (see Timm (2002)) from the prototypes as is done in Publica-
tion 1. The rationale of the local PCA approach is the close connection of SOM
to so-called principal curves (Hastie and Stuetzle, 1989; Cherkassky and Mulier,
1998) that are an extension of the standard PCA. In Publication 2 a variant of
the method, computing simple differences between the average cluster prototype
and the surrounding area prototype, is used for the same task of interpreting the
clusters.

Another very effective way to utilize the SOM groundwork is to plot some
auxiliary data, if such are available, on the lattice. In this way various areas of the
lattice can be characterized in terms of auxiliary data rather easily, given that the
auxiliary data is somehow localized in the data space. Figures 4.1 ¢ and d show
examples of this in analyzing the patent abstract data, and Figures 4.2 b and c in
analyzing gene expression data.

All visualizations of multidimensional data make some compromises. It is not
possible in general to visualize high-dimensional data in two or three dimensions
without losing information, and the compromise defines what kind of information
is lost. The type of compromise is then of interest when choosing the optimal
method for visualization. Quantitative evaluation of visualizations is, however,
rather difficult.

One possible measure is the trustworthiness of the visualization (Venna and
Kaski, 2001) (used in Publication 2 and in Publication 6) that measures how
well the neighborhood of each data point is preserved in the visualization. The
trustworthiness is based on comparing the rank order of the closest data points,
for each data point, in the visualization to the rank order of the same points in
the original space.

SOM-based analysis of similarities between expression profiles of yeast
genes

The first attempts to utilize SOM in gene expression data analysis were published
in 1999 (Tamayo et al., 1999; Golub et al., 1999; T6ronen et al., 1999). Tamayo
et al. (1999) and Toronen et al. (1999) focused on the ability of the SOM to
organize similar clusters close to each other, whereas in Golub et al. (1999) the
SOM was used rather suboptimally in the sense that the lattice consisted only
of few nodes and was used more as a pure clustering method in an attempt to
find subtypes of a cancer. However, the visualization abilities of the SOM have
largely been neglected. An exception in this tendency has recently been presented
in Hautaniemi et al. (2003), where visualization is emphasized in the SOM analysis
of gene expression data from cancer patients.

Exploratory data analysis of gene expression data with the SOM and the new
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HISTONE CLUSTER
a b c

Figure 4.2: a: U-matrix visualization of the gene expression data from Publication 2 revealing
the density structure of the data. The cluster of histone genes was found with the aid of the
new visualization method developed in Publication 1. b and c: The number of genes belonging
to a particular functional class in the SOM unit, revealing the localization of the classes in this
expression data. The scale on the right explains the correspondence of the gray shade and the
number of the data items in each node. The figure is taken from Publication 2.

visualization methods is performed in Publication 2. The aim is to explore the
similarities between the expression profiles of the yeast genes and to demonstrate
the advantages of visualization with the SOM-based methods.

The analyzed data is one of the first public gene expression data sets (Eisen
et al., 1998). It consists of eight time series experiments measured in different con-
ditions. They have simply been concatenated resulting in a total of 79 dimensions
for 2460 genes (for which the functional class could be determined). At this point
the genome-wide analysis of gene expressions was not yet a routinely performed
task, and the main points were to study the applicability of the SOM-based ex-
ploratory data analysis to gene expression data, and to demonstrate the extensive
use of data visualization with SOM.

Figure 4.2 a shows how visualizations can be used to explore the cluster struc-
tures of the data, and Figure 4.2 b and ¢ demonstrates how auxiliary information,
gene functional classification here, can be used to characterize the density struc-
tures.

A main result in Publication 2 was that the SOM was found to be more trust-
worthy than hierarchical clustering, suggesting its suitability for visualizing gene
expression data.

SOM-based analysis of the similarities between yeast genome-wide re-
sponses to mutations

Of great interest are often also the similarities between the variables, that is, the
measurement conditions or perhaps patients, of gene expression data. In fact,
most of the time they are the actual interest in the analysis but usually there
are so few of them (from tens to hundreds at most) compared to the amount of
genes (thousands) that the problem becomes statistically ill-posed for most com-
putational methods. Nonetheless, similarities between the variables can reveal the
similarities between patients, individual organisms, and experimental situations,
and they are thus worth exploring.

An exceptionally large collection of gene expression data (at that time) was
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made public in year 2000 consisting of 300 hundred experiments for yeast Sac-
charomyces cerevisiae (Hughes et al., 2000). Each experiment was a knockout
mutation or a chemical treatment for one of the yeast genes. Knockout experi-
ments are widely used in biology to study effects of the removal of one specific gene
from the genome, and in principle they can reveal which other genes this specific
gene affects. In Publication 4 SOM-based exploratory analysis was applied to this
data to discover the similarities between the knockout experiments.

Figure 4.3 summarizes the key results of Publication 4, revealing how the group-
ings presented previously in the literature can be found with SOM-based analyses,
complemented with suggestions for new groups and with enhancements to the
previous ones.

4.2.2 Other approaches

The main types of clustering methods applicable for the exploratory analysis of
a single genomic data set are reviewed in this section. The section covers the
majority of the current types of clustering and their possible applications on gene
expression data. In addition, the methods are contrasted to the SOM-based ap-
proaches applied in this thesis.

Hierarchical clustering

Perhaps the first clustering method applied to gene expression data (Eisen et al.,
1998) was similarity-matrix-based hierarchical clustering (see Jain and Dubes (1988)).
It has established its position as a standard method to analyze gene expression
data. Hierarchical clustering can be performed either in an agglomerative or a
divisive way. In the agglomerative method the data points are in the initial phase
each in their own cluster, and the clusters are then progressively combined to new
clusters, starting from the two clusters closest to each other. This finally results
in one cluster consisting of all the data points, and the informative part of the
clustering is actually the process that is often visualized as a dendrogram, a tree,
where clusters are represented as lines that are then connected. The height of the
connection visualizes the similarity of the clusters. If a set of clusters is wanted,
the tree can be cut at some specific height, or some other criteria can be used to
extract a set of clusters from the tree. In the divisive variant the process is started
from the big cluster consisting of all the data points, which is then progressively
divided into smaller clusters, ending up in singletons.

The advantages of hierarchical clustering include a short computation time and
a non-parametric clustering model. Additionally, the simplicity of hierarchical
clustering makes it rather easy to interpret the results. There also exist some
theoretical results guaranteeing, for certain variants of hierarchical clustering, the
performance (see Dasgupta (2002) and the references therein). On the other hand,
hierarchical clustering is completely at the mercy of the chosen distance measure,
it does not necessarily produce clustering where data points are in reasonably
sized clusters, it does not handle uncertainty in a justified way, it is not trivially
generalizable for unseen data, and its visualization properties for large data sets
are not adequate, since the order of the leaves in the dendrogram is arbitrary.

Hierarchical clustering is the reference method in Publications 2 and 6. Addi-
tionally, it is used to summarize the results in Publications 8 and 9.

29



CHAPTER 4. EXPLORATORY CLUSTER ANALYSIS OF GENOMIC DATA SETS

mrpl33

ymr293c

tet-CMD1 erg2
tet-PMAL er044c Itraconazole

Figure 4.3: A smoothed U-matrix of the SOM that reveals the clusters reported earlier in the
literature, and additionally suggests new groupings in Publication 4. The data are the expression
profiles from yeast knockout treatments. The labels on the map are the names of the genes that
have been knocked out in the yeast strain, and the dots are empty SOM map units. White shade
denotes high density of the data (clusters) and dark low density (sparse, non-cluster area in the
data space). The areas encircled with a hand-drawn line are the clusters from the literature, and
the boxes and the ellipses denote differences between the SOM and the literature clusters: the
boxed treatments were grouped to a different cluster in the literature, and encircled treatments
are additions to the clusters from the literature, proposed by the SOM.
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K-means

K-means clustering (MacQueen (1967); see Jain and Dubes (1988)) is a basic proto-
type clustering method for multivariate continuous data, where clusters are defined
with K parameter vectors {m;} in the same space as the observed data {x;}. Each
data point is mapped to the cluster which produces the shortest distance between
the prototype and the data point. K-means is optimized by minimizing the cost

function
E E d(mk y X5 ) 2 )
P

where d(myg, x;) is usually the Euclidean distance. K-means has been applied to
gene expression analysis in several cases, see for example (Tavazoie et al., 1999;
Vilo et al., 2000; Beer and Tavazoie, 2004). It can be very useful when the optimal
number of clusters is not crucial, but it is known approximately. Unseen data
can trivially be placed in the clusters. As for downsides, it is not straight-forward
to visualize the clusterings, K-means always favors Gaussian shaped clusters, and
K-means does not treat the uncertainty in clustering properly. Note that if the
neighborhood of the SOM is set to zero the SOM reduces to K-means.
K-means-based reference methods are used in Publications 7, 8, and 9.

Mixture-model-based clustering

Mixture models are primarily density estimation methods, that is, they aim to
model the probability density distribution from which the observed data could
have been sampled. They can, however, be used for clustering since the idea of
the mixture model is that the observed data has been generated by C generators,
which can be regarded as clusters. Mixture models impose the following model for

the data x:
c

p(x[M,0) = Zp<x|aiv 0, M)p(a;| M),
i=1
where «; denotes the ith generator, 0 its parameters, and p(a;|M) describes the
probability of the generator given model M. A common model is the mixture of
Gaussians where each generator is assumed to generate normally distributed data.

Mixture models have been applied increasingly to gene expression data (Yeung
et al., 2001; Medvedovic and Sivaganesan, 2002), because they treat the uncer-
tainty in data in a probabilistic manner. In particular, the uncertainty in cluster
assignments, in prototype locations, and in the number of clusters can be handled
in a principled way. The last becomes possible, for example, with a Bayesian ver-
sion of infinite mizture models (Rasmussen, 2000), where the amount of clusters is
just one parameter among others, and can be estimated based on the data.

The main problems with mixture models are related to unindentifiability of the
generators, the visualization of the results, and the computational complexity when
the optimization of the model is based on sampling. Unidentifiability becomes a
problem when computing the posterior probability. Then any permutation of the
generators results in the same posterior probability (if the other parameters of the
generators are identical which usually is the case). As a consequence, forming the
actual clusters is not a trivial issue. One of the simplest and the most common
solutions is to form a new similarity matrix for the data that represents how often
the pairs of data objects are generated by the same generator (Medvedovic and
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Sivaganesan, 2002). This similarity matrix can then be summarized, for example,
by hierarchical clustering (Kerr and Churchill, 2001).

Visualization is problematic for the same reason as in K-means: the clusters
and their relations are not trivial to visualize.

A mixture model is used as a reference method in Publication 3, and it is
introduced in more detail in Section 4.3.

Graph-theoretic clustering

Graph-theoretic clustering means here the algorithms that treat the observed data
as a (weighted) graph where the edge weigths are computed from the distance
matrix. The clustering problem then becomes a graph partitioning problem.

One of the first graph-based clusterings applied to gene expression data was
Clustering Affinity Search Technique (CAST) (Ben-Dor et al., 1999). It assumes
that the observed data is generated by a corrupted clique-graph model, where the
disjoint cliques are regarded as the underlying true clusters. Given the similarity
matrix of the data and the threshold of significant similarity it searches for the
closest clique-graph to the thresholded similarity graph.

Other examples of graph-theoretic clusterings include CLuster Identification
via Connectivity Kernels (CLICK) (Sharan and Shamir, 2000), which finds clusters
by first detecting tightly connected sets of items, kernels, and then expands them,
and a method by Xu et al. (2002), which defines clusters as subtrees in minimum
spanning trees.

The biggest advantages of graph-clusterings are that the cluster shape is very
non-parametrically defined, and that there usually exists an algorithm whose prop-
erties are analytically tractable (or this at least holds for an ideal version of the
algorithm). However, the methods have problems: they are not trivially suitable
for mapping future data to the existing clustering, visualization is not straight-
forward, and it is also sometimes tedious to take into account uncertainty in the
data.

