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Abstract: We present a robust and accuracy enhanced method for
analyzing the propagation behavior of EM waves inz−periodic structures
in (r,φ,z)−cylindrical co-ordinates. A cylindrical disk, characterized
by the radiusa and the periodicity lengthLz, defines the fundamental
cell in our problem. The permittivity of the dielectric inside this cell is
characterized by an arbitrary, single-valued functionε(r,φ,z) of all three
spatial co-ordinates. We consider both open and closed boundary problems.
Irrespective of the type of the boundary conditions on the surfacer = a, our
method requires the discretization of the fields in the interior of the disk
only. Inside the disk volume, we expand the fields in terms of planewaves
on discrete cylindrical surfacesr i = i∆, with ∆ being the discretization
step length. The fields on the nested surfacesr i = i∆ in the interior of
the simulation domain are interrelated by the application of a simple, yet,
powerful finite difference scheme. In free space outside the disk, the fields
are expanded in terms of the closed-form eigensolutions of the Maxwell’s
equations in cylindrical co-ordinates. In order to uniquely determine the
involved unknown coefficients, the solutions in the interior- and exterior
domains are matched on the disk’s bounding surface. Our formulation
utilizes a radially-diagonalized form of Maxwell’s equations, and merely
involves four (out of the six) field components. It is demonstrated that our
formulation is perfectly suited, but by no means limited, to cylindrical
symmetric problems.
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1. Introduction

In recent years, wavelength scale photonic devices have gained considerable attention. A par-
ticular class, in which the geometry is periodic in one, two or three dimensions, is called pho-
tonic crystal [1]. Devices with periodicity on a plane and light propagation in the perpendicular
direction are sometimes referred to as photonic crystal fibers [2]. Numerous computational
approaches have been developed for solving field distributions and dispersion diagrams charac-
terizing these structures. These include methods based on finite elements [3], finite-difference
time-domain [4], transfer matrix method [5, 6, 7], plane wave expansion [8] and modal expan-
sion [9].

The underlying idea in transfer matrix methods is the characterization of a given slab in terms
of a matrix, which interrelates the fields on the two bounding surfaces of the slab. To this end
the interface conditions on one surface of the slab are projected onto the second surface utiliz-
ing problem-specific expansion functions. Once the transfer matrix has been created, various
quantities of practical interest can be computed; such as, the scattered- and transmitted field
distributions, or the eigenfrequencies of the problem.

In the modal expansion method, one diagonalizes the Maxwell’s equation with respect to
a distinguished direction and computes the eigenfunctions of the resulting operator. (The no-
tion of diagonalization will be addressed shortly.) The corresponding eigenvalues represent the
propagation constants in the direction of the diagonalization. Once the eigenfunctions have been
computed, they can be used to expand the fields. The constructed eigenfunctions are, however,
valid basis functions only in those regions, which can be characterized by translationally in-
variant dielectric functions in the diagonalization direction. For each distinctly invariant layer,
a separate set of eigenfunctions is needed. This becomes infeasible if the problem can not be
divided into a reasonable number of invariant layers. On the other hand, in semi-infinite spaces
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the modal expansion method is extraordinarily useful: once the eigenfunctions and expansion
coefficients are known, fields are uniquely determined everywhere in the invariant semi-space.
This makes the implementation of open boundaries particularly efficient. The distinction be-
tween the modal-expansion based methods and the transfer-matrix based methods is not very
sharp: indeed eigenfunctions can be, and often are, utilized in the construction of the transfer
matrix (see e.g. [10]).

In this work we describe a method, which is particularly suited to problems, which are peri-
odic in two space directions and non-periodic in the third one. The present work is formulated in
cylindrical co-ordinates; the adaptation of the method to two dimensional [11, 12, 13] and three
dimensional [14] problems in Cartesian co-ordinates, however, has been thoroughly discussed
in previous works.

Our approach is related to the transfer matrix method, the modal expansion method as well
as the planewave expansion method. We exploit the advantages of each of these methods and
adapt them to the particular case of two dimensional periodicity, allowing arbitrary dielectric
functions in the unit cell. The problems we are particularly interested in are periodic both in the
z− andθ−directions, and non-periodic in the radialr−direction. (θ−periodicity is a natural
consequence of the choise of the cylindrical co-ordinate system.) We expand the fields in terms
of planewaves inz− andθ−directions for two reasons: i) the implementation of periodic and
Bloch periodic boundary conditions is trivially straighforward, and ii) the spatial derivatives can
be evaluated very efficiently. In the radial direction, we utilize a combination of two bases: i)
inside the cylinderical simulation domain 0< r < a, where we assume arbitrary butz−periodic
dielectric function, we utilize finite differences, while ii) outside this cylinder, we assume con-
stant dielectric and expand the fields in terms of eigenfunctions, which exist in closed-form.
This strategy ensures maximal flexibility in the choise of the dielectric function, combined with
the ease of implementation of open boundaries.

Our approach could be formulated in terms of the transfer matrix method with the only
unknowns being the fields on two opposite boundaries of the cylinder: the outer boundaryr = a
and the axisr = 0. Instead, we include the field components on nested cylindrical surfaces
r i = i∆, with 0< r i < a, as explicit unknowns. In this manner we obtain sparse matrices, which
can be solved, according to our extensive numerical experiments, with greater robustness and
accuracy.

2. Outline of the method

Our simulation domain consists of a cylindrical disk characterized by the radiusa and the pe-
riodicity lengthLz in thez−direction. Inside the disk we assume an arbitrarily inhomogeneous
dielectric. To perform the analysis the interior domain is subdivided into discrete cylindrical
surfacesr i = i∆ on which the fields are expanded in terms of planewaves. Here,∆ is the dis-
cretization length. The expansion coefficients for the fields on the interlaced surfacesri = i∆ are
interrelated by the application of a simple, yet powerful, implementation of the finite difference
scheme. The boundary conditions on the outermost cylindrical surfacerN = a may be open or
closed. In case of open boundary, we assume free space outside the disk, and expand the fields
in terms of the eigenfunctions of the Maxwell’s equations in cylindrical co-ordinates, which we
obtain in closed-form. The phase-periodic condition in thez−direction is implicitly accounted
for by choosing Bloch waves propagating in this direction.

The method is particularly suitable for analyzing cylindrical symmetric problems. However,
since the dielectric function can vary arbitrarily in all three spatial co-ordinates, anyz−periodic
geometry can be handled straightforwardly. Needless to say that for cylindrical symmetric prob-
lems, and in particular forz−independent structures, the number of basis functions required
reduces substantially. For problems which are homogeneous in thez−direction, only one har-
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monic function suffices to describe the propagating mode. For cylindrical symmetric problems,
the eigenmodes are Bessel functions and the radial dependence can be described in terms of
two appropriately chosen planewaves.

Other noteworthy features of our technique are:

• Realistic boundary conditions can be implemented easily and efficiently.

• Iterative solvers are utilized which require modest computational resources.

• The wavenumber and the frequency are both input parameters allowing targeted and ef-
ficient computations.

• The method is applicable to eigenmode- as well as field excitation problems.

• In case of open boundary problems, the availability of the fields in closed-form in free
space allows us to easily express the fields anywhere in space once the solution in the
interior domain is known.

3. Diagonalization of the Maxwell’s equations

Our aim is to diagonalize the Maxwell’s equation with respect to the radial co-ordinate. To be
more specific, we wish to write the Maxwell’s equations in the form:

L (
∂

∂φ
,

∂
∂z

,µ,ε,ω)




hφ
hz

eφ
ez


 =

∂
∂ r




hφ
hz

eφ
ez


 (1)

This representation has several distinguished properties including:

• Only the ‘‘transversal’’ field components, i.e., those involved in the interface conditions
on cylindrical surfaces (r = constant) enter our calculations.

• The operatorL involves spatial derivatives∂/∂φ and∂/∂z, and material parameters
which are defined onr = constant surfaces.

• The derivative of the transversal fields with respect tor appears at the RHS only.

• In view of (1) we realize that once we have determined the transversal field distribution on
a certain cylindrical surface (r = constant), we progressively can compute the transversal
fields on any other neighboring cylindrical surface.