Spectral clustering

Spectral clustering (see for example Weiss (1999); Ng et al. (2002); Bie et al.
(2005); Kluger et al. (2003)) is a specific class of clusterings that has recently
gained popularity. In short, it is based on computing the eigenvectors of the
affinity matrix of the data items, and inferring the cluster memberships from them.
Spectral clustering has been applied to gene expression data to discover subtypes
of lymphoma (Ding, 2002) and in combination with biclustering (Kluger et al.,
2003) to analyze cancer gene expression data.

The main advantages of spectral clusterings are the short computational time
facilitated by linear operations and the ability to find clusters of very diverse forms.
The downsides include the possible difficulties in interpretation due to arbitrary
forms of the clusters, inability to incorporate future data into the clustering result,
and the lack of a natural visualization framework.

Information bottleneck

The Information bottleneck (IB) principle (Tishby et al., 1999) is about clustering a
discrete variable (for example words in documents) in such a way that the resulting
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clusters are maximally informative with respect to some discrete auxiliary variable
(for example topics of the documents).

The name “information bottleneck” is due to the principle it is based on: given
some discrete variable X and an auxiliary discrete variable Y associated with it,
find the clustering X such that the following cost is minimized:

L(p(#|r)) = I(X; X) = BI(X;Y).

Here (3 is the Lagrange multiplier controlling the resolution of the clustering. In
other words, the information bottleneck tries to maximize the mutual information
between the clusters and the auxiliary variable, and minimize the mutual infor-
mation between the clusters and the original variable, the clusters X being the
bottleneck.

Although IB, in principle, assumes discrete co-occurrence data, it has also been
used for clustering a single gene expression data set through so-called Markovian
relaxation and information bottleneck (Tishby and Slonim, 2001). This method has
been applied to gene expression data measured from a colon cancer (Slonim, 2002)
and is one possible way to apply information bottleneck methods on continuous
data. The method is theoretically interesting, but not intuitively interpretable and
requires the determination of the correct step ¢ of the emerged cluster structures,
which may be difficult in practice.

Biclustering and subspace clustering

A very popular group of methods in the bioinformatics community are the biclus-
tering methods (also called two-way clustering and co-clustering; cf. Getz et al.
(2000); Lazzeroni and Owen (2002); Tanay et al. (2002); Sheng et al. (2003); Kluger
et al. (2003)). Their aim is to find clusters of data by grouping both the columns
and the rows of the data matrix. This is an appealing aim in particular in clus-
tering gene expression data, since often a set of genes (rows) is assumed to behave
similarly only in a subset of conditions (columns). For reviews of biclustering
applied on biological data, see Tanay et al. (2005); Madeira and Oliveira (2004).

A special, biologically motivated type of biclustering is introduced by Segal
et al. (2003a). The gene expression matrix is decomposed into “cellular processes”
that consist of a set of genes and a set conditions. The authors claim that the
method is able to find clusters of genes that reflect the known cellular processes
better than, for example, the method presented in Lazzeroni and Owen (2002).

Another biologically oriented approach has been presented in (Thmels et al.,
2002), where a heuristic algorithm iteratively clusters genes and conditions to find
a cluster of genes that are active in some subset of conditions.

If the data are discrete and they can be interpreted as co-occurrence data,
certain information bottleneck methods (Friedman et al., 2001), and a closely
related information theoretic co-clustering introduced by Dhillon et al. (2003), can
be seen as a special kind of bi-clustering. However, the framework of IB methods
is more general (for more details, see Section 4.3 and 5).

A group of clustering methods strongly related to biclustering are subspace
clustering methods, or projected clustering methods, see for example (Agrawal et al.,
1998; Parsons et al., 2004). Their aim is generally the same as in biclustering:
find subsets of items from the data matrix, but in these cases the algorithms are
designed for very large and high-dimensional databases. The motivation for them
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comes from the fact that it is in general very difficult to find clusters in a high-
dimensional data space, but the task comes much easier if the clusters are assumed
to lie in some subspace. From the methodological perspective, they generally differ
from biclustering methods in their grid-based way (histogram) to estimate the
density of the data, which makes the algorithms fast and suitable for large data
sets but suboptimal in the sense of probabilistic modeling. For applications of
subspace clustering to genomic data, see for example Yip et al. (2004).

Since the biclustering methods form a very diverse set, it is difficult to say
anything general about their methodology. They may provide a good alternative
when the data matrix has many columns that are assumed to have some latent
group structure, or the clusters can be assumed to exist in some subspace of the
original data space. In particular, they may ease the interpretation of the clusters.
Their emphasis is on clustering, and consequently they do not trivially offer any
visualization possibilities.

Other clustering methods

Gene shaving (Hastie et al., 2000) is a clustering technique specifically designed
for gene expression data. It finds gene clusters (a set of rows) in which genes
have similar expression, but additionally the gene expression varies maximally over
columns (treatments). The name “shaving” comes from the technique that discards
the genes from the cluster that has the smallest contribution to the variance over
columns. The interpretation of the clusters is likely to be easy since the method
specifically produces sets of genes behaving differentially in different conditions. In
addition, the method can be supervised by treating the rows or columns partially
or fully labeled. However, the visualization of the clusters and cluster relationships
is not trivial, and the algorithm is computationally intensive due to its iterative
nature.

4.2.3 Discussion

This section introduced the SOM-based approach for exploratory cluster analysis
of a single gene expression data set, demonstrating new interpretation methods and
visualization properties of SOM. The clustering approaches proposed in the liter-
ature were reviewed, concentrating on the representative main types of clusterings
and on the applications to the gene expression data.

Most of the previously introduced clustering approaches for gene expression
analysis do not focus on visualization. On the other hand, they conveniently
summarize the data as lists of similar genes. This is naturally desirable and un-
derstandable, but often results in an over-optimistic view of the data at hand: that
there would exist some clear-cut clusters in the data. Most often this is not the
case, but the lists merely represent a partitioning of the expression space, more
or less an arbitrary one. Visualization, as performed simultaneously to clustering
with SOM, conveys the intuition of the type of data density structure to the an-
alyst who then has a possibility to asses the cluster quality intuitively. However,
if the analyst already has enough knowledge about the density structure of the
data and the objective is purely to generate lists of similar genes, then methods
focusing solely on clustering are more suitable than SOM.

Another point, also related to the visualization, deserves extra attention: the
shape of the clusters does not need to be determined in the SOM reduce a priori,
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since the clusters are determined based on the visualization. This is in contrast
to many other clustering methods, and is not usually recognized in the literature.
The usual claim is that the SOM is equivalent to K-means with respect to the
number of clusters, but this is due to misinterpreting the map nodes as clusters.
The number of map nodes only sets the resolution at which the data space is
quantized, and the actual clusters should be inferred from the map lattice based
on the density structure of the data.

While none of the clusterings in the literature are trivially applicable for visu-
alization, it is naturally possible to visualize the clusters as a post-processing step.
For example, it is very easy to use the SOM for visualization of the clusters ob-
tained by other means, and then potentially revise them based on the visualization.
An example of this is Figure 4.3.

While the SOM-based approaches presented here are clearly applicable to gene
expression data, true biological discoveries are not likely to be made based on
the analysis of a single genomic information source alone. Already in this section
some promising interpretations were made based on some auxiliary information,
like functional classes of the genes. The next section and the subsequent chapter
introduce advances in the data analysis of multiple genomic information sources.

4.3 Integrating discrete auxiliary information into
cluster analysis

A crucial problem in unsupervised data analysis is that the similarity metric is
usually arbitrary. For example, in cluster analysis conventionally a data sample is
assigned into that cluster for which the Euclidean distance between the sample and
the cluster is shorter than between the sample and any other cluster. However,
the Euclidean distance implicitly assumes that the dimensions, or features, of the
data space are equally important which is not necessarily true. In particular, some
dimensions consisting of mainly noise may dominate, locally or even globally, the
variation in the data and obscure the interesting cluster structures. The problem
is then how to choose the correct metrics for the analysis.

Often there exists some relevant auxiliary information about the data items.
This auxiliary information can be regarded as prior information about the data,
that should be utilized in the analysis. For example, if it is of interest to find gene
clusters or study density structures of the expression data that are maximally
related to the functional classes of the genes, the functional classification should
be incorporated into the analysis. In particular, if such relevant data is available,
the correct metric should be inferred from this auxiliary information, and the
primary data (expression) under study. Developing the methods for this problem
setting provides an interesting machine learning problem that is highly relevant to
genomic data analysis.

Any type of method that affects the feature space based on some auxiliary class
information can be seen as a method changing the metric. For example, a classical
method to find linear combinations of the original components that best separate
the known classes is linear discriminant analysis (LDA), see for example Timm
(2002). Application of LDA would then produce a projection of the data to the
dimensions that would be very informative in the sense of a linear classifier that
assumes that the class distributions are Gaussian. However, that metric would
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not necessarily be optimal for any other method. The metric estimation should be
compatible with the actual analysis method, or a very general one.

The recently introduced learning metrics concept (Kaski et al., 2001; Kaski and
Sinkkonen, 2004; Sinkkonen and Kaski, 2002) estimates a metric for multivariate,
continuous primary data that optimally reflects the changes in the distribution of
auxiliary data. The learning metrics is a general principle that can be used as a
preprocessing step prior to the analysis method of choice, or it can be integrated
to the method. This section reviews two algorithms using the learning metrics:
Self-Organizing Map in learning metrics and discriminative clustering, and their
applications to genomic data.

The section is organized as follows: First, the approaches related to learning
metrics, presented previously in the literature are reviewed. Second, the learning
metrics concept and the SOM in learning metrics applied to genomic data are
introduced. Third, related clustering methods presented in the literature are re-
viewed. Fourth, clustering methods using auxiliary data are reviewed. Finally, the
discriminative clustering, which is motivated by the learning metrics, is introduced
with its application.

4.3.1 Existing metric estimation methods that use auxiliary
data

Assume that some expert knowledge about the data {x;}, x; € R", exists in
the form of class labels {¢;}. If one then weighted or pruned dimensions as a
preprocessing stage in a way that neglects the class labels, the preprocessing would
be suboptimal for the tasks that use the class labels. A better option is to pre-
process variables in such a way that the remaining features are maximally relevant
for auxiliary data. This leads either to the methods of feature selection or feature
extraction. Feature (variable) selection usually refers to methods that select a
subset of original features, but do not modify them, whereas feature extraction
is used to refer to the methods that transform the original features, for example
by taking a linear combination of them. These methods are not traditionally
considered to be methods changing the metric, but they can be regarded as such.

Feature selection

Feature selection methods can be categorized into three groups: filter, wrapper,
and embedded methods (Guyon and Elisseeff, 2003). The feature selection methods
are most often used in connection with classification tasks, but are in principle ap-
plicable also to any other method relying on some similarity metric. The methods
of filter category are independent of the actual analysis method; they are used as
a pure preprocessing step. Wrapper methods treat the actual analysis method as
a black box, and iteratively improve the analysis result. In embedded methods the
feature selection is integrated into the analysis method. While feature selection
facilitates good interpretability of the results, assuming the original features are
interpretable, the methods using it can be suboptimal in computational perfor-
mance and accuracy. The feature extraction methods will be the main focus in
this section, but note that feature selection has been applied to genomic data prob-
lems for example in classification (Xing et al., 2001) and was observed to improve
the classification results.
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Feature extraction and metric estimation

Feature extraction is sometimes also called feature construction or metric estima-
tion, but the objective is the same: to improve the analysis by changing the metric
with some auxiliary data. Here we review methods that can be used to produce a
new metric that is then available for utilization in the analysis method of choice.

Perhaps the simplest example is the traditional Linear Discriminant Analysis
(LDA, see Timm (2002)). LDA finds the components in the data space that max-
imally separate the given classes of data. It is traditionally used for classification
tasks, but also for visualizations for which the maximal separability of the sub-
groups of the data is important. LDA assumes that the distribution of the data
in each class is a Gaussian with a covariance matrix common to all classes.