• A further property ofL is that repeated application ofL to (1) results in higher-order
r−derivatives of the transversal fields. This can be shown fairly easily: Assume (2) is
given:

L �ψ =
∂
∂ r

�ψ (2)

with L = L (∂/∂φ,∂/∂z). (For notational simplicity material parameters are not shown
explicitly in (2).) Applying L to both sides of (2), writingL (2) for L L at the LHS,
and interchanging the order ofL and∂/∂ r at the RHS, we obtain:

L
(2)�ψ =

∂
∂ r

L �ψ (3)
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Substituting∂�ψ/∂ r for L �ψ at the RHS of (3) results in

L
(2)�ψ =

∂ 2

∂ r2
�ψ. (4)

A proof by induction shows that (5) is valid for any whole numbern:

L
(n)�ψ =

∂ n

∂ rn
�ψ (5)

Therefore, keepingr constant (r = r0), we can formally build the derivatives of�ψ with re-
spect tor to any order desired. Thereby, we merely need to know the function�ψ(r0,φ,z).

• Taylor Expansion: From the above we have
{

∂ n�ψ(r,φ,z)
∂ rn

}∣∣∣
r=r0

= L
(n)

(
∂

∂φ
,

∂
∂z

)
�ψ(r0,φ,z). (6)

Consequently, for the Taylor expansion of�ψ(r0 +h,φ,z) at r = r0 we can write

�ψ(r0 +h,φ,z) =
∞

∑
n=0

hn

n!

{
L

(n)

(
∂

∂φ
,

∂
∂z

)
�ψ(r0,φ,z)

}
. (7)

We could explore these ideas further, and discuss their implications for designing a host of
robust and efficient algorithms. In this contribution, however, we limit ourselves to the basic
form given in (2). It will be shown that this formula allows a powerful implementation of the
central finite difference method.

The reasons for choosing the diagonalized form is threefold: i) The diagonalized form sepa-
rates the non-periodic co-ordinate from the periodic ones and allows us to easily use different
bases in different directions. ii) The diagonalized form only involves transversal field compo-
nents, which are continuous across interfaces in radial direction. This makes the implementation
of the finite difference algorithm particularly easy. iii) The eigenfunctions of (2) can be solved
in closed-form for translationally invariant media. As will be shown further below, the fields
expressed in the modal basis can be matched with the fields in the finite difference basis simply
by equating the sets of expansion coefficients.

Finally, and merely for the sake of completeness, it should be pointd out that the diago-
nalization procedure, if carried out successfully, factorizes a given differential operator into
commutative constituents. The rich properties of commutative operators, and the correspond-
ing algebras and representations can be systematically utilized to create fast and robust algo-
rithms. In contructing our basis functions used in this work we have tacitly made use of these
properties.

To further develop the underlying theory we start with the Maxwell’s curl equations for time-
harmonic oscillations(exp(− jωt)):

∇ ×E = jωµH (8)

∇ ×H = − jωεE (9)

One possible way for expressing the curl operator in cylindrical co-ordinates is

∇ × f =
1
r

∣∣∣∣∣∣∣∣∣∣

ur ruφ uz

∂
∂ r

∂
∂φ

∂
∂z

fr r fφ fz

∣∣∣∣∣∣∣∣∣∣

, (10)
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with ur , ruφ, anduz, respectively, denoting the unit vectors in ther−, φ−, andz−directions. It
is advantageous to use the variable substitution defined in (11) for allφ−directional field com-
ponents. This substitution not only simplifies the manipulations, but also enhances the accuracy
of the computations.

r fφ = f̃φ (11)

From the symmetry properties of Maxwell’s equations we know that (9) can be obtained from
(8) by the replacementsE ↔ H, andε ↔ −µ. Therefore, it is sufficient to perform our ma-
nipulations on (8) only; results associated with (9) can be obtained by the aforementioned
replacements.

Using (10) for the evaluation of the curl in (8) we obtain

1
r




∂
∂φez−

∂
∂zẽφ

−r ∂
∂ r ez+ r ∂

∂zer

∂
∂ r ẽφ −

∂
∂φer




= jωµ




hr

1
r h̃φ

hz




. (12)

Remembering that we are seeking a diagonalization with respect tor, a moment’s reflection
on Eqs. (12) reveals the following facts: (i) The first equation in (12) does not involve any
r−derivatives. Therefore, it will not appear in our diagonalized form explicitly. (ii) The sec-
ond and third equations, respectively, involve ther−derivative ofẽφ andez. This fact implies
that these latter field components are the ‘‘essential’’ field components in our equations, and,
therefore,er has to be eliminated. (iii) Due to the symmetry of our problem we conclude that
our diagonalized form will ultimately also involve the variablesh̃φ andhz, and that the com-
ponenthr has to be eliminated. The first equation in (12) serves to expressing the undesirable
field componenthr in terms of the ‘‘essential’’ field componentsez andẽφ. Likewise using the
second curl equationer can be expressed in terms of the ‘‘essential’’ field componentshz and
h̃φ. More explicitly, we obtain:

er = −
1

jωεr
∂

∂φ
hz+

1
jωεr

∂
∂z

h̃φ (13)

Substituting this equation into the second and third equations in (12) and rearranging the terms,
we obtain:

−
∂
∂z

1
jωεr

∂
∂φ

hz+
∂
∂z

1
jωεr

∂
∂z

h̃φ −
jωµ

r
h̃φ =

∂
∂ r

ez (14)

jωµrhz−
∂

∂φ
1

jωεr
∂

∂φ
hz+

∂
∂φ

1
jωεr

∂
∂z

h̃φ =
∂
∂ r

ẽφ (15)

Constructing the counterparts of (14) and (15) and combining the results, we obtain the desired
diagonalized form:




0 0 A11 A12

0 0 A21 A22

B11 B12 0 0
B21 B22 0 0







ez

ẽφ
hz

h̃φ


 =

∂
∂ r




ez

ẽφ
hz

h̃φ


 (16)

The explicit forms for the differential operatorsAi j andBi j in (16) are summarized below:

A11 = −
∂
∂z

1
jωεr

∂
∂φ

(17)
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A12 =
∂
∂z

1
jωεr

∂
∂z

−
jωµ

r
(18)

A21 = −
∂

∂φ
1

jωεr
∂

∂φ
+ jωµr (19)

A22 =
∂

∂φ
1

jωεr
∂
∂z

(20)

B11 =
∂

∂φ
1

jωεr
∂
∂z

(21)

B12 = −
1

jωµr
∂ 2

∂z∂φ
+

jωε
r

(22)

B21 =
1

jωµr
∂ 2

∂φ2 − jωεr (23)

B22 = −
1

jωµr
∂ 2

∂φ∂z
(24)

Once the ‘‘transversal’’ field components̃eφ, ez, h̃φ, andhz, have been determined, the re-
maining ‘‘normal’’ field componentser andhr can be solved from

[
er

hr

]
=




0 1
jωµr

∂
∂φ

0 1
jωµr

∂
∂z

− 1
jωεr

∂
∂φ 0

1
jωεr

∂
∂z 0




T




ez

ẽφ
hz

h̃φ


 . (25)

Recall that these equations are the first equations in the curl equations, which do not contain
anyr−derivatives. (In (25) the superscriptT denotes transposition.)

4. Field expansions

On (z,φ)-cylindrical surfaces we expand the fields in terms of planewaves with general (r-
dependent) expansion coefficientsfm,n(r)

f (r,φ,z) = ∑
m,n

fm,n(r)e
jkmzejnφ. (26)

Here,km = 2πm/Lz+Kz with Kz denoting the Bloch phasing factor in thez−direction. Details
concerning the discretization inr−variable will be explained below.

5. Discretization in the radial direction

In (16) ther−derivative of thee−field is given by theh−field components alone, and vice
versa. This property suggests the discretization of the electric- and magnetic fields on interlaced
cylindrical surfaces. Stated more precisely, we discretizehz andhφ on surfacesr i = i∆, and
discretizeez andeφ on surfacesr i+1/2 = (i +1/2)∆, where∆ stands for the discretization step
length in the radial direction. In the following we will refer to a specificr−position by providing
an appropriate multiplier of∆.
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We establish a finite-difference relationship between the coefficients on adjacent cylindrical
surfaces by using Taylor series expansions of the fields, and keeping first-order (polynomial)
terms only:

∆




A i
11 A i

12

A i
21 A i

22







h̃i
φ

hi
z


+




ẽ
i− 1

2
φ

e
i− 1

2
z


 =




ẽ
i+ 1

2
φ

e
i+ 1

2
z


 (27)

∆




B
i+ 1

2
11 B

i+ 1
2

12

B
i+ 1

2
21 B

i+ 1
2

22







ẽ
i+ 1

2
φ

e
i+ 1

2
z


+




h̃i
φ

hi
z


 =




h̃i+1
φ

hi+1
z


 (28)

Here, the operatorsA i
pq and Bi+1/2

pq are discrete analogues corresponding to the differential

operators defined in (17), (18), (19), (20), (21), (22), (23) and (24). The vectorshz, h̃φ, ez, and
ẽφ comprise expansion coefficients of dimensionM×N of the corresponding fields.