More recent linear component methods have been proposed, for example, by
Peltonen and Kaski (2005), based on likelihood for a generative model, and by
Torkkola (2003), based on mutual information between an auxiliary variable and
the components, in Shental et al. (2002); Bar-Hillel et al. (2003) based on emphasiz-
ing the components where the variation is largely due to between-class variations,
and in Xing et al. (2003) based on minimizing the within-class distances of data by
quadratic optimization while simultaneously avoiding collapsing the data to one
point.

Globally non-linear metric estimation approaches have been presented in Chang
and Cheung (2004), based on locally linear metric transformation for every data
point pair defined similar by auxiliary data, and then applying the transformation
also to the neighboring points with an estimated weight. In Zhang et al. (2003)
the metric is learned with non-linear regression.

For a more detailed review of the methods related to metric estimation from
the technical perspective, see for example Sinkkonen (2002); Peltonen (2004).

4.3.2 Learning metrics

The learning metrics (LM) principle (Kaski et al., 2001; Sinkkonen and Kaski,
2002; Kaski and Sinkkonen, 2004) is a framework in which the metric of the primary
data space, used in data analysis, is learned using auxiliary data. The primary data
space is a multidimensional real space, and the auxiliary data is in the form of the
class labels. The key idea is to make distances in the primary space proportional
to the changes in the class distribution.

More formally, given a paired data set {x,c}, x € R™ and ¢ multinomially
distributed, the learning metric is defined locally by

d?(x,x 4 dx) = Dgr(p(c|x), p(c|x + dx)) = —dxT J(x)dx, (4.5)

DN | =

where J(x) is the Fisher information matrix that describes the change of p(c|x)
with respect to the coordinates of the primary data space.

In practice, the problem is then to estimate the conditional probability distri-
butions p(c|x), which can be done, for example, by Bayes’ rule from some standard
estimator of the joint distribution p(c, x).

Learning metrics bears a resemblance to supervised and discriminative learning,
in particular to classification. In general, the aim of supervised modeling is to
model the conditional distribution p(c|x). Conventional classification is a special
case where the primary interest are the changes of the most probable class in the
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primary space. The main differences between the purely supervised methods and
LM are summarized as follows: in LM the aim is not to model p(c|x) itself, but
only to transform the metric in x-space; the data analysis still takes place in the
primary space after that. Additionally, LM does not concentrate on the changes
in the dominant class, in contrast to conventional classification, but takes into
account the changes in the whole class distribution.

The learning metrics can be regularized with the Euclidean metric in order to
avoid the possible singularities in pure learning metrics, see Publication 6. The
first papers used rather crude approximations in computing distances, but it is also
possible to compute non-local distances more accurately with learning metrics by
using various approximations for path integrals representing the distances in the
primary data space (see Peltonen et al. (2004)).

After the metric has been learned, it is possible to use various data analysis
methods in the new metric. Examples of these are the self-organizing map (Kaski
et al., 2001) and Sammon’s mapping (Peltonen et al., 2002), of which the SOM in
learning metrics will be reviewed in more detail here. In addition to the original
publications, extensive introductions to the learning metrics principle can be found
in Kaski and Sinkkonen (2004); Sinkkonen (2002); Peltonen (2004).

Self-organizing map in learning metrics (SOM-LM)

The interpretation of the SOM is often partly based on visualizing distribution of
some class information on the SOM lattice (see for example Section 4.2). Unex-
pected localizations of the classes on the lattice can then be held as hints that the
classes depend on the primary data features. However, if the class information
available is of primary relevance in the analysis, this is suboptimal in the sense
that the SOM itself has no information of the classes, and most likely will not
represent the class distributions optimally. Particularly, it may concentrate on
variation that is irrelevant to the auxiliary information.

SOM in learning metrics (SOM-LM) (Kaski et al., 2001) is a recently developed
method that fits a SOM to the continuous primary data to represent the changes in
some auxiliary information. Examples of applications are companies described as a
feature vector based on their financial statements and as the auxiliary information
the class label telling whether they went bankrupt, or gene expression profiles with
the functional class labels.

The main difference between SOM and SOM-LM using local distance approx-
imations is the best matching unit search in learning metrics. With the natural
gradient, the update rule remains the same (Kaski et al., 2001).

SOM-LM of yeast gene expressions and functional classes

The functional classes of genes describe approximately the roles of the genes in the
cell. Despite the occasional crudeness of the functional classification, the classes
are one of the most important ways to interpret and summarize groups of genes,
as well as various visualizations. They also enable interpretation of gene expres-
sion experiments by letting the researcher see which functions are coordinated in
concert in some specific experiment, for example activated or perhaps shut-down
altogether.

In Publication 6 SOM in learning metrics is used to visualize the gene ex-
pression changes related to changes in functional class distribution. This enables
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more efficient visualization of the functional classes than visualizations in arbitrary
metrics. It may also reveal novel combinations of the existing functional classes,
in which the genes behave similarly in experiments despite that they belong to
different functional classes.

In Publication 6 SOM-LM was applied to yeast gene expression data measured
in 300 mutations and chemical treatments (Hughes et al., 2000), and to a human
gene expression data measured in different tissues (Su et al., 2002). The auxil-
iary information used in learning metrics was the MIPS functional classification
(Mewes et al., 2002) for the yeast, and a discretized expression of the homologous
genes in mouse for the human. Figure 4.4 shows SOM-LM of the yeast knock-out
data, visualizing the density structures of the data, and some sample clusters. In
Publication 6 SOM-LM was found to represent the auxiliary data better then a
dot-product SOM (see Section 4.2.1) for both the yeast and the human data sets.

4.3.3 Clustering using auxiliary data

The separate metric estimation stage enables the use of many data analysis tech-
niques. On the other hand, it can be seen as a downside of the framework, since the
estimation of the metric is not optimized with respect to the specific analysis goal,
for example clustering. In order to overcome this, one has to embed the metric
estimation principle into the data analysis method of interest. The clustering done
by utilizing some relevant auxiliary information can be regarded as a clustering in
transformed metrics. Some existing approaches presented in the literature are first
reviewed, and then a clustering in learning metrics is introduced, together with an
application to gene expression data.

Joint distribution modeling

To start from the obvious choice, it is possible to use joint distribution models for
clustering. For example, a method called MDA2 (Hastie et al., 1995) is a mixture
model for p(c¢,x). As the name implies these methods model all the variation
present in the original features and the classes. This means that, in principle,
either data, primary or auxiliary, could dominate the other, depending on the
preprocessing.

Semi-supervised clustering

Clustering with auxiliary data is related to a recent class of methods called semi-
supervised clustering or clustering with constraints, see for example Basu et al.
(2004); Chang and Cheung (2004); Bilenko et al. (2004). The general aim in these
models is to improve the clustering using auxiliary data available for all or for a
subset of the items. Usually the auxiliary data consists of pairwise (dis)similarities
or some class information, and the aim is to put similar items, in the sense of
the constraints, into the same cluster. Note that the nomenclature is not fully
established yet since occasionally this type of methods are also referred to as
supervised clustering (Daumé and Marcu, 2004; Eick et al., 2004). Care should
be taken to avoid confusing them with supervised learning methods, in particular
with semi-supervised classification, where the aim is to improve classification using
unlabeled data.
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Figure 4.4: U-matrix visualization of the gene expression data measured from 300 knock-
out mutations. The underlined genes are the ones for which the metric changed the most in
comparison to the Euclidean one. The enumerated clusters are sample clusters: 1: A cluster
associated with mitochondria, 2: Localization of purine biosynthesis pathway, and 3: An area
where the metric has changed. The genes in area 3 largely have an unknown function; some are
associated to transcription and DNA repair. The figure is taken from Publication 6.
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One of the first attempts to supervise clustering is presented by Becker (1996).
The motivations in that work stem from modeling the perceptual processing stages,
but the abstract aim of the models is to maximize mutual information between
the representations (outputs) of different inputs. The two variants called discrete
Imazx and binary Imaz can be regarded as clustering methods, but the framework
is more general.

Another early semi-supervised clustering is presented in Wagstaff et al. (2001),
which presents an algorithm for constraining the standard K-means clustering.
In the algorithm data is assigned to clusters that do not violate auxiliary data
constraints. As a result, the clusters are not necessarily local in any sense in the
primary data space. Another variation of a standard clustering, in this case of
the hierarchical clustering, is introduced in Klein et al. (2002) to incorporate the
similarity constraints into the distance matrix of the data.

A probabilistically motivated approach is presented in Shental et al. (2003) that
proposes to fit a Gaussian mixture model to the data with equivalence constraints
that can be both of similarity or of dissimilarity type.

In Basu et al. (2004) a probabilistic framework for semi-supervised cluster-
ing is introduced that unifies the two, alternative main principles of the previous
approaches: 1) auxiliary information-sensitive assignment of the data into clus-
ters, and ii) metric learning from the data. The framework is based on so-called
Markov random fields, and enables the use of both similarities and dissimilarities.
A variation of the method is presented in Bilenko et al. (2004).

Applications of (semi)supervised clustering to genomic data include at least a
supervised clustering of gene expression data measured from various cancer types
(Dettling and Biihlmann, 2002). The aim in this approach was to cluster gene
expression profiles of various cell lines and patients in a similar incremental way
that is applied in (Ben-Dor et al., 1999) but with an additional goal to find sets of
genes that discriminate maximally well the given cancer classes.

An application of a kind of supervised clustering to discover molecular pathways
based on gene expression and protein interaction data was presented recently in
Segal et al. (2003c). The core of their idea was to model the joint distribution
of pathway indicators (clusters) and gene expression given all the available binary
protein interactions. The model assumed that each gene belongs to one pathway
and given that, assumed that the expression of a gene in each experiment was
independent and normally distributed (so-called Naive Bayes model). The effect of
the interaction data was modeled with so-called binary Markov networks that could
easily be combined with the expression model, and in effect it induced a potential
over gene pairs that favored interacting genes in the same pathways. The model
was shown to be better than pure probabilistic clustering of expression data or pure
graph-theoretic clustering of interaction data. Note that from the perspective of
semi-supervised clustering this approach is close to a joint distribution modeling,
and it does not change the metric of the primary (expression space), only the
assignment of the data to the clusters (pathways).

In general, semi-supervised clustering methods can not be regarded as joint
distribution models, because not all probability distributions are modeled in them,
that is, the clustering is discriminative in some sense. For example, the uncertainty
of pairwise constraints is usually not modeled.
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Information bottleneck

As discussed in Subsubsection 4.2.2, the Information bottleneck (IB) principle
(Tishby et al., 1999) is about clustering a discrete variable (for example words
in documents) in such a way that the resulting clusters are maximally informa-
tive with respect to some discrete auxiliary variable (for example topics of the
documents).

IB can be interpreted as a semi-supervised clustering of discrete data. The
method is information-theoretically well-justified, but the requirement of the dis-
crete data is a severe limitation in genomic data analysis. Simple discretization
of a data matrix is likely to produce clusters that are not easily interpretable,
since they are not local in the data space. So far no applications of basic IB to
genomic data in the sense of semi-supervised clustering have been presented in the
literature. For an application without auxiliary data, see Section 4.2.2

4.3.4 Clustering in learning metrics: discriminative cluster-
ing (DC)

Discriminative clustering (DC) (Sinkkonen and Kaski, 2000, 2002; Kaski et al.,
2005) is a prototype-based clustering method for continuous data paired with dis-
crete auxiliary data (class labels). It aims at producing clusters that are local in
the primary data space and have as homogeneous class distribution as possible. It
is strongly related to the learning metrics principle in the sense that if the num-
ber of clusters approaches infinity, the DC becomes clustering in learning metrics
(Kaski and Sinkkonen, 2004).

Given paired data set {x,c}, where x € R™ and c¢ is multinomially distributed,
a set of prototype vectors {m}, m € R", and a set of prototype class distributions
{1} associated to them are defined. The cost function of the DC can be be written
as follows

Epc = Z/yj(x? 0;,0) Dk (p(clx), ;) p(x) dx (4.6)

where Dgr(p(c|x), ;) is the Kullback-Leibler divergence between the observed
class distribution p(c|x) and the prototype distribution ;, and y;(x;8;,0) are
the unimodal membership functions of the clusters centered at 8; € R" having
the width parameter o and fulfilling 0 < y;(x) <1, >_,y;(x) = 1. Note that if
the distortion measure would be replaced by the conventional Euclidean distortion
measure, one would obtain the cost function of the soft vector quantization (or
soft K-means clustering).