It should be pointed out that in terms of the discrete matrix operators in (27) and (28) we can
compute ther−derivative of the Fourier coefficients on a given cylindrical surface. In this man-
ner we can formulate ther−dependence of the Fourier coefficients in terms of finite differences,
exactly the same way as we would operate with real domain fields.

6. Boundary conditions

For a complete specification of our boundary value problem, we need to formulate the boundary
conditions. We need to define two boundary conditions for fields in the proximity of the axis of
the simulation disk(r = 0), and two conditions on outer bounding surface(r = a).

6.1. Axis of the cylinder: r= 0

In view of (27) and (28) we can define the magnetic fields on cylindrical surfacesr = i∆,
includingr = 0. Based on the variable substitution in (11) we require that

h̃0
φ ≡ 0. (29)

This requirement constitutes our first boundary condition.
The formulation of the second boundary condition on a cylindrical surface, which ‘‘tightly’’

embraces ther = 0 axis, is slightly more complicated. Naively, it would be tempting to set
ẽ0

φ ≡ 0; however, the transversal electric fields in the discrete system are defined on the layers

r = (i +1/2)∆, rather than on the center axis of the simulation disk. However, settingẽ
1
2
φ ≡ 0

would mean assuming a fictitious impedance, and therefore, would alter the physics of our
problem.

To remedy these difficulties, we propose the following: We use Faraday’s law in integral
form ∮

l
E ·dl = jωµ

∫

S
H ·dS (30)

to generate the missing boundary condition. Next we approximately evaluate the integrals in
(30) by substituting field expansions in (26) witha priori unknown coefficients. Utilizing the
orthogonality of the harmonic basis functions we obtain an adequate number of equations for
the determination of the unknowns.

On the LHS of (30), we choose the integration path to be the periphery of the circle:
[l : r = ∆/2]. On this path, the involved scalar product becomes

E ·dl = ẽφdφ. (31)
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On the RHS of (30), we choose to integrate on a plane perpendicular to thez−axis. The
integrand becomes

H ·dS= hzdS. (32)

In the finite difference approximation, we takehz to be constant over the surface: 0< r < ∆/2,
0 < φ < 2π, z= z0. Upon this assumption, the integral at the RHS assumes the form:

jωµ
∫

S
H ·dS= jωµ

π∆2

4
h0

z. (33)

Substituting the field expansion given in (26) into (30), and using (31) and (33) result in

∫ 2π

0
∑
m,n

ẽ
1
2
φ,m,nejkmzejnφdφ = jωµ

π∆2

4 ∑
m,n

h
1
2
z,m,nejkmzejnφ. (34)

Interchanging the order of summation and integration at the LHS, and integrating each term
individually we obtain:

∑
m,n

ẽ
1
2
φ,m,n2πδ[n]ejkmz. (35)

Hereδ[n] is the Kronecker delta symbol.
The orthogonality of theφ−dependent harmonics can be used to create a sufficient number

of equations. We multiply both sides of (34) by exp(− j n̂φ) for all N harmonics in the basis and
integrate over the periodicity interval with the length 2π. These steps result in the following set
of equations for variouŝn

∑
m,n

ẽ
1
2
φ,m,nδ[n]δ[n̂]4π2ejkmz = jωµ

π∆2

4 ∑
m,n

h
1
2
0,m,n2πδ[n− n̂]ejkmz. (36)

Finally, the equations for individual coefficients can be obtained by multiplying both sides of the
corresponding equations by the exponential functions exp(− jkm̂z) for M distinct planewaves,
and, consecutively, integrating over the periodicity interval with the lengthLz. This procedure
results in the desired set of equations:

h0
z,m̂,n̂−δ[n̂]

8
jωµ∆2 e

1
2
φ,m̂,0 = 0. (37)

6.2. Free space boundary condition

For constructing the remaining two boundary conditions on the surfacer = a we utilize the free
space eigenvectors of the diagonalized form given in (16).

The eigenvectors of (16) in Fourier domain, which satisfy the Sommerfeld’s radiation condi-
tion in free space, are (e.g. Ref. [15])

Φ1
m,n =




ẽφ
ez

h̃φ
hz


 =




jnHn(λmr)

λ 2

jkm
Hn(λmr)

rωε
km

∂
∂ r Hn(λmr)

0




, (38)
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Φ2
m,n =




ẽφ
ez

h̃φ
hz


 =




j rωµ
km

∂
∂ r Hn(λmr)

0

nHn(λmr)

− λ 2

km
Hn(λmr)




. (39)

Here,Hn (·) denotes Hankel function of ordern and the first kind, andλ 2
m = ω2εµ − k2

m is
the square of the propagation constant in free space. In order to ensure decaying behavior
(integrability), we choose the branch withℜ (λm) = 0 andℑ (λm) > 0.

The transversal fields outside the cylindrical simulation domain (r > a) can be expanded in
terms of the eigenvectors in (38) and (39):

Ψ(r,φ,z) = ∑
m,n

[
am,nΦ1

m,n(r)+bm,nΦ2
m,n(r)

]
ejkmzejnφ. (40)

Here, the 4×1 vectorΨ(r,φ,z) comprises the transversal field components in real space, with
am,n andbm,n being expansion coefficients. Note that the basis functions are harmonic in the
variablesφ andz, and thus orthogonal in(φ,z)−domain. Utilizing this property, we can es-
tablish relationships betweenam,n andbm,n and the expansion coefficients of the fields in the
interior domain. There is, however, an important detail which we should be aware of while im-
plementing these ideas: Inside the simulation disk, the magnetic- and electric fields are defined
on interlaced rather than immediate neighboring surfaces.

In order to account for this circumstance, and thus to adequately ‘‘correct’’ the electric field
coefficients in (40), we shiftr by the distance∆/2 in the radial direction. Note that in our for-
mulation this can be accomplished fairly easily, since the functional form of the eigensolutions
in ther−direction is known.

6.3. Closed boundary

The implementation of the closed boundary is trivial. In case of electrically- or magnetically
conducting boundary, respectively, one requires the electric- or magnetic fields, to vanish on
the outermost cylindrical surface.

7. Constructing the system matrix

Before we embark on solving the electromagnetic wave propagation in the assumed
z−corrugated fiber, it is instructive to collect all the occurring expansion coefficients into one
vector, say,f. Next we set up the system matrixM , by evaluating (27) and (28) at individual
(discrete) cylindrical surfaces in the simulation domain, and matching the solutions. We obtain
the following homogeneous system

M(ω,Kz)f = 0. (41)

The parametersω andKz have been written explicitly in order to emphasize their role as input
parameters.

It is important to point out thatM is very well structured. This fact is instrumental in numer-
ical calculations: The equations resulting from (27) and (28) create two unity side diagonals,
having opposite signs, and being offset from the main diagonal by±2M ×N elements, with
M andN denoting the number of planewaves in thez− andφ−directions, respectively. Be-
tween these two diagonals the matrix operatorsAm,n andBm,n generate three block diagonals
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of the sizeM×N. The equations originating from free space eigenvectors can be written in a
form which preserves this structure. Unfortunately, however, the equations resulting from the
boundary conditions in the proximity of the center axis, do not have this desirable structure.
Nonetheless, the matrix elements arising from these equations are sparse, and structured sys-
tematically in a specific way.

8. Solving the system of equations

Solutions of the homogeneous system (41) are eigenmodes of our corrugated fiber. We thor-
oughly have discussed the efficient solution of similar matrices elsewhere. Therefore, here, we
restrict ourselves to a few useful hints and guidelines. For more details we refer the interested
reader to Refs. [12, 13, 14].

8.1. Excitation problems

The equation system (41) can be easily modified to include excitation problems, involving
electric- or magnetic current distributions in transversal directions. Solving excitation problems
does not require any modification of the system matrix: The zero vector at the RHS can be
replaced by a vector describing the current distribution. The modified system equation is given
in (42). (For details considering problems in the Cartesian co-ordinate system refer to [11, 12,
13, 14].)

M(ω,Kz)f = ρ(ω,Kz) (42)

The numerical solution to this system is best obtained by means of iterative solvers. Most
iterative solvers do not perform any direct factorization; they basically require a software rou-
tine to furnish matrix-vector products. This fact is of significance since the system matrices for
three dimensional problems can become prohibitively large.