The DC is optimized with respect to the parameters 1);, 6; and 0. The pro-
totypes 1; parameterize multinomial distributions that describe the local class
probabilities. Optimization of 1, and 6; takes place with stochastic approxima-
tion, for instance, and o is chosen with a validation set. For more details on the
method, see (Sinkkonen and Kaski, 2002; Sinkkonen, 2002; Kaski et al., 2005).

An important property of DC is that it searches for clusters that have a homo-
geneous auxiliary data distribution. This is in contrast to most semi-supervised
clusterings that typically aim at clusters consisting of one class. This unique flexi-
bility of DC in principle enables the discovery of unexpected combinations of class
information, for example a group of functional classes in which genes are expressed
similarly in specific experiments.
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DC of yeast gene expressions and functional classes

Discriminative clustering has been applied to gene expression data and functional
classes in Publication 3.

The gene expression data was taken from Eisen et al. (1998). It consisted of
8 time series experiments, altogether 79 dimensions. The functional classes were
from MIPS (Mewes et al., 2002). Since the classification is hierarchical and the
smaller classes included occasionally too few genes, only the main classes were
utilized here.

DC was compared to MDA2 (Hastie et al., 1995) and found to outperform it
when measured with empirical mutual information.

4.3.5 Discussion

This section reviewed the learning-metrics-based explorative clustering methods to
gene expression data and related methods, from the perspective of applicability to
gene expression data. It was argued that if suitable auxiliary information exists,
it should be used in order to incorporate all the available prior information to the
analysis. This is especially important in analyzing complex systems, such as the
cell, and in presence of noisy data.

The use of conventional metrics that implies equal relevance of the dimensions
is of course often very sensible. Its use is logical in situation where there naturally
exists no prior information about the importance of the features, and the majority
of analysis tasks are of this kind. Thus, as such, the use of the conventional metrics
is not a bad idea, but it is important to realize that the choice of the metric affects
the objective of the analysis, and that it actually may affect the results of the
analysis crucially.

The section dealt with transforming the metrics based on discrete auxiliary
information, but it is naturally possible to change the metric based on the primary
data alone. Subspace/biclustering methods (see Section 4.2) are examples of that
and in the metric estimation sense they are related to the methods presented in
this section. These two types of metric transformations can also be integrated, for
an example see (Liu et al., 2004).

The type of auxiliary information deserves some attention. The learning met-
rics methods, SOM-LM and DC, utilize multinomially distributed auxiliary in-
formation, usually class information. Similarly, all the reviewed (semi)supervised
methods utilize discrete side information, often class labels, but some of them may
also use pairwise similarity constraints. The pairwise constraints are more general
than class labels, allowing more structured information, for example Gene Ontol-
ogy graphs, to be taken into account more easily. The type of auxiliary data is
one of the foci for future research to improve learning metrics-based methods. The
first approaches have already been made, and are presented in Section 5, where
the auxiliary data can be continuous.

As a conclusion, learning metrics approaches are distinguished from the other
methods by the following characterization: they are designed for unsupervised,
topography-preserving data analysis of continuous data under a supervised metric
learned from relevant auxiliary data. The methods allow new unlabeled data to be
incorporated into analysis after the model has been trained with the labeled data.
They belong to the field of general machine learning, but are especially suitable
for genomic data problems.
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Chapter 5

Exploring dependencies
between genomic data sets by
clustering

The use of auxiliary data to guide the data analysis, described in Section 4.3, can
be seen as a special case of combining two sources of information into the analysis.
Being able to combine multiple data sources is extremely important especially in
systems biology problems. Systems biology views the cell and organisms as sys-
tems where various components of the cell operate in a highly interactive manner.
Subsequently, each separate information source for the cell, that is, gene expres-
sion, gene ontology, metabolic pathways, DNA sequence, metabolic state, protein
concentrations, etc., offers only a limited perspective to the functionality of the
cell. In order to understand the systemic behavior of the cell, all the available in-
formation sources need to be combined in the analysis. In practice, each source is
represented by a set of features (variables) for the same set of objects (for example
genes) of which there is a set of observations (the data).

Consider one set of objects, two sources of information both described with
continuous multivariate features, and a data set obtained from both of them for
the objects. Intuitively, it would be possible to search for at least the things that
are i) in common between the data sets, or ii) the things that are data-set-specific.
The problem with the latter goal is that it becomes ill-defined very easily when the
data sets contain a lot of noise. The noise is usually assumed to be independent
between the sources, hence, the effects extracted as data-set-specific would very
easily consist mainly of noise. On the other hand, the first goal seems tempting
precisely for this reason: the effects common to the several data sources would by
definition be free from the data set specific noise. This is an important property
especially with microarray data that is notoriously noisy.

The explicit search for common aspects between co-occurring data from two
information sources, X and Y, can be formulated as an analysis of statistical de-
pendencies between representations, f,(x) and f,(y), for the data sets. This is
equivalent to stating that p(f.(x), fy(y)) # p(f=(x))p(fy(y)). If the representa-
tions are chosen to be clusters, the setting provides a way to summarize the data
as dependent subgroups. Other, more traditional, formulations include for exam-
ple canonical correlation analysis (CCA), (Hotelling (1936); see Timm (2002)) in
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which the representations are components in the feature spaces, or its recent gen-
eralizations (Fyfe and Lai, 2000; Akaho, 2001; Bach and Jordan, 2002; Klami and
Kaski, 2005).

The key property of the modeling of dependency is that one is focusing on
the dependencies between the feature sets X and Y, and not on the dependencies
of variables inside X or Y. This differentiates the dependency modeling from
joint distribution modeling, where all the dependencies present in the joint space
(X,Y) are modeled. For example, given gene expressions measured from lung
cancer and from breast cancer, with dependency modeling it would be possible
to find dependencies in gene expression between the two cancers. In contrast,
modeling the joint distribution of all the gene expression data would take into
account all the dependencies between the individual variables (genes) in the data,
and it would model the inter-dependencies of the cancers suboptimally.

This chapter presents the third main contribution of the thesis: new meth-
ods for explorative cluster analysis of the dependencies between genomic data sets
and their applications. First, a set of existing methods applicable for dependency
modeling are reviewed, and, second, the methods integrating two data sets into
the clustering analysis are reviewed. Next, two new dependency analysis methods,
that are extensions of discriminative clustering (see Section 4.3.4), are introduced:
mazimum o posteriori-DC and associative clustering. Their applications to ge-
nomic data sets, and related work in the literature are also summarized. Finally,
an extension of associative clustering to multiple data sets is presented in Section
5.4 with an application to characterizing the yeast stress reaction and its regula-
tion.

5.1 Existing approaches combining data sets

This section focuses on two groups of methods: classical methods used in depen-
dency analysis, and methods combining data sets by clustering. The new methods
described later are built on the concepts used or introduced in these two method
groups.

5.1.1 Classical methods for measuring dependency

Classical dependency analysis here means statistical methods that were designed
for estimating and/or finding the dependency between two (multivariate) variables.

Correlation coefficient

Correlation is one the most common distance and association measures used in data
analysis. There exist many variants of correlation coefficients, both parametric
and non-parametric, of which the most popular are perhaps Pearson correlation
coefficient, Spearman’s correlation coefficient, and Kendall’s Tau (see Conover
(1971)).

By far, the most widely used of these is the Pearson correlation coefficient for
the linear association between the two real-valued, co-occurring random variables,
X = [r1,%2,...,%,] and y = [y1,¥2, ..., Yn], where z;,y; € R:

(x-%)"(y - ¥)

pp = ——————=~, (5.1)
Ox0y

45



CHAPTER 5. EXPLORING DEPENDENCIES BETWEEN GENOMIC DATA SETS
BY CLUSTERING

where y and X denote the means of the variables and the o the respective standard
deviations. Pearson correlation is proportional to the mutual information between
the variables if they are assumed to be normally distributed (Kullback, 1959).

Spearman’s correlation coefficient and Kendall’s Tau are nonparametric asso-
ciation measures (see Conover (1971)). Both of them use the ranks of the data
items instead of the actual values of x and y. As measures they are more robust
due to their non-parametricness, but their interpretation may be less clear since
they do not trivially translate to statistical dependency.

Canonical correlation analysis

Canonical correlation analysis (CCA Hotelling (1936); see Timm (2002)) is the
basic method when measuring the dependency between two multivariate variables
X € R"and Y € R™. It finds linear components in both data spaces, in such
a way that the correlation between the components is maximal in the sense of
the Pearson correlation coefficient. This corresponds to maximization of mutual
information if both variables are normally distributed. CCA can be presented as
the following generalized eigenvalue problem:

C¢ = D¢, (5.2)

where C is the covariance matrix of the concatenated data [x” y?], D is the block-
diagonal matrix of the original covariance matrices, A = 1 + p are the eigenvalues
(p being the canonical correlation), and £ are the eigenvectors.

CCA is related to the mutual information between the variables X and Y as
follows (Kullback (1959); see Bach and Jordan (2002)):

106,Y) = —3 log T 1= 7). (5.3)

where p; are the canonical correlations between x and y.

There also exist a number of generalizations and extensions of CCA, see for
example Timm (2002) for a partial CCA (which removes the effect of a third
variable), and Kettenring (1971); Bach and Jordan (2002) for various extensions
to multiple variables, often called with a common name generalized CCA (gCCA).

A gCCA with a similar simple connection to mutual information was presented,
for example, in Bach and Jordan (2002), and it can be expressed similarly to CCA
as a generalized eigenvalue problem, see Eq. 5.2.

Also nonlinear kernel versions of CCA and gCCA have been developed, see for
example (Fyfe and Lai, 2000; Bach and Jordan, 2002).

Linear discriminant analysis

Linear discriminant analysis (LDA) was summarized in Chapter 4.3. LDA, like
other classification methods, has a connection to estimating the dependency be-
tween the class labels and the continuous feature variable (see Torkkola and Camp-
bell (2000) and references therein).

Contingency table analysis

Given two discrete univariate features (categories or classifications) for the same
set of objects, they can be represented as a cross-classification table called usually
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a contingency table.

In contingency table analysis the aim is to study the possible dependence of
the two classifications with various tests. The tests are usually based on the
comparison of a model where the two classifications are dependent versus a model
for independent classifications. Since the tables can have multiple columns and
rows, and multiple dimensions making them essentially hypercubes, the array of
various tests and approaches to their analysis is large.

Even for the simplest case, a two-way contingency table with two columns
and two rows, there exist several methods and test statistics (see Yates (1984);
Agresti (1992)). However, the classical Fisher test ((Fisher, 1934), see Agresti
(1992)) still seems a very reasonable tool and it has recently gained ground also
in the analysis of the genomic data. Specifically, it has been implemented into
numerous software packages analyzing the proportions of some known classes, like
Gene Ontology classes, in a list of genes extracted for example from cluster analysis
(see for example Hosack et al. (2003); Zeeberg et al. (2003)).

The Fisher test represents so-called ezact inference for contingency tables,
where the possible configurations of the data in the table can be explicitly enumer-
ated. Another common class of inference uses approximations for the distributions
of test statistics, which are often x? -based. They are more suitable for large ta-
bles (with lots of data) (see Agresti (1992)). Bayesian approaches have also been
applied extensively, see for example Good (1976); Albert (1997).

Correspondence analysis uses contingency tables but has a different aim (see
Wickens (1998)). It is an explorative analysis method of contingency tables that
can be used to visualize the relationships between the columns and rows of the
table.

For a short overview and references of categorical data analysis and their con-
nections, see for example (Wickens, 1998).

5.1.2 Methods combining data sets by clustering

The methods reviewed in the previous section were based on finding or measuring
any global dependency between feature sets, either assuming normality of the
distributions or operating with given categorizations (classes). If the normality
assumptions are not valid, or one has to estimate the categories for continuous
data, the methods are not trivially applicable.

The clustering methods reviewed here are capable of integrating multiple fea-
ture sets, without assumptions about normal distribution of data, or given cate-
gorizations. However, they do not model the dependencies between the data sets.
In general, the methods are not exclusively designed for genomic data integration
but can certainly be used for that purpose. In addition to the ones presented
here, there exists a large array of other methods that have been used to integrate
genomic information sources by other means than clustering but they are beyond
the scope of this thesis.

Joint distribution models

There exist several joint distribution modeling algorithms for the simultaneous
clustering of two feature sets. They range from simple clusterings of concatenated
features through mixture models capable of integrating various feature types to
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rather elaborate graphical models. Such methods are briefly reviewed here, to-
gether with their applications to genomic data.

The simple concatenation of features enables the use of all methods applicable
for a single data set. However, it usually assumes that the features are equally
important and of a similar type. Both of these assumptions may have a dramatic
effect on the analysis. In principle, this can be managed by appropriate prepro-
cessing of the features, but this is usually a very difficult task to perform optimally.
Example analyses of concatenated data are presented in Publication 2 or in Eisen
et al. (1998).

Perhaps the first mixture models integrating two feature sets in the context
of genomic data were introduced in Holmes and Bruno (2000). The aim in their
work was to find effective regulatory elements using both expression and sequence
information. Thereafter, the research focus has largely moved to even more flexible
models, in particular, to graphical models.

Graphical models, and specifically Bayesian networks (Pearl, 1988), are a main
trend in bioinformatics nowadays. Graphical models are, in short, models for
the joint distribution of all the variables in data, and they attempt to explicitly
express the conditional independences between the variables. They have been
applied to numerous problems where integration of data sources has been needed,
for example to gene prediction (Pavlovic et al., 2000), gene regulation modeling
(Beer and Tavazoie, 2004; Friedman, 2004; Hartemink et al., 2002; Segal et al.,
2003b), gene function prediction (Troyanskaya et al., 2003), and protein-protein
interaction prediction (Janse et al., 2003).

An example of graphical-model-based-clustering can be found in so-called context-
specific clustering application to gene expression data (Barash and Friedman,
2002). The method works in the framework of Bayesian networks, and proposes a
joint distribution model for gene expression and putative transcription factor sites.

While graphical models are in principle an efficient and elegant approach to
model the cell, they may suffer from the lack of prior data needed to determine the
structure of the graph and/or computational difficulties in searching the correct
structure and values for the other parameters. This is partly due to their aim
to model the whole phenomenon, that is, all the variation that is present in the
data, also the variation possibly irrelevant to the actual analysis task. This same
drawback exists in principle in all joint distribution models.

However, the graphical models can also be used in a discriminative fashion
(Friedman et al., 1997; Segal et al., 2003d; Segal and Sharan, 2004; Taskar et al.,
2002). For example, in Segal and Sharan (2004) a graphical model is built to find
the combination of transcription factor binding sites that best discriminates the
promoters of a set of co-regulated genes from all the other promoters. These ap-
proaches are very promising since they combine the versatility of the probabilistic
models to the power of discriminative learning.

Note that building and training of the graphical models must be adjusted
rather carefully for the problem at hand. In a sense, while the framework of the
graphical models is universally applicable, the individual models are practically
always heavily hand-tuned, requiring a lot of methodological expertise.

Information bottleneck methods

The information bottleneck (IB) method was introduced in Section 4.2.2: IB maxi-
mizes the dependency between clusters of a discrete random variable and a discrete
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auxiliary variable. The difference is now that there can be several variables.

The multivariate information bottleneck (Friedman et al., 2001; Slonim, 2002)
is an extension of IB to multiple variables. The extension is a general one, al-
lowing various kinds of models and dependencies to be estimated. However, for
M discrete variables the estimation of the dependency is essentially based on an
M-dimensional contingency table. It thus suffers from the large number of data
sets, because for the finite data the contingency table becomes sparse.

The requirement of discrete data of the IB-based methods is more restricting
here, since now in principle all the data sets should be discrete or discretized.
One possible solution to this, a combination of K-means and IB coined K-IB, is
presented in Publication 8. In that approach two data sets are first discretized by
K-means after which the multivariate IB can be readily applied.

In K-IB the vectorial margin spaces (different data sets), x and y, are first
quantized separately by K-means, without paying attention to possible dependen-
cies between the two margins. This results in two sets of margin partitions which
span a large, sparse contingency table that can be filled with frequencies of the
training data pairs (xx,yx). In the second phase, the large table is compressed
with the symmetric sequential IB algorithm (Slonim, 2002) to explicitly maximize
the dependency of margins in the resulting smaller contingency table.

The final partitions obtained by K-IB are of a very flexible form, and therefore
the method models the dependencies of the margin variables well. As a draw-
back, the final margin clusters in the original data spaces will consist of many
atomic Voronoi regions, and they are therefore not guaranteed to be particularly
homogeneous with respect to the original continuous variables (x or y). Interpre-
tation of the clusters may then be difficult. K-IB is used as a reference method in
Publication 8.

Ad hoc methods

Especially in genomic data analysis the data integration settings are occasionally
so complicated or include so large feature sets that development of unified com-
putational frameworks is tedious. In these cases algorithms with a less rigorous
approach to technical details of statistical modeling can perform very well. An ex-
ample of this kind of approach, with respect to gene expression data, is presented
in Bar-Joseph et al. (2003), for integration of gene expression and transcription
factor (TF) binding data.

5.2 MAP-DC: Integration of one discrete and one
continuous data set

This section presents an improved discriminative clustering model based on max-
imum a posteriori estimation (MAP-DC), introduced originally in Publication 5.
MAP-DC maximizes the dependencies between the given class information and
the clusters extracted from continuous primary data. It is thus a combination of
dependency maximization and clustering.

The discriminative clustering (DC) method presented in Section 4.3 can be
interpreted as a piecewise constant model for the auxiliary data distribution p(c|x)
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given the data x, estimated by maximizing the log-likelihood

L=Y " logt.: (5.4)

J x€Vj

where c(x) is the index of the class of the sample x, and 9); .(x) is the prototype dis-
tribution associated to the cluster j, and V; is the Voronoi region of the prototype
j (for more details, see Publication 5).

The key idea of MAP-DC is to introduce a prior for the parameters of the dis-
tribution ;. After that one can integrate the parameters ); and their uncertainty
out, and maximize the model only with respect to the prototype vectors m; (MAP
estimation). If a uniform prior is introduced for the prototypes, the maximization
corresponds to a maximum likelihood estimate.

More formally, in MAP-DC presented in Publication 5, denoting the observed
primary data by D(*) and the observed auxiliary data by D(¢), we wish to maximize
the posterior

p((m} DO, D) = [ p((m), (@)D, Dl (59)
{v}

or equivalently log p({m}|D(), D(*)). Here the integration is over all the P,

In practice, the prior for the {4} is chosen to be a conjugate (Dirichlet) prior,

0

p(t;) o< I1; w;li"' _1, where the {n{}; are the prior parameters common to all j, and
NY = 3".n?. The integration in Equation 5.5 can now be done analytically and
the log of the posterior probability then is

logp({m}| D'V, D®)) o 3y “logT(n + nyi) — ) logI(N® + N;) . (5.6)
ij J
where I'() is gamma function. In MAP estimation this function is maximized.
The Bayesian formulation of MAP-DC opens up interesting connections to
dependency maximization. First note that the clusters can be interpreted as one
categorization for the data and the auxiliary data, the class ¢, as another. The
dependency between two categorizations has been traditionally measured with
contingency tables (see Section 5.1.1). A Bayesian version of a dependency test
for contingency tables has been derived in (Good, 1976). The test was formulated
as a Bayes factor of the null hypothesis M| of independent margins against the
alternative hypothesis Mp of dependent margins,

P({ni;}|Mp)
P({ni;}| M)’
where the n;; are the observed counts of data in row ¢ and in column j.

It turns out that the cost function of MAP-DC in Equation 5.6 is proportional
to the Bayes factor for the dependency in contingency table

P({ni;}{n(e:)}, Mp)
P({nij}{n(ei)}, Mr)
L, T(ngi +0%)  T(NO)*  T(kn®)NeT(N + kN°)
T ILN + N0 TN T T(nler) + knd)T(NO)
= p({m}| D, D@ x const., (5.7)
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where the constant does not depend on the amount of data in clusters IV; or table
cells n;;. Here n(c;) denotes the number of samples in the (auxiliary) class ¢;, which
is a constant. MAP estimation for discriminative clustering is thus equivalent to
constructing a dependency table that results in a maximal Bayes factor, under the
constraints of the model.

The Bayes factor has the advantage of properly taking into account the finite
size of the data set while still being asymptotically equivalent to mutual infor-
mation. In MAP-DC the Bayes factor is optimized instead of only being used to
measure dependency in a fixed table. The categorical variable that defines either
rows or columns of the contingency table is defined by the clusters, parameterized
by prototypes {m}. The prototypes are then tuned to make the dependent model
describe the (contingency table) data better than the independent model, which
can be interpreted as maximizing dependency. Note that the Voronoi regions,
that is, the clusters, are local in the original data spaces, making the interpreta-
tion straightforward.

The actual optimization of the MAP-DC is done by a conjugate gradient
method (for a textbook account, see Bazaraa et al. (1993)) after a smoothing trick
which makes gradient-based optimization possible. See Publication 5 for details.

5.2.1 MAP-DC of yeast stress reaction and regulatory gene
expression

Baker’s yeast Saccharomyces cerevisae is widely used both in academic research
and in industry. Its utilization is usually based on exposing the yeast to some
external treatment that modifies its behavior in a desired way. As a unicellular
organism, the change in the yeast’s behavior is largely reflected in its gene expres-
sion. Any external treatment that is a change from the optimal growth conditions,
is likely to induce some stress-like behaviour in yeast. Hence, it is of crucial im-
portance to understand the yeast’s stress reaction on the expression level.

Yeast stress has been actively studied during recent years, also with DNA
microarray techniques (Gasch et al., 2000; Causton et al., 2001). One of the
goals in the publications has been the definition of common environmental stress
response (ESR) genes. However, the previous papers do not agree totally on the set
of the ESR genes and their definition. This is because the definition of the stress
itself is still not complete. Additionally, the regulation of these genes’ expression
is of great interest, but the dependency of the stress reaction on the transcription
factors (TFs) is still somewhat unclear.

We explore the dependencies between the yeast gene expression under stress
and the expression after the knockout of the two known stress transcription factors
Msn2p/Msndp with MAP-DC in Publication 7. The data from the publications
by Gasch et al. (2000) and Causton et al. (2001) is publicly available, and it
includes genome-wide time series measurements of yeast gene expression under
various stress treatments like heat and acid shock. Additionally, the data set from
(Causton et al., 2001) included the genome-wide expression measurements under
acid shock after knockout of Msn2p/Msndp (called deletion strain from now on),
and the list of the genes hypothesized to be regulated by those TFs from (Gasch
et al., 2000).

The setting of the problem is ideal for an exploratory analysis with MAP-
DC since we are interested in groups of genes expressed in various ways in a
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normal strain, but especially of those that are dependent on the knocked-out stress
regulators. Hence, the primary data was the gene expression in normal strain under
stress, and the auxiliary data was discretized gene expression in the deletion strain
under stress.

The results demonstrate the ability of the MAP-DC to make biologically sig-
nificant findings. The two most important results are explained here. First, the
dependency between the normal yeast strain gene expression under stress and the
auxiliary information was reproducible, and statistically significantly higher than
the one obtained with K-means clustering. This was measured with Equation 5.6
for both models in a 20-fold cross-validation with paired t-test, giving p < 0.001.