Instead of discretizing the operators introduced in (16) directly, we propose an alternative
procedure which enables us to apply these operators to a trial vectorf̂ numerically. While,
real space derivatives can be effectively evaluated in Fourier domain, multiplications by func-
tions, e.g.ε can be preferably carried out in real domain. Therefore, we will Fourier and in-
verse Fourier transform the coefficient vector, in order to move back and forth between the two
spaces whenever necessary. Direct discretization would createMN by MN complex-valued ma-
trices and multiplications involving them would requireO((MN)3) operations. In the proposed
way, the matrices involved are all diagonal, and the resulting dominating factorO(MN ln(MN))
stems from the Fast Fourier Transform. Proceeding along these lines, we can construct the ma-
trix product piece by piece. The actual matrixM is never constructed explicitly.

Iterative solvers, such as Transpose Free Quasi Minimal Residual method [16], do not usually
converge fast enough without utilizing a suitable pre-conditioner. Our approach is to use a
system matrixM̂ , which corresponds to a simplified problem defined by∂ ε̂/∂φ = ∂ ε̂/∂z≡ 0.
On each cylindrical surface, the value ofε̂ can be obtained by averaging theε of the original
problem over the corresponding cylindrical surface. The resulting simplified problem, leads
to a sparse and well-structured matrix̂M , the direct factorization of which is computationally
affordable.

Once the routines which perform matrix products withM , and a routine which computes
M̂−1g for a given vectorg are available, the preconditioned system can be solved as described
in [17].

After the solution is obtained, the real domain fields can be recovered by Fourier transform-
ing appropriate coefficient sets. The expansion coefficients characterizing free space exterior
domain together with (38), (39) and (40) can be used to compute the fields inr > a.
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Fig. 1. The geometry of test case 1. Image shows one unit cell, which is periodically repli-
cated in thez−direction.

8.2. Eigenproblems

The eigenmodes of a system correspond to those ordered values(ω,Kz), which make the system
matrix M singular. There are a variety of methods in our disposal for determining the singular
points of a matrix. The common feature of most of these ‘‘traditional’’ methods is that they rely
on the direct factorization of the system matrix. Here, we propose an alternative way, which is
based on the field solution to a randomly, yet, suitably chosen excitation. To illuminate the
details consider a(ω,Kz)−point for which the matrixM in (42) approaches a singularity. (For
the sake of simplicity we limit ourselves to non-degenerate cases.) Then, one of the eigenvalues
of M approaches zero. Assume thaty is the corresponding eigenvector. Under these conditions,
f, the solution of (42) approachesy, unless the algebraic scalar productyT ·ρ is vanishingly
small. At the same time, theL2 norm ||f||2 approaches infinity. This theorem can be easily
verified if both the matrix productMf and the excitationρ are thought to be expanded in terms
of the eigenvectors ofM , as is done in [18].

Guided by this idea, we can search for the eigenmodes by varyingω for a givenKz (or vice
versa), solve fields in response to a random excitation, and use the solution norm as a measure
for the singularity.

9. Numerical results

9.1. Bragg fiber

Consider az−periodic Bragg fiber with the following properties: one unit cell is constructed by
stacking two cylindrical elements on top of each other. In addition, a sector of 90 degrees has
been removed from both elements as sketched in Fig. 1. The refractive indices of the elements
aren1 = 1.5 andn2 = 2. The radius of the fiber isr = 0.5, the height of both pieces constituting
the unit cell isd = 0.5 and the height of the unit cell isLz = 1. Outside the fiber is free space.

Our results are compared with the planewave method solutions [8]. Computations are car-
ried out by using 16 grid points for each of the three spatial variables, in our method, and,
using a 128× 128× 16 grid for a supercell of size 8× 8× 1 in the planewave method. The
computed Brillouin dispersion diagrams are shown in Fig. 2. The match is encouraging. The
minor discrepancies are most likely due to the coarse grid.

9.2. Bragg fiber with cylindrical symmetry

Our second test case is a Bragg fiber which consists of two periodically stacked disks with
relative dielectric constantsεr1 = 2.25 andεr2 = 4. The radius of the fiber isr = 0.5 and the
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Fig. 2. Dispersion diagram for the four guided modes in the geometry shown in Fig. 1.
Curves with the marker ‘‘o’’ are computed with our method while curves with the marker
‘‘x’’ are obtained using the planewave method. Inset shows a zoom of the bands near the
Brillouin zone edge.

heights of both disks areh1 = h2 = 0.5. The medium outside the fiber is free space. Due to
the cylindrical symmetry of the problem, we only use 4 planewaves in theφ−direction. This
allows us to expand the modes in terms of the Bessel functions up to the first order. We solve
one mode only withω = 0.4×2πc/Lz and compare the results with those obtained from the
eigenmode expansion technique [9].