Second, MAP-DC found a cluster of genes, of which unexpectedly many were
down-regulated in the deletion strain. Moreover, practically all the genes in this
cluster were up-regulated in the normal strain during the stress treatments, sug-
gesting that this cluster included genes that are regulated by MSN2p/MSN4p
during environmental stress. This was confirmed with an environmental stress
response (ESR) gene list from Gasch et al. (2000), that revealed that this cluster
included statistically significantly many ESR genes. Hence, it may be concluded
that MAP-DC manages to reveal biologically significant findings from the data.

5.3 Associative clustering (AC): Combining two
continuous-valued data sets

So far the problem setting has been the integration of one real-valued multivariate
data set with discrete class information. In a more general situation two real-valued
multivariate data sets from different information sources need to be integrated.
This is a common situation for example with gene expression data measured under
various treatments, or with gene expression and protein interaction data about the
same set of genes.

The abstract goal here is the same: to find what is in common between the
data sets. A natural idea is to extend the MAP-DC by parameterizing both of the
data spaces with prototypes, and to use the analogous dependency measure. This
results in a symmetric dependency clustering method coined associative clustering
(AC) presented in Publication 8 (technical details in Sinkkonen et al. (2005)).

The setting of AC is as follows: Assume a set of objects with two sets of
features, or more generally, any samples coming in pairs (x,y) where x belongs to
the first set and y to the second. We search for dependencies between the feature
sets, expressible as clusters.

Both data sets, x and y, are clustered separately, in such a way that (i) the
clusterings will capture as much as possible of the dependencies between the pairs
of data samples (x,y), and (ii) the clusters contain (relatively) similar data points.
The latter roughly equals a definition of a cluster.

More formally, for paired data {(xg,yx)} of real vectors (x,y) € R% x R,
we search for partitionings {V;")} for x and {Vj(y)} for y. The partitions can be
interpreted as clusters in the same way as in K-means, DC, and MAP-DC; they
are Voronoi regions parameterized by their prototype vectors m;. The x belongs
to Vi(w) if ||x — m;|| < ||x — my]| for all k, and correspondingly for y. Figure 5.1
presents AC in a nutshell.

The cost function of associative clustering is, analogously to MAP-DC, the
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PAIRED DATA MARGIN CONTINGENCY INTERESTING
CLUSTERS TABLE CO-OCCURRENCE
EXPRESSION TF BINDING TF BINDING SPACE
gene 1 [.034 15005 .. ~ - 241652
gene 2 gene 1
gene 3

gene 3

X

Figure 5.1: An overview of associative clustering (AC). Two data sets are clustered into Voronoi
regions. The Voronoi regions are defined in the standard way as sets of points closest to prototype
vectors. However, the prototypes are not optimized to minimize a quantization error but by the
AC algorithm. In this example, the data sets are gene expression profiles and transcription factor
(TF) binding profiles. A one-to-one correspondence between the sets exists: each gene has an
expression profile and a TF binding profile. As each gene falls to a certain combination of TF
cluster and an expression cluster, we get a contingency table by placing the two sets of clusters as
rows and columns, and by counting genes falling to each combination. Rows and columns, that
is, the Voronoi regions defined within each data set respectively, are called margin clusters, while
the combinations corresponding to the cells of the contingency table are called cross clusters.
Associative clustering by definition finds Voronoi prototypes that maximize the dependency seen
in the contingency table. Voronoi regions are representations for the data sets just as the linear
combinations are in canonical correlation analysis. In both cases, dependency between the two
parametrized representations is maximized. Maximization of dependency in a contingency table
results in a maximal amount of surprises, counts not explainable by the margin distributions.
The most surprising cross clusters with a very high or low number of genes give rise to interesting
interpretations. Reliability is assessed by bootstrap.

Bayes factor between the model having dependent clusters Mp and the model
having independent clusters M,

pr— PUnis}Mp) _ [, D(nij +nl®)
~ p({ni M) T TL, T (i + @) T, T(ng + n®)

(5.8)

where n;. = 37, n;; and n.; = ), n;; express the contingency table margins. The
hyperparameters n(?), n(*) and n(¥) arise from Dirichlet priors. For large data set

sizes the logarithmic Bayes factor approaches mutual information (see Sinkkonen
et al. (2005)).

Similarly to MAP-DC, frequencies over the cells of a contingency table can be
assumed to be multinomially distributed. The model M; of independent margins
assumes that the multinomial parameters over cells are outer products of posterior
parameters at the margins: 6;; = 6;0;. The model Mp of dependent margins
ignores the structure of the cells as a two-dimensional table and samples cell-wise
frequencies directly from a table-wide multinomial distribution 6;;. Dirichlet priors
are set for both the margin and the table-wide multinomials.

The Bayes factor of AC (5.8) will be maximized with respect to the Voronoi
prototypes. Analogously to MAP-DC, the Voronoi regions must be smoothed
in order for the gradient methods to be applicable. The smoothed BF is then
optimized with respect to the cluster prototypes {m} by a conjugate-gradient
algorithm.
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Y

X=
AC K-means

Figure 5.2: Associative clustering concentrates on dependent subsets of data. Here both margin
spaces, denoted by X and Y, are 1-dimensional, and the figure shows a scatterplot of the data
(dots on the plane where X and Y are the axes). Cluster borders in the X-space are shown with
the vertical lines and cluster borders in the Y-space with horizontal lines. The resulting grid of
so-called cross clusters then corresponds to the contingency table; the number of dots within each
grid cell gives the amount of data in a contingency table cell. The AC cells are sparse in the bulk
of independent data in the middle and denser on the sides where the X and Y are dependent.
K-means, in contrast, focuses on modeling the bulk of the data in the middle.

Demonstration of AC with artificial data. Figure 5.2 demonstrates a key
property of AC with as simple artificial data sets as possible.

The AC clusters focus on modeling those regions of the margin data spaces,
that is, those subsets of data, where the co-occurring pairs x and y are dependent.
This is clearly visible as the higher density of AC cross clusters on diagonal data
areas in Figure 5.2.

Uncertainty in associative clustering. The use of Bayes factors in AC (and
in MAP-DC) is different from their traditional use in hypothesis testing, cf. Good
(1976); Kass and Raftery (1995). No hypotheses are tested in the methods but the
Bayes factor is optimized to maximize the dependencies. However, with respect
to the prototype vectors m, the obtained solution in AC is a point estimate that
may over-fit easily. This uncertainty is comparable to that of any standard point
estimate-based prototype clustering: small changes in the prototype locations may
change the clustering. In AC this in turn then changes the contingency table and
the found dependencies.

A widely used ’light-weight” method to take into account the uncertainty in
clustering is bootstrap (Efron and Tibshirani, 1993; Hastie et al., 2001). As in
Kerr and Churchill (2001), the bootstrap is used to produce several perturbed
clusterings in Publication 8. The aim is to find cross clusters (contingency table
cells) that signify dependencies between the data sets and that are reproducible.

Reproducibility of the found dependencies can be estimated from the bootstrap
clusterings as follows. First, significantly dependent cross cluster is defined within
a given AC-clustering. The optimized AC model provides a way of estimating
how unlikely a cross cluster is, given that the margins are independent. For this
purpose several (1000 or more) data sets of the same size as the observed one
are generated from the marginals of the contingency table (i.e. under the null
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hypothesis of independence). Those cross clusters with the observed amount of
data more extreme than obtained by chance with probability 0.01 or less (Bonfer-
roni corrected with the number of cross clusters), are defined to be significantly
dependent cross clusters.

The two criteria, dependency and reproducibility, can be combined by evaluat-
ing, for every gene pair, how likely they are to occur within the same significantly
dependent cross cluster in several bootstrap clusterings (this is analogous to Kerr
and Churchill (2001)). This similarity matrix is finally summarized by hierarchical
clustering in Publication 8.

The dependencies for all genes between data sets are not to be expected, since
with noisy genomic data that would hardly be possible. The main focus is to find
the most dependent, robust subsets of the data. This is exactly what the final gene
clusters from bootstrapped, most dependent cross clusters of AC provide.

Interpretation of the cross clusters. It is often of interest to know which
original variables have an exceptionally high or low average value in a cluster.
The extremity of the mean profiles of the data in the AC cross clusters can be
evaluated by random sampling, as in Publication 8. There 10,000 gene sets of the
same size as the observed cluster are sampled at random from the data, and by
checking which of the dimensions had their observed average value higher than in
all random clusters. These average values are then considered reliably extreme.

Validation of bootstrapped AC with real data. Especially in bioinformatics
it is often a real challenge to test new methods since there rarely exists any ground
truth, that is, known correct answers. The (bootstrapped) AC approach was vali-
dated in Publication 8 by searching for dependencies between data sets containing
known, real-world duplicate measurements that should be more dependent than
random pairs.

A rank sum was used to test whether the similarity distribution of the known
duplicates is different from the similarity distribution of all the other genes. In AC
the known duplicates turned out to co-occur clearly more frequently in a dependent
cross cluster than other genes.

The results were additionally compared to the similarity distribution obtained
from bootstrapped K-means, using a sign test. AC detected connections of the
duplicate measurements statistically significantly more often than K-means. These
two results support the validity of AC in finding dependent subsets of data better
than standard unsupervised clusterings.

5.3.1 Dependencies between human and mouse

The use of model organisms is one of the fundamental building blocks in biology.
It enables the use of research methods that would be unethical, too expensive, or
perhaps impossible when applied on the actual organism of interest. The concept
of model organism relies on the assumption that the model and the target organism
are similar on the level the research deals with, for example on the genetic level.
The similarity in DNA sequence between the two genes from different species is
also often used as a tool to hypothesize the functions of unknown genes in the
target organism, or to infer evolutionary aspects of the organisms. The genetic
similarity between organisms thus has also pure scientific value as itself. However,
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the gene sequence similarity is still only a hypothesis for actual similarity, that
is, it is unconfirmed whether the genes with similar sequence really act in similar
roles. Hence, the functional similarity of two organisms at genetic level is worth
studying.

The genome-wide gene expression measurements made in the same tissues in
two organisms open up a way to study the dependencies between the two species.
For example, it is possible to find groups of orthologous genes that are similar by
sequence but differ in their expression, or groups of genes that are similar both by
sequence and by expression. The first kind of groups are perhaps the most interest-
ing because they might suggest that whole functional groups of genes have altered
their role in cells during evolution. The latter kind of groups are the groups one
expects to find, since they are one kind of a validation for the sequence-based sim-
ilarity of the genes. More complicated dependencies, like partial correspondence
in expression, are naturally also among the most interesting aspects.

In Publication 8 the dependencies between the expression of human and mouse
orthologous genes are studied with associative clustering, K-IB, and independent
K-means clusterings, based on the data set derived from (Su et al., 2002).

AC produced significantly more dependent clusters than standard K-means
clustering. However, K-IB produced significantly more dependent clusterings than
AC and K-means. On the other hand, cross clusters from AC studies were sig-
nificantly more homogeneous than those of K-IB and random clustering. This
demonstrates the better interpretability of the AC cluster, since it is then possible
to summarize clusters, for example, by mean expression profile, as in Figure 5.5.
The measure of homogeneity (actually dispersion) was the sum of intra-cluster
variances in Publication 8.

Bootstrapped AC produced a similarity matrix for the genes, computed from
the co-occurrence frequencies of genes in the AC cross clusters. The matrix was
in Publication 8 summarized with simple hierarchical clustering, and a set of most
homogeneous gene clusters was extracted by cutting the dendrogram at the level
of 80% co-occurrence, and discarding genes belonging to clusters smaller than 3
genes. This resulted in 139 orthologous gene pairs in 31 clusters, and some key
findings about them are presented in the following.

First, the AC results were compared to the simplest dependency measure be-
tween the orthologous genes: correlation. A global trend existed in our data to
some extent: the higher the correlation between the expression profiles of an orthol-
ogous gene pair, the more often the pair tended to be located in an unexpectedly
large cross cluster. This suggested that AC is capable of detecting the simple
tendency of the orthologs to depend linearly.

Second, the AC clusters were checked for an overall enrichment of Gene Ontol-
ogy (GO) (Consortium, 2000) categories with EASE (Hosack et al., 2003). This
might hint at the groups of orthologous genes with exceptional functional conser-
vation, which could be expected to be of a specific importance for species survival.
The most enriched GO categories in AC cross clusters were ribosomal categories,
whose high conservation has been suggested also in earlier studies (see, for ex-
ample, Jiménez et al. (2002)). Additional, more unexpected findings included the
category of “transmission of nerve impulse,” whose conservation is still unreported.

Third, preservation of function between human and mouse and the differentia-
tion of the function were studied according to the highest correlation and the lowest
correlation, respectively, in clusters. For example, testis-specific gene expression
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seemed to be preserved, whereas embryonic development was differentiated. The
testis-related results also produced a novel potential functional link to the genes
in the same cluster. In addition to these examples, a wide variety of other results
were found, but their confirmation is a tedious process. Publication 8 presents
some of these.

5.3.2 Dependencies between yeast gene expression and TF
binding

Regulatory interactions between genes are nowadays studied by measuring genome-
wide expression with microarrays in knock-out mutation experiments and in time
series experiments. In the knock-out experiments, a mutation is targeted to a single
gene in the yeast genome to modify (usually knock out) the normal function of
that gene. It is then hoped for that by measuring the gene expression changes with
microarrays after the mutation, the role of the mutated gene in cellular processes
is revealed. Genes belonging to the same regulatory pathway as the mutated gene
could be unveiled, for example. In time series experiments the goal is often to
infer causality in the gene regulatory network based on the sequential changes
in expression levels. However, since the interaction network between the genes
is complicated, discerning the direct effects of the knock-out, or the change of
expression in a time series from noise and the mass of second-order effects can be
very difficult, if not impossible. At least a comprehensive, very expensive high
resolution time-series experiment with numerous replications would be required.
The same holds also for knock-out experiments. Thus alternative approaches are
worth exploring.

Gene expression is not the only source of information about gene regula-
tion. For instance, microarray-based chromatin immunoprecipitation (ChIP) al-
lows measuring the binding strength of the transcription factor (TF) proteins on
any gene’s promoter region (Lee et al., 2002). This reveals which TFs are able to
bind the specific gene’s promoter, and are thus potential regulators. But many
TFs bind numerous gene promoter regions and are still not operational regulators.
The number of false positives can be very high, and thus inferring the regulatory
relationships based on the binding information alone is not in general possible.
However, searching genes with maximal dependency between ChIP data and gene
expression data should improve the inference from either data source alone.

Associative clustering was applied to explore the dependencies between expres-
sion and TF binding data in two case studies in Publication 8. The difference
between the cases are the expression data, which were chosen to represent both
archetypes of data used in gene regulation studies: knockout data and time-series
data. In both of the cases the aim was to find subsets of genes whose expression
is maximally dependent on their transcription-factor-binding profiles. These sets
of genes are then hypotheses for expression co-regulation candidates.

Knock-out gene expression and TF binding. The yeast gene expression
data used in this analysis had been measured from 300 different mutation strains
and medical treatments with cDNA microarrays (Hughes et al., 2000). Transcrip-
tion factor binding data on genes for 113 transcription factors was obtained from
Lee et al. (2002) . After preprocessing, we had two full data matrices, each with
6185 genes. The number of clusters in the margin spaces was chosen to produce
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roughly 10 data points in each cross cluster, resulting in 30 clusters in the expres-
sion space and 20 clusters in the TF binding space.

AC discovered dependencies in the data significantly better than the reference
methods. Margin clusters produced by AC were statistically significantly less
dispersed than those produced by IB, but for the cross clusters the differences
were not significant.

A similarity matrix was generated for the genes from the bootstrap results,
and summarized by hierarchical clustering. Clusters with average similarity higher
than 20 (frequency of co-occurrence within the 100 sets) and with the minimum
size of 3 genes were chosen for the final analysis, resulting in 20 clusters.

The clusters were again first screened with EASE, which found enriched gene
ontology classes in 12 of the 20 clusters. The cluster types found by AC could be
divided into three types:

1. Clusters with genes known to be expressed often very homogeneously in yeast,
and also often found in conventional cluster analyzes, cf. ribosomal proteins
(Beer and Tavazoie, 2004) and in Publication 2.

2. Clusters where some of the genes and their main regulator(s) had been pre-
viously identified in wet lab experiments. However, the groups also contained
components not previously associated with the corresponding biological func-
tion. This provided new hypotheses for the functions of the genes.

3. Clusters of genes with mostly unknown molecular function, and even with
an unknown biological process. These clusters represent the most promising
results, but are naturally extremely hard to interpret. However, since AC
produces the suggestion for both the set of genes and the set of potential reg-
ulators, the future research concerning these should prove easier than starting
from the single data source results, that is, from the plain expression, for
example.

Cell cycle gene expression and TF binding. The expression data for this
case study was measured during the yeast cell cycle and was originally published in
two different papers (Spellman et al., 1998; Cho et al., 1998). The data consisted
of 77 measurementst of all the yeast genes in total. The transcription factor (TF)
binding data used here were the updated (2003) version of Lee et al. (2002) for 106
transcription factors. In this case study after preprocessing we had two matrices
with 5618 genes. The chosen cluster numbers were 30 in the expression space and
20 in the TF-binding space.

The differences in dependency modeling between all the methods were statis-
tically significant also for this data pair. The cluster dispersion was the same as
in the previous cases: the sum of the component-wise variances. For this data
pair, AC produced significantly less dispersed cross clusters and margin clusters
than IB. Figure 5.3 visualizes the margin cluster dispersion and the cross cluster
dispersions for all methods.

In a similar manner as in the previous cases, biological findings were sought
from the bootstrapped AC clusters. The clusters with an average distance smaller
than 60 (times in the same dependent cross cluster out of 100) and with more than
2 genes were chosen. This resulted in a total of 16 clusters.

Gene ontology classes were enriched statistically significantly in 13 of the 16
clusters (EASE).
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Figure 5.3: Margin cluster dispersion and cross cluster dispersion for all methods in cell-cycle
experiments, demonstrating that AC produces clusters that are almost as compact as K-means
clusters, whereas the IB-clusters are significantly more dispersed. RAND is a kind of an upper
limit for cluster dispersion, obtained by randomly assigning samples to clusters.

The closer biological analysis of the clusters revealed the same subtypes of
cluster as were found in the knock-out and TF case (Section 5.3.2).

5.4 AC + gCCA: Multiple continuous-valued data
sets

In some cases the dependencies between multiple data sets about the same set of
objects, or more generally data from multiple co-occurring variables, are of interest.
The basic principle of MAP-DC, AC, and K-IB, representing dependencies with
hard clustering and a contingency table, becomes infeasible with multiple data sets.
Specifically, the volume of a multi-way contingency table grows exponentially as
a function of the data sets, while the amount of data items stays fixed. Other
approaches are thus needed.

In Publication 9 a new approach for finding dependencies between N data sets
is introduced. The key idea is to first try to drop the amount of the data sets down
to two, trying to maximally preserve the dependencies between the N —1 data sets.
Then the dependency maximizing methods for two feature sets are applicable (see
Section 5.3). In Publication 9 a generalized canonical correlation analysis (gCCA)
is first used as a preprocessing method to form a representation of N —1 data sets,
and then the associative clustering (AC) is used to hunt for dependencies between
the remaining data set and the gCCA representation. The approach is motivated
by an information-theoretic interpretation of the gCCA, which justifies the use of
the specific variant of gCCA and the creation of the new representation for N — 1
data sets with it.

Information-theoretic interpretation of gCCA. The projection computed
with gCCA can be interpreted from an information-theoretic point of view as ex-
plained in Publication 9. The interpretation starts from a standard assumption
that the variables (individual data sets) {X;} are normally distributed, enabling
the multi-information between the variables to be expressed as a function of co-
variance matrices (Kullback (1959); see also Bach and Jordan (2002)):

M
I(Xy;.. X)) =Y H(X;) — H(Xy,..., Xy)
i=1

——lln det C
T2 " detCy---detCpy ]
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where H denotes entropy, C is the covariance matrix of the concatenated data,
and C; are the original covariance matrices.

It is shown in Publication 9 that whitening, the removal of the covariances,
of the original data sets preserves the mutual information between the data sets.
Using this, the mutual information between original data sets can be expressed as:

I(Xy;...;Xnm) =const. — H(X{,..., X)), (5.10)

which intuitively means that all the mutual information between the original vari-
ables can be represented by the joint entropy of the whitened data sets plus a
constant.

Dimensionality reduction and data integration. The information theoretic
interpretation of gCCA makes possible its well-justified use in dimensionality re-
duction. Specifically, the aim is now to find the components of the joint data
that maximally preserve the multi-information I(Xi;...; Xs) between the origi-
nal data sets, to discard the irrelevant variation.

According to Eq. (5.10) the optimal representation of I(X7;...; X,/) is the one
that maximally preserves the entropy, H(X7,...,X},;). Note that the joint entropy
equals the entropy of the concatenated data sets. It turns out that the maximiza-
tion of the entropy coincides with the maximization of the variation for Gaussian
variables. The dimensionality can thus be reduced by sequentially searching for the
one-dimensional projection that maximizes the variation of the whitened and con-
catenated data sets. Hence, the data can be integrated by performing a principal
component analysis for this data.

5.4.1 Dependencies between yeast stress reaction and TF
binding

The yeast’s common reaction to environmental stress, see Subsection 5.2.1, is still
largely undefined. It is hard to discern it in gene expression studies, since also the
normal processes of yeast cells are in operation in the experiments, and the mi-
croarray measurements are noisy. However, it is a priori known which treatments
are stressful for yeast.

The yeast stress reaction is modeled by extracting the variation that is common
to a set of stress treatments in Publication 9. All the other variation is considered
irrelevant. This is a data-driven way to define stress; no strong assumptions about
the type of the stress reaction are made. Furthermore, in Publication 9 the reg-
ulation of stress is explored by searching for maximal dependencies between the
extracted stress reaction and a transcription factor (TF) binding data.

Common stress response of yeast was sought from expression data of alto-
gether 16 stress treatments (Causton et al., 2001; Gasch et al., 2000): heat (2),
acid, alkali, peroxide, NaCl, sorbitol(2), H202, menadione, dtt(2), diamide, hypo-
osmotic, aminoacid starvation, and nitrogen depletion. The gene expression data
sets from stress experiments formed in total a 104-dimensional expression data for
5998 genes. In the integration and dimensionality reduction with gCCA, the num-
ber of components was chosen such that the same components could be found in
left-out data reasonably well (measured with the angle between the components)
in 20-fold cross-validation. This resulted in 12 generalized canonical components.

60



5.4. AC + GCCA: MULTIPLE CONTINUOUS-VALUED DATA SETS

Figure 5.4: Dendrogram of the hierarchical clustering visualizing the similarities between all
the genes clustered with 100 bootstrap AC models. The vertical axis represents the average
dissimilarity of the genes: 100 meaning that a pair of genes occur never in the same significantly
dependent cross-cluster in 100 bootstrap runs, and 0 that they always co-occur. Note how there
is a mass of genes whose dissimilarity, or co-occurrences in the different cross-cluster, is over 80,
which was the cutoff threshold to produce the final clusters. Several very reliable clusters can
also be seen, as downward protruding peaks.

gCCA components were validated with the set of environmental stress genes
(ESR) defined in the literature (Gasch et al., 2000). Of the 12 generalized canonical
components 9 showed statistically significant association to ESR genes known to
be either up-regulated or down-regulated.

The dependencies between the extracted stress response and TF data (Lee
et al., 2002) were explored with the associative clustering, for motivation see Sub-
section 5.3.2. AC found statistically significantly higher dependency between the
data sets than K-means.

A similarity matrix from bootstrapped AC clusterings was produced as de-
scribed in Section 5.3, and summarized by hierarchical clustering. Figure 5.4 visu-
alizes the dendrogram from hierarchical clustering, and shows a few clear clusters
interspersed within a background that shows no apparent dependencies.

The clusters based on the dendrogram were analyzed first by investigating
the distribution of ESR genes within them. The up-regulated ESR genes were
enriched statistically significantly in 14 out of the 51 clusters, and down-regulated
ESR genes in 12 of them. This confirms that the combination of gCCA and AC
has succeeded in capturing stress-related genes in clusters.