In the reference method the structure of interest is enclosed inside a metallic cylinder. In
the immediate proximity of the metallic surface a Perfectly Matched Layer (PML) has been
assumed. Ideally, a PML should emulate an open boundary, but in practice there will be re-
flections and we have to assume free space between the fiber and the PML. In our numerical
experiment we surrounded the fiber with 4.9 units of free space and 0.1 units of PML material.
The convergence of both methods as a function of discretization is shown in Fig. 3.

Both methods seem to converge to the same value, the most accurate solution with our
method beingkz = 0.4673591×2π/Lz, while for the eigenmode expansion method beingkz =
0.4673595×2π/Lz, with the relative difference compared with the latter being 8.068×10−7.
It should be pointed out that due to the intrinsic differences between the two methods, the
discretization sizes are not directly comparable.

9.3. Fields in a fiber with air holes

Our final test case consists of a fiber with six air holes arranged symmetrically around the
center. The radius of the fiber isr f = 1, the assumed relative dielectric constant isεr = 4, and
outside the fiber is free space. The centers of the air holes are located on a circle withrc = 0.5L
(for some length scaleL), and the radii of the air holes arera = 0.1L. There is no variation in
thez−direction. We compute the lowest-order eigenmode for the frequencyω = 0.3×2πc/L
and find its propagation constant along thez−axis to bekz = 0.33035×2π/L. The eigenmode
is found by the alternative method outlined above: solve the field pattern associated with a
random excitation and seek the maximum of the solution norm. In this way the eigenmode field
pattern is obtained immediately by inverse Fourier transform of the resulting set of expansion
coefficients. Since the simulation is two dimensional we have used a single planewave in the

(C) 2003 OSA 17 November 2003 / Vol. 11,  No. 23 / OPTICS EXPRESS  3060
#2988 - $15.00 US Received Septebmer 04, 2003; Revised October 31, 2003



20 40 60 80 100 120 140 160 180 200
0.4673

0.4674

0.4675

0.4676

0.4677

0.4678

k z (
L z/2

π)

Discretization

Fig. 3. The converge of the eigenmode propagation constant as a function of discrete ba-
sis size. The curve with circular tags is computed with our method, while the curve with
cross tags is obtained with the eigenmode expansion method. For our method, the abscissa
denotes the discretization step in the radial direction and also the number of planewave
components in thez−direction, which are both equal here. For the eigenmode expansion
method the horizontal axis denotes the number of eigenmodes used.

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1

0

10

20

x 10
6

xy

R
e(

e z)

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−2

0

2

x 10
6

xy

R
e(

h z)

Fig. 4. The real part of thez−directional eigenmode field pattern in a fiber with circular air
holes.

z−direction only. In ther−direction, we discretized the fields on 64 concentric cylindrical
surfaces, while in theφ−direction we have used 64 planewaves. The resultingz−directional
fields are shown in Fig. 4.

10. Conclusion

We presented a robust and performance-enhanced method for numerically analyzing the prop-
agation behavior of electromagnetic waves in structures which are periodic in two directions
in space and arbitrarily non-periodic in the remaining direction. In particular, we considered
z−periodic structures in(r,φ,z)−cylindrical co-ordinates. A cylindrical disk, characterized by
the radiusa and the periodicity lengthLz, defined the fundamental cell in our problem. The
permittivity of the dielectric inside this cell was characterized by an arbitrary, single-valued
functionε(r,φ,z) of all three spatial co-ordinates. We addressed both open and closed bound-
ary problems. The presented method relied on the diagonalization of Maxwell’s equations in
the radial (r−) direction. The presented method requires the discretization of the fields in the
interior of the disk only. Inside the disk volume, we expanded the fields in terms of planewaves
on discrete cylindrical surfacesr i = i∆, with ∆ being the discretization step length. The fields on
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the nested surfacesr i = i∆ in the interior of the simulation domain were interrelated by the ap-
plication of a simple, yet, powerful finite difference scheme. In the free space outside the disk,
the fields were expanded in terms of closed-form eigensolutions of the Maxwell’s equations in
cylindrical co-ordinates. In terms of three examples we presented the general applicability of
our method.

Our present research efforts are focused on the development of Wannier function like and
other localized analyzing functions for the efficient modeling of defects in photonic crystals
and devices.
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