For more detailed interpretation of the clusters, they were analyzed with EASE
(Hosack et al., 2003) to find significant enrichments of gene ontology classes. In
total we found 14 statistically significant enriched GO classes in our 51 clusters.
Additionally the enrichments of ESR genes as well as interesting non-random TF
bindings were used as indicators to select clusters for the analysis.

With the help of the known ESR genes, GO classes, and more detailed biological
analysis, clusters can be characterized into the following categories:

1. Clusters consisting mainly of the ESR genes with known functions. For those,
the analysis produced a set of potential regulators.

2. Clusters consisting partly of the ESR genes that are largely unknown, thus
offering hypotheses for the function of the ESR genes based on the functions
of the other genes in those clusters, and for their regulation.

3. Clusters consisting mainly of other genes than the known ESR genes, but hav-
ing homogeneous gene expression under stress and homogeneous TF binding.
These clusters thus suggest additions to the current ESR gene list, and to their
regulators.
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Figure 5.5: A gene cluster related to cell cycle revealing how cell-cycle machinery is driven down
under stress, and which are putative regulators for that set of genes. The upper figure represents
the mean expression profile (bars) of the genes with their confidence intervals (lines, computed
by random sampling), revealing how the genes are down-regulated in practically every treatment,
and thus conveying information about the shut down of the cell cycle machinery. The lower figure
represents the mean TF binding profile (bars), with confidence intervals (lines), revealing several
significant, strong TF bindings. The most interesting of these are analyzed in the text.

The cluster visualized in Figure 5.5 is an example of a set of genes that are
not known to be specifically associated to stress, but obviously behave very ho-
mogeneously under stress. The cluster actually contains only two genes known to
be ESR genes. Nevertheless, this relatively large cluster can be used to show two
characteristic predictions obtained using AC and confirmed by biological observa-
tions. First, this cluster is enriched in genes involved in the process of cell cycle (12
out of 57, Bonferroni corrected p-value < 0.0001). This reflects the coordinated
expression of also other genes than the ESR genes under stress. Second, AC pro-
poses a set of transcription factors involved in the regulation of the member genes
of the cluster. This is of special value in this case, because although co-ordinated
interactions between different signal transduction pathways are essential in bio-
logical systems, inter-pathway connections are difficult to identify. The two most
prominent transcription factors of this cluster are coded SWI4 (YER111C) and
FKH2 (YNL068C), which both are known to be involved in cell cycle control.
However, they operate on different parts of the process, as shown by Shapira and
coworkers for the Forkhead factor (Shapira et al., 2004)

The significant TF bindings in the same cluster also include ASH1, which is
not directly related to the cell cycle process but rather to mating type selection.
However, mating-type switching in the yeast is a multi-step programme, which
enables Ashlp to asymmetrically localize to the daughter cell nucleus at the end
of cell division in order to prevent the daughter cell from switching mating type.
Thereby, it is interesting to see that AC has grouped ASH1 together with SWI4
and FKH2.
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5.5 Discussion

To summarize, all the methods discussed in this chapter were clustering methods
integrating two or more data sets about the same set of objects. The four new
clustering methods, MAP-DC, AC, K-IB, and gCCA /AC, proposed for the analysis
of genomic data, were based on maximizing the dependencies between data sets.
The clusters were parameterized and formed separately in each feature set, or
were given as a pre-defined classification (MAP-DC). The dependencies between
the clusters were represented in all cases as a contingency table.

Interpretations of the methods. The methods presented in this chapter can
be viewed from several perspectives. Firstly, they are semi-supervised (by depen-
dency maximization) clusterings in each continuous data space. This makes them
related to the learning metrics principle (see Section 4.3). While this is obvious in
the case of MAP-DC since it is an extension of clustering in learning metrics (DC),
also AC is related to LM. In particular, AC maximizes the dependency by allowing
the Voronoi regions (clusters) to become elongated in some directions in the data
space, that is, some variables are estimated to be less relevant for the dependency.
In contrast, K-IB maximizes the dependency by grouping together disjoint atomic
Voronoi regions, mostly neglecting the topology of the original data space. It can
be hypothesized that if the AC maximizes the dependency better for some data
(yeast cases), the data is of more continuous nature and the models preserving
the topology benefit from that. On the other hand, if K-IB performs better in the
dependency maximization (human-mouse case), it can be assumed that the data
is more discrete in nature. This assumption gets some support from the previous
exploratory analyses of both the yeast data sets and the human-mouse data sets.
Especially human-mouse expression data seems to include many small clusters that
are formed by sets of genes that are active only in one specific tissue and nowhere
else, and K-IB found higher dependency than AC for these data.

Secondly, all the methods are capable of integrating two data sets into the same
analysis in a theoretically justified way. The integration here is tightly connected
to dependency maximization and provides information about the subsets of the
data items that have dependent feature sets. Integration in these methods is thus
not an all-purpose methodology, but rather a strictly defined goal to find things
shared by the sets. However, the methods themselves are general purpose. They
can be used, for example, in feasibility studies to infer whether data sets of interest
are dependent, before more elaborate and hand-tuned methods are applied for the
problem.

Thirdly, the methods can be seen as special cases of a framework that by-passes
incommensurability, and the problems caused by the different data types. The in-
commensurability here refers to different, unknown scales of various data sets, for
example in the data from different microarray platforms. In this framework models
are defined by using feature set-specific parameterizations with hidden variables,
and then integrating the information sources on the hidden variable level. For
example, in AC the models are clusters parameterized with the prototypes in the
data space, and the hidden variables are the memberships to the clusters that
are represented in the contingency table. This can be seen as a way to circum-
vent the full Bayesian treatment that would require specifying proper probability
distributions everywhere.
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CHAPTER 5. EXPLORING DEPENDENCIES BETWEEN GENOMIC DATA SETS
BY CLUSTERING

The prior. In AC and MAP-DC the probabilistic formulation of the problem
extends earlier mutual information-based approaches in earlier versions of DC. In
particular, AC and MAP-DC are better-justified for finite (small) data sets. The
methodology requires the choice and use of specific prior distributions for the data
in the contingency table. The prior used here was an uninformative one using
nijznjznizl.

The choice of the prior has some effect on the model, and improving the prior is
one possible research direction in the future. It would be possible to move towards
the more complicated mixture priors investigated for example in (Good, 1976).
However, while the prior certainly has a large effect when testing the dependency
of an observed fixed contingency table, it is probably not that crucial when the
aim is to mazximize the dependency in a contingency table. This assumption is
related to the fact that, both in MAP-DC and in AC, it is not necessary to find
global dependency between the information sources, but any subset of data with
dependency is interesting. Hence, over-simplifying slightly, as long as the depen-
dency is significantly and reproducibly larger than in independent clusterings, the
results of MAP-DC and AC are well justified, and the actual value of the Bayes
factor is not that crucial.

Parametrization of clusters. While the proposed method was shown to al-
ready be viable as such, it can be further improved. So far, the problem of choosing
an optimal number of clusters was not addressed. If clustering is interpreted as a
partitioning or quantization of data to compress its presentation, then the exact
number of clusters is not a crucial parameter, but nevertheless the results could
be improved by optimizing it. Since the task is formulated in Bayesian terms,
Bayesian complexity control methods are applicable in principle. The setting is
not conventional, however, because of the non-standard use of the Bayes factors.

Regularization. Another direction of improvement is regularization of the clus-
tering solutions. Dependency-searching methods may potentially over-fit the data,
which is well-known from canonical correlation analysis and can be avoided by
regularization. Two different kinds of regularizations for MAP-DC have been de-
veloped earlier (Kaski et al., 2003): “entropy regularization” and regularization
by mixture model. The first was used here in both MAP-DC and AC simula-
tions, because it is easier in practice and has not been shown to be worse than the
alternative (Kaski et al., 2003, 2005).

Multiple data sets. The gCCA as a preprocessing that integrates multiple data
sets was shown viable. However, the assumptions made by gCCA can be unreal-
istic. If it is suspected that the linearity of the components, or the assumption of
Gaussian data distributions, could have a large effect on the analysis, it is possible
to use non-linear versions of gCCA, for example kernel CCA (see Bach and Jordan
(2002) and the references therein).

The definition and analysis of the stress. An important point in the ap-
plication of gCCA and AC was the data-driven determination of the yeast stress
reaction. In principle, it would have been possible to use ready-made gene lists
from the literature, but they are not optimally constructed in the sense that they
are based on joint distribution modeling. The use of gCCA in Publication 9 can
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5.5. DISCUSSION

be held as a step towards the data-driven determination of the stress reaction of
the yeast. However, it is clear that the full understanding of the environmental
stress still requires much work.

Note that different analyses of yeast stress response and its regulation were
presented, in Publication 7 and in Publication 9. In the former the setting was
to study the applicability of MAP-DC to explore the dependencies between the
normal yeast strain gene expression and the expression of the yeast strain with
disabled stress regulator. However, the role of the other possible stress regulator
genes and the groups of genes regulated by them was still left open. This was
addressed in the latter.

Biological compatibility. Another biologically relevant aspect is that the TF-
binding data are measured in the optimal growth conditions, and it is possible that
under different experimental conditions TF-binding is altered. This may be one
reason that the stress regulators Msn2p and Msn4p analyzed in Section 5.3.2 are
not saliently regulating any cluster in the analysis prsented in Publication 9. More
precise results would be obtained by using data sets gathered in similar conditions.
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Chapter 6

Conclusion

In this thesis exploratory cluster analysis methods have been developed and applied
to genomic high-throughput data sets. The motivation for the work have been the
new measurement techniques, in particular microarrays, that produce biological
data for which no established hypotheses exist yet. The aim of all the methods is
to provide insights into data sets, and to prepare the way for the actual formulation
of the biological questions.

Several gene expression data sets have been clustered and visualized with the
self-organizing map (SOM) in the thesis. New methods for interpreting the map-
ping of SOM have been introduced and used to analyze a patent abstract data
set and gene expression data sets. SOM was demonstrated to be easy to use and
intuitive to interpret in analyzing a single genomic data set.

The learning metrics principle provides a way to focus the analysis to the
relevant aspects of the data, derived from auxiliary information. For example, if
the biological process associated to genes is of primary interest, gene expression
data can be visualized and clustered in a way that optimally reveals the biological
processes. The specific algorithms of learning metrics applied in this thesis were
the SOM in learning metrics and discriminative clustering. They outperformed
the reference methods in applications.

Dependency-maximizing clustering methods, mazimum a posteriori discrim-
inative clustering (MAP-DC), and associative clustering (AC), that have been
introduced in the publications included in this thesis, open up a new framework
for fusing two feature sets. This fusing is of primary importance in genomic data
analysis. In this thesis AC has also been extended to multiple data sets using
generalized canonical correlation analysis as a preprocessing. In all case studies,
the methods performed better in their tasks than their alternatives.

All the methods used in the thesis have been shown to produce biologically
relevant results, thus demonstrating their applicability to genomic data analysis.
Moreover, they are all of general purpose: although their motivation lies in genomic
data analysis, they can be readily applied to any application domain.

The most important area for future research is opened by the general-purpose
dependency exploration methods. At least two distinct research strategies can be
seen: i) to create methods that are general-purpose, but not optimal for a specific
problem, or ii) to construct customized methods to specific problems. This is of
course one version of the dilemma of whether one should search for the best ap-
plication for an elegant method, or develop an efficient method for an important
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application. Without committing oneself on either side, it can be argued that it
seems recommendable to integrate the two views in genomic data analysis. The
rationale is that systems biology needs both biologically relevant results and new
perspectives. The latter are given by abstract approaches, but the former cannot
be achieved without an effort to take into account the special requirements and
existing knowledge in biology. Hence, the most fruitful research in computational
biology is likely to include a large but modular, partially ad hoc computational
machinery that can both include the essential biological knowledge and be simul-
taneously used to introduce new methodological advances, based, among others,
on dependency exploration.
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